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{Abstract)

Marcott and Soland'® devleop a method for {inding the best solution using a branch and bound
method. They used the ideal solution at each stage as means of bounding technique. In this
paper we show that that the Lagrangean relaxation idea for scalar optimization problem can be
extended to the multiobjective integer programming problem and incoporates an interactive

branch and bound method based on Marcott and Soland’s method.
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7. Introduction

Marcott and Soland develop 2 method for
finding the best solution at each stage as
means of bounding technique. In this paper
we show that the Lagrangean relaxation idea
for scalar optimization problem can be extended
to the multiobjective
problem and incorporates an interactive branch

integer programming

and bound method based on Marcott and
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Soland’'s approach.
The essential idea of using Lagrangean

method is to provide vector bounds for the
the
in the

objective fuction vector 0 assist in
elimination of non-optimal solutions.
next section we will briefly specify the formal
assumptions which we will then present the
algorithm based on the Marcott and Soland’s
approach and then illustiated its use. It should
be stressed that this is merely an illustration,

and as with other approaches to such problems,
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a proper numerical evaluation will need to be

made in comparison with such methods.
I. Assumptions and Underlying theory

The standard scalar discrete optimization
problem may be put in the form
maximize f(x)
subject to x=X
where X={x=Z: g.(x)<0, k=12, -, p}, Z=R"
is a set of points with integer componecnts and
{g:«(x)} are valued fuction on Z.

Much standard theory for the scalar problem
makes use of the Lagrangean
g:(x)=f(x)—2g(x)
where 2=.[={Z=Rf: 2>0}.

and Shapiro'™)

(see  Geoffrin®™

It is natural to see whether these results
may be extended to the vector optimization
problem. This takes the form of finding E(x, f)
where

F=4 1 f2 eeeen ,fm}r R —— R™

X={x=7: gu(2)<0, k=12, -, 0}

E(x, fr={x=X: fi(y)>f(x) for somc
y=X, i=12,m imply fi(p)=fi(x), i=
1,2, -, i

The set E(X, f) is the vector maximal set and
is the gloval pareto maximal set.

For this problem the simplest natural gener-
alization of the scalar Lagrangean is the
Lagrangean

gi(x)=f(x)—g(x)e

where, again 2=/, and e=R~ has unit cOm-
ponents.

The vector Lagrangean has been studied by
various other arthurs, the main, and more
recent ones, being Sarawagi and Tanino®,
Bitran?, Brumelle®, Kawasaki(.

Let assume that the decision maker has an
implicit value fuction # on R which is
monotonic increasing on R. It is required to
find a point in X which maximizes #(f(x)),

but # is assumed not to be known explicitly.

Beacause of the monotonicity assumption we
would only need confine our search to E(X, f).
If we were able to determine the whole of
E(X, f), then this would be the end of the
matter. In general this is not the appropriate
thing tc do and one might seek an appropriate
subset of E(X, f). Even here this meyv create
difficulties. and we may seck some surrogate
representation which is still effective enough
in its resolution of the initial problem. Such
a surrogate may be E(Z, g:), and we will use
this in the suggested algorithm. The signi-
ficance of E(X, f) is the following natural
extension of the corresponding scalar result,
which we state without prool since this trivial
4, z2=E(X, f)-— f(OTxgi(2)

whereZ>means=but not=in a vector sense.

In seeking E(X, f) we may make use of this
for a hounding and elimination process. In the
scalar case, for the above circumstances we
have f(x) “g:(z) and this is then placed as a
constraint on the next stage of the computa-
tion. A similar device is used in the algorithm
of this paper.

It is clear that, for a given z, if would be
useful to choose 7 so that g;(z) i3 as good as
is possible in its elimination capabilities. We
proceed as follows.

Let z=Z. Deline
MD={A=1 z=E(X, g}

Then

x=X— f(x)F g(z) for any A=/
Now

g:(2)=F(a)—1g(2)e.
Let us suppose that maX;-.«., 1g(z) exists and
takes its value at Z(z)=A4(z). Then

=X — o f(0)Zgrn (.
If 4(2)=.(z), and with the obvious definittion
of #/(z), we also obtain, assuming a maximzer
exists,

=X )T grw(2).
since

grw(2)Zgra(2).
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These bounds are useful in the interactive
branch and hound section later on. They need
only be invoked if a particular subset of X
from further consideration. .1’(z) is a surrogate
for A(z) if A(z) is difficult to determine.

It is not always true that (z) is closed. This
applies in the illustration given later on. In
such cases

MaXzz.Ag(2)
may not exist. In such cases we may take
SUpr=xnAg(2),
or alternatively
mas;z . Ag(z)
since this will exist, for otherwise we can
make Ag{z) arbitrarily large, and this would
imply X =4.

As will be seen, the method given later on

does not depend on
maXey;g(2)
existing.

Let us now consider the interactive algo-
rithm.

M. An interactive branch and bound
method

Marcotte and Soland develop a method for
finding the best solution in a set X using a
branch and bound method.

It is assumed that a value fuction, monotone
increasing on f(X), exists and that, hence,
we may restrict ourselves to E(X*, f) at each
stage, where X* is any one of subsets of X
which the method generates.

A typical step is as follows, where at some
stage we are restricted to examining a set of
sets {X*}, X*<X, and where it is known that
some optimum lies in some X* At this stage
x* is a best point to date obtained from
comparisons of all specific points identified to
date.

Consider X*. Let ¢* be the ideal point of X*.

[f, by interaction with the decision maker, x*
is preferred, or indifferent, to ¢* we may not
eliminate X* Otherwise we select a point
x+=E(X* f). Since we are restricting ourselves
to E(X, f),
necessarily disjoint, subsets {X#

X* is then split into m, not

where

X ={az= X0 fi(x) > fi(ah)),

Fim1, 2, eeen L,

FCECX!, OV /(XY
This is done for all {X*}, and a best point to
datc becomes a best point of {x*, x', x2--s.e, 2%},
The procedure is repeated for all the {X*}
which have not been eliminated. Exentually
a bett point in X will be found.

Using the Lagrangean method it is possible
to introduce Lagrangean multipliers for each
constraint introduced at each stage. This will
quickly make the procedure unmanageable in
general, and hence, we will not do this. On
the other hand, at this stage we will have
subsets {X*} of X and associated subsets {Z*}
of Z, and it is important that the determi-
nation of E(Z* gi) be simpler than the
determination of E(X* f). This will not be
the case with the branching method of Mar-
cotte and Soland in terms of inequalities on
{fi}. We will keep Z* in a similar rectangular
form to Z, and hence, will branch by splitting
the range of z;, for some j, at each stage.
We now describe a typical step.

Suppose, like Marcott and Soland, we have
reached a stage where we know that an
optimal solution lies in one of a set of subsets
{X*} of X and we have a best point t*<X to
date from among the specific points we have
considered. Let us take a typical X and let
it take the form

Xi={z=X: x,e[l,.,ﬂ;.], J=1,2, ee0e S B}
where (/;s, #:;) are non-negative integers, and
where we allow #;,==00 when x; is unbounded.

We set
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Zt={z=Z1 ;=i #3), 7=1,2, 0 0} FUx)=x,+ 3%, F2x)=3%,-212,
Select a points x*=X* a point A=/ and a 2.(0)= *fl,*xr‘}-‘i*xz—& gg(x):ié—x,
point z*&E(Z*, g:). Determine g:(z*) and the - -
ideal objective fuction vector f(¢*) of X* (this ‘*"fé"zx—4,

is not necessary, but in some cases wc have Z={z=R3: 230}, A={i=R: 120

gi(Z)>f(a*) for some 4, and the ideal point Then it is casily scen that

is better for elimination purpose). Sct, for i= g(2)=2—2.g:(2) - 2282(2)

1,25, =hi(2)+e(R)
K()=min[f(s), g1z, ()= (1874 142
g(2*)=(qi(2*))=R" §.=12, 0, hi(z) - pizii-qaze
7:(2)=1i(zY), ¢a(z)= (e*), Vs#i. 1. i

Then it is clear that P - ERa 7757/{2 z
Xto,yH G- bl

where 1. 1.

Ve {x=Xt f(2)S¢a(20)), i=1,2, 0 L MM - 3=yl s .
If f(x%) is better than or indifferent to ¢ 2 ”%”Zv_—‘é’“%z )

(z%), Vi, then we may eliminate X* 1f f(x*)
is worse than ¢.:(z%), for some ¢ then we may
trv to improve the bound g:(z*) as indicated

Let us assume that a true vaiue function
exist of the form u(f) =251~ f- 5.8,
Select some point x*=X, c.g. x7-:{10,10)

in Section 2.
) Set Y:_.. .[ .,‘-:X: YSS}, X2 ‘f.\'Ef(i X _:Dj
\We do this for all the {X*} subsets. For
o and 2V {zenZ 25, ={z= L 2225}

each subset not climinated we branch by

beid N ot . Select 2550, evgn A-=(1073, ),
subsiding the range of x; for some j to ensure

& . & ! J i 2=E(ZY, g)=(0, 2)

that Z* remains rectangular as each stage. We , 1 o
update x* by taking the best of the previous (3~—4—><-G_- 012
2* and the sample points {z*}. The procedure g _’_{{J();‘\)

. - S ;70
is repeated until an optimal solution is found. g:(z) ) L (;) . : )
At each stage we may choose several {x%, (:""'Lf \2) 2 9
2, z*} combinations to improve the prospects g 20 )

VTR

of elimination subsets.

sider . H - R ITND B
Also the method is easily moditied to ensurc Consider the ideal point of ¥, o*=, 5, 18757

that all optima are obtained as distinct from Filaty==60, f:(az).,;sl—%—
a single optimum as the method stands. Hence A
We will now consider a simple linear Bz min[£i(et), gi(z)]
g ), 82 );
example, merely to ilustrate the procedure. . min[70, 60}~ 60
The initial calculations illustrate the calcula- #2022 - min [F2(e0), gi(zt)
2 r - > 2 J
tion of E(Z,g:) for a selection of 7 values. T 2
;mm{SO, 51—3'*]:.30
n /60 7o
/. An example ga(2)-[ 5 |y or ("-'\:z
515 50
Let
1 w(y)= 2604515 = 1715 130= u(x*)
A_r,wo___«ﬁ.ﬂ\/\/ A1
X={x=Re oS8, pnt e 4(2) =25 70--50= 190> 130= u(x*)
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Therefore X* is not eliminated and we update
z* by taking the best of the previous x and

Now we consider X Select the some point
2%t E(2%, g.(2), eng. 22712, &) and A4, e g,

A=(20/6, O).

We have
302
36, 20 [FF
g3(z2) = ( ‘-~_,ﬁv, =z
207 sk
3/

¢ 20 , . 2
0t =(12, 1275 ) Fi(a)= 12485125 =50

PN 2
fo*) - 3 12+2% 123,

{83

=min| 50, 3275

(2D =min[f2(¢%), giz%)]

. r..2 1.7 0 2
=min 48 5, Sl o4y
L 3 3
324
25 /30
q,(2%) 3 yor| o)z
5 :

Therefore
3!

w(y): 2325 514 11675 <160 #(x*)

w(2)=2x50-+48 :; <1437 - 160 w(x*)
Hence X*® is climinated irom f{urther consi-
deration.

Ses X3={x=x': X518}, Lo,

= {xes X xx 5, X 15}

Xi=agW\ad {x=X: x, 3, xpo15)
Consider the set X% Select the same point
2= E(2%, giu(2»)), e.g. 29 (5, 13) and AT,
e.g. A={(20/6, 0)

we have

hi(2*)=min[f*(s*), ¢i(2:)] =45

w(y)= 25010045 145 < 160=u(x*)
Hence X3 is eliminated from further consi-
deration.

Now consider the set X Subdivide X into

Xo={x=X" 2,703, 2,215}

Xo{xe= X 3Tx, <5, x.>15}
and continue by selecting points in X3 X§
comparing with ¥* to {ind the best to date,
selecting 424, finding z*=E(z% g1), &=5,6,
and so on. Eventually the procedure will
terminated at an optimal solution, viz., ¥¥=
(0, 20), u(f*)--160.

In the above special problem it is clear that
the choices of x*&=X* and 2*&E(ZY g:) could
obviously be made in more efficient ways, but
for more general problerns this may not be so
casy. lence, to some extents, these points
have been chosen arbitarily but at the same
time chosen to illustrate particular features of
the method.

V. Summary and comments

This paper explores the possibility of exten-
ding relaxation technique from the scalar
problem to the vector problem. It is seen that
analogous method do exist which may be useful
particulary when a surrogate set of solution
for a subset of the efficient solutions is
required, from which the {inal solution will
be chosen, or where an optimal solution is to
be obtained by interaction with the decision
maker. In the latter case, a branch and bound
method i3 suggested which is stronger than
the use of ideal points as suggested Dby Mar-
cott and Soland.

This paper is merely exploratory and, as
with modern developments in the use of
l.arangean methods for some discrete problems,
extensive numerical work on realistic problems
is needed to see if the method is practicable

and competitive,
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The essential advantage rests in the ability
to determine numbers of E(Z, g;) rather more
casily than determining members of E(X, /),
or even approximately members of the latter.

Clearly there are some open problems asso-
ciated with the suggested procedure such as:

{a) How can the choice of 2=, and 2=E(Z,
g2) be sensibly guided ?

(b) It is possible to determine etiher a good
algorithm 1o find A(z), or a suflficiently good
subset of _1(z)?

(c) Would the replacement of A<:.1 by A<
{Az=Rrxr: 220} and ga(x) by f(x)—-2Ag(x) prove
to be a more competitive approach ?

(d) Would it be better to introduce extra
constraints which arise in the branch and
bound method in the lLagrangean from, thus
widening the types of branch and bound
procedure which might be used ?

Such questions would form the basis of

future research.
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