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On the Numerical Range for Linear Operators in Hilbert Space
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{Abstract)

Using the concept of the numerical range W(T) of a linear operator T in Hilbert space H, we
show the relations between W(T) and some spectrums of 7. Moreover, their properties reduce a
non-normal operator to a normal operator. Finally, we investigate the properties of an extreme
point of W(T) and some spectrums of linear operators in Hilbert space.
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let [T]=max|Tx], w(T)=sup{l|4| : 2=W(T)}
=numerical radius of T and »(T)=sup{|4]:
A=g(T)}=spectral radius of 7. Then the
inequality #(7T)-<w(T) |T| holds. We denote
by E(T) the set of the extreme points of the

1. Introduction

In this paper H is a separable, infinite dim-
complex Hilbert space with inner

product (,), and the Banach algebra of all

ensional

compact convex set W(7T) and by Conv M the

Lounded linear operators in H will be denoted
by L(H). Denoted by ¢(T) the spectrum, by
¢, (T) the point spectrum, by ¢.(T) the appr-
oximative point spectrum, by o,(T) the residual
spectrum, and by W(T)={1:A=(Tx, x), |xj
=1} the numerical range of T. As is well
known, W(T) is a convex set (by Theorem of
Toeplitz and Hausdorff), o¢(T) is a compact set
moreover, a,(T)Co.(T)Ca(T)C_W—(T), closure
of W(T) (by Wintner [11]), o (T)CW(T) and
6.(T)>d6(T)=boundary of ¢(T). Furthermore,

convex hull of a set M of the complex plane
C. We have Conv E(T)=W(T) (because C is
W.F. Donghue lists the
following most important fact about W(T);
(1) W(T) is convex|[6].
(2) W(T)oa(T) {10].
(3) If T is normal, W{T) is the smallest
closed convex set containing ¢(T). [10].
(4) If T is normal and W(T) is closed, the
extreme points of W(T) are eigen values

[6].

two dimensional).
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(5) If W(T) reduces to the single point 4,
then T=4il, where [ is the identity [1].

(6) If W(T) is a subset of the real axis, T

is self-adjoint{1].

From the above statements, it is the aim of
this paper to prove some relations between
spectras and the numerical range, which are
known in the case of normal operators, for a

larger class of operators.

I. Numerical range and some
spectrums.

Let T=L(H) and ¢ be a complex number,
and let E([T}={xH :Tx=¢x}. Of course,
E [T1=0 if and only if ¢Sa,(T). It is well
known that E;[T]=FE;[T*] for everv normal
operator T. Let A (T)={{z.; in H @[z’ =1,
(Tx, x,.—C(n—o0)}, Saitd [7], if a point =g,
(T) satisfies the relation E([T]1=E. [T*], ¢ is
called a normal eigen value of T. ’

Lemma 2.1 Let T be a contraction (i.e., [T}
71) and 2=¢,(T) of modulus 1, then FE;(T]
= E3[T*] holds.

Proof. Let U be a unitary dilation of T,
then Ux—Ax2=2]x}2—2ReA(Ux, x)2{z| U
—2AFtx for all x==H. Thus we have Tx,—1x,—
0(n—0) if and only if Ux,—Ax,—0(n—o0) for a
sequence {x,} of unit vectors of H. Similarly
T*x,— 7 %,—0(n—o0) if and only if Utx,—Tx,—
0(n—oo Since U is unitary, Ux,—Ax,—0(n—00)
is cquivalent to U*x,—Ax,—0(n—0). Thus Tx
—2x if and only if T*x=7Zx. Therefore the
relation E;[T]=FE;[T*] holds.

Theorem 2.2 Let T be a contraction. Then
Ac=W(T) if and only if there is a sequence {x,}
of A;[T] such that (T*z,, x,)—A(n—00).

Proof. I{ 2=W(7), ther there is a sequence
{x,} of unit vectors such that (Tx,, Xy A —
oo) (i.e., {x,)4;[T]) Since T is a contrac-
tion, 7 has not only normal but also unitary
dilation. By Lemma 2.1, let U be a unitary

dilation of T, we have (Tx,, x)—A(n—oo) if

and only if (Ux,, x,)—Ai(n—o0) for a sequence
{x,} of unit vectors of H. Since U is unitary,
(Ux,, x,—Ai(n—o0) is equivalent to (U*x,, %,)
—7(n—co) if and only if (T*x,, x,)—A(n—o0).
Conversely, suppose that there is a sequence
{x,} of Az[T] such that (T*x,, x.)—ZA(n—00).
Similiarly it follows that (T*x,, x,)—Z if and
only if (Tx, x,)—A(#n—00), hence A=W (T).

Corollary 2.3. If T is a contraction and |{}
=1, we have A;[T]=A4:(T~-], and the relation
A [T]=A4;[T*] implies that Tx,—{x,—0(#—00)
if and only if T*x,—Ax,—0(n—o0) for a sequ-
ence {x,} of unit vectors.

Proof. From Lemma 2.1. and Theorem 2.2.

Corollary 2.4. If (=(o(T)io (THNIW(T),
then A;[T] =A:[T*) and E;(T}=E:{T*], where
AW (T) is the boundary of W(T).

Proof. If t=o(TYNIW(T) and (=0 (T), then
there is a sequence{x,} in H with [x!=1 and
lim [zl —Tx,)! =0,

By translation, we can suppose that {=0and
Re W(T)=0. Hence there is a sequence {x,} of
unit vectors such that }Tx,;—0 (#—oc). Since
(Tx,, %,)—0(n—00) we have ((ReT)x., x.)—=Re
(Tx,. x,)-»0 (n—o0). From Re W(T)>0, since
Tx,=(ReT)x,—i(AmT)x,, Im T)x,.={Tx,—
(Re T)x, -7 Tx, | (Re Tjx,}—>0 (2—0oo) Thus
| T*x,] = (Re T)x,—i (Im TOx, 0TI (Re T)x. 0+
I(Im T)x,i—0(n—o0), and so A [T]=A:[T*].
By a symmetric argument A[T] 2A4:[T*],
therefore A:[T]1=A:[T*}. Also,
E[T]=E:[T%] holds.

Definition 2.5. [5] [7] T<L(H) is hyponor-
mal if T*T—TT*>0, which is equivalent to
[T*x!<Z[Tx! for all x==H, T is normaloid if

ETh=-7(T); equivalently, [T =sup{{Tx, x)}:

the relation

lx}==1}=-(T;, and T is restriction convexoid
if the restriction of T to any invariant subspace
is convexoid, shich is equivalent to W)~
Convia(T)).

Lemma 2.6. [7] Let T Le restriction conve-
xoid. If (T is finite, then T is normal.

Theorem 2.7. Let T De restriction convexoid
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and «(T) he finite, and let K={xe=H : Tx=
e9T*x} for a fixed real value 4. Then K is a
reducing subspace of T and T|K is normal, thus
Trx=e"T*"x for x<=K.

Proof. It follows that Tx=eT*x
ITx||= e |T*x]|=|T*x]| for x=K. From Lem-
ma 2.6 T is normal, and so T is hyponormal.
Therefore (T*T—TT*)x, x)=0 for all x&H
and for y=H [(((T*T-TT*)x, y2<|((T*T-
TTx, x)|-|((T*T-TT*)y, »)I=0 by the
generalized Schwarz inequality for positive

implies

operators. Since y is arbitrary, we have T*Tx
=TT*x. Hence we have T(T*x)=T*(Tx)=T*
(eT*x) for x=K, and T(Tx)=T(eT*x)=e
T*(Tx) for x=K, thus T*KCK and TKCK.
Therefore K is a reducing subspace of T. Also,
since T*Tx=TT*x holds for all x&=K, T|K is
normal. Since T2x=T(Tx)=e9(TT*x)=¢*T**
x for all x=K, if T lx=¢~00T*&-g holds
for all x=K, Then T x=T{(T*'x)=e™T*" x
holds for all x=K (by induction).

Lemma 2.8. (3] T is normaloid if and only
if I T=w(T)=r(T).

Example 2.9. [7] Let T be an operator on a
three-dimensional defined by T:((l) 8 8) with

010,
respect to the orthonormal basis {e;, es; e;}.

Then o(T)={0, 1} and ||[T|=7#(T)=1, so that
T is normaloid.

Example 2.10. [3] Let T, be an operator on
the two-dimensional space H,; defined by T,=

(35) Then 1/2=w(TO<ITi =1, o(T)={0}.

Let Ta=(#:4)i r=1,2 -« be the matrix with ¢
=2, and {,,==0 for ¢k, and T, defines a normal
bounded operator on an infinite-dimensional
spacc Hp with o(T2)=W(T,). Since T, is nor-
mal, we have w(T2)=|T:/. Finally, we take
the operator T=T8T: in H=H ~H, Then
we have w(T)=w(T)=w(T:)=|T:| and hence
{;T};‘fisge I =T w(T.). therefore w(T)<C

WTF, and so T is not normaloid.

Theorem 2.11. Let T be restriction convexoid,
and let K-={x=H : Tx=¢?® T*x for a fixed real

valueg}. If ¢(T) is finite and ¢(T|K) lies on a
convex curve. Then o, (T[K) is empty.

Proof. From Theorem 2.7 T1K is normal. Let
o be a complex number. Then, in view of the
normality of TK | — ul, the following statements
are equivalent; (1) pZW(TK ) and (2) g is not
in Conv (¢(T|K)).

Thus it follows that W(T K )=Conv (s{T{ K)).
By assumption, ¢(T|K) lies on a convex curve
and since W(T K )=Conv(s(T| K)), we have that
each point pu=g,(TK|) must lie on the boundary
of Conv (o(T'| K)) which is W(T K. hence x can
not be an interior point of W(T|K). But ¢,.(T|
K) lies in the interior of W(T'|K), and so ¢,(T|
K) is empty.

Example 2.12. [4] Let A=(( §) and 7 be the
one-dimensional identity operator and we con-
sider the operator T=A®I. Then W(A)={z:
121<1/2} =Conv{{W (A)}F, 1}, thus w(T)=1=
IT] and Conv ¢(T)H=1[0, 1].

M. Extreme points of W(T).

Lemma 3.1. Re T>0 if and only if (T—al)*
(T—al)>a? for all a<0.

Proof. T'>0, then for any «<0 we have 2Re
T=T*+T={T*T (T -l )X(T—al)+o® I}/ a>
0>T*T /. Thus we have(T —al )*(T —al) >
for all a<0. Conversely, if (T —al)*(T—al)>
a? for all @« <0 Then for all <0 we have a(T*
FTYSTHT, T*+T>-= T*T, and T*+T>0
results on letting o——oo; thus Re T=1/2(T*
+T)>0, and so Re T=0.

Lemma 3.2. Let Re W(T)>>0, and let 0 be
an extreme point of W(7T). Then M={x<H :
(Tx, x)=0} is a closed subspace.

Proof. All is clear but the linearity. For
£, y=M we see that (T(x+y), (x+y)=(Tx,
P+, T*x)=(Tx, 3)+(—1x, y)=2Im(Tx.y
=g, Assume 2340, then (T'(ex-+y), (ex+y))
=2Imei® (Tx, ¥), since a0, for e==+1 the
values of 2 Im €?(Tx, y) lie in both the upper
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and lower half-planes. Thus 0 is not an extreme
point, contrary to hypothesis. Therefore ¢=0
implies x+y=M. Let{x,} be any sequence in M
such that x,—x(n—o0), then we have LiqrE(Tx,.,

ard so lim x,=x

fiec0

2=(T{im z,), lim x,)=0,
=M. Thus M is closed.
Theorem 3.3 Let T be hyponormal and (T —

ol (T —al)>a?_for all a<0, where 0 is an

extreme point of W(T>. If (Tx, x)=0, then
Tx=0. Moreover, M={x=H :(Tx, x)=0} is
reducing subspace of T.

Proof. Let N={x=H :Tx=-T*x}. Since

(Tx, x)=0, we see that x*=MCN. From Lem-
ma 3.1 Re T»0, and so Re W(T)>»0. lf x&=H,
then ((T+T*)x, x) :2 {(Re Tx. x)>0. Now
(Tx. x)=0 implies ((T+T*)x, x)=0,
Tx=—T*x. Therefore T|N is normal, by Lem-

and so

ma 3.2 the condition (Tx, x)=0 implies that

Let Tx=aey, where |5 = 'y/=1 and

a=0. Since (Tx, x)=0, it follows that (x,y)=
0. Thus (Ty, x)=(y, T*x)="y, ~Tx)=—(Tx,

y)=—2&. (3, y)=-—a. Let L=span{x,y}, and

define P to be the projection of H and L.
Then the matrix representation of PTP on L
0 —a\
e b/
1f x=N, then ay=Tx=N, hence (Ty, y)=

1=

(v, T*y)=(y, —Ty)=—(Ty. ysand b is purc
imaginary. Now, we have that W(PTP)CW
(T) and PTP is normal.

From[1]W(PTP) is the lire segment joining
the roots of the equation A2—#82--1¢|2=0. Now
the roots are A=(b+i/[6|°—41@i2)/2.

Since 0 is an extreme point «f W{T) and thus
of W(PTP), it must be an endpoint of the line
segment, that is, one of the roots. Clearly this
happens only if ¢=0, which implies Tx=0.
Also, from the proof of Theorem 2.7 M is re-
ducing subspace ofT.

Corollary 3.4 [9] If T is hvponormal and z
is an extreme point of W(7T . then (Tx, x)=z
together with [x)=1 implies that Tx=zx and

{x=H : Tx=2zx} is a nonempty subspace.

Theorem 3.5. Let E(T) be the set of all

extreme points of W({T) of T on N={x=H :
Tx=~—T*x}. If T is hyponormal, then E(T)N
W (T)=0o,(T).

Proof. Let 7 be given in E(T)NW(T), then
there is a unit vector z in N such that (Tz,
z)=2. By translation, we can suppose that A=0
and Re WI{T)>0. Let T=A4+{B with self-
adjoint, ther we have 0=(Tz, z)=(A4z,
(Bz, z), and so (Az, z)=(Bz,
pothesis Re 70, A=Re 7T2:0.
Let M={x=H : Ax=0}, then

subspace which contains z. By Theorem 3.3 T

z)+1
z)=0. By hy-
Hence Az=no.

M is a closed

iz normal, hence the relation AB=BA holds,
and so ABx=BAx=0 for x=M, therefore BM
—M Let C=B .M. Then we have (Tx. x)=(Ax,
2)+—i(Bx, x)=7{(Cx, x) for a unit vector x=M.
Since 0=E{T), either C>0 or B>>0. From 0=
(Bz, z2)=(Cz, z) we have Cz=Bz=0, therefore
Tz=Az+7{ Bz=0. Thus 0=0¢,(T), and E(T)
W(T)Sa (T

Corollary 3.6. Let T he byponormal.
ETH)NW(T)=s,(T).

Proof. Let 2Z=E(T3NW(T), we can assume
that =0 and Re W(T)>0. Then there is a
unit vector z such that (Tz, z)=0. Thus/(T+
T*)z, z)=0. Since Re W(T)>0, this implies
that Tz=—T*z. Let M={x=H :Tx=—-T*x},
then =M, and M reduces 7. In fact, if x=M,
then ITx|={T*x], hence ((T*T—-TT*)x, x)==0
for =M. B: the the Schwars inequality, ' ((T*
T—TT*)x, v)*:<N{(T*T-TT*y, y)|- | (T*T -
TT*)x, x).=0 for all y=H, and T*Tx=TT*x
for =M, sothat T(Tx)=T(-T*x)=—-T*(Tx)
and T(T*x)=T*(Tx)=-T*(T*x) for x=M.
This shows that M reduces T. Clearly the
restriction T|M is normal, and 0=(W (T M) is
an extreme point of W{(T\M) and ((T M)z, z)
=0,

Thus (TiM)z=Tz=0 by Theorem 3.5.

Then
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