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<Abs_tract>

Data Envelopment Analysis (DEA) is a mathematical programming approach to
evaluating the relative efficiency of Decision Making Units (DMUs) that use multiple
inputs to produce multiple outputs. While assuming exact data in ordinary DEA,
development of Imprecise Data Envelopment Analysis (IDEA) makes possible to deal
with imprecise data in DEA. However, IDEA only provides an aggregated measure of
inefficiency for each DMU. It is thus needed to develop methods from which we can
obtain specific inefficiencies such as slacks, as well as peer groups and scale sizes, as
have been done in ordinary DEA evaluations. The purpose of this paper is hence on
the identification of specific inefficiencies in IDEA. This is done via employing an
additive model which we refer to as additive IDEA model. A point to be noted is that
the original formulation becomes a nonlinear programming problem. We thus transform
it into a linear programming equivalent and then present a two-stage method to
identify specific inefficiencies. In the first stage, we obtain an aggregated measure of
inefficiency from solving the linear version of additive IDEA model. We then retrieve
exact data based upon the optimal solutions obtained in the first stage. These exact
data retrieved are used in the next stage which implies that an ordinary additive DEA
model is constructed. We can thus obtain the specific inefficiencies in terms of slacks
as well as peer groups and scale sizes for each DMU to be considered in IDEA

problem.
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1. Introduction

Cooper et al. (1999) developed an IDEA (Imprecise DEA) model for dealing with
imprecise data in DEA and methods for transforming the nonlinear version of IDEA
model into a linear programming equivalent. Examples of imprecise data are such that
input-output data are known only to lie within the upper and lower bounds and/or to
obey ordinal relations. It was also shown how conditions on the (multiplier) variables
as well as the data could be treated in this same manner. This included Assurance
Region (AR) conditions on the variables, as in Thompson et al. (1990, 1995) and the
combined variable-data transformations employed in the cone-ratioc envelopment of
Charnes et al. (1990) and also Brockett et al. (1997)1). Thus the resulting approach
shows how all the above approaches can be combined into one unified approach which

1) For more detailed descriptions on AR (or weight restriction), see Allen et al. (1997) who review the
developments and suggest future directions for research on the use of various AR bounds in DEA.
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is referred to as AR-IDEA.

- There have been applications of IDEA and AR-IDEA to the efficiency evaluation of
telephone offices (Kim et al, 1999) and to a mobile telecommunication company
(Cooper et al., 2000a). In particular, Cooper et al. (2000a) showed that the original AR
conditions in AR-IDEA model should be adjusted in accordance with rescaling the
input-output data, for use them correctly in the linear programming form. Cooper et al.
(2000a) also provided important points to help the potential uses of IDEA, including
how to treat strict as well as weakly ordered data in order to effect proper efficiency
discriminations. '

Still further extensions have been made. Cooper et al. (2000b) extended the
transformation developed in Cooper et al. (1999) to a more general situation of
imprecise data via introducing dummy variables. This hence removed a limitation
underlying the transformation in Cooper et al. (1999) and also formalized the
adjustment of original AR conditions as shown in Cooper et al. (2000a). More recently,
Zhu (2000a) and Park (2000) independently showed that the. transformations could be
done in the simpler manner via only employing variable alterations without rescaling
and introducing dummy variables as was done in Cooper et al. (2000b).

Note that the papers mentioned above deal with CCR (Charnes, Cooper and Rhodes,
1978) model in which some (or all) input-output data are known imprecisely in
arbitrary linear forms. We know, however, that the transformation developed can also
apply to other (multiplier) DEA models, such as BCC (Banker, Charnes and Cooper,
1984) model and additive model (Charnes et al., 1985), involving imprecise data. We
thus show an application of the transformation to an additive model based IDEA
problem viz., transforming a nonlinear additive model, due to data imprecision, into a
linear programming equivalent?.

Nevertheless, we have questions upon how we can obtain the information necessary
for analyzing (technical) efficiency in ‘the linear IDEA model- transformed. In other
word, we need to obtain the amount of inefficiencies in terms of slacks as well as the
radial efficiency in terms of proportional reduction for all inputs to be considered in
IDEA, if the IDEA is based on CCR or BCC model. It is not easy to do this, as far as
we know, because the IDEA based on CCR or BCC model involves a non-Archimedean
element which restricts the (multiplier) variable values to be positive.

Choosing an additive model® for IDEA, so we can thus avoid employing
non-Archimedean in the model. This implies that the variable values can be restricted
to be positive without using non-Archimedean element. It is essential for us to achieve
the goal of this paper identification of inefficiencies in IDEA problems, from which we
can also obtain peer groups and scale sizes as have been done in ordinary DEA
evaluations. In the present paper, this is done in a two-stage manner which is

2) Of course, this is not the main purpose of this paper.
3) See Cooper et al. (1999) for the additive models in detail, where various points are revealed for the
use of additive models including relations to other models and measures in DEA.
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different from two-phase procedures as used in ordinary CCR and BCC models.

The plane of development is as follows. First, an additive model with imprecise data
is shown, referred to as additive model based IDEA or briefly additive IDEA model.
We then show how the nonlinear version of additive IDEA model can be transformed
into an ordinary linear programming problem. This is followed by the identification of
inefficiencies in terms of slacks, including specifications of peer groups and scale sizes
in additive IDEA model transformed into linear programming equivalent. Numerical
illustrations are then provided. Finally a summary and sketch of further research
opportunities conclude this paper.

2. Additive IDEA model

We consider an additive model in which the input-output data are known imprecisely
in arbitrary linear forms. The following model will help to make this more precise:

5 m
max z, = Zluryr() - Zwi‘xio
r=1 i=l

5 m (l'l)
s.t. Z.uryrj - Za)ixij S 03 .] = 1,...,"
r=1 i=1
=(y,)eD’, r=1.,s
Y, =) T 12)
X; =(x,.j)e D, i=l..,m
u=()zl o=(w)21 (1.3)

Here, yr, xy respectively represent the observed or recorded amounts of the rth
output (r = 1,..,s) and the ith input ({ = 1,..,m) for each Decision Making Unit, DMUj
( = 1,.,n). The yn, xio data represent the outputs and inputs for DMUj, the DMU; to
be evaluated The variables , are multipliers associated with-outputs and inputs and we
restrict these variable values to be greater than or equal to unity as in an ordinary
additive DEA model%.

The sets 0/»D; in (1.2) represent imprecise data for the vector of output variables

yr = (y1,",ym) and input variables x; = (xa, - xin). Examples of imprecise data for
outputs are

4) Note that we can also use AR bounds in place of (1.3) so that model (1) becomes an AR-IDEA
model as shown in Cooper et al. (1999). However, we do not deal with AR bounds in the present
paper because our focus is mainly on analyzing technical efficiency in DEA with imprecise data.

_92_



7HIE A S o] §¢ IDEAA S vaEsN HA 5

Fixed bounds : i<y, Sy, 2.1
Strict orders : Vi~ Yo S 2.2)
Ratio bounds : Yy Sylya Sy 2.3)
Weak orders : Vg~V S0 (2.4)
Multiplied orders: ¥y, <y, 2.5)
Differenceranks: y,; =¥, .y S, =Y, jus (2.6)

where Y»Ys and as, v are positive constants to be given in advance. The set D;

can include each of the above constraints, mixtures of them, or other available forms if
any. The set D/ follows similarly for inputs.

Without loss of generality, we thus represent D!,D] o include arbitrary linear
forms as follows:
D! ={y, eR":H}!y! <h’}, r=l..,s (3.1

D ={x, e R" ;H'_‘x;r <h;}, i=L.,m (3.2)

The HLH; kixnk’xn k5.k7 hihj hie®R¥.,h;eRY D!\D’ represent the
permissible values of output and input data variables satisfying the systems of linear
constraints in (3.1) and (3.2), respectively. We assume, throughout this paper, that
these constraints on data are consistent and closed so that the optimal objective value
z0* is attained in model (1).

3. Transformation to linear programming equivalents

As shown in Zhu (2000a) and Park (2000), we introduce new vanables Y, Xy to
reduce additive IDEA model (1) to an ordinary linear programming problem. We then
define

Y,=y,l,, r= L...,s; j=L..,n
Xy =x0, i=l..m j=L.,n (4)

i%is

Since all multipliers are to be positive, these equations can be changed to

Vp=Yilu,, r=l.,s; j=l..n
x, =X, [0, i=l.,m j=1.,n . ®

This implies that the nonlinear version of additive IDEA model as in (1) is
converted into a linear programming equivalent. To complete this, we employ the
following theorem:
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Theorem 1. (i) Let Y- =(ieu¥n) and Xi =(Xi,s X)) The constraints on the data
as in (3) can then be converted intor '

B ={(Y,u,)eR™ :H'Y  <phl}, r=1l.,s
B ={(X,,@,)e R H;X] <wh;}, i=l..m

(1i) Thus, model (1) can be transformed into the following LP problem:

max z, =2Yr0_iXi0

r=] i=l

: - 6.1
s.t. Y, =Y X;<0, j=l.,n
r=] i=1
Y, B, r=1,.,
(X,,w,)eB, i=l..,m
a=)z2l; o=(@)21. 6.3)

We omit the proof of Theorem 1 because it can be proven simply using the
equations in (4) and (5). Instead, we give concrete examples of the new data
constraints transformed for the original constraints given in (2) as follows:

Fixed bounds: Yok, SY Syp, - (7.1)
Strict orders : Y,-Y ,,S-a,u, (7.2)
Ratio bounds : VYa s, <yy, (7.3)
Weak orders : Y,-Y ,<0 (7.4)
Multiplied orders: y, Y, <7V, (7.5)
Differenceranks: Y, -Y <Y, ,-Y, ... (7.6)

Therefore, we achieve a linear programming equivalent to additive IDEA model (1)
that is including arbitrary linear imprecise data. Moreover, no change is made for the
original multiplier variables f, @ and their conditions as in (1.3).

4. Technical efficiency in additive IDEA model

In fact, we can have measures of technical efficiency for every DMUp from solving
the linear version of additive IDEA model as in (6) and then obtaining the optimal
objective value zy. We can then classify DMUs into two groups: technically efficient
when zo" = 0 and technically inefficient when zo” < 0.

However, the obtained zo' represents total sum of inefficiencies (or total sum of
slacks) that DMUp has under model (6). We thus need to separate this total sum into
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individual slacks for each of inputs and outputs under consideration in evaluating every
DMU,. We also need to see the referent DMUs and returns to scale of DMUp as have
been done in ordinary DEA evaluations. This is done via two-stage ways like those
we develop below.

First, we obtain the optimal objective value zo from solving model (6). At the same
time, we also have the optimal solutions for the variables Y, X (including Yr, Xio)
and , used to achieve the z’, which we denote as Y,, Xj and g, ®". From these
optimal solutions, we further retrieve the data yi, Xj via using the equations in (5).
Note that all the multiplier values g°, @ are positive in (6) so that there is no
trouble in the data retrieval via (5). '

We now use the retrieved data y;, xi° Vrij in the second stage to achieve the
individual slacks as well as the referent DMUs and return to scale of DMUo. To make
this more concrete, we write

max is: +is[
r=1 i=1

n
st. Y xA 48 =xg, i=l.,m
=

D VA =8, = Vs F=leys
a ®
57,87,A;20, Vrij.

DefineZo =max(Ei.s; +XLs7) It is then clear that zo'=-z' " in models (6) and (8) by
dual theory of linear programming. Note that the values of data variables in (6) are
already fixed as yrj*, xij* VT, to obtain the optimal objective value zo* and then the
same values fixed are used in (8) to achieve It is then clear that z0*.

Therefore, the total sum of inefficencies Zo obtained from model (6) is separated into
individual slacks 578 ¥V r,i which can be obtained from solving model (8). We may
then utilize a projection formula as in ordinary additive models -viz,
Ju=yy+s % =x;,-5" _ which render DMUs efficient. We can also have peer groups
and scale size from obtaining A" in model (8).

It should be noted that we have achieved only a matrix of exact datal(y;)" VT,
(x;)T Vi, for each of DMUo, among various possible matrices of exact data [y T Vr,
(x;)T V] satisfying the data constraints as in (3). This matrix of exact data achieved
is then used in (8) to obtain 5.5 Vri and A"V, So we should interpret the
resulting individual slacks as well as peer groups and scale size for only the data fixed
when the efficiency of DMU, is maximized in (6). In other words, it may be not true

that DMU, has the same slacks, peer groups and scale size as obtained above for all
possible data.
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On the other hand, we want to note that there are other ways besides the present
approach to the identification of inefficiency in IDEA problems. As noted in Zhu
(2000b),5) this is done by determining exact data (3T Vr, )T Vil directly from
the data constraints, without utilizing instruments such as model (6) we used. The
chosen exact data are then used as in (8), so the inefficiencies are identified in a
simpler manner.

However, there exist limitations to potential uses of the approach developed in Zhu
{2000b). As mentioned in Park (2000), this approach works only for simple forms of
imprecise data that are limited to bounded data and ordinal data known in ratio (but
not interval) scale® In contrast, we assume, without loss of generality, that imprecise
data are known in arbitrary linear forms. Sc we have developed and used meodel (6) to
determine exact data from imprecisely known data as well as to measure total sum of
inefficiencies.

5. Numerical examples

We here provide two examples to demonstrate how model (6) is used to determine
exact data from imprecise data and then the determined data are used in model (8) to
identify inefficiencies. One is an example shown in Cooper et al. (1999). The other is
the modified version of the first example which includes more complicated forms of
imprecise data.

Reference to Table 1, it shows an example involving five DMUs. As indicated in the
column headings, the data are to be dealt with in ordinal and bounded forms as well

as in the customary exact forms represented by the conditions Y- € DI x; €D jn (3).

Table 1. An example shown in Cooper et al. (1999)

Outputs Inputs
Exact Ordinal Exact Bound

DMU Revenue Satisfaction Cost Judgement

i Yij yzjl Xij XZJF2

1 2000 4 100 [0.6, 0.7]

2 1000 2 150 {0.8, 09]

3 1200 5 150 1

4 900 1 200 [0.7, 0.8]

5 600 3 200 1

Z) 1. Weak ranking such that 5 highest rank, .., 1 lowest rank (ie, yu=ya 2.2y
2. Ratio bound based on the reference DMUs 3 or 5 (e.g., 0.6<xp<0.7 with xz; =1).

5) See also Zhu (2000c) and Chen et al. (2000).

6) However, it is more convenient that we use the approach of Zhu (2000b-c), if we have imprecise
data that can be treated within the method developed in Zhu (2000b-c).
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Now using Theorem 1 (or transformation rules as in (7)), we achieve the following
linear programming to evaluate DMUi:

max z, =Y, +Y, - X, - X,

s.t. Y, +Y,, X, -X,, <0, j=1..5
By :{Y,, =20004,; ..; Y, =6004}
B} Yy <Yy, <Yy S Yy <Yy}
By X, =100w,; ..; X = 200a),}

B; {0.6m, < X, <070, i Xy =w,} 9)

Hisby, 0,0, 21

We then solve problem (9) and find that DMU; is efficient because zo' = 0, as
shown in the cell for row 1 column 1 of Table 2. Carrying out these same operations
on the other DMU;, j = 2,345 also produces the four additional evaluations exhibited in
the first column of Table 2. DMUjs is found to be efficient, too, but the other DMUs
are not to be efficient. These results are consistent with those in Cooper et al. (1999)
as shown in the last column of Table.2.. It should be noted that Cooper et al. (1999)
used CCR IDEA model to obtain efficiency whereas we are using additive IDEA model
as in (9) to obtain inefficiency. So efficiency at unity is identical to inefficiency at
ZEero.

Table 2. Evaluation results

DMUs |zo obtained from model (9)' | zo° in Cooper et al. (1999)
1 0 1
2 -1321.429 0.87499
3 0 1
4 ~-1200 0.99999
5 -2314.286 0.69999

#) 1. LINDO was used for the calculations.
2. We copied here the zo values in Cooper et al. (1999), obtained from CCR IDEA model

with €=10"%

When zo is obtained for each DMU in model (9), we also have the optimal solutions
Y, Xi w, w forr =12 i=12 j=1~5 We then retrieve exact data y;, xy
from these optimal solutions via equations in (5). As a result, Table 3 shows the
retrieved data when DMU; is evaluated in model (9). Table 3 also shows that the
same data are retrieved for the other four DMUSs.
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Table 3. The exact data retrieved from model (9) when zo* is obtained'

Outputs ‘ Inputs
DMUs }'11" yz;'. xb-' xz,-'
1 2000 0 100 0.7
2 1000 0 150 0.8
3 1200 1664.2858 150 1
4 900 0 200 0.7
5 600 0 200 1

Z) 1. The same data matrix is obtained for all the five DMUs.

The exact data retrieved are now used in (8) to obtain individual slacks and
lambdas. For instance, the following model is to evaluate DMUI1:
z; =max s; +s; 4+, +s; St
20004, +10004, + 12004, + 9004, + 6004, — s; = 2000
1664.28584, — s =0
1004, +1504, +1504, + 2004, + 2004, + s, =100
074, +0.82, +4; +0.74, + A, +5; = 0.7

s,*,s;,s,',sz‘,ﬂ.j 20, j=1..,5.

(10)

As shown in the first row of Table 4, DMU; has no (positive) slack which result is
natural since DMU; is to be efficient under model (9). Carrying out these same
operations on the other four DMUs also produces the four additional evaluations
exhibited in the subsequent rows of Table 4. Reference to the second row, it shows
that the total sum of inefficiencies for DMUs;, 20" = 1321429 which is to be
determined in advance as shown in the cell for row 2 column 1 of Table 2, is now
characterized as the two positive slacks (e, si™'= 1285714, s, "= 35.714). We also
know that, from A;" = 1.143, these inefficiencies are to be identified by the referent
DMU;. A similar interpretation can apply to other DMUs.

Table 4. Optimal solutions to model (10)

DMUs zo Slacks (>0) Lambdas (>0)

1 0 none A =1

2 1321.429 s = 1285714 A" = 1143
sz 35714

3 0 none Ar =1
o= 1100

4 1200 .
"= 100 Al =1

5 2314.286 s = 2257143 A" = 1.429
s1 = 57.143
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In the above example, the same input-output data are determined in evaluating all
five DMUs as shown in Table 3. However, it is not necessary for some other IDEA
problems. To evidence, let us replace the ordinal data for output 2 in the second
column of Table 1 with the new set of constraints,

Dy = {(yzj):l05y24; 2yu SV Vi SV
Yau+tYn+Yis SV 50Syy —yas J’235100} (11)

but remain the data for the other output and inputs without change, in order to use
themm as a new example. Note that the new set in (11) is constructed in a way that
the data both in the second column of Table 1 and (11) are consistent in terms of
ordinal relations but the data in (11) are more complicated.

In this new example, applying Theorem 1 we then obtain the following linear
programming problem to evaluate DMU;:

max z, =Y, +1, - X, - X,

st. Y, +Y,, - X, - X, S0, j=1..,5
By :{Y,, =20004,; ..; Y, =600y}
By (IO, S Vs 2V, S¥y; oy Yy <100, }
By :{X, =1000,; ..; X, =200w,}
B; {0.60, < X, 07wy ..; Xy =) 12)

Hys 0,0, 21

Note that only difference between models (9) and (12) is replacing 8: by By

We then solve problem (12) for each of the five DMUs in ways to change the
objective function in accordance with DMU;j, j = 1,5 to be evaluated but not to change
the constraints. The resulting inefficiencies are listed in the first column of Table 5. In
comparing with the first column of Table 4, DMUs 1 and 3 are again found to be
efficient. But the slacks for inefficient DMUs are increased which is because we use
the new constraints on the data for output 2.

We then retrieve exact data y,’, x; from the optimal solutions to (12) via equations
in (5). As a result, Table 6 shows the retrieved data for each of the five DMUs to be
evaluated. As shown in Table 6, we know that the same data for output 2 (as well as
output 1 and input 1) are used in (12) for all five DMUs while the slightly different
data for input 2 are used across- DMUs to be evaluated.

In any case, we can use the retrieved data in the second stage to obtain individual
slacks and lambdas. These resuits are summarized in the last two columns of Table 5.
We thus know: .that the increased. inefficiencies as compared with the first column of
Table 4 are specified as the positive..slacks for- output 2 as shown in the third column
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of Table 5. All the values of lambda are equivalent to those in Table 4.

Table 5. Total inefficiencies and individual slacks in the second example

DMUs | zo from (12) Optimal solutions obtained from the second stage
Zo Slacks (>0) Lambdas (>0)
1 0 0 none A" =1
51" = 1285.714, s = 37.143 .
2 -1378.571 1 =114
37857 1378571 o= 35714 A 3
3 0 0 none A3 =1
s = 1100, sz”"= 40 ]
4 -1240 1240 . Al =1
S = 100
-2365. 714 "= 143, sp""= 51.428 .
5 2365.714 2365.71 S1 2257_'143 Sz 51, Al = 1.429
s; = 57.143

Table 6. The exact data retrieved from model (12) when zo* is obtained'

DMUs DMUO 1 DMUG 2 DMUOQ 3 DMUO 4 DMUO 5
v | x| vd | x| Yy | x| v | x| vy | xd
1 50 0.6 50 0.7 50 0.7 50 07 50 0.7
2 20 0.8 20 08 20 0.8 20 08 20 08
3 100 1 100 1 100 1 100 1 100 1
4 10 0.8 10 0.8 10 08 10 0.7 10 07
5 20 1 20 i 20 1 20 1 20 1

%} 1. We omitted here the data y;”, x;;” because these are the same as those in Table 3.

6. Conclusions

We have provided methods to deal with imprecise data in DEA evaluations of
performance. This has been done in the manner that arbitrary linear imprecise data are
encountered in an additive DEA model. To achieve the inefficiency of DMUs, we have
taken into consideration a two-stage way. In the first stage, we obtained an
aggregated measure of inefficiency together with the optimal solutions to represent
exact data. The aggregated measure of inefficiency is then separated into (or specified
by) individual inefficiencies in terms of slacks. We have thus obtained specific
inefficiencies as well as peer groups and scale sizes in an IDEA problem.

QOur developments may also apply to other DEA models, such as CCR and BCC
models, in which the data are known imprecisely. As mentioned in the body of this
paper, in doing so there may exist a difficulty which is associated with the problem of
non-Archimedean element underlying CCR and BCC models. This implies that we

should achieve the technical efficiency without specifying the positive value of €. As
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noted in DEA studies, attempts to employ small numbers in place of can lead to
problematic results for technical efficiency (see Ali and Seiford, 1993). Otherwise the
efficiency measured with positive would be regarded as an AR efficiency because the

conditions g, w=& can be viewed as examples of AR bounds (see Thompson et al.,
1995).

To discuss the difficulty in detail, let us try to obtain the radial efficiency (so-called
@) in the first stage. This can be done in a way that we set &=0 in the model.
Assume that we then have the optimal solutions for the variables Yrj, Xij and g, o,
used to achieve the &". Next, we may try to retrieve exact data via the equations, y,
= Y;/ - and x;y = Xi/ w, for use them in the second stage to obtain slacks.
However, it is possible that some g and " are to be zero. So we may fail to

retrieve exact data without assumptions like those y,', Xy are zero when u,, @i are
zero. We thus invite developments of methods which can deal with' technical efflcxency
analysis in CCR or BCC IDEA models.

Finally, we want to note that there are advantages to the approach developed in Zhu
(2000b-c). This enables us to obtain the necessary information on DEA evaluations
such as slacks as well as peer groups and scale sizes in a simpler manner.
Specifically, we can exclude computational efforts which are encountered in the first
stage developed in this paper. Thus, extensions and generalizations of Zhus approach
will also be opportunities for further research toward broadening the use of DEA
involving imprecise data problems. ' ’
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