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FINITE ELEMENT ANALYSIS OF THERMOELASTIC
INSTABILITY OF A RETANGULAR BLOCK ON A RIGID WALL
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<Abstract>

The steady-state conduction of heat across an interface between two contacting
bodies can become unstable as a result of the interaction between thermoelastic
distortion and a pressure-dependent thermal contact resistance. Analytical solutions for
the stability boundary have been obtained for simple systems using perturbation
methods, but become prohibitively complex for finite geometries. This paper presents a
finite element formulation of the perturbation method, in which the linearity of the
governing equations is exploited to obtain separated-variable solutions for the
perturbation with exponential variation in time. The problem is thus reduced to a
linear eigenvalue problem with the exponential growth rate appearing as the
eigenvalue. Stability of the system requires that all eigenvalues have negative real
part. The method is tested against an analytical solution of the two-dimensional
problem of a strip in contact with a rigid wall. Excellent results are obtained for the
stability boundary even with a relatively coarse discretization,
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1. Introduction

The steady-state conduction of heat
across an interface between two con-—
tacting bodies can become unstable as
a result of thermoelastic effects.
Briefly, the thermal distortion of the
bodies affects the contact pressure
distribution and this in turn affects
the heat conduction problem by ch-
anging the thermal contact resistance
at the interface which is generally
pressure-sensitive.

Early investigations of thermoelastic
contact stability were restricted to one-
dimensional systems such as a rod
contacting a rigid wall (Barber et al.,
1980) or axisymmetric concentric cy-
linders of similar materials (Barber
(1986)). Barber and Zhang (1988) in-
vestigated the more complex one-
dimensional system of two contacting
rods of dissimilar materials and also
developed a numerical solution for the
transient behavior.

The simplest two-dimensional problem
is that of two elastic half-planes in

contact at a common interface. Barher
(1987) adapted the methods of Dow
and Burton (1972) and Richmond and
Huang (1977) for related problems to
examine the stability of this solution
by linear perturbation methods. The
assumed  perturbation involved a
sinusoidal variation in temperature and
stresses in the direction parallel to the
interface and exponential variation in
time. The method leads to an
cigenvalue problem for the exponential
growth rate, stability being indicated if
all the

negative real part.

resulting eigenvalues have

Intuitively, we might expect that the
finite geometry of real systems will
increase the heat flux required to initiate
instability, since the finite boundariesplace
constraints on the temperature and
stress fields that can exist within the
body. The simplest such problem is that
of the elastic layer in contact with a
half-plane studied by Yeo and Barber
(1991). They found that instability is
governed by a perturbation whose spatial
wavelength is related to the .layer

thickness.
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A more challenging finite geometry
problem concerns the contact of the
semi-infinite strip and a rigid wall (Yeo
and Barber, 1995). In this case, the
finite length of the contact area causes
the dominant perturbation to be non-
sinusoidal, necessitating the use of a
series of Papkovitch-Fadle functions and
related thermoelastic functions for its
representation.

The algebraic complexity of the
analytical solution of the strip problem
makes it clear that analytical methods
are of limited use in determining the
stability boundary for bodies of more
general  shape and necessitate  the
developmen: of appropriate numerical
methods. The obvious numerical approach
is to simulate the transient behavior of
the system by finite element or (finite
difference  methods.  However, such
simulations are very computer intensive
because of the small time step required
to maintain stability and convergence in
the solution of the transient heat
conduction equation. A more practical
approach is to retain the separated-
variable perturbation representation and
use numerical methods to discretize the
equations resulting after the exponential
growth factor has been cancelled. This
method has  already  been  used
successfully to freat the one-
dimensional problem of two contacting
rods (Yeo and Barber (1994)) and gave
very good results for the stability
boundary with a relatively coarse
discretization. In the present paper, the
method is extended to investigate the
instability of a two-dimensional
retangular block in thermoelastic contact
with a rigid wall and the algorithm is
tested against the previously published

analytical results for the strip problem.

2. The Boundary Conditions

Consider the problem shown in Fig.
1, where an elastic body & of
retangular shape is in frictionless
thermoelastic contact with a flat rigid
wall under a uniform pressure. The wall
is maintained at a constant temperature
Ti. In the contact region T, heat flows
into the retangular block across a
thermal contact resistance KR, which
depends on the local contact pressure p
-- le. the local heat flux @ is given by

. Tl - T

where 7 is the temperature of Q in T..
No restriction is placed on the
resistance function K(p) except that it
be continuous.

For the sake of simplicity, the
non-contacting boundaries are assumed
to be insulated for the thermal problem.
For the elasticity problem, the
boundaries at y=*h are traction free.

In the steady-state, the system is in
thermal and mechanical equilibrium and
heat flows from the wall into the body
across the contact interface. If we
introduce a small transient perturbation
in temperature to the steady-state, the
perturbations in the prescribed boundary
quantities must vanish all over the
boundary except in T, where they are
related by a perturbed form of Eq. (1).

We first consider a particular solution
in which the perturbational quantities all
take the separated-variable form in
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which the
with time. The exponential term will
then cancel in the governing equations
and the perturbed boundary conditions,
since  these are all and
homogeneous. The resulting equations
contain the exponential growth rate as
a parameter and will be discretized
the finite element method,
resulting in a linear eigenvalue problem
for the discrete parameters describing
the spatial variation of the perturbed
fields. Stability of the system 1is
governed by the condition that all the
eigenvalues should have negative real
part. In practice, the first eigenvalue is
always the one that determines stability.

Unless the exponential factor is
explicitly included, all quantities in the
following development are assumed to
be functions of the spatial coordinates
x; and xz only. Indices ik, and [ take
the wvalues 1, 2 and the summation
convention applies to repeated indices of
these We begin the
heat conduction

field grows exponentially

linear

using

variables only.
formulation from the
equation,

2.1 Thermal Problem

The problem is time dependent only
through the heat conduction equation
ocT, = K; Ty (2)

where K, is the conductivity. If we
assume a perturbed temperature field of
the form

TOaxat) = 6 Gx)e”, (3)

Eq. (2) becomes

e Q)

Ki0; - pcbd = 0in Q. (4)

For the heat conduction problem, we
provisionally assume that the inward
heat flux qo is prescribed at the contact
interface T. CT, where T is the boun-
dary of the body Q. The unknown g
will be eliminated later, when the heat
conduction and thermoelastic problem
coupled through the linearized
contact resistance equation. On the rest
of the boundary I' - T, heat flux must
vanish and hence

are

(Kyjb,)ni = qo on T, (5)

(Ki@jn =0 onT -~ T, (6)
where n, is the component of the
outward normal unit vector to the
boundary.

The weak form of the heat

conduction problem corresponding to Eq.
(4) can be written.

fQ 0. K; 0.,d 2+ pch [ w040 =
fr wK; 6,; n, dI" forallw e F, (7)
where w is an arbitrary weighting fun-

ction and the variable function space F
is defined by

F={wlwe HY (8)
where H' is a Sobolev space con-
sisting of square-integrable functions

through the first order.

Galerkin’s method in discretizing the
Eq. (7) with the boundary conditions (5,
6) leads to
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when the trial function € in the space
F is used. In the above equation, 7
denotes the set of the global nodes and
7. C n the set of the contacting
nodes. N4 is  the shape function
corresponding to node A and Bp, qop are
the nodal temperature and heat flux at
node B.

In matrix notation Eq. (9) becomes
K8 + pHb = @q, (10)

where

KAB’——' _[Q NA,: K,; NB,j daQ ; A,BE;]
Hap=pc jg N4 Ny dQ, A, Bey

and go is a column vector consisting of
the nodal values of heat flux at nodes
Be ..

2.2 Contact Pressure

An essentially similar procedure is
adopted for the mechanical part of the
problem. For the contact problem,
therefore, we provisionally assume that
the normal stress ¢,=ap is prescribed
at the fricticnless contact plane . C T.
At the rest of the boundary, tractions
vanish, hence the strong statement of
the present problem is

5

g4 =0 in & (14)

o = 0 onT - T, (15

agu = 0o on e (16)

o =0 on T, an
with the constitutive relation

0, = Eua (Ex — ) (18)

where FEju, @i are the elastic constant
and thermal expansion  coefficient,
respectively. ¢, denotes the Cauchy
strain tensor and

EU = (U,‘,, + Uj.l’). (19)

M[»—-—a

The equivalent weak form of Eqgs.
(14,18) is

&(Q w; ; Er'}'kl Up, (iQ ==
fg Wi By ay 0 d2 + (20

fr w; (oyn;) dI’ for all wEF.

Galerkin’s method to discretize Eq.
(20)  with the boundary conditions
(15-17) again leads us to the following
equation

,?;,, (fQNA,;' Ejy Ny 1 dQ) U=
;e:” (fg NA., E,‘,‘H (¢ §Y] NB d.Q) 63 (21)

+ 2 (f, Na Ny dI') nops, A€y
Beg AT

which can be written in matrix notation
as
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LU = F8 + foy (22)

where

Lic= [, Nax B Nus a2

p=G(i, A), g=G(,B) (23)
Fop= fg Nay Nyjw ajy Ng dQ (24)
f":fr Na Ny dI' n; (25)

and p=G(i,A) is the global equation
number corresponding to the node A
and the ith degree of freedom (here i-1,
2). The contact stress can now be
calculated from Eq. (22), which 1s
conveniently rearranged in the partitioned
form

L]] LIZ . Ul =
Ly Ly U,

II::;][@]Hflfz][Go]

(26)

where U consists of the nodal normal
displacements at the contact area. The
order of the equation is rearranged so
that L maintains symmetry, which
requires that the order of the contact
nodes be same as the order of the
corresponding equilibrium equations, as
a result of which the matrix is
partitioned. Noting that U; = {0} and f
= {0} and eliminating U2z in the above
equation we have

ago = SQ (27)

where

S =fi' Lelx'Fy - F. (28)
2.3 Stability Analysis

Eq. (1) defines the heat flux @ across
the thermal contact resistance R, which
is a function of the local pressure p. If
the steady state heat flux € and
pressure py are constant throughout the
contact plane, a linear perturbation of
Eq. (1) about the steady-state can be
written in the matrix form

-P8 = -QuR' 00 + Roqo (29)

where P is a matrix whose elements
are zeros except for a unity in each
row, which must be located in
correspondence with that of the node
corresponding to the row in the column
vector 8 R’ denotes the derivative of
the contact resistance with respect to
variations in contact pressure about the
steady-state value. The row dimension
is the number of the nodes in the set
7. and the column dimension is the
number of the nodes in the set 7.

Using Egs. (10,27) to eliminate oo, go
in Eq.(29) vields the linear eigenvalue
problem

A8 = bRHE (30
where
A = QR'?S - RoK - @P. (31)

Thus, if the steady-state quantities
¢, R’', Ko are known, the stability of
the thermoelastic system can be
determined by solving the linear
eigenvalue  problem (290 for the
exponential growth rate b. Stability
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requires that all the eigenvalues of this
equation have negative real part.

3. Results and Conclusions

To illustrate the use of the algorithm
and to assess its accuracy and
convergence, we consider the two-
dimensional system of Fig. 1, in which
a rectangular block of width 2k and
length [ is pressed against a rigid
frictionless wall which is maintained at
uniform temperature 7. The boundary
at x=! is subject to uniform pressure po
and is insulated. The boundaries at y=
:th are traction-free and insulated. The
block is assumed to be isotropic, homo-
geneous and linear elastic and plane
strain conditions were used in the
analysis.

The block can be characterized by
the dimensionless aspect ratio

(32)

~
]
3‘]\.

Two limiting solutions are of interest
and have already been investigated by
analytical means. When r — 0, the
block reduces to an infinite layer in
contact with a rigid wall, which is a
special case of the layer solution due to
Yeo and Barbher (1991). The
eigenfunction in this case will be
sinusoidal in the y-direction. At the
other extreme, r - o, the block
reduces to the semi-infinite strip in
contact on an end face, which was
considered by Yeo and Barber (1995),

The rectangular block and the
boundary conditions are symmetrical
about the plane y=0, but it does not

necessarily follow that the governing
unstable perturbation will exhibit the
same symmetry. In fact, the resulting
eigenvalue problem can be partitioned
into a symmetric and an antisymmetric
problem and the stability boundary for
the system will be determined by
whichever of these goes unstable at the
lowest steady-state heat flux .
Invoking this partition, we solve the
symmetric and antisymmetric problems
separately, discretizing the region 0<y<h
only. For the symmetric modes, the
appropriate symmetry conditions at v=0
are then u,=0, ¢ =0, q,=0 whereas for
the anti-symmetric mode they are o,
=0, u=0, T=0,

If the aspect ratio is reasonably large,
we anticipate that the perturbed fields
will be concentrated near the contact
boundary and will decay with x. In the
limit of the strip, the dominant term in
the eigenfunction decays exponentially
with x (Yeo and Barber, 1995). To take
advantage of this behaviour, three node
triangular  elements were used to
develop the discretization of Fig. 2, in
which  greater resolution of the
eigenfunction is obtained near to the
contact boundary.

The problem can be completely
characterized by the aspect ratio r,
Poisson’s ratic v (here taken as 1/3)
and the two dimensionless parameters

R-z.ﬁz_}{, ' Q" = -QR'2ua(l+v) (33)

introduced by Yeo and Barber (1995),
which can be interpreted as dimen-
sionless contact resistance and heat flux
respectively. z is the shear modulus.
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3.1 Results

Results obtained for a wide
range of values of r, R, @ with a
view to determining the progress of the
leading eigenvalue b into the positive
half-plane and hence the stability
boundary for the system. In all cases, it
was found that unstable perturbations
were always characterized by real
eigenvalues and hence that the stability
boundary is determined by the pasage
of the first such eigenvalue through the
origin. Similar results were obtained by
Barber (1980, 1987) for the contact of a

were

rod and a deformable half-plane
respectively against a perfectly -
conducting rigid wall and it s

speculated that this will always be the
case for a thermoelastic contact system
in which one of the two contacting
bodies is a perfect conductor. However,
the fact in a general theorm has not
been able to be proved and is left as a
challenge to the reader.

of the stability
boundary is greatly simplified when it
1s associated with a real eigenvalue,
since we can then set b=0 in Eq. (30),
implying A8-0. Substituting for A from
Eq. (31), we then obtain a new linear
eigenvalue problem for @ which is the
minimum dimensionless heat flux for
instability.

Fig. 3,4 show the temperature distri-
bution along the contact plane associ-
ated with the three lowest eigenvalues
@ in the symmetric and antisymmetric
modes respectively, for r=1 and R"=l.
The first symmetric mode determines
the stability of the system and this is
also found to be the case for other
values of aspect ratio. All the ei-

Determination
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genfunctions have roughly sinusoidal
form and the ‘wavelength’ of the
dominant eigenfunction for r=1 s
approximately equal to the contact
length.

The stability boundary is plotted as a
function of the aspect ratio in Fig. 5 for
R'=1.0. Very little change in the critical
dimensionless heat flux @ occurs for
increase In the aspect ratio beyvond r=1.
The limiting value of @ for large r
agrees within 3% with that obtained
analytically by Yeo and Barber (1995)
for the semi-infinite strip.

The effect of dimensionless thermal
contact resistance R is explored in Fig.
6, where the stability for the first
symmetric and antisymmetric modes is
presented as a function of R* for r-5.
The results are in good agreement with

those calculated analytically for the
semi-infinite strip.

When the aspect ratio r ~» 0, the
system approaches the limit of an
infinite laver in contact with a rigid

wall and analyvtical solutions show that
the stability boundary is determined by
an eigenfunction which is sinusoidal
with a wavelength that is related to the
layer thickness (Yeo and Barber, 1991).
For small but finite aspect ratio, the
number of waves in the dominant ei-
genfunction increases as r is decreased.
Fig. 78 show the eigenfunctions
corresponding the three lowest
eigenvalues the symmetric and
antisymmetric modes respectively for
r=0.1 and R'=1.

to
in

3.2 Conclusions

The main advantage of the finite
element method presented herein is that
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the exponential growth rate b, the
positive real part of which indicates
instability of the system, can be
obtained from the linear eigenvalue
problem if k" and Q" are given.

The formulation presented can be
directly used in the more general pro-
blem of the thermoelastic contact of two
deformable bodies with the
uniform steady-state quantities
the contact plane.

Finally, this study may be considered

non-
along

as a stepping stone to develop a
numerical  method for the more
challenging problems of frictionally-

excited therrnoelastic instability between
two sliding hodies.
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Fig.2 Mesh used in analysis. Due to symmetry, only one half is discretized.
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Fig.3 Symmetric modes of temperature perturbation. v=1/3, R*=1.0, r=1.0
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Fig.4 Anti-symmetric modes of temperature perturbation. v= 1/3, R*=10, r=1.0

— 133~

11



12 o<l

3OL | | !
20 .
o
n
+
g
& 10 .
*- *————@ ®
O L 1 1 !
0 1 2 3 4 5
r

15
symmetry
anti-symmetry
*
a e
+
NG
~
*
O g5
O | | | |
0 0.2 0.4 0.6 0.8 1
1/(1+R*)
Fig.6 Stability boundary of the rectangular block contacting the rigid wall.
v=1/3, R"=1.0

- 134~



TH G EAA FHskel e AAEH Bt dE fFEasdy

——— 1st mode

- = = 3rd mode

Temperature

Fig.7 Symmetric modes of temperature perturbation. v=1/3, R*=1.0, r=0.1
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Fig.8 Anti-symmetric modes of temperature perturbation. v=1/3, R'=1.0, r=0.1
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