UOU Report Vol.17. No.1. pp.91~95. 1986 o 7= #1734 & 1 & pp.91~95. 1986

A Study on “Path” function in LALR Parsing Method

Lee, Myung-Joon
Dept. of Computer Science
(Received september 27, 1985)

{Abstract)

The set-valued function “Path” is presented recently as a new tool for the analysis of LALR
parsing method.
In this paper, a new algorithm using Digraph is introduced for efficient computation of Path.

Several characteristics of path is also studied with a new relation and an associated graph.

LALR Parsing ul# o] A ¢] “Path” function o] 3k o1
o] = =

S

L8

e s
(1985. 9. 27 =#<4)

' %

i

ol A o] $5e] A% slste] Digraph algorithm & | §& &4el Abidol nasgles, ol

Moreover Path has its own interesting cha-
1. Introduction racteristics.
But these are not been fully studied. In this

The set-valued function “Path” is presented paper, Path is studied deeply. In addition, a

recently as a new tool for the analysis of LA-
LR parsing method{1].
new analysis can be stated by the following

new computation algorithm for Path, is intro-

The main result of this duced by some new relations and Digraph

algorithm [4].

formula.

LA«(P, [A—a-ax2))
= {x1x=Path,(4’, A)E:FIRST(82)
®:L A,

[B—pi. A'Ba]),

I. Basic terminology and definitions

The basic terminology and definitions in this

paper are consistent with those of Aho and

g=PRED(q, 1), A: L*A4,
[B—8.. A8) =K}
Hence an efficient computation of Path, is

necessary to compute LALR(1) lookahead sets

efficiently.

Ullman [2, 3]. Notational conventions are also
stated.

A context-free grammar(CFG) is a quadruple
(N,T,P,S), where N,T,P, and S stand,

respectively, for a set of nonterminal symbos,

2 Lee, Myung-Joon

a set of terminal symbols, a set of productions
(each of which is of the form A-—a), and a
start symbol in N. Given a grammar G,V (the
vocabulary) stands for NUT and V* {for the
reflexive-transitive closure of V'; the transitive
closure is indicated by the superscript*.

Lower-casc Greek letters such as a, 8,7, and
w denote strings in V*, lowercase Roman letters
toward the beginning of the alphabet(a,b, and
¢) are terminals, whereas those near the end
(u,v, and w) are strings in T*; upper-case
letters in the beginning of the alphabet (A4, B,
and C) are nonterminals, whereas those near
the end (X,Y, and Z) are symbols in V. An
empty string is denoted by A. Given a relation
R, R* stands for the reflecive-transitive closure
of R; and R* for the transitive closure of R
and R! for the inverse relation of R; and
following notations are used; R(A)={B|ARB}
and R™(A)={B|BRA}.

We take for granted concepts such as FIRST,
and & And RHS (or LHS) stands for the
right-hand (or left-hand) side of a production
or a formula.

The following concepts are introduced by{1].

[Definition 2.1] We define a left dependency
relation

LENAN: AL B iff A-By=P. (2.1)

We also call the directed graph associated
with relation L the L-graph. It is constructed
by representing each instance of (2.1) as a

pair of vertices conncected by a directed edge:

® —®

Note that the edge has been labeled with the
remaining part of the production RHS that
follows B. The following definition is also [rem
[1l.

[Definition 2.2] I'or any nocinterminals A
and B,

Path, (A,B) - _ (FIRST, (3,353 Be—=4,
B,==B, #>0, Bi—B,3=P,
B —B,3,=P, -,

B, .—B.3,=P}, (2.2)

where the sequence By, -, S« describes a path

from A to B in the L-graph of the form

@ 5)O’B—: 7

In this formula, the (U stands for union
overall such paths from 4 to B.
Now we redefine this concept for clarifying

further discussion.
[Definition 2.3]

For any nonterminals A and B,
Path} (A4, B)={FIRST(%)| A—Bu=P}
(2.3)
Pathi(4, B)= U (Path} (C,, B)E, Pathi™
(A,C)NC={CIALC, CLB}
(2.4)

for n>2,

Path, (A,B):_C;'l Pathi (4, B) (2.5)

Observe that a simple consideration give us
the fact that formula (2.2) and formula (2.5)
are equivalent. The formula (2.2) can be
restated by

Path, (A,B)= U{ﬁn@kﬁn-xek“’@k:ez?hﬁl|Bu
=A, B,=B, n>1,
3=Pathj(B,,, E;) for
1~ In}

with the same descriptions in (2.2).

(2.6)

Now we define a new usecful relation 7,
[Definition 2.4]

A 7 B iff 1=Path} (A,B) for k> 1. (2.7)
In addition, notice that the f{cllowings are
obviously true.
A4 L B iff Path} (4,B)x¢ (2.8)
A L B if A3B. (2.9)
A 5+ B iff A=Path, (4, B).
A Lt B iff Path, (4, B)=o.

. Computing Path: by a
direct methed.

In this seciion, @ useful theorem for comp-

A Study on “Path” funcion in LALR Parsing Method 3

uting Path directly is introduced, and also

derived algorithm is stated.
[Theorem 3.1]

Path,(4, B)= U (Pathi(C, D)~ {4})U
ER {41 Ap*B) (3.1)

Dezp™i*(B)
cLD

Proof. First, we will prove LHS(3.1)<=RHS
(3.1). Assume A<=Path,(A4,B). Then Ay*B by
formula (2.10). Hence A=RHS(3.1). Assume
a=Path,(A4, B). Then by formula (2.6), ¢ must
be some §;, i.e., a=Pathi(B;_,, B/,). Then the
fact that A L* B,., and B,_, L B; is simply
true by the concept of L* and(2.8). Further,
since Ae=Path, (B;, B) or B;,=B by the property
of @, operator, B; y* B is true by (2.10).
Hence ¢=RHS(3.1)

Path,(A,B)
O

*

e Path} (C,D)
———————
L

{Fig. 3.1

Next let us prove LHS(3.1) = RHS(3.1). If
A=RHS(3.1), then A y* B.

Hence As=Path,(A4, B). Assume g<=RHS(3.1).
Then a must be contained some direct path,
say, Path! (B,.., B.) with nonterminals B..
and B, satisfying appropriate conditions. Then
figure (3.1) simply shows that Pathi(B;.;, Bo)
=Path,(A4, B) by the property of »* and formula
(2.6).

Hence e=Path,(A4,B). This completes the
proof. The following formula is equivalent to
formula (8.1) and more useful for computing
Path.

Path (4,B) :CUB Ijathi(C, DYU{AlAy*tB}

IC)Zn‘S(%) —{Ainot(4n*B} (8.2)

LD

This formula yiclds the following algorithm

for computing Path.
{Algorithm 3.1>

Compute L+
Compute z*
/* initially path, (A4,B)::¢*/
for A<=N do
for B&N do
if A L* B then
for Ce=L*(A4) do
for De=y~*(B) do
if C L D then
Path,(A4, B) : =Path,(4, B)UPath} (C, D)
endif
endfor
endfor
if (A »* B) then Path,(4, B)
1= Path,(4, BYU {4}
else Path,(4, B):=Path,(4, B)— {4}
endif
endif
endif
endfor

endfor

V. Computing Path by Traversing
a Digraph

Algorithm 3.1 correctly computes Path, but
the same thing is computed more than once in

finding all Path. This inefficiency can be
eliminated by the following formalisms and the

derived computing algorithm.
[Lemma 4.1)

If ALB, ALC, and C L+B,

Then Path,(4, B)=Path,(C, B) —{A}

This Lemma is trivial from following figure
and formula(2.6).

But it should be noted that when Path,
(C, B) contains A4, Path,(4,B) include Path,
(C, B) except 4. Path,(A,B) can ‘contain A if
and only if A »+ B.

— 93 —

4 Lee, Myung Joon

[Lemma 4.2] If A L+ B, ALC, C L* D and
DyB, Then Path;(A4, B)22Path, (C, D)—{4}
This Lemma is also trivial from following

figure and formula (2.6).

ERC R ORNO

Path(C,D)

Path,(A, B)

Notice that Path,(4, B) includes Path,(C, D)
except 4 by the property of &, operator and
Path,(D, B) contains /.

The above two inclusions can be captared by
the following relation I on (N XN)X(NXN).

[Definition 4.1] For any nonterminals 4, B,
Cand D, (A,B)I (C,D)iff AL*B, ALC,
C L* D and (D » Bor D=B).

Thus Path,(4, B)=Path,(C,D)— {1} if (4,B)
I (C,D).

Now the results from above consideration can
be stated in the following theorem.

[Theorem 4.1} For any nonterminals 4,B,C
and D,

Path,(4, B) = Pathi(4, B)U U{Path,(C,D)|

(A,B) I (C,D)}
with the notations: Path.(4, B)==Path,(4, B)
U{4}
and Pathi(A, B)=Pathi(4, B)U {1}.

This theorem is straightforward from above
Lemmas and formula(2.6).

The following figure essentially captures this
fact.

Now, we introduce an useful theorem in
computing Path from [4].

{Theorem 4.2]
X. Let F be a set-valued function such that
for all x==X,

F(X)=F'(x)U U{F(9) xRy}

where F’(x) is given for all =X, Let G=
(X, R) be the digraph induced by R, that is,
G has vertex set X and (x,y) is an edge iff

Let R be a relation on a set

Path! (A,B)
e G)
Q\
D=B
@__, or ~ & Path! (D, B
L+ A4
(5

U{Path, (C,D)|(A.B)I(C,D)}

Path (A, B) L+

xRy. Then the algorithm Digraph correctly
computes F in linear order of G. [4]
Algorithm Digraph:
input R, a relation on X, and F’, a function
form X to sets.
output F, a function from X to sets such
that F x satisfies(4.1).
let S be an intially empty stack of elements
of X
let N be an array of zeros indexed by elem-
ents of X
for x=X such that N x=p do call Traverse
x od
where recursive Traverse 1=
call Push x on S
con d: Depth of S
assign Nxed ;Fx—F’x
for y=X such that xRy
do if Ny=0 then call Traverse y fi
assign Nx<—Min(Nx, Ny); Fx—FxFy
od
if Nz=d
then repeat assign N(Top of S)<Infinity;
F(Top of S)«Fx
until (Top of S)=x
fi

end Traverse

— 904 —

A Study on “Path” funcion in LALR Parsing Method 5

end Digraph

In virtue of [Theorem 4.1] and [Theorem
4.2), we can compute Path; in a effcient way.

Now, we can get the final result by the
following formula.

Path,(4, B)=Path,(4, B)—{4inot (4 »* B)}.

V. Conclusion

Several characteristics of Path are studied,
and formalisms for computing Path are deve-
loped.

In virture of these formalisms, the meaning
of Path is clarified and an efficient computation
method is derived. This method uses Digraph
algorithm associated with relation “I” which
nicely captures inclusions in Path sets. The
application of this method to LALR(1) parser
generating system can reduce the computation
time for LALR(1) lookahead sets.

References
1. Park, Joseph C.H., Choe, K.M., and
Chang, C.H. “A New Analysis of LALR

Formalisms”, ACM Transactions on Progra-
mming Languages and Systems, Vol.7, No, 1,
Jan 1985,

2. Aho, A.V., J.D., “The
Theory of Parsing, Translation, and Comp-

and Ullman,

iling” Vol.1: Parsing,
1972,

3. Aho, A.V., and Ullman,].D.,
“The Theory of Parsing Translation, and

Prentice-Hall, Inc.

Compiling” Vol.2: Compiling, Prentice-Hall,
Inc. 1972,

4. DeRemer, Frank, and Pennello, Theomas
“Efficient Computation of LALR(1) Look-
Ahead Sets”, ACM Transactions on Progra-
mming Languages and Systems, Vol. 4, No. 4,
October 1982,

— 95 —

