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Optimal Control of Sampled-Data System with Delayed
Control Action

Ha, Cheol-Keun

Dept. of Mechanical Engineering

<Abstract>

In this paper, we treat the sampled-data control problem that accounts for time-delay in the
control action. The problem is formulated entirely in discrete-time domain, and the optimal design
is achieved in Linear Quadratic Gaussian(LQG) approach. It is shown in this approach that
'Separation Principle' is valid with an additional feedback of delayed control input to the LQG

-11 -
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compensator proposed in this paper. The method is applied to a benchmark problem of two-mass-

spring system. Design results obtained indicate that degradation of stability, robustness and

performance due to the delayed control action may get recovered to (or even better than) level of
the system with no delay time through the design method proposed. Especially, the LQG approach
shows the fact that the LQG compensation may prevent the sampled-data control system from

saturation of control action due to the time-delay.

1. Introduction

With development of digital computer,
computer-based control systems have gain
broad acceptance to industrial applications.
Digital controllers have many advantages over
their analog counterparts; easy reprogra-
mming without expensive wiring changes,
smaller size and light weight, and cheaper than
analog devices. However, digital controllers
pose some fundamentally different chara-
cteristics that should be carefully examined.
One of them is, what we call, computation
time-delay. This is the main issue to be
addressed in this paper. Problems related to the
time-delay have been extensively studied.
Dorato and Levis [1] showed the relevant
transformation of reducing a sampled-data
control problem into an equivalent discrete-
time control problem. Mukhopadhyay [2]
proposed a optimal design method for a digital
control system using constrained optimization.
However, the method did not address the
problem of computation time-delay. In [3], the
authors examined the time-delay for an
optimal state-feedback problem. Their
consideration is not practical because full-state
information may not always be available so
that the feedback controller designed can not

_12_

be implementable. Mita [4] formulated and
solved an optimal problem with computation
time-delay which is an integer multiple of the
sampling time. Diduch and Doraiswami [5]
pursued the problem of control servomecha-
nism design. Ha and Ly [6],[7] proposed a new
approach of digital control synthesis using
parameter optimization and solved the problem
of computation time-delay in a suboptimal
classical controller design [8]. In this paper, we
deal with a sampled-data system with the time-
delay at control action which is less than a
sampling time. For more practicality, the
optimal control problem with measurement-
based output-feedback is considered. The
problem formulation is based on linear
quadratic gaussian (LQG) framework for
digital control-law design.

This paper is organized as follows. In
Section I, the control problem taking into
account the time-delay at control action is
defined. Section III presents a state-space
formulation of the problem in the discrete-
time domain and its solution of the problem
in LQG framework. In Section IV, the
problem with measurement-based output-
feedback is solved. Results applied to the
benchmark problem of a two-mass-spring
system are discussed in Section V, and
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conclusions are summarized in Section VI.

I1. Control Problem with the
Time-Delay

Consider a linear time-invariant system
with zero initial condition,

() =AX(1)+ By w) + By u(t)

2)=C x(f) + Dy, u(t) 1))

Yhk=H,x, +D,v,

where x(f) is a state vector in R, u(f) a control
input vector in R”, reconstructed by digital-to-
analog converter (DAC), and z(f) a controlled
output vector in . Usually y,, x;, u, and v,
denote the responses of y(f), x(¢), u(?) and v(¥)
at each sampling time, respectively. The output
Vi is a discrete-time measurement vector in N,
resulted from analog-to-digital converter
(ADC). And w(?) is a continuous-time process
disturbance vector in R and v, is a discrete-
time measurement noise vectof in R~ The
matrices 4, By, B, Cy, Dy, H, and D, are
constant matrices with appropriate dimensions.
We assume that the pair {4, B,} is stabilizable,
{4, B} is disturbable, the pairs {4, C;} and
{4, H,} are both detectable. Also it is assumed
for causality that u(r)=0 for t<0~. The
sampling time 7'is assumed properly given.

The time-delay at control action less than a
sampling time 7 is taken into account in the
control synthesis. So the time-delay is explicitly
defined at the feedback control action.

- 18 -

we,  AT<t<kT+A
w KT+A<I<(k+ DT

u)= {
where A is an a-priori known time-delay less
than T. A block-diagram of the sampled-data
system with the time-delay at control action

@

is depicted in Figure 1. Let's consider the
following quadratic cost function J, for the

system Xz,
/s
o= Mm L E G (00x0 + e Ru)) dt
= 2

3

where E{ - } denotes the expectation
operator and z'(#) is transpose of the vector z(#).
The matrices Q and R in the cost function J,
are symmetric positive definite weighting
matrices. Our problem to be concerned is
associated with a measurement-based feedback
control in which an output-feedback controller
is designed as follows

Xegr ] = AKXy + Boyk

4
u,=Cex,, + Dyk

where the controller is linear shift-invariant.
Note that although the generic nature of
sampled-data system is time-varying due to
periodic sample and hold operation, our
concern is focused on a linear time-invariant
controller design.

Our problem to be solved in this paper is to
find the optimal digital controller as shown in
Eq.(4) that minimizes the quadratic cost
function J, for a sampled-data system with
the computation time-delay defined in Eq.(2)



under stochastic environment.

I11. Formulation in Linear
Quadratic Gaussian Framework

Suppose that the disturbance w.(¢) and the
measurement noise v, coming into the sampled-

data system are the random process with the
following stochastic properties.

E{w(0} =0, E{w ()Wl (D)) = W5 (¢ - 1)

5
E{v;}=0, ©)

Ty .

E{vpy) } =V,8,;
where W, and V, denote covariances of the
continuous-time process disturbance w,(¢f) and

the discrete-time measurement noise vy,

respectively. Note that &(¢ - 7) and §;; denote
the well-known Kroneckar delta function; for
instance, &t - ©)=1 (or &=1) for r=1 (or k=j)
otherwise zero.

For a compact description of the sampled-
data system in Eq.(1) at a sampling time A7,
let us introduce the following definitions.

Definition II1.1

!
Oy =e, W)= feAG doB,
0 (6)

,
G m {(D(T— 6)B,w (kT + 6) d6

where w()E L,[0,T), and &, is a discrete
sequence vector in R that belongs to a class
of I, or of gaussian white sequences with zero
mean and identity covariance. And G, is a

linear transformation defined as follows.

sy

_14_

G, L,[0, 71— R

Namely, we treat the class of Ly-disturbances

w(t) which are square-integrable in the time

interval t&[0,T] or of gaussian white randon
processes.

Now, let us describe the sampled-data
system with the delayed control action at a
sampling time 7. According to Ref.[1], the
sampled-data system in Eq.(1) can be properly
discretized with the time-delay as defined in
Eq.(2). For simplicity, by introducing a hold
state x which is equal to #, _,, let us define an

augmented state xj, .

[

Then we can represent the desired description

Xk

h
X

of the sampled-data system in state-space.

A A A
sy =Ax + Bl & + By
A
19 # =Cix}+ Dy, Q)
Yk =Hyt + Dy,
where
o(T) W(T) - W(T-1)
A" =
-men g")qﬂ
X Gy W(T - 1)
By = |, , By = (8)
“mxd, - Dnxm
O =10, Qpmls  Hy=[H; Opon]

Note that it is assumed that E{E]}=0.
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Also the cost function J, in Eq.(3) is properly
discretized with intersample behaviour resulted
from effect of the time-delay. For simplicity,
define a new function.

t

B : = [ e 4o,

Then the resulted cost function J(uy, A) is

represented as follows,

T

N x
S = im - >

®
l@ A_IJ [xt]
T _
M R U
where
o N N,
i [NIT Rl ’ A_l = R‘) (10)

For complete expression of the cost function

J(uy, L), let us introduce the following

definitions.

1 ’ T.T

O (a.b) :=7 [®O) €, OC, 6o
1 p r.T

Qu(a, b) :=7f<l>(6) C, OC,W(6) dO

b

Ou(@b) :=1 K w(6)' €} OC; W(6) d6
1 ’ T T

Nafa, b) == f<1>(a) C, 0Dy, d6

_15_

o, _
1 7T
Nufa, b) =?f (9 C, OD;,d8
a

Then the weighting matices in Eq.(9) are
expressed in detail.

0,= 0,5 0.1)
N1 = 0y (02) + Qe (AW TT(R) + Ny, (0,1)
Ry = Qu O+ R 0 AT +
N (O,8) + Ny (0,) + R+ D" QD) %
= O (Qu (O.T- 1)+ Ny (0,7~ 1)}
Ry =) ®A)' {Qu (O.T - A)+ Ny (O.T- )
R= 0w (0,7 2) + Ny (0,T- A)+ N,y (0,T- )" +

(R+D1T2QD12)(1-—;”,-)

Note that the cost function J(u,, A) includes
sensitivity of intersample behavior due to the
time-delay.

Nest, with the formulation shown in this
section, we would like to solve the problem of
sampled-data system with the delayed control
action in the measurement-based feedback
compensation within LQG framework.

IV. A Measurement-Based Output-
Feedback Compensation

In this section, we would like to solve the
problem addressed in linear quadratic gaussian
design approach. First of all, consider
conditions of controllability (or stabilizability)
and observability (or detectability). From Ref,
[3], we know that the sampled-data system in
Eq.(7) is controllable (observable) if and only if



the system in Eq.(1) is controllable (observable)
under proper selection of sampling time T.
Next, assume that the well-known 'separation
principle' is valid; however it will be proved to
be valid later. To design the optimal linear
quadratic gaussian compensator under this
assumption, the optimal full-state feedback law
(resulted from discrete-time Euler-Lagrange
Equation; Ref.[9]) and the optimal estimator
(resulted from sequential dynamic pro-
gramming; Ref.[10]) are separately obtained.
So let us discuss about how to obtain the
optimal full-state feedback control law. From
the well-known linear quadratic regulator
theory, the optimal full-state feedback law for
the time-delay problem being considered can
be expressed by the following.

u=K'2 =Kx+Ku,, an

There are two methods to obtain the full-state

feedback law K*. One is to use the eigenvector
decomposition of discrete-time Hamiltonian
matrix and the other the iterative method of the
discrete-time Riccati equation. However, the
eigenvector decomposition method is not
applicable to this problem because the system
matrix 4*in Eq.(7) is singular. Therefore, this
problem being considered can only be solved
through the iterative method. The recursive
discrete-time Riccati equation for this time-
delay problem is resulted from the discrete-time
Euler-Lagrange Equation.

T
A -
Sy=dr A, A+ D (12)

where

4

-l a7
A =S4y 'Sk+]BQR By S4y

A i AT
c =4 M

- B

SN

A R

Q :=Q-—A/-1 -‘HT

=i,

Note that this Riccati equation is time-
varying so that in order to obtain the steady-
state solution we have to solve it iteratively
backward in time. The resulted steady-state
solution becomes

lim

k— —00

st

5, (13)
Hence the steady-state optimal full-state
feedback control law becomes

K-B gl ¢ p-Hy 09

For complete design of the optimal
compensator with measurement-based
feedback to be achieved, let us concern about
design of the optimal estimator which
reconstructs unavailable states information
from the discrete measured output sequences
y; for i=1,2,...k. Note that D, has a full-row
rank. Let us define the best estimated state as
Se=E{xdypu; Vi=12,..,k} where E{ - |-}
means conditional expectation operator. The
following optimal estimator is proposed for
the time-delay problem being concerned.

%41 = WD) 5, + V(T - D+ (D) - U(T- D)oy

5 =%+ Le D~ HE, ) (15)

where X =E{xly,u; Vi=1,2,...,k-1}. The

optimal estimator gain matrix L, is obtained

- 16 -
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via discrete-time sequencial dynamic pro-
gramming.

Lo=MH, (HMH.+D,v,D;)" (16)

where the steady-state error covariance M is
defined as

M=lim E{(g-5) (-5 )

while satisfying the following Riccati
equation

M=®D) PN +G0,
P= M- MHy(HMH + DV, D)) Hyh

where the steady-state error covariance P is
defined as

P:=lim  E{(- %) CREN

Note that the discrete-time Riccati equation
in Eq.(17) can be solved in the eigenvector
decomposition of discrete-time Hamiltonian
matrix. In order to implement the optimal
full-state feedback law in Eq.(11) through
measurement-based output feedback com-

pensation, the estimated state %, substitutes
the state x,, in Eq.(11).

w=K5 =K b+ K (18)

With Eq.(18), the following optimal com-
pensator is obtained.

a7

~

N Yie 1)
xk+]="{-}xk+B: ",

. (19)

U

A Yk
uk=dfk+ D_-_-
F

where

AL 1= (O + WUT- DK} Uy - LoHy )

BY =[O +W(T- HK Y L, WD) +W(T- )
(K- 1,3

L =K (- Loty

o=KL, K1

From the optimal compensator, there is an
interesting observation.

Remark IV.1 The optimal compensator
proposed in Eq.(19) is different in its structure
from conventional discrete-time optimal
compensator with no time-delay (A = 0). The
proposed compensator has an additional input
term of the delayed control input ;. The role
of this term may be to compensate the delayed
effect on stability, performance and robustness
of the sampled-data system with the delayed
control action.

Once we obtain the optimal compensator in
Eq.(19), we evaluate the closed-loop system.
For simplicity, let us define the following
vectors

4 E,
| - -
xk [ _ s le =

xk vk

For analysis of the sampled-data system,

-17 -



the closed-loop system is obtained by feeding
back the compensator to the discrete-time
system in Eq.(7) and depicted in Figure 2.

P {
xoy = Ao 5+ G (0)
where
Acll Acl” Gcl] Gclz
49 = &=
¢ Aor Am|  ° Gar G
with

Ay = [T +W(T- DK LHy K LH,
W(T- ) {K' - I} + WK ]
Ay +=[(T- DK {1, - Ly

K (- LeH )

Agy = UMD +W(T- DK} LH,

YT-A) {/3’ - Iy} +W(D)
Ay =[{HD)+W(T- DK}

{hn- Leti )]

Gy W(T- WK LD,

Cen = [men IR P
G 27 Onenls
Gy = [{™D+W(T- MK’} LDy

With the closed-loop system analysis, 'Separ-
ation Principle' for the time-delay problem
being addressed is proved in the following
theorem, which is an important basis for
design of the optimal compensator in Eq.(19).
Theorem IV.1 With the compensator pro-
posed in Eq.(19), the 'separation principle’ is
still valid for the sampled-data system with
the delayed control action given in Eq.(2).

Gk

...18..

Proof; Let us introduce a nonsingular trans-
formation defined as

A A
Xp Liv m Qn+ myxn Xk
Ek . Unxn  Quxml ~Lyxn jk

After applying the transformation to the
closed-loop system in Eq.(20), we obtain the
closed-loop system matrix A< equivalent to

the following.

A+ K By K U, LH
W) {Jp- Lt}

cl
A, ~ 0

<nx(n+m)

It is obvious that when the compensator
proposed in Eq.(19) is applied to the sampled-
data system the separation principle still holds
under existence of the computation time delay
given in Eq.(2).

Next, in order to analyze the sampled-data
system with the computation time-delay, the
steady-state covariance X? of the closed-loop
system in Eq.(20) is obtained.

0
Vo

where the state covariance X%, in a sense of

n

0

.I'I'
e

/ T
X =40 ¥ 4 +G§’[ @en
time average, is defined as
N

1
w

With the state covariance X* given in Eq.(21),

,.
5

2
X' i =lim

—» 0O

}

we obtain the optimum cost J * (A) of the cost
function in Eq.(9) for this LQG compensation.
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@+ WK XK + |
A_/I(KA)/‘KAT+KXPKJ)

0 +ROY T +
| R + KK

S (A)=Trace ¢

(22)

where Trace{ - } implies the matrix operation
of trace, X* denotes a part of the state covari-
ance X¥ given in Eq.(21), which is defined as

N k] [*« '
tmt S

and the error covariance P is given in Eq.(17).

In next section, we would like to apply the
LQG design approach developed in the
previous sections to a benchmark problem of
two-mass-spring system.

V. A Benchmark Problem: Two-
Mass-Spring System

So far we considered a fundamental problem

computation time-delay. The problem is
formulated in state space and entirely in the
discrete-time domain. As a solution method the
linear quadratic gaussian (LQG) approach is
proposed and thereby an optimal compensator
for the problem considered is designed with
measurement-based output feedback. As an
illustrative example we would like to consider
a benchmark problem of the two-mass-spring
system as depicted in Figure 3. The dynamical
system of two-mass-spring system in Eq.(1) is
given in Table 1 where the state vector x(¢)=[x;
), x(), x3(0), x,(4)7; x,(r) and x3(f) denote
displacement of the masses with unit(m), and
x,(¢) and x,¢) denote its velocities with unit
(m/sec). And the control input u() just acts on
the mass M. Also we select two measurements
of y,=[x,,, x3,J". Sampling time is preselected as
T=0.25sec and computation time-delay is also
known as A=60% of the sampling time selected.
Stochastic excitation to the system are a
continuous-time random distur-bance w(¢),
corariance with W =1 and a discrete random
noise sequence v, with covariance ¥,=I,. Under
this circumstance, we obtain the linear
transformation G, via cholesky factorization

h in Eq.(6).
occurred in sampled-data systems which takes shown in Eq.(6)
into account the delayed control action due to
— 4.8927 X 10* 0 0 -
78661 x 10* 12121 x 10 0 0
G,= | 15569 x 10° 5.9859 X 10" 12735 x 10" 0 0
9.7134 x 10> 7.8280 X 10% 47019 x 10 1.5823 X 10? 0
- 8.5509 x 102 24002 X 10" 47905 x 10" 6.6349 x 10" 5.1476 x 10"

_19_
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Now, suppose the weighting matrices Q=I,

and R=1 in the performance index J, in Eq.

(3). Then the weighting matrices O, M and R

a2

in Eq.(10) are yielded which include inter-
sample behaviour of the sampled-data system
with delayed control action.

10000 00125  0.0059  0.0000  0.0000 0.0001
5-100125 10002 06946 00059 00002 0.0105
0.0059 0.6946 783140 -6.8929 -0.4021  0.1047
0.0000 00059 -6.8929 08787  0.0421  -0.0092
0.0000 00002 -0.4021 00421  0.0023 -0.0005
0.0001 00105  0.1047 -0.0092 -0.0005 0.6003
#=[0.0000 00020 00282 -0.0017 -0.0001 0.0001]
R = [0.4000)

With the performance index J(uy, A) in Eq.
(9), an optimal full state-feedback control-

K =[-09679 -1.759

Note that the optimal full state-feedback gain
is obtained via iteration of Eq.(12) until the
Riccati solution gets to the steady-state
condition in Eq.(13). Next, let us design an
optimal estimator implementing the full state-
feedback control-law associated with the

3.5272 x 10® 2.5346 x 107
L
¢ -9.7595 x 10+ 2.5843 x 10"

Once the full state-feedback gain K* and the
estimator gain L, are obtained, the optimal

compensator taking into account the delayed

24912 x 107
9.8242 x 10"

9.6407 x 10"
-3.3013 X 10?
8.8139 x 10* 8.7518 X 10°
-3.8664 x 10° 1.7411 X 10?
-6.2846 x 10* 0

B
I

-14.5396

1.7422 x 10

8.0081 x 10"
-1.4470 x 10"
-1.9215 % 10° 0

law K* in Eq.(14) is obtained.

0.6246 0.0443  -0.0370]

measurement y,. With the random disturbance

sequence &, and measurement noise sequence
v, selected, we obtain the optimal estimator
gain L, in Eq.(16) via iteration of the Riccati

equation in Eq.(17).

-9.7595 x 10* -2.0078 X 10° 3.1897 x 10¢ 7
1.0967 x 107

22732 x 107 9.7524 x 10

control action is yielded as given in Eq.(19)

which gives optimun cost J(A)=5.3882.

7.1615 X 10° 7
1.1307 x 10?
1.1376 x 10°
54395 x 10?2
1.9703 x 107 —

1.7783 x 10
2.3602 x 107?
2.3356 x 10?
8.0284 x 10!

1.1843

_20_



AdA ) F2E e AErlolet A ATl HHA o] 11

— 3.5885 x 10?7 -7.8661 x 10+ 2.5975 X 10"
23343 X 107 1.3453 X 107 1.4493 X 107
Bi= -8.3324 x 10* 8.9347 X 10° -2.5078 x 10*
1.3444 x 107 -1.5856 x 10" -1.3126 x 102
— 6.2846 x 10* 1.9215 x 10° 0 -
G= [9.0215 x 10" -1.7596 -1.4382 X 10" 6.2459 x 10" 4.4254 x 10?]

D= [6.5804 x 10% -1.5750 X 10" -3.6994 X 107]

With the optimal compensator, we analyzed
the closed-loop sampled-data control system
with the delayed control action and showed
results in Table 2 and Table 3 where SDS1
denotes the design case with the delay time
compensated in the LQG design, SDS2 the
case with the delay time not compensated in
design process and SDS3 the case without the
computation time-delay. And A, &, and w,
mean eigenvalue, damping ratio and natural
frequency, respectively. From results of the
cases SDS2 and SDS3 in Table 2, we see that
the computation time-delay may influence
seriously on stability robustness and per-
formance of digital control system; especially,
flexible modes may be affected by the delayed
control action. However, when the time-delay
is incorporated in design process, stability
robustness and performance of the system with
the delayed control action may get recovered
to (or even better than) level of the system
without the time-delay. In analysis of the
control system performance, effect of the
incorporation of computation time-delay in
design process is apprent to RMS (root-mean-
square) responses of the rate states (x, and x,)

-921 -

as shown in Table 3. Furthermore the
incorporation of computation time-delay in
design process may keep the sampled-data
control system out of control saturation. Note
that the mode 0 of case SDS1 came from need
of the delayed control input . ; to the LQG
compensator. Also we note from Table 2 that
the closed-loop eigenvalues consist of those of
regulator (R) and estimator (E).

V1. Conclusion

In this paper, we treated a practical issue of
sampled-data control system; time-delay at
control action due to computation time, The
problem is formulated in state space and solved
entirely in the discrete-time domain. As a design
method, we considered the Linear Quardratic
Gaussian approach for a measurement-based
output feedback problem. From results of the
problem, the delayed control action due to the
computation time may severely influence on
degradation of stability and performance as well
as robustness in digital control systems.
However, incorporation of the influence in
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design process may recover (or enhance) level
of stability and performance as well as
robustness in digital control systems. From the
example of two-mass-spring system, flexible
modes are easily affected by the time-delay.
With the design method incorporating the time-
delay, we may keep the sampled-data control
system from saturation of contro} action.
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Figure 1: Sampled-Data System with Computation Time-Delay
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Figure 3: A Two-Mass-Spring System

Table 1: State-Space Model of Two-Mass-Spring System

= ;

01 0 0 0
0 0 57423 0 0
A=1]0 0 0 1 0
0 0 —631.655 0 10
00 0 0 —157.080
0 0
) 0 ]
Bi=| 0 |, Ba=1|0
0 ~1
17.725 0
1000 0
00100 1000 0
C‘=01000’C”~"[00100]
000t 00633 0
D”:[ 0 0.633]
D12 = 0451

- 24 -



AdA ol F 2L Fe WETolet AAY FHAo|

Table 2: Analysis of the Closed-Loop Sampled-Data System

cases | Az | €, | wnlrad/sec)' |
SDS1 [ 0.79918 £ 0.58045: | 0.020 25.131 | R¥
0.80452 # 0.584557 | 0.009 25.135 | E*
0.98209 + 0.017567 | 0.708 1.012 | E
0.97980 £ 0.012207 | 0.853 0954 | R
0.01970 1.0 157.08 | R
0 R
0.01970 1.0 157.08 | E
SDS2 | 0.79674 £ 0.58473i | 0.019 25.330 | R¥
0.80452 = 0.58435: | 0.009 25.135 | E*
0.04073 1.0 128.03 | R
0.98209 &= 0.01756¢ | 0.708 1.012 | E
0.97946 £ 0.01222: | 0.856 0.9661 | R
0.01970 1.0 157.08 | E
0.01970 1.0 157.08 | R
SDS3 [ 0.79918 £ 0.58045: | 0.020 25.131 | R}
0.80452 + 0.58455¢ | 0.009 25.135 | £t
0.98209 + 0.01736:¢ | 0.708 1.012 | E
0.97980 % 0.01220: | 0.833 09535 | R
0.01970 1.0 1537.08 | £
0.01970 1.0 157.08 | R

7 s—domain equivaient.
1 R. E mean regualtor and estimator, respectively.

Table 3: RMS responses of States and Control
Variable [ SDS1 | SDS2 | SDS3

zy 0.2359 0.2343 0.2339
z9 0.2100 0.2128 0.2095
3 0.0672 0.0671 0.0672
Ty 1.6863 1.6865 1.6864
Uy 2.3561 2.3645 2.3602
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