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(Abstract

Let A be a commutative, Noetherian and absolutely flat ring with identity. Then A is
isomorphic to a direct product of a family of finitely many fields. In general, a commutative
and absolutely flat ring with identity is isomorphic to a subdirect product of fields.
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ring il every A-module is flat.

[. Introduction In this paper, we will prove some known

conditions equivalent to absolutely-flatness.

In' module theory, flatness is one of the  Using these conditions, we will prove that

remarkable properties. Precisely, an A-module
M is said to be an A-flat module if the functor
Tw: N-N&, M on the category of A-modules
and homomorphisms is exact. More precisely,
the following conditions are equivalent.

a) M is an A-flat module,

b) If the A-module homomorphism f: N'-»N
is injective, then f®X1: N'&, M—-NQQ.M
is injective.

By the way, whether an A-module M is flat
or not is much concerned with the properties
of ring A. For example, if A is a P.LD.,
then an A-module M is flat iff M is torsion
free. (5) A ring A is called absolutely flat

every commutative, Noetherian and absolutely
flat ring with identity is isomorphic to a direct
product of a family of finitely many fields.
And in general, a commutative and absolutely
flat ring with identity is isomorphic to a
subdirect product of a family of fields. Thro-
ughout this paper, every ring is a commutative
ring with identity. First of all, we need
following proposition.

Proposition 1.1 Let M be an A-module.
Then M is flat if and and only if Tor; (4/a,
M)=0 for all finitely generated ideal ¢ in A.

Proof See (3).

Proposition 1.2 The following conditions are
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cquivalent. Let A be @ ring.

a) A is an absolutely flat ring.

h) Every principal ideal is idempotent, Le,
(x)=(x?) for all x=A.

¢) Every prime ideal of A is a maximal ideal
and nilradical of A, denoted by rad (4), is
ZETO0.

d) A, (the localization of A at m) is a field
{or each maximal ideal of A, m.

Proof Suppose A is absolutely flat. Then, 4
{x) and (x) are A-flat modules for all x=24.

Since O -+(x)fim4f{—-A/(x)—~—4O is exact,

(S, (O AD DR AT @

50 is exact. The injectiveness of the map
i1 () RaA/ () AR A/ (%) and Im(7%1)=0
1mp11es (2)RaA/(x)=0. Hence 0—(x) a4 (%)
And AXa () is
isomorphic to () by the map a’s’bx—abX.
Therefore, (x)=(x2) for all x7:4. Thus a)
implies b). Assume b) holds. Ii rerad(.1), then
=0 for some #e=Z*. By assumption, () =(r*)
=(r*)--=(r*)=0. This shows rad(A)=0. Let
p be a prime ideal in A and a2 p. Then a=a*x

e AQA (x)—>0 is cxact.

sor some x=A, Hence @(1—ax)=0and we have
1—gx=p. Whence (a)+p=A. This shows that
p is maximal. To prove that ¢) implies d), we
show that A, has only zero-ideal. Since S7m
is the only primc ideal of A4, where S means
the multiplicative set A-m, rad(A,)=S"'m. For
{@/s]=S™'m, there exists #=2Z* such that
‘a/s]*=0.

This means there exist »&S such that ¢"7=0
in A. Thercfore, (@r)"=0 in A. This implies
ar=0 since rad(A4)=0. Hence [@/s]=0. So An
has only zero ideal. Assume d) holds. Since
A, is a field, the only ideals in A, are 0 and
itself. Hence Tor, (A4./a, M)=0 for all 4,-mo-
dules, M and all ideals of A. a. (3) By
proposition 1.1, every A.-module is flat. From

this fact, it follows that every A-module is flat.

(1) QE.D.

. The structure theorems of
absolutely flat rings

To prove the structure theorems, we need
some known knowledge and definitions.

Definition 2.1 A ring 4 -0 is said 10 have
dimensicn zero it all prime ideals are maximal.
&)

Definition 2.2 Let {A;},=:beca family of rin-
gs indexed by some sct /. The direct product
of the rings A, denoted by 7] A, consists of
all functions ¢z defined on 'Vlh( index set [
subject to the conditions that for cach clement
i=I, a(i)=A. H A;-={ciee: I—>U_4 cr(?)
2 A} A subring S of H A; 1s said m be a sub-
direct product of the rings A,, writlen as
1;[1‘4 if the induced projections 1]: S: S—A;
is an onto mapping for each 7.

Theorem 2. 1 A ring A=0 is Artinian (2) if
and only if it is Noetherian (2) and of dimen-
sion zero.

Proof See (2).

Theorem 2. 2 1f a ring A is Artinian, then
A has only finite maximal ideals.

Proof Suppose that A has infinirely many
maximal ideals. Choosing infinitely countable
maximal ideals {m;}icz-, we consider the
following discending chain of ideals. m,Dmiiz
MM D e

This is a strictly discending chain of ideals
and hence contradicts to the fact that A is
Artinian.

Theorem 2.3 A ring A is Noetherian and
absolutely flat if and only if A is isomorphic
to a direct product of a family of finitcly many
fields.

Proof Suppose A is Noctherian and absolutely
A has
only finite maximal ideals my, #, - , M. By

flat. By theorem 2.1 and theorem 2.2,

the condition ¢) of proposition 1.2, ﬂm, = rad
(A)=0. Appealing to Chinese rcmamder theo-
rem (4), we have A is isomorphic to H Afm;,
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where every A/m; is a field. The converse is
obvious by condition b) of proposition 1.2.

Theorem 2.4 An absolutely flat ring is iso-
morphic to a subdirect product of fields.

Proof Let {m;},c; be the family of all ma-
ximal ideals of an absolutely flat ring A.
Define a function f: 4 EIA/m,-, by requiring
f(a) to be such that its projection 1T.(f(a))
=@My

Then ker f

={as=A|(T]:- f )(a@)--.m,; for all i=[}
={az=A a+my=m,; {or all 7= [}
==rad(A4)-=0 (by proposition 1.2)

This implies 4 is isomorphic to f(A4), a
subring of ‘];I] A/m;. And since [[,-f(i)=A/m;,
Z.e., T[: is an onto mapping for each f&f, 4
Q. E. D.
Remark The converse of theorem 2.4 is not

is isomorphic to H; A/mg.
iE

true. While Z=1]*Zy, where p; runs all prime
numbers, Z is not absolutelv flat.
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