Remarks on Absolutely Flat Rings

Jang, Chang-Lim Dept. of Mathematics (Received April 30, 1985)

(Abstract)

Let A be a commutative, Noetherian and absolutely flat ring with identity. Then A is isomorphic to a direct product of a family of finitely many fields. In general, a commutative and absolutely flat ring with identity is isomorphic to a subdirect product of fields.

Absolutely flat 환에 관하여

〈요 약〉

A가 absolutely flat이고 항등원을 가진 가환노이더환이던 A는 유한개 채(field)들의 직적(direct product)과 동형이다. 좀 더 일반적으로 A가 absolutely flat이고 항등원을 가진 가환환이던 A는 체들의 직적의 부분환 subdirect product와 동형이다.

I. Introduction

In module theory, flatness is one of the remarkable properties. Precisely, an A-module M is said to be an A-flat module if the functor $T_M: N \rightarrow N \otimes_A M$ on the category of A-modules and homomorphisms is exact. More precisely, the following conditions are equivalent.

- a) M is an A-flat module.
- b) If the A-module homomorphism $f: N' \rightarrow N$ is injective, then $f \otimes 1: N' \otimes_A M \rightarrow N \otimes_A M$ is injective.

By the way, whether an A-module M is flat or not is much concerned with the properties of ring A. For example, if A is a P.I.D., then an A-module M is flat iff M is torsion free. (5) A ring A is called absolutely flat

ring if every A-module is flat.

In this paper, we will prove some known conditions equivalent to absolutely-flatness. Using these conditions, we will prove that every commutative, Noetherian and absolutely flat ring with identity is isomorphic to a direct product of a family of finitely many fields. And in general, a commutative and absolutely flat ring with identity is isomorphic to a subdirect product of a family of fields. Throughout this paper, every ring is a commutative ring with identity. First of all, we need following proposition.

Proposition 1.1 Let M be an A-module. Then M is flat if and and only if $Tor_1(A/a, M) = 0$ for all finitely generated ideal a in A. **Proof** See (3).

Proposition 1.2 The following conditions are

equivalent. Let A be a ring.

- a) A is an absolutely flat ring.
- b) Every principal ideal is idempotent, i.e., $(x)=(x^2)$ for all $x \in A$.
- c) Every prime ideal of A is a maximal ideal and nilradical of A, denoted by rad (A), is zero.
- d) A_m (the localization of A at m) is a field for each maximal ideal of A, m.

Proof Suppose A is absolutely flat. Then, A (x) and (x) are A-flat modules for all $x \in A$. Since $0 \to (x) \xrightarrow{i} A \xrightarrow{j} A/(x) \longrightarrow 0$ is exact,

 $0 \longrightarrow (x) \otimes_A (x) \xrightarrow{i \otimes 1} A \otimes_A (x) \xrightarrow{j \otimes 1} A/(x) \otimes_A (x)$ →0 is exact. The injectiveness of the map $i \ge 1$: $(x) \bigotimes_A A/(x) \rightarrow A \bigotimes_A A/(x)$ and $\operatorname{Im}(i \ge 1) = 0$ implies $(x) \otimes_A A/(x) = 0$. Hence $0 \longrightarrow (x) \otimes_A (x)$ $\xrightarrow{/ \odot 1} A \otimes_A (x) \longrightarrow 0$ is exact. And $A \otimes_A (x)$ is isomorphic to (x) by the map $a \otimes bx \longrightarrow abx$. Therefore, $(x)=(x^2)$ for all $x\in A$. Thus a) implies b). Assume b) holds. If r = rad(A), then $r^n = 0$ for some $n \in \mathbb{Z}^+$. By assumption, $(r) = (r^2)$ $=(r^4)\cdots=(r^{2*})=0$. This shows rad(A)=0. Let p be a prime ideal in A and a = p. Then $a = a^2x$ for some $x \in A$, Hence a(1-ax)=0 and we have $1-ax \in p$. Whence (a)+p=A. This shows that p is maximal. To prove that c) implies d), we show that A_m has only zero-ideal. Since $S^{-1}m$ is the only prime ideal of A, where S means the multiplicative set A-m, $rad(A_m)=S^{-1}m$. For $[a/s] \in S^{-1}m$, there exists $n \in Z^+$ such that $[a/s]^n = 0.$

This means there exist $r \in S$ such that $a^n r = 0$ in A. Therefore, $(ar)^n = 0$ in A. This implies ar = 0 since rad(A) = 0. Hence [a/s] = 0. So A_m has only zero ideal. Assume d) holds. Since A_m is a field, the only ideals in A_m are 0 and itself. Hence $Tor_1(A_m/a, M) = 0$ for all A_m -modules, M and all ideals of A_m , a. (5) By proposition 1.1, every A_m -module is flat. From this fact, it follows that every A-module is flat. (1) Q.E.D.

1. The structure theorems of absolutely flat rings

To prove the structure theorems, we need some known knowledge and definitions.

Definition 2.1 A ring A=0 is said to have dimension zero if all prime ideals are maximal. (2)

Definition 2.2 Let $\{A_i\}_{i\in I}$ be a family of rings indexed by some set I. The direct product of the rings A_i , denoted by $\prod_{i\in I}A_i$, consists of all functions α defined on the index set I subject to the conditions that for each element $i\in I$, $\alpha(i)\in A_i$. $\prod_{i\in I}A_i=\{\alpha\mid\alpha\colon I\to UA_i\colon \alpha(i)\in A_i\}$ A subring S of $\prod_{i\in I}A_i$ is said to be a subdirect product of the rings A_i , written as $\prod_{i\in I}A_i$, if the induced projections $\prod_i S\colon S\to A_i$ is an onto mapping for each i.

Theorem 2. 1 A ring A=0 is Artinian (2) if and only if it is Noetherian (2) and of dimension zero.

Proof See (2).

Theorem 2. 2 If a ring A is Artinian, then A has only finite maximal ideals.

Proof Suppose that A has infinitely many maximal ideals. Choosing infinitely countable maximal ideals $\{m_i\}_{i\in Z^*}$, we consider the following discending chain of ideals. $m_1 \square m_1 m_2 \square m_1 m_2 m_3 \square \cdots$

This is a strictly discending chain of ideals and hence contradicts to the fact that A is Artinian.

Theorem 2.3 A ring A is Noetherian and absolutely flat if and only if A is isomorphic to a direct product of a family of finitely many fields.

Proof Suppose A is Noetherian and absolutely flat. By theorem 2.1 and theorem 2.2, A has only finite maximal ideals m_1, m_2, \dots, m_n . By the condition c) of proposition 1.2, $\bigcap_{i=1}^n m_i = \text{rad}(A) = 0$. Appealing to Chinese remainder theorem (4), we have A is isomorphic to $\prod_{i=1}^n A/m_i$,

where every A/m_i is a field. The converse is obvious by condition b) of proposition 1.2.

Theorem 2.4 An absolutely flat ring is isomorphic to a subdirect product of fields.

Proof Let $\{m_i\}_{i\in I}$ be the family of all maximal ideals of an absolutely flat ring A. Define a function $f \colon A \to \prod_{i\in I} A/m_i$, by requiring f(a) to be such that its projection $\prod_i (f(a)) = a + m_i$.

Then $\ker f$

$$= \{a \in A \mid (\prod_{i} \cdot f)(a) - m_i \text{ for all } i \in I\}$$

$$= \{a \in A \mid a + m_i = m_i \text{ for all } i \in I\}$$

$$= \bigcap_{i \in I} m_i$$

$$= \operatorname{rad}(A) - 0 \text{ (by proposition 1.2)}$$

This implies A is isomorphic to f(A), a subring of $\prod_{i \in I} A/m_i$. And since $\prod_i \cdot f(A) = A/m_i$, *i.e.*, \prod_i is an onto mapping for each $i \in I$, A is isomorphic to $\prod_{i \in I} A/m_i$. Q. E. D.

Remark The converse of theorem 2.4 is not

true. While $Z \cong \prod^i Z_{pi}$, where p_i runs all prime numbers, Z is not absolutely flat.

References

- M. F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, p. 35—49, Addison-Wesley Publishing Company, 1969.
- 2. Hideyuki Matsumura, Commutative Algebra, pp. 15-16, Benjamin/Cummings Publishing Company, 1980.
- Nicolas Bourbaki, Commutative Algebra, p. 37, Addison-Wesley Publishing Company, 1972.
- 4. Thomas W. Hungerford, Algebra, p. 131, Holt, Rinehart, and Winston, Inc., 1974.
- P. J. Hilton, U. Stammbach, A Course in Honmological Algebra, pp. 113—115, Springer-Verlag, 1970.