AT o) Tl

A Al 18F (Abed sha o FE) M) 2 5, pp 137~140, 1987

lOU Report vol. 18 ( atural Science and Engineering) No.2, pp: 137 ~140, 1987.

University of Ulsan

Semisimplicity of Fixed Jordan Subrings of a Group of
Jordan Automorphisms of a Ring R*.

Jang, Chang-Lim - Je,

Hai-Gou » Lee, Dung-Su

Dept. of Mathematics
(Received April 30, 1987)

{Abstract)

Let R be an associative ring and G be a group of some Jordan automorhisms of X. The semisimplicit

of the fixed jordan subrings of G implies that R is semisimple where R is semiprime and right noeth

erian and 1G| is a bijection on R.
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1. Irtroduction.

The relations between the structure of RS and
the structure of R were studied by some mat-
hematicians for several years.

Especially these topics were related to the
case of ordinary ring automorphisms of R or
the case when R has an involution. I.N. Her-
stein also studied the structure of Jordan ring
R* with the structure of a ringR.

We now explain our terminologies.

(1) If A is an additive subgroup of R, A is
a Jordan subring of R if A is closed under
squares (that is x2¢24) and under the quadratic
operation where a<p=pab. In fact if 2R=R this

definition is equivalent to A being closed under
the single linear operation a-6=1/2(ecb+ ba).
For example the ring R itself is a Jordan sub-
ring of R. In this case we will denote it by R*
(2) A mapping ¢:R—R’ of the rings R and
R’ is a Jordan homomorphism if (i) ¢p(a+b)=
P(a)+o(b) (i) 9la®)=¢(a)? (ili) ¢(bab)=¢
(&)P(a)p(b) for arbitrary ¢ and & in R.
Clearly ¢ ring homomorphism is a Jordan
homomorphism. N
A Jordan automorphism of R is simply a
Jordan homomorphism which is also one to one
and onto; we let Auty(R) dencte the group of
all Jordan automorphisms of R,
(8) R6={reR|r#=r for every ¢ in G} is clearly
¢ Jordan subring of R where G is a subgroup
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of Autys(R).
for 0&ERE. Moreover, if G is finite, we define
the trace of x by (r(x)= ¢§Gx". Then {r(x)
ZRG. We let tr(R)= (tr(x)|xER}

We will show some examples.

We know that RG is not empty

Example 1.1. Let M,(R) be the ring of n
by #n matrices where R is ¢ commutative ring.
Then G={id, T,} is a subgroup of Aut;(M,
(R)) where T;:A—!A. In this case A is the
transpose of A, Thus M,(R)¢ is the set of all
symmetric matrices of M,(R).

Example 1.2. Let R be ¢ non-commutative
ring with involutions Define W:RPDR->REPR by
W(a,b)=(a*,b), then Wis e Jordan automor-
phism. Let G={id, W}. Then (RDR)S=SgDR
where Sp={aER}|a*=a}

2. Some basic results.

In this section we studied some resuilts for
our main theorem. The following theorem of
[. N. Herstein and the corollary of Martindale-
Montgomery are basic on our thesis.

Proposition 2.1. (Herstein) Let ¢:R—>R’ be
a Joran homomorphism of R onto @ prime ring
R’. Then ¢ is either a homomorphism or an
anti-homomorpsm.

Proof See(3).
[n that theorem the hypothesis that R is a
prime ring is essential. In example 1.2, W is
neither a homomorphism nor an anti-homomor-
phism. Of course RPDR is not prime but semi-

prime.

Corollary 2.2. (Martindale-Montgomery) Let
¢ be a Jordan automorprhism of R and let P
be ¢ prime ideal of R. Then P¢ is a prime
‘woal of R, Moreover the prime rings R/P and

" 77 are either isomorphic or anti-isomorphic.

Proof. See(4).

We consider the following example.

Example 2.3. Let T be a simple, non-comm-
utative ring with involution*, and let R be the
direct sum of T; where T;=T and 1<i<n.
Define W:R-R by W(ay, as, - +an) =(a,*, a;--ay_ ;i
Then ¥ is neither a homomorphism nor an anti-
homomorphism. On the other hand let P=T,
@T®@Ty1, then P is prime ideal of R and
R/P is anti-isomorphic to R/P¢ via (x+ P)¢=
x%+ P for every x+P&R/P.

The following terminologies are basic for our
theorem.

(1) Let A be a Jordan subring of R. The
additive subgroup JC A is said to be a Jordan
ideal of A if whenever <] and a=A then bea
=A; that is abasI. Thus every ideal of R is
a Jordan ideal. But one-sided ideal may be not
a Jordan ideal.

(2) If I is an ideal of R, we say that [ is
G-invariant if I#cl for every ¢ in G. In this
case G is a subgroup of Jordan automorphisms
of I via restriction of ¢ on I.

(8) The ring R is said to have no n-torsion
(or n torsion free) if nr=0 for some » in R
implies »=0.

(4) For some positive integer #,n is a bijec-
tion on R if (i) nR=R (ii) R has no n-torsion:
that is »# is g bijective function on R.

We remark the followings when G is of finite
order # and » is a bijection on R.

(1) Ré=¢r(R)

Proof. For arbitrary x in RS there exist
some y in R such that ny=x. We can denote y
by 1/nx. Then y#=((1/n)x)¢=(1/m)n((1/n)x)*
=1/n(n(1/n)x)¢=(1/n)x¢=y. Thus x=¢§c yb=
n((1/n)x)=tr(R). For other direction, we alre
ady know that {r(R)CRCG. Thus R6=tr(R).
Moreover, we know that aRG=RG.

(2) When! is G-invariant, R=R/] has an
induced group of Jordan automorphisms, given
as follows: for ¢<G, define by (x+/)¢=x¢+/.
Lat K be the kernel of the mapping ¢—¢ and
let G=G/K. Then G is a group of Jerdan auto-
morphisms of R//. In this case we get }?é=}€_0.
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Proof. Cleary we have that R RS for(x+
1)e=x¢+/=x+/ for every x in RS On the
other hand if ¥=R6 then »%¥=|K||Gix=|K| ¢2;'
0= 3 K26 = 3 xo=/r(x)&RC. SinceRC=

$€C Pl

;17\’6, ;?—ECEE
3. Semisimplicity

In this section we assume that R=2R and |G|
is @ bijection on R.

In a Jordan ring A, the Jacobson radical j(A)
is defined as the maximal quasi-regular ideal,
where an element x=.1 is quasi-regualr if 1--
x is invertible (if 1€/, the inverse is formal).
When A is a special Jordan ring, say AcCR*,
where R is an associative ring, then being ive-
rtible in the Jordan sense is the same as being
Thus x is
guasi-regular in A if and only if there exists
y&EA such that x+y+1/2(xy+yx)=0. We also
denote the Jacobson radical of R by J(R):since
J(R)=J(R*) by a theorem of McCrimmon(5).

To obtain our main results we need the foll-
owing propositions by Martindale-Montgomery

invertible in the associative sense.

Proposition 3.1. If G is ¢ finite group of
Jordan automorphism of e ring R, such that R
has no |G|-torsion. Then P(RNRC) =P(RG)
where P(R) is the prime radical of R.

Proof. See(4).

Proposition 3.2. Under same finite group G
in proposition 3.1. If |G] is a bijectio on R,
then J(RG)=J(R)N RG.

Proof. See(4).

From two propostions that if R is

semi-simple then RC is semisimple and if R is

we know

semiprime then RC is semiprime. But the fact
that if RS is semisimple then R is semisimple

is not known. Here we can prove that.

Lemma 3.3. If RG is nilpotent, then R is
a nil ring.

Proof. It is sufficient to show that R has

f]

no prime ideals: that is R=P(R). Assume that
P is a proper prime ideal of R. If P is G-inv-
ariant, then G acts on R=R/P by remark (©))
and R6=RS. On the other hand by proposition
3.1, we know that P(R)=P(R)NRE={0} for
P(R)={0} (since R is prime.) In this case R
has no nilpotent ideals. But the fact that R¢
is nilpotent implies RG is nilpotent because R¢
=RE. Thus P is not G-invariant.

We let J= ¢QGP¢' If J={0} then P(R)={0)
=0 implies RC is no nilpotent. If J#{0) let R
=R/J then we know that R is semiprime since
all prime ideals of R are of the form P#/] 1t
is also contradiction. the fact that
that R6 is nilpotent.
But this is impossible because R is semiprime.

For, also
RC is nilpotent implies

Theorem 3.4. If R is semiprime and right

noetherian. Then if RC is semisimple then R
is semisimple.
Proof. It is sufficient to show that J(R)=

{0}, Assume that J(R)+{0}. For arbitrary x
in J(R), x* is also in J(R) for every ¢=G (in
fact x+y+1/2(xy+yx)=0 implies x?+y¢+1/2
(x%y¢+y9x¢) =0 for every Jordan automorphism)
Thus J(R) is G-invariant since J(R) is invari-
ant under any Jordan automorphism of R. We
recall that G is a group of Jordan automorph-
isms of J(R) by remark(2). The assumption
that f(R)+# (0} implies J(R)NRS+{0} implies
J(R)6={0}. And if J(R)¢={0}, then J(R) is
nil subring of R by lemma 3.3. But since every
nil ideal of right noetherian ring is nilpoten'x
(2), R contains nontrivial nilpotent ideal J(®)
(we recall that J(R)=J(R*).) This is imposs-
ible. Thus we obtains J(R)={0}.

Finally we will show that some examples for
appropriateness of our theorem.; that is there
exist many rings which are seiprime and right
noetherian but not semisimple.
Let R be the

rational numbers whose denominators are ndd.
F has

Example 3.5. ring of all

Then R is commutative prime ring for
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o zero divisors except 0. If ¢/p is contained
i 2n ideal of R, then ¢ is even number for

ideal. Thus
the ideal of all rational numbers whose numer-

otherwise 1 is contained in that

stlors are even is unieue maximal ideal of R
e, JIR)#9. And clealy R is neotherian for
every proper ideal is contained in finitely many
ideals of R.

- This example shows that semiprime nocth

erian ring may not be semisimple.

4. Questions

[i in theorem 3.4. The assumption that K
s right noetherian is deleted, is the theorem
;rue? In the course of proof we can know that
J(R) is nilpotent since R is right noetherian.
(n this case if the nilpotency of RE implies the
nilpotency of R, we can delet the assumption
that R is right noetherian since.J(R) is nilpo-
tent., In fact if G is a group of automorphisms
nf R and R has no {G|-torsion, Then the nil-
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potency of RS implies the nilpotency of R by
Pergman and Issac. But in case Jordan autom-
orphism group, that has been neither

nor disproved.

proved
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