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ABsTrACT. Cahn-Hilliard equation is modeled to describe the phase separation in systems.
Using a discontinuous Galerkin method, we will control accuracy of approximate solutions.
In this paper, boundedness of discontinuous Galerkin solution is discussed. A posteriori error
estimation of the Cahn-Hilliard equation, which is based on the results of this paper, will be
studied later,

1. Introduction.
Consider the Cahn-Hilliard equation

Ou  _0%u. ou %)

i1 —_— — 0 _— = Q, 0<t
(1.12) ot ;2 O T a2 v €% 0<%
with an initial condition

(1.1b) u(z,0) =uo(z), z€=(0,1),

and boundary conditions

ou Au

1.1 =0, ——= =0, a0, 0<t
(1.1c) . 53 T <

Here The function ¢(u) = yu® — f%u is an intrinsic chemical potential and § and a are
positive coefficients of viscosity and gradient energy, respectively. And u(z,t) is the con-
centration of one of two components of the system.

The equation (1.1) with § > 0 arises as a phenomenological continuum model for phase
separation in glass and polymer systems where intermolecular friction forces may be ex-
pected to be of importance. See Novick-Cohen[14] for a derivation of the model and
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Novick-Cohen and Pego [15] for more physical motivation. The viscous Cahn-Hilliard
equation, which is viewed as a singular limit of the phase field model of phase transition,
has been studied by Bai, Elliott, Gardiner, Spence, and Stuart [2]. They have studied
the similarities and differences between the Cahn-Hilliard equation(é = 0) and Allen-Cahn
equation by using the viscous Cahn-Hilliard equation. Metastable pattern for the viscous
Cahn-Hilliard equation has been studied by Reyna and Ward([16]. Using explicit energy
calculations, Grinfeld and Novick-Cohen(13] have established a Morse decomposition of
the stationary solutions of the viscous Cahn-Hilliard equation. Existence theory of the
solution of (1.1) has been shown in Elliott and Stuart[9]. Choo and Chung|3] have investi-
gated the exponential decay of the classical solutions of (1.1) and compared decay speeds
of the viscous Cahn-Hilliard equation with that of the Cahn-Hilliard equation analytically.

Compared to numerical studies for the Cahn-Hilliard equation by Elliot and French[6}-
(7], Elliot, French and Milner[8] with finite element methods and Furihata, Onda, and
Mori[11], Sun[18], Choo and Chung[4], Choo, Chung and Kim (5] with finite difference
methods, there is no numerical study for the viscous Cahn-Hilliard equation.

Generally, the a priori error bounds depend on the exact solution u. But if the exact
solution u of (1.1) has very steep gradients and curvatures, then the a priori error may
be extremely large even though mesh size is very small. Thus it is natural to refine the
grid size in order to increase the accuracy. However, since the nature of exact solution u
is unknown, it is not clear how to locally refine the finite element mesh. For the control
of mesh refinement, a posteriori error estimates expressed in terms of only the data of the
problem and of the computed solution are studied using the method of residual and the
method of dual problem. We refer to Ainsworth and Oden(1], Eriksson and Johnson[10],
Grasselli, Perotto and Saleri{12] and references therein.

In order to derive a posteriori error estimates for the problem (1.1), we consider discon-
tinuous Galerkin{DG) method, which is to find approximating function discontinuous in
time and contimuous in space. The process of the a posteriori error estimates is sketched
as follows.

(1) Represent the error in terms of the solution of a dual continuous problem.

(2) Determine certain constants in the a posteriori error bounds using Galerkin or-
thogonality with local interpolation estimates and stability estimate for the dual
continuous problem.

The main purpose of this paper is to obtain a bound of the discontinous Galerkin
solution of Cahn-Hilliard equation. The layout of this paper is as follows. Basic notations
and some preliminary results are introduced in Section 2. In Section 3, discontinuous
Galerkin approximations are introduced and the stability of discontinuous solutions are
established. In later research, we will study a posteriori error estimation of the Cahn-
Hilliard equation, using a dual problem.

2. Notations and preliminaries.

The standard notations for Sobolev spaces and norms will be used. In particular, L?
denotes L?(£2) space with (-,-) as an inner product and || - || as an induced norm. For
a nonnegative integer k, H* stands for Sobolev Hilbert space H*(Q) with norm [ - ||x.
Further, let Hf ={v € H' : v=00n 00} and H = {v € H?: v = 0,v, = 0 on d8}.
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Taking inner product of (1.1) with v € HZ and applying boundary condition (1.1c), we
obtain the weak formulation

(21) (ut,v) - J(Umxtavzx) + a(uazzavzx) = (¢(U)m,v), v € Hg

with u(0) = u°.
Existence and uniqueness of the solution for (2.1) is shown in Choo and Chung|3].

Lemma 2.1. Given uy € HZ, there exists a unique global weak solution u of (2.1) such
that for a constant C
llu)l oo (mr2) < Clluodl2,

where ||ul| Lo (572) = supeeo,ryllu(-;t)]l2-

Let V}, be a finite dimensional subspace of H} N H? with the following approximation
property: there exists a constant C' independent of spatial mesh size h such that for
U € Hg N H4,

(2.2) inf |lu=-xll; <Ch ull, §=0,1,2, 2<r<4.
XEVL

Introduce a bilinear form
A(v,w) = (v,w) + 8(vg, we), v,w € HE,

and an energy norm
1
v)la = A(v,v)2, ve HE.

Then we obtain the following lemma using the Cauchy inequality.
Lemma 2.2. For any v,w € HZ, the inequality
Alv,w) < |lvf|allwlia
holds.
Let @ € V), be an auxiliary projection of u, defined by
(2.3) Alu-14,v) =0, veV,.
Then the energy norm of projection is dominated by that of original function.
Lemma 2.3. For any projection 4 of u, the inequality
llla < llulla
holds.
Using (2.2)—(2.3), we obtain the following estimates.
Lemma 2.4. There exists a constant C' such that
“'U. - ﬁ” S Chznuza::r:ﬂ:“

and
[[(u = @)e|| < CA?||tzzzatll-
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3. Discontinuous Galerkin method.
Define a partition 0 = tg < t; < -+ < ty = T of the time interval 7 = (0,77 into
subintervals I,, = (t,—1,%,] of length k,, = t,, - t,_1. For a given function v(t), let

n,

nt 1 - %
T = 31_1*161+v(tn +s), v 31-1+I(I)1— v{t, + 8),

and [v"] = v™* — v™~ denote the jump of v at time ¢,.

We introduce a spatial discretization on each slab S, = (2x I, based on conforming finite
elements. For each n =1,2,--- N, let {z'} be a partition of {2 into intervals (z?_;,z})
with Al = z? — 7' ;. We also introduce the global mesh function k = h(z,t) defined by
h{z,t) = h, for z € Q,t € I, and k = k(t) by k(t) = k, for t € I,. Finally, we require the
quasi-uniformity of the meshes.

Let J, : L2(I,) — Py(I,) be the L2-projection onto the set P;(I,) of linear functions
on I,,. Then the following lemma on projection errors holds.

Lemma 3.1. For 1 < p < oo, there is a constant v such that
lv — JnvllLe(r,y < ymin{knllvellpe(r,), Kallvel o) }

and
(v — Jov)* V|| < ymind||vef| 11, knllvsell 22 (1)}

In order to get our discretization, we will use the following notations
Wn = {w : S-n — R"LU(ZL',t) = ¢‘n0 + t¢nl; ¢ﬂ0}¢nl € th1 (I?t) € Sn}

and
W={w:QxI->R| w €W,n=12,---,N}L

Integrating (2.1) by parts in a fixed interval [0,%x], we obtain

(3.1)
tn tn
- f A, w)dt + Afultn), witn)) — AW, w(0) + & [ (thns, wes)dt
0 1]
tan
- / (o{u) gz, w)dt =0, Ywe W.
0
Note that
tn N tn
_/0 A(U, wt)dt = —;'/tn_l A(U, w:)dt

N N
=> | AlUnw)dt+ > AU - UL w Y
I

n=1 n n=2

— AU W)+ AU W),
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where w™ = w(t,). It follows from (3.1) that

(3.2) y . )
n—1 n—1 . w -
ngl /1 A(Ut,w)dt+n§A([U Jhw )WLT_‘S__::1 /I"(Uu,wn)dt ,; /I."(¢(U)n, )t = 0,

with U%~ = u0.

Since a function w in W is not required to be continuous at ¢,,, we may choose its values
on the different time intervals independently. By choosing w to be vanished outside I,,, we
can introduce the space-time discretization of the Cahn-Hilliard equation to find U € W
such that
(3.3)

| A v+ A0 ) o [ Uewin)di [ (O w)i =0, Vu e W,
I. In In
with
U® =0
Remark 3.1. The problem to find U € W satisfying (3.3) is called a cGdG-method, since

U is contionuous in space and discontinuous in time.

Since the bilinear form is positive definite, existence and uniqueness of a solution for
(3.3) can be shown in a standard manner. We here show that the solution U of (3.3) is
stable.

Theorem 3.1. Let o > g:— and U be the solution of (3.3). Then forn=1,2,--- N
U™ Nl < [0 a

Proof. If we take w = U in (3.3), then

1 d _ 1. — yrm—
(34) 3 f ;i—iIIUllidtJrHU" 1’+II2A+/I al[Uzzll® = ((U)ae, U)dt = A(U™ 17, U 1),
Note that

. 2
(HV)ex,U) 2 B U, V) = ~BUIP 2 ~ 2 |0l
Since [, £|Ul3dt = [U™~ (4 - |U""1*|% and o > f%;, it follows from (3.4) that

IO 1% + [0 % < 2T U g < U5 + U

Hence we obtain
fo™=% < U114,

which completes the proof. O

Remark 3.2. From the above theorem, we may also show that the inequality holds
U™+ 115 < 6l

Remark 3.3. Using the Sobolev embedding theorem, we can show that

n,— n—1,+ 0
MU lizee(zoy < max max{{U™ [la, JU"""|la} < Cll’l2-

Hence the inequality || f(U)||pe(L=) < Cllu®]|2 follows.
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