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Decomposition of regular openness of sets
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{Abstract)

By definitions of a regular open set and a regular semiopen set, we find their properties and
show the theorem on the decomposition of a regular open set, that is, a set is regular open if and
only if it is open and regular semiopen. Finally, we define new separation axioms and find the

implications between them in the part ‘application’.
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To(resp. semi T1) if x, y&=X, x#y, there exists

[. Preliminary:

Let A be a subset of a topological space X;
A and A denote the closure of A and the inte-
rior of A respectively. A is said to be regular
open if A=4. Every regular open set is open
but not conversely. Intersection of two regular
open sets is regular open. A is regular closed
if A=A4. Every regular closed set is closed but
not conversely. A set is regular open iff its
complement is regular closed[2]. A4 is said to be
semiopen if there is an open set O such that
OcACO. Every open set is semiopen but not

conversely [3]. A space X is said to be semi
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a semiopen set U such that x=U, y&2U or(resp.
and) a semiopen set V such that x&£V, y&V [4].
A space X is semi T3 if x, y=X, x7y, there
exist disjoint semiopen sets U and V such that
iU, y=V 4],

I. Decomposition of regular
openness of sets

Definitition 1. A subset A4 of a topological
space X is termed regular semiopen if there
exists a regular open set O such that 0C ACO.

Proposition 1: Every regular open set is

regular semiopen.
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Proof. Let A be a regular open set, then 4
itself is a regular open set such that AcAc4.

Example 1. Let X={a,b,c} and T={4, {a},
{8}, {a, b}, X}.

Then the set {a,c} is regular semiopen but it
is not regular open.

Proposition 2: Every regular semiopen set is
semiopen.

Proof. Let A be a regular semiopen set, then
there exists a open set O such that 0CACO,
for a regular open set is open.

Example 2. Let X={a,b,¢} and T={¢,{a},
X}. Then the set {a,d} is semiopen but it is
not regular semiopen.

Remark 1. The concepts of regular semiopen
and open are independent. For, examine the
sets {a,c} and {a,b} in example 1.

Thus we arrive at the following diagram:

Regular
semiopen
~

Regular open Semiopen
Open

Remark 2. The union of two regular semiopen
sets need not be regular semiopen. For, consider
the sets {e} and {4} in example 1.

Remark 3. The intersection two regular
semiopen sets need not be regular semiopen.
For, consider the sets {e,¢} and {b,c) in exa-
mple 1.

Proposition 3: If A is regular semiopen in X
then X—A is regular closed.

Proof. Let B be a regular open set such that
BcAcCB. Andso, X—B=X—-BDX—ADX—B
=(X—B)°=X—B. Then, X—A=X—B.

Corollary 1: If A is regular semiopen then

A is regular open.

Proof. Let A be regular semiopen, then by
proposition 3, X—A4 is regular closed. Since a
set is regular open iff its complement is regular
closed, X—X—A=A4 is regular open.

Corollary 2: If A and B are regular semiopen
then (AN B)® is regular open.

Proof. Let A and B be regular semiopen, then

by corollary 1, A4 and B are regular open. By
properties of the interior of a set, (ANB)=
ANB. Hence (ANB)® is regular open.

Proposition 4: If 4 is regular semiopen and
AcCBc A4, then B is regular semiopen.

Proof. Let O be a regular open set such that
0cA<0. And so, 0CACBCA=0.

Proposition 5: If O is open and A regular
semiopen ONA is semiopen.

Proof. Let B be a regular open set with
BcACB. Then for B is open, OCOCO and
ONBcONACONB=0B(cf. Bourbki: General
Topology Part 1). Accordingly there exists a
open set ONB such that ONBCONACONB.
Hence ON A is semiopen.

Remark 4. The intersection of an open set
and a regular semiopen set may not be regular
semiopen. For, in example 1, the set {a,d} is
open, X is regular semiopen but their intersec-
tion {a@,b} is not regular semiopen. However,

Proposition 6: If O is regular open and 4
regular semiopen then O 4 is regular semiopen.

Proof. Let B be a regular open set with BC
ACB. Then 0COc0, ONBCONACONBC
ONB since B itself is open. Accordingly there
exists a regular open set ONB such that ONB
CONAcONB.

Now, from proposition 1 and corollary 1
follows,

Theorem 1: A set is regular opven if and only
if it is open and regular semiopen.

Proof. The necessity is obvious from proposi-
tion 1.

The sufficiency; Let A4 be open and regular
semiopen. Then since A is open, A=A, by
carollary 1 A is regular open.

The above theorem gives a decomposition of
regular openness of sets in view of remark 1.

Theorem 2: Let X and Y be topological
paces. If A is regular semiopen in X and B is
regular semiopen in ¥ then AXB is regular
semijopen in XXY.

Proof. Let U be regular open in X and V
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regluar open in Y such that UcCAcCU and
VCBCV. And so, UXVCAXBCUXV=UXV.
Moreover, (UXV P=(UXV=0XV=UXV.
UXV is regular open in XXxY.
Hence AXB is regular semiopen in XXY.

Therefore,

Proposition 7: Let ¥ be a dense subspace of
a topological space X and ACY. If 4 is regular
open in X then it is regular open in Y.

This is so because it is known[5] that if(¥,
Ty) is a dense subspace of a topogical space(X,
T) and ACY then, Ty-interior (Ty-closure A)
=4°'nY.

Theorem 3. Let ¥ be a dense subspace of a
topological space X and ACY. If A is regular
semiopen in X then it is regular semiopen in
Y.

Proof. Let O be regular open in X such that
0CACD. Andso, ONYCANYCONY. There-
fore, OCAC (closure of O in ¥) and by pro-
position 7, O is regular open in Y.

II. Applications

Definition 2. A topological space X is said
to be regular semi To if for x,y&X and x#y,
there exists a regular semiopen set U containing
x but not y or containing y but not x.

Remark 5. The seperation axioms of Ty and
regular semi Ty are independent.

Example 3. Let X=A{a,b,¢,d} and T={g,
{a}, {b}, {a, b}, X}. Then the space X is regular
semi To but it is not To.

Example 4. Let X={a,b,c} and T={9g, {a},
{a,c}, X}. Then the space X is Ty but it is not
regular semi To.

Proposition 8: Every regular semi To space
is semi T

Proof. Let X be a regular semi To space and
for x,y=X, x7#y. Then there exists a regular
semiopen set U such that x&U, yzU or xc2U,
y&U. Since a regular semiopen set is semiopen,
there exists a semiopen set U such that xc=U,
y£U or 22U y U.

Remark 6. The space of example 4 is semi
T but it is not regular semi To.

Theorem 4: Every regular open dense subs-
pace ¥ of regular semi Ty space X is regular
semi 7.

Proof. Let x,y=Y and x3y. There exists
a regular semiopen set A such that, suppose
x4 and ye£A. By proposition 6, ANY is
regular semiopen in X. Since Y is dense in X,
by theorem 3, ANY is regular semiopen in
Y, and x=ANY and y&£ANY.

Theorem 5. If X and Y are two regular
semi Ty spaces then so is XxY.

Proof. Let (x1,31), (%2, ¥2)=X XY, such that
(%1, ¥y1)5(x2,¥2). Suppose that x15x2. There is
a regular semiopen set A in X containing say
%1 but not xe. Y is regular semiopen in itself.
By theorem 2, AXY is regular semiopen in
XXY, and (2, 3)EAXY but(as, y2)sZAXY.

Definition 3. A topological space X is said
to be regular semi T if for x,y=X and x3¢y,
there exist regular semiopen sets U and V such
that x&U, y&2U and x2V, y=V.

Remark 7. The space of example 3 is regular
semi T but it is not T.

Example 5. An infinite set X equipped with
the cofinite topology is T but it is not regular
semi T, for the only regular semiopen sets
are ¢ and X.

Proposition 9: Every regular semi T space
is semi Ti.

Proof. Let X be a regular semi T: space,
then for x, y&=X, x#y, there exist regular
semiopen sets U and V such that x&U, y&U
and x£V, y»&V. Since a regular semiopen set
is a semiopen set, the proof is completed.

Remark 8. A semi T space may fail to be
regular semi T; (example 5).

Proposition 10 : Every regular semi T; space
is regular semi Ty.

Proof. Let X be a regular semi T space and
for x, y=X, x#y. Then there exist regular
semiopen sets U and V such that x&U, yaU
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and x¢2V, y<V. The above statement implies
that there exist a regular semiopen set U cont-
aining x but not y or containing y but not x.

Theorem 6 : Every regular open dense subs-
pace of regular semi T, space is regular semi
T

Proof. LetY be a regular open dense subspace
of a regular semi T space X and for x, y&Y,
x#y. Then there exist regular semiopen sets
U and V such that x&U, ye£U and z2V, y&V.
Since Y itself is regular open, by proposition
6, the subsets of ¥, UNY and VY are regular
semiopen sets in X. Since Y is dense in X, by
theorem 3, they are regular semiopen sets in
Y such that x&UNY, y=UNY and x£V Y,
y&V Y.

Theorem 7 : The product of any two regular
semi T space is regular semi T.

Proof. Let X and Y be two regular semi T,
space and for (xy, y1), (x2, y2)&X XY, (%1, y1)
#(xz, y2). Then there
exist regular semiopen sets U and V such that
nelU, 22U and x1=V, 2=V, Since ¥ itself
is a regular semiopen set, by theorem 2, UXY

Assume that x15%xs.

and V<Y are regular semiopen sets in XXY
such that (xy, y)EUXY, (%2, y2)2UXY and
(x1, yl):;"‘_fVXY, (x2, yz)EVXY-

Definition 4. A topological space X is said to
be regular semi T2 if for x, y&X and x#y
there exist regular semiopen sets U and V such
that x&U, y&V and UNV =¢.

Remark 9. The space of example 3 is regular
semi T2 but it is not Ta.

Proposition 11 : Every regular semi T: space
is regular semi T.

Proof. It is obvious because the condition
“disjoint” in regular semi T2 space need not that
in regular semi T space.

Proposition 12 : Every regular semi Tz space
is semi T

Proof. Let X be a regular semi T: space
and for x, y=X and x7#y. Then there exist

disjoint regular semiopen sets U and V such

that x&€U, y&V. Since a regular semiopen set
is semiopen, the proof is completed.

Theorem 8:Every regular open dense subs-
pace of regular semi T; space is regular semi
Ts.

Proof. Let Y be a regular open dense subspace
of a regular semi T, space X. Then for x,
y&Y, x#y, there exist disjoint regular semiopen
sets U and V such that x&U, y=V. Since ¥
is regular open in itself, by proposition 6, the
subsets of ¥, UNY and VNY are disjoint
regular semiopen sets in X. Since Y is dense in
X, by theorem 3, UNY and VY are disjoint
regular semiopen sets in Y such that x&UNY,
y=VNY.

Theorem 9:If X and Y Dbe regular semi T2
spaces then so is XXV,

Proof. Let Ea,b), (¢, D)X XY and (a,b)
#(c,d). Suppose that es%c, bs#d. There exist
disjoint regular semiopen sets U, ¥V in X such
that e=U, c<V. Similarly, let G, H are
disjoint regular semiopen sets in ¥ such that
b=G, d=H. By theorem 2, UXG, V(H are
regular semiopen in X XY containing (a, ), (¢,
d) respectively and (UXG)NVH)=WUNV)
X(GNH)=¢.

We get the following implication:

Ty —> semi Ty <= regulax;\semi To

1 |

T, — seﬁi T, &= regulallsemi T

a >

I fi

Ts =—> semi T2 <— regular semi T2

o] =%2 o saugar WEE ST (EAE
= sz 23 TE=E.
Reference

1. Careron, D.E.: Properties of S-closed spaces,
Pro. Amer. Math. Soc. 72(1978), 581—586.

2. Dugundji, J.: Topology,
Boston(1966), 92.

Allyn and Bacon,

3. Levine, N.: Semiopen sets and semi contin-

— 144 —



5 Decomposition of regular openness of sets

uity in topological spaces, Amer. Math.
Monthly, 70(1963) 36—41.
. Maheshwari, S.N. and Prasad, R.: Some

Sci. de Bruxelles T. 89, M{1975) 395—402.
5, Singal, M.K. and S.P.Arya.: On almost

regular spaces, Glasnik Mat., 4(24) (1969)
new separation axioms, Ann. de la Soc. 89—99.

— 145 —



