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A Note on Hyperinvariance
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{Abstract)

In this paper, several sufficient conditions for hyperinvariance and three hyperinvariant subspaces

are introduced.

If A isareductive operator, then A can be written as a direct sum A; @ As where A; is normal,

A is ;eductive and all the invariant subspaces of Az are hypervariant.

More generally, if A be an operator, there exist two types of hyperinvariant subspaces o (F)

and Sy (b).

I. Introduction

A bounded (or continuous) linear transforma-
tion from a complex Hilbert space into itself
is called an operator on H.

Tet S and T be operators on H. An operator
S commutes with T means ST=TS.

Let M be a closed subspace of H and T be an
operator on H. We say that M is an invariant
subspace of T if TMcCM, and M is hyperin-
variant subspace of T'(or T has a hyperinvariant
subspace M), if SMcM for all operators S on
H that commute with T'.

An operator on a separable Hilbert space is
reductive if every subspace invariant for the

operator also reduces it.

The family of all invariant subspaces of T°
on H will be denoted by Lat T and the family
of all hyperinvariant subspaces of T by Hyperat.
T. We denote by {A} the set of all operators.
that commute with A.

Let L be an abstract lattice. We denote the:
least upper bound of ¢ and b by @\VVb, and the:
greatest lower bound by e¢Ab, foralle,d in L.

A lattice L is called distributive if L satisfies.
the following conditions:

(M) eV@A=@Vb AV

(2) eA@VeI=@NBV (ac)
for all 4,8,¢ in L,

The purpose of this paper is to consider the:
existence condition of nontrivial hyperinvariant
subspaces and to introduce several types of
hyperinvariant subspaces.
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I. Three Types of Hyperinvariant
Subspaces

Of course a scalar operator T'=c¢I has only
the trivial hyperinvariant subspaces {0} and H.
When H is finite-dimensional, a nonscalar
operator has nontrivial hyperinvariant sub-

spaces.

Theorem 1. On a finite-dimensional complex
linear space, all invariant subspaces of a linear
transformation are hyperinvariant if and only
if its lattice of invariant subspace is distribu-
tive.

Proof. By L. Brickmann and P. A. Fillmore

(@

The following result shows that certain in-
variant subspaces must be hyperinvariant solely
by virtue of their position in the lattice of all
invariant subspaces.

Theorem 2. Let S be a countable family of
invariant subspaces for an operator T with the
property that for any invariant subspaces Me
S and Né&S, either MON or NOM.

Then S consists of hyperinvariant subspaces.

Proof. This result is due to Rosenthal and
Stampfli (4).

Let A be an operator which commutes with
T and M be an invariant subspace of T in S.

We have to show AMCM,

At first it is readily known that the subspace
(A-2DDM for all 121> [A]
subspace of T.

If (A-AIDM&S for some [A1]>]Al, then M
<(A-2DM or (A-AIYMCM by the hypothesis,
so that (A-AD'McM or (A-AIDMcM, and
in either case AMCM.

It (A-ADMES for all (21> Al, then

(A—)qI)M:(A‘ZzI)M for some 215\?22.

Since S is countable,

M=(A-D(A-LDM

=T+ Ae-A))(A-A1)"DM.

is an invariant

Hence AMCM. g.e.d.

A lattice L is said to be o-infinitely meet
distributive, if L is o-complete and @\ {Ab.;
#>1}= A{a\/ bp;n=>1} for all @, by in L.

For any linear transformation 7" on a finite
dimensional complex linear space, Hyperlat T
is distributive.

Furthermore, the following theorem shows
that o-infinitely meet distributivity is a suffi-
cient condition for hyperinvariance.

Theorem 3. If Lat T is o-infinitely meet
distributive, then Hyperlat T'=Lat T.

Proof. This theorem is proved by W.E.
Longstaff (7).

Let M and M, be invariant subspaces of T for
all 2. We say that M has ascending chain pro-
perty, if every increasing sequence McCM:C
MoCeeeess is stationary.(i.e. there exists # such
that Mu=M yy1-+++ )

Dually we can define descending chain pro-
perty.

The following theorem is another sufficient
condition for hyperinvariance.

Theorem 4. If Lat T is distributive and M
has ascending chain property(or descending chain
property), then M is a hyperinvariant subspace.

Proof. This is already proved by myself (8).

Now, we introduce three kinds of hyperinvariant
subspaces.

The following theorem suggests one type of
hyperinvariant subspaces.

Theorem 5. If A is a reductive operator,
then A can be written as a direct sum 4; @ Az
where A; is normal, As is reductive, {4A}'=
{A1@{As} and all the invariant subspaces of
Az are hyperinvariant.

Proof. This theorem is proved by T. B.
Hoover (6).

If A is a completely nonnormal reductive
operator, then Lat A=Hyperiat A.

In fact, every operator is a nontrivial inva-
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riant subspace if and only if every reductive
operator is normal (1).

Therefore, it may turn out that there are
no nontrivial reductive operators.

However the decompositiion of A in Theorem
5 introduces one type of hyperinvariant subs-

paces.

On the other hand, suppose that an operator
A has the single valued extension property,
(i.e., there is no solution x(2) of the equation
(A-2Dx(A)=0 for all 2 in some complex
domain D such that x(2) is an analytic function
from D to a Banach space B. Define 6a(x) to
be the set of all Ao in the complexes such that
the equation(A-AI)x(A)=x is not solvable in
any neighborhood of Zy with x(4) analytic.

For a closed set F in the complexes, define
as (F) to be the set of all & in B such that
Ba(x) does not intersect the complement of F.
1t is obvious that ¢a(F) is a hyperinvariant
subspace if o,(F) is closed.

Let ¢ be a real number. Let 6,(c) be the
set of all # in B such that exp(-ct)llexp(4)x|
is a bounded function of #, where { ranges over
{0,o0). Given a real mumber b, the intersection
of all Qale) with ¢>b is denoted by $a(b)
Clearly, all S4(8) are hyperinvariant subspaces
for A, if Sa (B) is closed.

Theorem 6. If ¢4(F) is closed for every closed
set F or Sa(d) is closed for all &, and there
is a point such that 4o is in the spectrum of A4,
with Re(20)> b and Ss(b) nonempty, then A has
a nontrivial closed hyperinvariant subspace.

Proof. This is due to Robert M. Kauffman
(5).

Let  be in S4(8). Then A is not in #,(x)
However, if there is no % such that 4o is in
Balx0), then (A-AoI) is surjective. In this case,
Ao is in the point spectrum of A. The null
space of A-2oI is then a nontrivial closed hype-

rinvariant subspace. It is nontrivial because if
A=2,I, the hypothesis of the theorem cannot
occur.

Thus we need only consider the case that 2o
is in 8.(xo) for some xo. Because #xo is not in
S4(b), Sa(d) is neither {o} nor B.

If S4(B) is closed for all real &, then S,(8) is
a nontrivial closed hyperinvariant subspace. If
let R
be an open ball about Ao in which the equation
(A—2Dx(2)=x is solvable, with x(2) analytic.
Let R: be the open ball about 2, with half the
redius of ®. Let X be the complement ofRi.
Then % is in ¢4(K), but xo is not, Thus ¢,(X)
is a nontrivial hyperinvariant subspace.

c4(F) is closed for every closed set F,

q.¢.d.
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