Nearly Ot-compact spaces

Chung, In Jae
Dept. of General Education.

(Abstract)

In this paper a nearly α -compact space is defined and studied a necessary and sufficient condition that a space be nearly α -compact. A necessary condition for an almost regular space to be nearly α -compact and a sufficient condition for a regular space to be nearly α -compact are also studied.

Nearly a-compact 공간

성 인 재 교양과정**부**

〈요 약〉

본 인구에서는 nearly α-compact 공간이 정의 되었고, 일반적으로 하나의 공간이 nearly α-compact 공간이 되시위한 필요 충분조건이 김도되었고 또 almost regular 공간이 nearly α-compact 되기위한 필요 조선과 regular 공간이 nearly α-compact 공간이 되기위한 충분조건이 검토되었다.

1. Introduction

V. Ponomarev has introduced the so called \mathscr{A} -compact space of which the paracompact space is a special case and the nearly compact space is studied by Larry L. Herrington. In this paper a nearly \mathscr{A} -compact space is defined and the characterization of such spaces are given, using system of closed sets. From now on the family of all $(\bar{\alpha})^{\circ}$, $\alpha \subseteq \mathscr{A}$ $((V_{\alpha})^{\circ}, V_{\alpha} \in \mathscr{A})$ will be denoted by $(\overline{\mathscr{A}})^{\circ}$, $((\alpha)^{\circ}, \alpha \in \mathscr{A})$.

||. Preliminary definitions and theorems

Let α be the families of open subsets of a given space X such that $(\overline{\alpha})^{\circ}$ is a family of open coverings which contains all finite open coverings as a subsystem.

Definition 1. The space X is nearly α -compact if each open covering of X has a refine-

ment $(\overline{\alpha})^{\circ}$ for $\alpha \in \alpha$.

Definition 2. A system $\sigma = \{F\}$ of closed sets is called nearly α -tangent if in each $\alpha \in \alpha$ there is an element $V_{\alpha} \in \alpha$ such that $(V_{\alpha})^{\circ} \cap F \neq \phi$ for all $F \in \sigma$.

Definition 3. A space X is said to be almost-regular if for every point x in X and each neighborhood U of x, there exists a neighborhood V of x such that $V \subset \overline{V} \subset (U)^{\circ}$.

From now on we shall suppose that $(\overline{\alpha})^{\circ}$ is a directed system (with the natural ordering: $(\overline{\alpha}')^{\circ} \setminus (\dot{\alpha})^{\circ}$ if the covering $(\overline{\alpha}')^{\circ}$ is a refinement of the covering $(\overline{\alpha})^{\circ}$).

Definition 4. Take in any $n \in \alpha$ and a set $V_{\alpha} \in \alpha$. The system $\xi = \{V_{\alpha}\}$ is called nearly α thread if for any two $V_{\alpha} \in \xi$, $V_{\alpha'} \subset \xi$, a $V_{\alpha} \in \xi$ can be chosen with $(\overline{\alpha}'')^{\circ} > (\alpha)^{\circ}$, $(\overline{\alpha}'')^{\circ} > (\overline{\alpha}')^{\circ}$ (in $(\overline{\alpha})^{\circ}$) and $V_{\alpha'} \subseteq (V_{\alpha})^{\circ} \cap (\overline{V}_{\alpha'})^{\circ}$.

Definition 5. The space X has property N_{α} if for every nearly α -tangent system σ $\{F\}$ the sets $V_{\alpha} \in \alpha$ with $(\overline{V}_{\alpha})^{\circ} \cap F \neq \phi$ for all $F \subset \sigma$

can be chosen in such a way as to form a nearly α -thread ("the nearly α -thread dual to the nearly α -tangent system σ ").

Theorem 1. A space X is nearly α -compact if and only if each nearly α -tangent system has a non-void intersection.

Proof. Let $\sigma = \{F\}$ be nearly α -tangent and $\bigcap_{F \vdash \sigma} F$ ϕ . Then $\bigcup_{F \vdash \sigma} F^c = X$ which is a covering. If $(\alpha)^\circ$ be a refinement of $\{F^c\}$, then for each $V_\alpha = \alpha$, there is a $F = \sigma$ such that $(V_\alpha)^\circ = F^c$; $i \in (V_\alpha)^\circ \cap F \vdash \phi$. But there is a $V_\alpha = \alpha$ such that $(\overline{V}_\alpha)^\circ \cap F \neq \phi$, for all $F = \sigma$. This is a contradiction.

For sufficiency; if X is not nearly α -compact then there is an open covering $\mathscr U$ such that for each $\alpha \in \alpha$, $(\alpha)^{\circ}$ cannot be a refinement of $\mathscr U$. This says that there exists a $V_{\alpha} \in \alpha$ for each $\alpha \in \mathscr U$ such that $(\overline{V}_{\alpha})^{\circ}$ cannote be contained in any element of $\mathscr U$. This means that $(V_{\alpha})^{\circ} \cap U^r \neq \phi$ for all $U \in \mathscr U$. Hence the family $\{U^r : U \in \mathscr U\}$ of closed sets is a nearly α -tangent but $\bigcap_{U \in \mathscr U} U^r = \phi$.

Lemma. In almost regular space X let $\xi = \{V_{\alpha}\}$ be a nearly α -thread and $x \in \bigcap_{\alpha} V_{\alpha}$, then all of the open neighborhood U(x) of the point $x \in X$ are among V_{α}

Proof. In fact, obviously $\bigcap_{\kappa} (V_{\alpha})^{\circ} = \bigcap_{\kappa} V_{\alpha}$; for a given open neighborhood U(x) with $\overline{U_1(x)}$ $\subset (\overline{U(x)})^{\circ}$ and $\alpha_0 = \{U(x), X - \overline{U_1(x)}\}$. Necessarily $V_{\alpha_0} = U(x)$.

Theorem 2. If an almost regular space X is nearly α -compact, then both of the following conditions are fullfilled:

- (a) the space X has the property N_{α} ,
- (b) for each nearly α -thread $\xi = \{V_{\alpha}\}, (\overline{\xi})^{\circ}$ has non-void intersection.

Proof. Let X be nearly α -compact, and $\sigma - \{F\}$ a nearly α -tangent system. Then $\bigcap_{F \in \sigma} F$ contains a point x by theorem 1.

In any α take an element V_{α} with $(V_{\alpha})^{\circ} \ni x$. Then the $\xi = \{V_{\alpha}\}$ thus obtained is a nearly α -thread. In fact let $V_{\alpha} \subseteq \xi$, $V_{\alpha}' \subseteq \xi$ be given. Let us choose neighborhoods U(x), $U_1(x)$ of x so that $\overline{U(x)} \subseteq (\overline{V_{\alpha}})^{\circ} \cap (\overline{V_{\alpha'}})^{\circ}$, $\overline{U_1(x)} \subseteq (\overline{U(x)})^{\circ}$.

First of all let us show that we can choose

neighborhood U(x) of x so that $\overline{U(x)} \subset (V_{\alpha})^{\circ} \cap (V_{\alpha'})^{\circ}$. Since $x \in (V_{\alpha})^{\circ} \cap (\overline{V}_{\alpha'})^{\circ}$, by almost regularity there are neighborhoods $N_1(x)$, $N_2(x)$ of x such that $x \in N_1(x) \subset \overline{N}_1(\overline{x}) \subset (((V_{\alpha'})^{\circ})^{-})^{\circ} = (V_{\alpha})^{\circ}$ and $x \in \overline{N_2(x)} \subset N_2(x) \subset (((\overline{V_{\alpha'}})^{\circ})^{-})^{\circ} = (V_{\alpha'})^{\circ}$. Let $N_1(x) \cap N_2(x) = U(x)$. Then $\overline{U(x)} = \overline{N_1(x)} \cap \overline{N_2(x)} \subset (\overline{V_{\alpha}})^{\circ} \cap (\overline{V_{\alpha'}})^{\circ}$. Take $\alpha_1 = \{U(x), X - (\overline{U_1(x)})\}$. Take any $(x'')^{\circ} \in (\overline{\alpha})^{\circ}$ following $(\overline{\alpha})^{\circ}$, $(\overline{\alpha}')^{\circ}$, $(\overline{\alpha}_1)^{\circ}$: then $(\overline{V_{\alpha''}})^{\circ} \subset (\overline{\xi})^{\circ}$ with $(V_{\alpha''})^{\circ} \supset x$ and contained in some element of $(\overline{\alpha}_1)^{\circ}$, must be contained in $(U(x))^{\circ}$: therefore $V_{\alpha''} \subset (\overline{U(x)} \subset (\overline{V_{\alpha}})^{\circ} \cap (\overline{V_{\alpha'}})^{\circ}$.

Obviously the nearly α -thread ξ is dual to σ and the space X has property N_{α} . Moreover, for any nearly α -thread $\xi' \cdot \{V_{\alpha'}\}$, the system $\{V_{\alpha'}\}$ is a nearly α -tangent system and $\bigcap_{\substack{V_{\alpha'} \subseteq \xi \\ V_{\alpha'} \subseteq \xi}} (V_{\alpha'})^{\circ}$ has non-void intersection,

Theorem 3. A regular space X is nearly α -compact if both of the following conditions are fullfilled:

- (a) space X has the property N_a ,
- (b) for each nearly α -thread $\xi = \{V_{\alpha}\}, (\bar{\xi})^{\alpha}$ has non-void intersection.

Proof. Let $\sigma = \{F\}$ be a nearly α -tangent system and $\xi = \{V_{\alpha}\}$ a dual nearly α -thread with $x_0 = \bigcap_{\alpha} (V_{\alpha})^{\circ} = \bigcap_{\alpha} \overline{V}_{\alpha} \neq \phi$. As $(V_{\alpha})^{\circ}$, *i.e.* all $(U(x))^{\circ}$, intersect of all $F_{\alpha} = \sigma$, we have $x_0 = \bigcap_{F = \sigma} F$. Let us show $x_0 = \bigcap_{I = \sigma} F$, if not: $x_0 \neq \bigcap_{I = \sigma} F$, i.e. $x_0 = \bigcup_{I = \sigma} F^{\circ}$. Since X is regular, there is a neighborhood $W(x_0)$ such that $x_0 = W(x_0) = \overline{W(x_0)} = F^{\circ}$ for some $F = \sigma$. Hence $\overline{W(x_0)} \cap F = \phi$. This is a contradiction. Thus X is a nearly α -compact.

Reference

- V. PONOMAREV, General topoloy and its relation to modern analysis and algebra, pp. 302-306, Academic press, New York and London (1962)
- 2. PARK, J.Y., U.I.T. Report, Vol. 6. pp. 21—24(1975)