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Nearly ¢r-compact spaces

Chung, In Jae
Dept. of General Educalion.

{Abstract)

In this paper a nearly ¢r-compact space 13 defined and studied a necessary and sufficient condition

that a space be ncarly or-compact. A necessary condition for an almost regular space to be ncarly

cr-compact and a sufficient condition for a regular space to be ncarly ¢r-compact arc alsy studied.
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i . Introduetion

V. Ponomarcv has introduced the so called
at-compact space of which the paracompact space
18 a specsal case and the nearly compact space
15 studied by Larry L. Herrington. In this paper
a nearly «/-compact spacc 15 defined and the
characterszation of such spaces are given, usmg
systern of closed sets. From now on the family
of all (@), e=a (V,)°, V.22a) will be denoted
by (r)®, (()°, asz),

. Preliminary definitions and theorems

Let v be the famihes of open subsets of a
given space X such that (o)® 13 a family of
open covermgs which contains all fimite open
coverings 48 4 subsystem.

Definttion 1. The space X 15 nearly cz-com-
pact 1t cach open covering of X has a refine-

ment (@) for ae=re.

Defimtion 2, A system ¢={F} of closed sels
is called nearly cz-tangent if in each aScr there
> an element V.=« such that (V,)°NF=g for
all Feo.

Defimtion 3. A space X is said to be almost-
regular 1f for cvery pamnt x m X and each ne-
ighborhoad U of x, there exists a neighhorhnod
V of x such that VcVc(U)e.

From now on we shall suppose that(z7)° 18 a
dirceted system  (with the natural ordering:
(@) ™ (@)° of the covermg (€’)° 1s a refinement
of the covering(@)®).

Defimtion 4, Take wn any a=7z and a set
Vee=a. The sysiem £={V,.} 15 called nearly
a thread if for any two V=8, V<8, a Ve e
can be chosen with (@”)° > (@), (@)° - (@')*
(m (¢/)°) and Vo =(V.)° N (V).

Definition 5, The spacc X has property N,
if for every nearly o-tangent sysitem o {F}
the sets Vo.&a with (V) NF#¢ for all Fea
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can be chosen n such a way as to form a
nearly ¢z-thread (“the nearly or-thread dual to
the nearly ¢r-tangent system o).

Theorem 1. A space X 15 ncarly & -compact
if and only if each ncarly ¢-tangent system
has a non-void tersection.

Proof. Let ¢={F} be nearly ¢-tangent and
FQUF ¢. Then :!, F'—X whach 15 a covering.
If (ax)® be a refinement of (F<}, then for each
V.Sa, there 1 g F&v such that (V,)°CF;
te. (VO'NF- ¢. But there 15 a V,Ea such

that (V.)*NF#¢. for all Feg. This 15 a con-
tradiction.

For sufficicney; if X 18 not neatly or-compact
then there 1s an open covermg # such that for
cach a=c7, (a)® canncl be a refinement of &,
This says that there exists a V,=« for each
a& such that (V,)° cannote be conlained in
any element of #/, This means that (V,)° NU#¢
for all U<%. Hence the famly {Ur: USZ} of
closed scts s a nearly cz-tangent bthqu Ur=g,

Lemma. In almost regular space X let £—{V,}
be a nearly ¢z-thread and xEQV,,, then all of

the open neighborhood U(x) of the point xGX
are among V,

Proof. In fact, obviously N (V.)°=N V.:
for a given open neighborhood U(x) with U,(x)

(Ux)) and wo={U(x), X—U.(x)}. Necessarly
Veae=U(x).

Theorem 2. If an almost regular space X 1s
nearly ¢z-compact, then bhoth of the following
conditions are fullfilled:

(a) the space X has the property Na,

(b) for cach nearly er-thread &={(V,}, (£)°
has non-void intersection.

Proof, Let X be nearly o/-compact, and o -
{F} a nearly ¢r-tangent system. Then F[] F co-
ntains a point x by theorem 1. -~

In any « take an element ¥V, with (V,)*=x,
Then the §={V,} thus obtamed 1s a nearly cr-
thread. In fact let V,=¢, V.= be given. Lot
us choose neighborhoods U(x), U\ (x) of x so
that U@V N (Va)?, Tix)=(Ux))°.

First of all let us show that we can choose

neighborhood U(x) of x so that Uy (V,0°N
(Vo). Since x=(V,)° N (V). by alriust regu-
larity there arc neighborhoods Ni(x), Naz(x)
of x such that a&SN1(¥)CN(x)((V,)°)7 ) =
(V.° and x =N Nao(x) SV ")) = (Va)®.
Let Ni(x)NNx(x)=U(x). Then Ulx)=N. ()N
N CN) N NG SV )7 N (Ve Tuke ay =
{Uix), X—-TUi(x))}. Take any (¥")°&(@)®
following (70)°, (@)°, (@)° : then(Va)*c(&)°
with (V.)*2x and contamned m syme clement
of (2¢,)®, must be contamed 1 (U(x))° : there-
fare Vo C(U2) (VO N(Va)®.

Obviously the nearly o-thread & s dual to o
and the space X has property N,. Moreover,
for any nearly oz-thread & -{V,’}. thc system
{V.’} 18 a nearly &/-tangent system Lmelw[] §V"')°

V”Q__E V.. It follows that (£)° has nen-void
miersection,

Theorem 3. A regular spacc X 18 nearly a-
compact tf both of the following cenditions are
fullfilled: '

(a) space X has the property N.,

(b) for each ncarly cz-thread &={V,}, (&)°
has non-veud 1btersection.

Preof. Let o={F} be a nearly cs-tangent
system and &—={V,} a dual nearly a-tlhiread with
2w=NVP=NV.#Zs As (V,)°, r.e all
(U(x;)°. 1nLer::ect of all F.=0,
2= 1 F. Let us show x¢= neFr, if not: xp
n Pf,wi.e. ro=UF*, Since )1(:15 regular, there
Flgua nelghborhé)gé W(xo) such that xe=W (xe) =
W(xo) F° for some F&a. Hence W(xo)NF ¢
This is a contradiction. Thus X 18 a ncarly

we have

cz~compact.
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