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Density of States in Disordered Systems with Short-Range Order

Moon Sung Chung
Dept. of Materials Science and Engineering

{Abstract)

The density of states in disordered systems with short-range order were derived in the exact

form using the tight-binding model and sdlfconsistent approximation and then calculated

numerically. The forms for the short-range order and interactions were assumed to be Gaussian.

The nemerical results obtained seem to agree with other recent works.
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1. Introduection

For last scveral decades, researches in crys-
tals have made remarkable progresses by using
Bloch theorem for periodicity, In the natural
world, however, there exists an enormous
amount of important materials whose micros-
copic structure are far {rom periodic. Among
them are included alloys, mixed crystals,
doped semiconductors, amorphus solids, liquid
metals, and even biological substances.

Therefore,

on the methods for deriving macroscopic pro-

many researchers have studied

perties of those materials from the quantum
mechanical rules governing the microscopic
world or alternatively for deducing microscopic
behaviors of those systems from the macroscopic

informations which are observable by experim-

ents. Since Anderson’s paper(’, creditable for
the first time, was published, a few decades.
has passcd and the study on the method has
but the theory
has not

been carried out steadily,
making an era like Bloch theorem,
been found. Almost every theory developed
till now is associated with a single-sitc descri-
ption of the electronic structure and based on
the muliiple scattering theory. ®~@ In recent
vears, the tight-binding model of liquid metals
introduced by Roth®~® yields good result.
Though various methods calculating the level
density of ¢leciron moving under the influence
of random potential were devcloped, many of
them are mainly concerned with onc-dimensional
model. For the three-dimensional problem of
random lattice, Green’s function formalism®~
® has been known as the most powerful
method. In this article the density of states
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are derived from the ensemble-averaged Green's
{function. ,

Given the fact that short-range order plays
an important role in a certain disordered mat-
erial, the formalism has been worked including
correlation between atoms, The amorphous
states do not cxhibit the long-rangc order but
a certain degree of short-range order. That is,
the ideal amorphous state has the same number
of coordinates for the nearest ncighbor as the
crystal, but has not for the next nearest
neighbors. Especially in liquid metal the short-
range order is always present.

The model of electronic structure calculated
in this paper has been studied by many
workers ®@~00 but discussed till now, i.e. no
work dealing the full formalism of the density

of states has been found.
I. Tight-Binding Model

The wave function is assumed to be expanded
in terms of atomic orbitals ¢,(F)=¢(F—F)
located on the various atomic sites and an
LCAO expansion for the one-eledtron Green’s
function B(7,7") is also assumed to be possible,
ie.

9= 4P g (7. ey

Following the notation of Schwartz and
Ehrenreich, we shall use script letters for the
Configuration dependent quantities.

In general, the Green's function satisfies the
equation

(E—&) ¢(7,7)=0(F—7) (2)

Multiplying Eq.(2) by 4*(#) on the left and

$u(#) on the night and integrating over the

whole 7 and #, we have

= [ 42 CPYE- T g 78, 6u)

—[sXP) g (3D

Introducing overlap and transfer matrices

Si=S(Ri=RY=[o+ )i Pd°r
and

= [6r DR 9P,
Eq.(3) then yields
lEj(ESi,‘?f/)glijm:Sim- (4)
For the distribution of atoms, S; can be
shown to be positive definite and to have an
inverse. Them Eq.(4) becomes
2] (ESu—& i) gij=d;- (5)

This is the basic equation of the present
model, If we assume that the matrix element
& ,; depends upon the distance hctween atoms
i and j, #,;=#(F.,) and assvime that &, =
Hy is independent, of the distribution, we can
lump the overlap term in &, as follows,

g”;,ZH’(Te};):ﬁ’;,—ES”-.
Eq. (5) then becomes
(E—Ho)g,j—jﬁ.éﬁ H'(Rip)g1y=0i ®

Let us multiply by §(F—F ) 6(F —F;) and
sum over 7 and j. Then

(E—Ho) g(#,7)— % SF—ROH (R

i35
g1i8(F =R )=p(F)o(F~7"), Q)
where p(#)=:is the density function,
o()= 23 8¢ ~RI =3 ().
Eq.(7) can be shown to become
(E—Ho+H’(0)) g(?,7')—p(?)fd3r"ﬂ'(?"*7')
X g(F" )= p(F)6F 7). (18)

This cquation shows that the dependence on
the position of atoms occurs only through the
density function, p(#) and the interaction H’
(#—#") is a continuous quantity.

The density of states is obtained from the

one-electron Green's function as follows,
N(B)=——x InfG@#,P)d%
1 .
=——x In[ <g@. P> % ©

where G(7,7) is the ensemble averaged qua
ntity of ¢(7,7), i.e G, 7)=<g#,7)>.
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Here, the (squared) bracket refers to the
cnsemble average., Since the macroscopic pro
perties of the amorphous material represent
average quantities, we must take the quantity
averaged over the whole configuration. If we
assume spatial homogeneity for our ensemble,

G(F,7)=GF—7").
Then Eq.(9) becomes
N(E)=———Ia[S(HG#)dr, (10)

wherc # is the density, N/Q or Jp(7)>.
If we take the Fourier transformation of Eq.
{10), it becomes
_ 1 d3k
N(EY==—-InfS G <
Taking a limit S;;=4,;, we have

1
NGB | =———IG

1Sig=dyy

k—oo

The large—# limit means the localization of
the wavefunction.

. Selfconsistent Approximation
( SC A) (12)

We consider a quantity 7 similar to the exact
Green’s function used in Schwartz and Ehrenr-
eich, i.c.

[=H+HGH, ¢))]

Where I is called interaction operator.

Here, the prime on H’ is dropped. Let us
now define a quantity D such that

G=D(1+HG), @
where D shall be called medium locator or
simply locator and it is the analog quantity of
the self cnergy in the paper of Schwartz. The
locator can be decomposed in the contribution
from the individual atom by writing

di=<g.> HI, 3

in terms of which
D=¢Zfd dR=n(d,d°R; )
Q 7 H 3 t s

where<g:>>, is the enscmble averaged quantity
of Green's function of ith atom with ith atom

fixed.
Using Egs. (II. &) and (M. 3), we have
Lg> =B <g> ), (5)
where p, is alocator satisfying p=3" p. and

< g>: denoting G; is the cnsemble averaged
quantity of g with ith atom fixed. We then

have
d=-3(+HG)HI (6)
In terms of Gy, we can define I; and D;
I,=H \|-HG:H, (@))]
Di=G:HI'=H-1—[;! (8)

Now G, can be written as follows
Gi=<g>Anfe(B)<g>udR. (9
so that we have for Dy

D= g> ,HI‘I—f—nfdaR,g(_ﬁij) <gi> pHI!
(10)
The results of this procedure are a hierarchy
of cquations, the first of which describes the total
wave in terms of the effcclive potential of the

medium with one the second

atom fixed,
describes the effective field with onc atom
fixed in terms of the effective field with two
atoms fixed, etc. Then Truncation is needed.
The SCA means that the hierarchy of equation
is decoupled as follows,
Gij—GiGIG.

Delining a quantity ¢; to simply the selfcon-

sistent cquations, we then have the SCA equ-

ations
g.=d;—d.(1+1g), (1)
=g (+ ), (2
di=—u[h(E:)d,d°R;, (13)
D=n[da*R,, (14)
G=(D-1—H), (15)
I=H+HGH, (16)

where h(7)==g(#)—1 is the shori-range order.
To reduce the SCA equations to simpler and
more useful forms, we make use of coordinate

representation using the 4-function nature of
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p. Now we can assume that
¢:(7,7)=q(F~Ri, 7'~ R0

and similarly for d, and 4, and also
G(#, P)=GF—7)

and similarly for H,D and [.

Taking Fourier transformation of these equ-
ation, We have the following selfconsistent
scl of equations, restoring the prime omitted
previously,

Gy=n(E—-Ho—nH"—Xp) an
SEy=n[H v H e (18)

nFE, BY=1+nh(E—F"

4 nfh(E EYH wGeF (R, k')dk: 19

These are the final results.

Thercelore we
can find that the SCA results in an integral
equation with a Kernel determined selfconsis-
tently. Because of isotropy, these equations
can be put in onc-dimesional form and solved

numerically.
IF. Results for Density of States

There cxists a little correlation even though
jons arc very highly randomly distributed.
Therefore, we¢ cannot put the short-range
order, h, to be zcro but the interaction can he
assumed 1o be localized. Since.

p(F)p(P))= ;j Loi(F o (7>

=22 <0(F)> o(F—7 )+ ‘?_:'; Loi(P)pi(F) >
=nd(F—#)+ntg(F—7).

The short-range order parameter 2(7) has a
value between -1 (at »=0) and 0 (at r=oco),
If we assumc that the correlation is Gaussian,
we have

h(F)=—exp(—ar?).

We  also assume that the interaction is
Gaussian,

H’'(P)=H; cxp(—ir®).

Taking the Fourier transformation of A(7)
and H’(r), we have

hEB)=[1P) ) 7 gs,.

H":fHCi)e' Taor
From the SCA sesults, we have

He=[B®e®, 7 g,

=Bt (W )55 o
nFk, B)=1+nh(E—F)
+u[h(—RDH e GYF R T d k”
P

=1 n[h(is )+ fk(ﬁ B HeGeh(R 1) g

+[hE— DB e Grn (B~ ")

S R
HAGuh (B — 1) o S|

@

N ~ 2, 7 A5k
S(R)=n|H vH vGr (R, k)Ta‘

= [LE(Brv s [HnC =T Ly

H'w Gy [1 1-n(h(z-—75')

o ]

4 f WE—EH «Goh(R" —

=Yo+ 3, (3)
where
3 ra
Z’o"fﬂ" “Glz' k
N d?ko dk
g fH'koh(k"ko)Hk'Gk'—g“,rTo 5
and
= f e (H’k'—k [ —“l’o)d ko VH v Ge

[ R+ [ B B v Grh (R~
o
LA
Efk(“-l-fk(z’ +eee
Here the superscript numbers refer to the
order of terms in thc squarc bracket, Since
the above equations can be expanded in pertur-
bation series, we can calculate the self-energy
5(Z) numerically using the iteration method.
As mentioned above we have Gaussian forms
for the correlation and interaction, Then

h(E)=— (J—;w)a’ge:cp (#/4c),
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A2
H’k=<—:{") Hy exp (—&/42)

Substituting these value into Eq.(3), the
first term of sclf-encrgy Xo and &% are as
{ollow

Sy H2n%2 / 1 _ 1 )
0T G0 =30 N @DPE T (At B2

lelt' kZSk
+ 225(Go~1—3'o) fdk Gol—3o—3%

22+«
EXD(" 4201_'_2‘}22) jl
(et D52

L‘XD('— k/28)~

o Hinr? | exp(—k%/(4a-+21)
PTG =3 |7 (A 2aA)VE

a+-22
D= sty ¥ }
(- A2+3ad)

Here, Go satisfies the following equation

G=Gy+Go¥Go, where ¥ is the self-encrgy.

Results obtained by numerical mcthod yielded
a form of the density of states curve quite
similar to thosc of recent works, Thc above
perturbation scrics, however, was found to
have poor convergency., It is considered that
the introduction of more realistic correlation
and interaction functions right improve the

CONVCrgency.
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5

Fig. Dengity of states for Ho=0, H'=-1,
n=0.8, a=4.0, and 1=2,0
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