LAt Fetd AM34d 1% pp. 27~40, A,
Engineering Research Vol. 34, No. 1, pp. 27~40, 2003
University of Ulsan.

A Study on the Planar Rectification of Self-Calibrated
Stereo Images

Jong Soo Lee - Paul Y. Oh
School of Computer Engineering and Information Technologies *
Dept. of Mechanical Engineering, Drexel University

<ABSTRACT>

In this paper, we study a planar rectification technique that takes perspective
projection matrices obtained by self-calibration. The self-calibration takes a nonlinear
estimation called the Levenberg—Marquardt method on constraints imposed by the
fundamental matrix to estimate the projection matrices. The rectification technique
determines new perspective projection matrices by solving four 3x4linear homogeneous
systems obtained from rectifying plane constraints. This paper shows experimental
results obtained by applying the technique to controlled sterec data and real stereo
images. We make the comparison based on the average vertical coordinate difference of
the rectified stereo image pair.
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1. INTRODUCTION

To model real world objects, various approaches are proposed. One of them is the
stereo image based rendering, which extract features points from right and left images
and determines corresponding pairs of points for the 3D structure of the model. The
accuracy of 3D models obtained from this technique depends on the correct
correspondences of right and left feature points. For a point in one image, the
technique searches for a corresponding point from its epipolar line on the other image.
Planar rectification makes epipolar lines parallel to the image rows and requires the
perspective projection matrices for the stereo images. It is possible to estimate the
matrices precisely with camera calibration but arbitrary images cannot be used. One
must perform a self-calibration to estimate their perspective projection matrices [1,2].
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In this paper, stereo images are planar rectified using the linear transform matrix
obtained from self-calibrated perspective projection matrices. The self-calibration [2] is
described in detail and estimates the projection matrices from the fundamental matrix.
Planar rectification is described in Section 2. Rectification experiments for controlled
stereo data and real stereo image pairs are detailed in Section 3and conclusions are
given in Section 4.

2. PLANAR RECTIFICATION

Stereo planar rectification corrects the left and right image planes such that every
epipolar line is parallel to the image rows [BI[6}[71[8][9]. Instead of correcting the
image planes, one can rectify stereo images by aligning epipolar pairs directly
[51{10]f111{12]. This rectification process requires complicated computations with higher
complexities and restricts the size of sterec images.

2.1 Perspective projection matrices and epipoles

2.1.1 Perspective pi'ojection matrices

T
Let ¢ denote the camera focal point and R denote the image plane. Let w=[x,y,z]

be a 3-dimensional (3D) point in the real world coordinate system and =[u.v]" be its
2-dimensional point projected on the image plane. Here, the superscript I means the
transposition of vectors. The point " is on the plane R and on the 3D line passing
through the two points W and c¢. In the projective or homogeneous coordinate systems,

W and M are represented by W and Mand they are related by the perspective linear

transformation matrix p as follows:

m=Pw (2.1
-
_ |y v
W=, m=V
11 S (2,2)
u/S
m:
vis| S=0 (2.3)
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When S=0, w is defined to be on the focal plane of the camera and z=0.
Assuming the pinhole camera model, we have the perspective projection matrix P as

follows

P=A(I|0)G | (2.4)

In the above, A is the intrinsic camera parameter matrix given by

a, 0 u,
A= 0 a, v,
0 0 1 (2.5

where %, and % are the dimension of each pixel and #0Y) is the principle
coordinate. G denotes the camera extrinsic parameter matrix composed of the 3x3

rotation matrix R and the translation vector {

R 1
G =
[o J (2.6)

For the planar rectification, the perspective projection matrix P can be defined as
follows

a9 | 4.
P= CIzT | G4 :[Plﬁ]
4 | g (2.7)

T
In the above, the plane 93 W+ 4, =0 (§=0) is the focal plane and the two planes,

T — T — . ; . . .
Gw+q, =0 ang G, W+ gy _0, intersect with the retinal plane forming the vertical

axis (U=0) and the horizontal axis (¥ =0), respectively. The focal point is the
intersection of the three planes. Thus, we have

~L C
Pl |=0
H : (2.8)

c=-£r (2.9
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The optical ray through the point ™ s the line ¢ and the points on the line

compose the set fwjm=P ‘7‘7} The line also can be represented by

w=c+ AP ' (A: a real number). (2.10)

2.1.2 Epipolar lines

Let ¢ and C, be the two focal points of the left and right pinhole cameras as shown
in Fig. 2.1. Then, a point W in the real world is perspective projected to ™ on the left

image plane and ™2 on the right plane.

apipa ne

Fig. 2.1 Epipole Geometry

Then, the point ™2 on the right plane has its corresponding point on the epipolar
line on the left plane. All the epipolar lines on one image plane pass through the

epipole, which is the projection of the focal point €z on the left image plane

~l ¢,
1 =P1
1 (2.11)

A point ™ on the epipolar line for ™2 can be written by

o}

n, =¢+ AP 'm, (2.12)
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2.2 Planar Rectifications

Fig. 2.2 shows a planar rectification of a 3D point W. The point ™a projected on the
image plane Ry is the point Mm in the rectifying plane. And the two corresponding

points ™. and .2 have the same vertical coordinate and %1 = V2.

Fig.2.2 A Planar Stereo Rectification

2.2.1 Constraints for Rectification

—~

Let the two perspective projection matrices for the rectification P, and P2 be given by

a | a, b | b,
P, = a2T 1 ay, | F,= bZT I b24
a | a,l bl | b, (2.13)

1

Then, two stereo cameras having P, and £, should have the same retinal plane

ol

and the same focal points of P, and P, This yields
a,=b, , @ = by, (2.14)

gglk



6 Jong Soo Lee - Paul Y. Oh

~ | ~ | c2
P, =0 P, =0

1 , 1 (2.15)
= _Po_llﬁol, = _[_;—212502 (2.16)

From Equation (2.15) one derives

alc,+a,=0 ble+b,=0
azTcl +a, =0 b2Tcl +b,, =0 {(2.17)

a3TCE+a34=O, blc +b,, =0

To satisfy Y1 = V2, the equation below must hold.

T T
GWtay, b,w+b,
aiw+a,, blw+b, (2.18)

Equation (2.18) yields

, G = by (2.19)

The epipoles are obtained by projecting the camera focal points on the image plane

as follows
. alrc2 +a,
e = n1|: 12} = azTcz +a,,
ale, +a,, (2.20)
b]Tc, +b,
~ | C
% :Pnzl:ll]z b2Tcl +b24
b}Tcl +b, | . (2.21)

To make the epipolar lines parallel horizontally, the following constraints are imposed

__32_
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T
ac,+a,#0
T —
a,c,+a,, =0

T —
a,c,+a,, =0

blc,+b,+0
by¢, +byy =0 (2.22)
ble, +b, =0

2.2.2 Rectifying Perspective Projection Matrices

The rectifying plane must be in parallel with the intersection of the two original
retinal planes

a, (finf,) =0 (2.23)

—~ ~

where /i and /2 are the third rows of Fu and B respectively. Equation (2.14) also
yields b3T (fih) =0,

For the rectifying plane to have a perpendicular coordinate system requires

atTaz = 0, balTaz =0, (2.24)
The origin (y,%,) is obtained from

Uy = ay a Yo = azraa. (2.25)

Setting (uy,vy) = (0,0) yields

ala,=0
aja, =0
bla,=0 (2.26)

The width and length of each pixel in the rectifying plane can be given as follows

a, :"alAazn, a, =|a,Aa;) (2.27)
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ualAa:‘H2 = af
HazAasn2 = af

“b]j\a3 ”2 = a: (2.28)

Using the equality "xAy “2 '"“HXNZHJ’HZ ~(x"y )2, one can derive the following constraints.

o[ =
| e =

6. | = a (2.29)
The matrix can be normalized such that

la| =1 ana 6] =1 (2.30)
The above constraints can be regrouped into the following four categories

a;c +a, =0

ajc, +a,, =0

a; (firf)=0

la,| =1 (2.31)
aj¢ +a,, =0

ale,+a,, =0

aja, =0

la,| = a, (2.32)

T -
a,c+a,=0

a,a,=0
ala,=0
ol 2



A Study on the Planar Rectification of Self-Calibrated Stereo Images 9

blec,+b,=0
BTb, =0
bTh, =0

”bl ” = au (234)

Each group in the above can be represented by a 3x4 linear homogeneous system
written by

Ax=0
|x=% (2.35)

In Equation (2.35) x' is the vector composed of the first three entries of X and &
15 a given real number. One can solve the above system in top-to-bottom order. The

solution has the form of the cne parameter family * =@ where % is a non-trivial

solution and @ =k/ th’)“
2.2.3 Rectifying Image Transformations

Two perspective projection matrices are given by
E=[p | 7] B=[n | Bl (2.36)

The 3D point is projected by the following equations.

m,=Pw

m, =Pw (2.37)
Equation (2.10) yields

w=c, + AP, i, (2.38)
From Equations (2.37) and (2.38) one has

m, = PR, i, (2.39)

_35_
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-1
Using the linear transformation matrix I'=FPF i Equation (2.39), the image planes

are rectified.

3. EXPERIMENTS AND CONSIDERATIONS

To rectify stereo images in our experiments, the fundamental matrix is first
estimated, next self—calibration is performed, and finally the transform matrix to rectify
the images is applied. To calculate the accuracy of these experimental rectification
results, the vertical coordinate differences are computed.

Fundamental matrix estimation is performed using the technique described in [2](3].
Using this fundamental matrix the perspective projection matrices are estimated to
derive the image transformation matrices for the stereo rectification.

The performances of self-calibrated rectification and camera-calibrated rectification
are compared. The rectification for the controlled stereo data obtained by projecting
random 3D points given is also performed.

3.1 Rectification Experiments on Controlled Stereo Data

Fifty randomly generated 3D points are projected on stereo image planes. The left

projection matrix Pperspecrivel is defined and the right projection matrix Pperspecﬁvﬂ is

constructed by rotating and translating the left matrix. With respect to X ,Y and Z axes,
the rotations are 5, 32, and 19 degrees with translation -100mm, -20mm, and -30mm
respectively. The pixel size is 002 mm, the focal length is 121mm and
(ty,v,) =(250,264)

605 0 250 0O
Perspectivel = 0 605 264 0
0 0 1 0

Perspectivel =
3.5264e+002 —-1.5132e+002 5.3035e+004 —6.8000e + 004
2.7140e+001  5.9847¢+002 2.7716e+002 -2.0020e + 004
—5.2992¢-001 7.3912e~002 8.4482¢-001 -3.0000e+ 001

Solving the system of Equation (2.35) yields
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Precnfyl = I)recnﬁZ =
-3.9731e+002 3.8186e+001 —4.5466e¢+002 7.808le-012
~7.2398¢+001 —-6.0052¢+002 1.282%e+001 7.1010e—013

~7.445%9 ~001 1.0385¢-001 6.5939¢ -001 8.1868e-015

Using Equation (2.40) one can compute the rectified image coordinates for the left
and right image points and the average difference of the vertical coordinates is

7.0415e-014.
Estimating the fundamental matrix from the perspective projected corresponding

points yields

74259 -002 -3.0302e-001 -1.6167¢-001
F=| 1.0710e-001 6.2184¢-002 -7.3651e-001
-1.7737e—-001 7.8718¢—-001  3.2220e-001

Estimating the two perspective matrices Bnormant and  Frenomatz from F yields

denormall —

3.8564e+002 ~1.5544e+002 -3.3180e+002 1.3878e—-014
4.9341e—-015  6.3084e+002  4.4800e+002 —1.1185¢-014
—~2.3138e—-016 -2.5870e—-017 1.0000e+000 —5.5511e-017

Rfenormalz =

~1.8821e+002 -2.2122e+002 -6.1678¢+002 —4.6049¢+ 002
-1.1205¢+ 002  7.3462¢+002  2.7069¢+002 ~1.3557e+002
—35.8934¢-001 2.7644e-001 1.2491e+000 -2.0316e-001

From the above perspective, we can compute the following rectification matrices.

Reclifrl = })rrecn']jzz =
—3.8725¢+002 5.2806e+001 —1.4187¢+002 -8.8802e—-012
-1.0738e+002 -6.1844e+002 6.2914e+ 001 0

-3.2184¢-001 1.5097¢e-001  9.3468e—-001 —5.2558e-017

In this self-calibration, the average vertical difference is 4.2011e-001. This increase is

,3’7
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due to noise inserted in the estimations of fundamental matrix and perspective

matrices.

3.2 Rectification Experiments on Real Stereo Images

For real stereo image data, pictures of a cube with a regular pattern were taken as
shown in Fig. 3.1. The size of the image is 640x480. 72 corresponding feature points

were manually selected to

(a) left image

(b) right image

Fig.3.1 Real Stereo Images

estimate the following fundamental matrix
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~2.4908¢—-001 7.3327e-001 4.6246e + 000
F=|-1.1954e+000 -7.5577¢—-002 5.8587e+000
—5.0593¢+000 -5.5484e+000 1.0067e+ 000

From the matrix, the following two perspective matrices may be estimated

p perspectivel =

2.3863e+ 000 —2.1148¢+000 -2.0986e+000 -2.8103e—016
1.0249¢—-017  1.0119¢+000  1.2064e+000 -2.7756e-017
-5.6285¢—-017 -2.8722¢-016 1.0000e+000 -1.1102¢-016

perspective2 —

-4.6143¢+000 -1.1537e+000 -3.6241e+000 —5.3436¢+ 000
2.9283e-001  9.5588¢-001 1.1697e+000  6.2478e— 002
—-33858¢-016 —-6.9721e-016 1.000e+000 —3.3307e-016

The above two matrices lead to the following rectifying matrices

Precitfyl = PRecfifyZ =

-3.2800e+000 7.4819¢-001 —4.7434e+000 -1.5596e-015
-1.3184e+000 5.3532¢+000 1.7560e+ 000 -~4.8866e—016
-7.9370e-001 -3.5704e—-001 4.9251e-001 3.3768e-017

Calculating the average vertical coordinate difference in the way described in the
previous section yields 2.7449e-001 that is comparable to the difference in the case of
self-calibration given in Section 3.].

4. CONCLUSIONS

In this paper, a planar rectification technique for stereo images using the
fundamental matrix for the self-calibration was described. Applying this technique to
controlled stereo data and real stereo images led to comparable rectification results
with average vertical coordinate differences of 4.2011e-001 versus 2.7449e-001.
However, the average difference is extremely small when precise perspective projection
matrices are given by camera calibration. In the case of controlled stereo data, the
average vertical coordinate difference was 7.0145e-014. This suggests that each stage

- 39 —
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of this technique be investigated for its proper numerical processing. Error propagation
between stages could lead to high average vertical coordinate differences.
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