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Effects of Coefficient Quantization in Block Filters

Uipil Chong
School of Computer Engineering and Information Technology

<Abstract>

As VLSI design technology advances, the potential advantages of block filters are
shifted from the savings of the number of computations(using FFT) to computational
parallelism. Since fixed point finite precision arithmetic is preferred in high throughput
digital signal processing systems, the use of proper block filter structures with good
numerical properties is desirable.

In this paper, we extend scalar filter structures to block filter structures and
investigate their coefficient quantization effects. Since block filters with quantized
coefficients are usually periodically time-varying, the errors are described using
bi-frequency representations.

Under coefficient quantization, however, deviations from the desired filter functions
are larger for block filters than scalar counter parts since poles and zeros are clustered
more closely. Therefore, in general, the filter coefficients need higher precision in the
block filter implementations. Through computer simulations of the various block filter
structures, finite coefficient quantization properties are investigated.
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1. INTRODUCTION

Many block implementation techniques of digital filters have been proposed for high
speed processing. As block processing methods for FIR filters, the overlap save and the
overlap~add implementations were developed to allow the fast Fourier transform(FFT) for
high speed filtering [1] [2]. More recently, block filter structures have been studied for the
high block order [3]. In order to increase throughput rate or, equivalently, to use slower
clock rate, block(parallel) processing is desired. Especially, as VLSI design technology
advances, the potential advantages of block filters are shifted from the savings in the
number of computations to the computational parallelism. Figure 1 illustrates block
implementation of an arbitrary scalar digital filter H(z). Any scalar transfer function H(z)
can be implemented in a parallel structure called block digital filters.

As illustrated in Figure 1, the scalar input x(n) is converted to block(vector) inputs
by using a serial-to-parallel converter and the block outputs are converted to a serial
scalar output y(n) by using parallel-to-serial converter.

Block filter structures provide parallel digital filtering schemes suitable for VLSI
application. [n the implementations of fast VLSI digital 'signal processing system, it is
desirable to achieve high throughput. Therefore, the investigation of coefficient quantization
effects and roundoff error analysis {4] for various block filter structures are important.

H(z) »y(n)
__—’ ______’
E— —
3 H(z) 2o
x(n)_—__J

Figure 1. General block digital filter description
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Effects of Coefficient Quantization in Block Filters 3

State-variable techniques have been used to accomplish of minimizing of filter

coefficient quantization effect and roundoff noise. Generally, scalar IIR lattice filter

structures have many attractive features; finite precision properties are good, filter

structures are modular, and stability is guaranteed. For these reasons, we restrict our

study to develop and investigate the Block State Space(BSS) filter and the Block
Lattice filter.

2. BLOCK STATE SPACE FILTERS

Block state space(BSS) filters have been known as a popular block implementation
technique for IIR digital filters due to good numerical properties [31[4l. We consider
the following 4-th order IIR filter as the system function.

bo+ b1z 4+ boz P+ bz 3+ byt
1+az ' taz ttag *+aiz™t

H(z)=

The BBS filters require the state space description of a specific prototype scalar
digital filter implementation. Any scalar digital filter structure has its own state space
description that can be used as a prototype filter. In this example, a direct form I
structure is chosen as a prototype, as shown in Figure 2.

~1 bO g:\/ y(n)
v4(n) _/_?
—a E_E] bl \
va(n) -@
~a3 b, N

<

X
B

-
Y
~

—a4 by

Figure 2. Direct form I structure as a prototype filter
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The above direct form II structure has its own state space description .

wn+1)=Axn) + bx(n) (1)
()= c' v(n)+dx(n),
where the state vector ¥(#n) is given by

Un)=Lv(n) v(n) v(n) v’

and
0 1 0 0 0
I ) 0 1 0 -0
A 0 0 0 1 b 0
— a4y —Aasz —ad; —a 1
c'=[bj—byay by—byaz by—byay by —byal
d= bo
D
[o%]
B k41 Uk ¢
Z [o%) L+ 21 [¥%) J\-}-/l
A
(i3]

Figure 3. BSS filter with direct form II prototype filter

The equation(1) can be represented in block state space equations as

Ye1=A v+ B x4 2
Nep= @zk‘i“ ﬁ_}gk , (3)
where A=A" B=[A%s A% Ab 1]
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5
< d 0 0 0
A &b d 00
€= LA D= A b d 0
A 'A% Ab c'bod

With these matrices .71\, B\, C , and ﬁ the BSS filter structure of direct form II
prototype is represented in Figure 3.

The BSS filters, however, do not have specific structures since they are always
implemented in a form shown in Figure 3. In the scalar case, state space equation can
describe any specific filter structure. But, in the BSS filter, the state decimation
destroys the specific structure and the BSS filter does not have distinctive structure.

The structures of the matrices 1/4\, B\, C and D, however, are dependent on the
chosen prototype scalar filter structure.

3. BLOCK LATTICE FILTERS

The normalized Gray-Markel lattice filter uses the orthogonal expansion for the
denominator polynomial, whereas simple linear combination is used for the numerator
polynomial.

For our block MR lattice filter structure implementation, we choose the normalized
Gray-Markel lattice model which is the original scalar lattice filter structure. Figure 4
illustrates 4th order IIR normalized Gray-Markel lattice filter structure. [5]

7 (o)l
(A {fﬁ f¢2 (¢1 o
D \‘ O | agom L1 630 Tl 0‘130
1(z) T xr E-]l Q =1 CP‘. =1
4 |4 3 13 2 |2 1
./{’m_ 1001 710 901 10 {701 P10 {01 a°
p PN 7 1
11 1 o1 11

Figure 4. Normalized Gray-Markel Lattice Filter
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In Figure 4, the desired transfer function is given by H(2)= Ny(2)/Dy(2), ie.,
numerator and denominator polynomials are given by Nj(2) and D,(z), respectively.
In Gray-Markel lattice filter, the denominator polynomial was implemented such that it
relates E4(z)=z4D4(z_1), ie, an allpass realization, and the numerator polynomial

was implemented using polynomial expansion.

For the block IIR lattice filter implementation, the block transfer function obtained
from the scalar transfer function is required. Block transfer function with right-MFD is
given by

H(2) = Ny(2) Diy'(2) (4)
where
Df2)=A y 2"+ A 2"+ Ay

NM(Z): BM'02M+BM_1ZM—1+ +BM,M
A, and B; is the block filter coefficient and M is the block filter order. From the

order reduction step utilizing the chain parameter description, the block denominator

polynomials D;, E, are decomposed as shown in Figure 5.

Doni) 7] B . = — l
Em(z) .o-—..-.« it e -.--——-—-
En-i(2) En-al2) Eu(2)

TFigure 5. Lattice implementation for denominator

Using the relationships between the scattering and the chain matrix elements, the
elements of the scattering block matrix are given [6] as

=lI-K, K",

S =U-K, K, Kyl I- KK,
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$=—Km, and, ZJ=[I—KMK£,¢]”2

where Km= —B m,0 A_mlg

Here, the first stage of the denominator synthesis is complete. The procedure can be
repeated until the resulting matrix polynomials become the zeroth order, i.e, constant
matrices. Then the design procedure is terminated by a constant matrix

R=Ey(2)D;'(2) connected between the two nodes represented by Dy(z) and

Ey(2) as shown in Figure 6.
The numerator matrix polynomial can be expanded using a set of polynomials
D,(z), m= 0, 1,--, M, obtained during the denominator BLBR function synthesis, ie.,

Nifz)= go @.D,(z). The expansion coefficients, @, k= 0, 1,---, M are obtained by

comparing the coefficients of the numerator polynomial with equal powers of z.

yn)
oM : (I,M—l 84)0
— n_:gg . ‘
— )k .z-l_. _2-1: ..
| M-l RIR
SN
=ff

Figure 6. Proposed Block IIR Lattice Filter Structure

4. EXPERIMENT RESULTS

We compare the IIR block lattice with a BSS approach based on a cascaded normal
structure given in [7] which is known to have very good finite precision

characteristics.
For this purpose, consider the design of a sixth-order lowpass Chebyshev type L

byt bzt - + bz "
agt+az t + - +ag™®

Hz)=
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‘Where,
by =0.00006284 ; b, =0.00037703 ; b,=0.00094258 ;

by =0.00125677 ; by,=0.00094258 ; b5=0.00037703 ;
b =10.00006284 ;

ay=1.0; a;=—4.73500775 ; a,=9.84166914
a;=—11.42125185 ; a4,="7.77931623 ;  as=—2.94382481
as=0.48335901 ;

For a cascade implementation, three second-order sections of transfer function
are formed as

14+2.05432 "1 +1.0553z 2

H &) = e T4 0.91292 2
_ _1+1.9912~'+1.00012"*
B 2) = oo 14077032 2
-1 -2

Hy(2) = At L6521 +0. 0475

1—1.63242 ' 40.6874z 2
where H(z)= H(z) Hy(z) Hs(z).
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Figure 7. Magnitude responses for 11-bit quantization, Block lattice and BSS
(Normal structure prototype)
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Figure 8. Magnitude responses for Block lattice and BSS

Each second order stage is first realized in a normal form and then its BSS
realization is found. The overall block implementation is obtained by cascading each
subsection BSS implementations. L=2 is chosen for reduced complexity of presentation.
This implementation is compared with the block lattice implementation with L=2. From

Figure 7, it can be seen that the Gy(€™) of block lattice filters are better than that
of cascaded BSS filters in the passband but the BSS implementation has better
attenuation characteristic. From Figure 8, it can also be seen that the aliasing-like

error, Gy(€™) in the block lattice is generally larger than the cascaded BSS

implementation.

5. CONCLUSIONS

Finite coefficient precision effects for IR block lattice and BSS are investigated by
computer simulations. It has been shown that block lattice structures provide a viable
alternative block filter implementations with relatively small coefficient quantization
effects and high throughput. Disadvantages of the proposed block filters is that
aliasing-like error tends to deteriorate attenuation characteristics and requires more
computations. As in the scalar case, factorized cascade BSS implementation is
preferable for reduced coefficient quantization effects. Cascade BSS implementation

tends to reduce aliasing-like errors.
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