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{Abstract>

This paper presents a modified algorithm to improve the convergency of fast-decooupled load flow (FDLF)
method. The specific feature of proposed method is using of the most recent values of solution vector when
solving the iterative recursive equations. This simple modification to standard FDLF method yields a more
reliable convergence characteristics for ill-conditioned systems. A comparison of proposed methofl with the

standard FDLF method is also presented for IEEE test systems.

tional planning, and operation/control. Load flows
1. Introduction are increasingly being use in on-line environment,
such as optimal load flow study and contingency

The load Flow problem is concerned with the analysis in energy control center.

solution for the steady operating conditions of an Since 1956 when the first practical digital com-

electric power transmission system, and is perfor- puter oriented method was proposed”, a large num-

med at the stage of power system planning, opera-  ber of solution algorithms have been proposed in the
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literature® which are attractive from the point of
view of solution speed, accuracy, required stroage
and easy programming, etc. Conventional Y-matrix
iterative methods require minimal computer storage
but converge slowly, and too often not at all. The
incentive to overcome this deficiency led to the
development of Z-matrix methods, which converge
more reliably but require notable storage and speed
when applied to large systems. Tinney and others
proposed an efficient Newton-Raphson method with
sparsity programmed ordered elimination
technique.® Stott and Alsac developed fast-
decoupled method which is reliable and extremely
fast for load flow solution and contingency
analysis.*

Fast-decoupled load flow(FDLF) method has been
proven to be very fast and easily adapted to practi-
cal on-line control applications. However, poor
convergency of FDLF algorithm occurs when the
decoupling assumption is false. Recent papers®-®
have presented an alternative algorithm which is
claimed suitable for ill-conditioned systems, where
FDLF failed to converge to solutions.

In this paper, a modified FDLF algorithm is
proposed which is hybrid version of standard FDLF
method and Gauss-Seidel The

Proposed algorithm is particularly effective for

process model.

solving of ill-conditioned systems. It is varition of
fast-decoupled method incorporating Gaussian elim-
ination in such a way that the most recent informa-
tion is always used at each step of algorithm ; simi-
lar to what is done in the Gauss-Seidel process. A
comparsion of proposed method with the standard
FDLF method is presented for IEEE 14,30 and 57 bus
ill-conditioned test systems. The ill-conditioned sys-
tem is made by trying to violate decoupling assump-

tion by changing some line parameters.

11. Fast-decoupled Load Flow

The equations of load flow are written as a single

set F(X) =0 and solved by the formal application of

generalized Newton(—Raphson) algorithm ;

X=X —[FP(X)IFXY) n

where F'(X) is the Jacobian of F(X). Eq. (1) can be
split into two portions, namely, a correction part
and part consisting of a set of linear equations, so

that Eq. (1) is equivalent to the following equations ;

F(X)y=-F(X"4X* @
X"1=X"+4X" ©)

The most popular and successful formulation is
that in which F is the set of busbar active and
reactive power mismatches and solution variables
are the unknown busbar voltage angles and magni-
tudes. These equations can be written in a different

notation as

4p
(). ©
Q

and can be expressed in terms of polar components

as
4Pi=Ppt—V; L (Gijcosbi;+ Bysindi) Vi (5)
L]
4Q;=Qst—V,; ¥ (Gijsind;;— Bijcos;)V;  (6)
i
where
n=number of busses
P;,Q;=loads or injected power at :-th bus
Vi;=voltages at 7/-th bus
0:i=0,—8;
f;=angle of voltage at /-th bus
G;j+jB;j=admittance between nodes : and 7

Jj=i implies “; takes the value of bus

numbers connected to 7-th bus”

The linear equation (2) appearing in Newton's

formulation is given by
4P (H N Y 146 v
= } 1 N
4 M L v/
The details of this method are well documented in
the literature.””® The correction term A V? is usually

divided by V? to simplify the calculation of some of

Jacobian matrix. The square Jacobian matrix in Eq.
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(7) is highly sparse, and Eq. (2) is s_olved at each

iteration by sparse programmed ordered
elimination.”

Solution of Eq. (7) for each iteration involves
calculation of Jacobian matrix elements. As this
involves large calculation, decoupling procedure
were developed.” By ignoring submatrices N and M

in Eq. (7), the resulting linear equation becomes

[dP]=[H][40] 8
(4Q)=[LI4V/V] )

This decoupled method converges as reliably as
the Newton's method. Its principal advantage lies in
the saving on the storage for the Jacobian matrix of
neglecting the coupling matrices M and N.

The decoupled method can be further simplified
by making further physically justifiable simplica-
tion into Eq. (8) and (9). With this modification, the

final fast-decoupled load flow equation becomes

(dP/Vi=[B'1[d8] (1)

[4Q/V]I={B"I[1V/V] (1
where

Bij=—1/Xis

By=2 (1/ Xy, B"y=~By
=t
Both (B’) and [(B”) are real and sparse and have
structures of (H) and (L) respectively. Since they

contains only network admittances, they are con-

stant and need be evaluated once only at the begin-
ing of the study. If phase shifter are not present both
(B’) and (B”) are symmetrical.

As in the standard fast-decoupled load flow, solu-
tion procedure involves decomposition of (B’) and
(B”} into triangular matrices initially and solution
of Eq. (1) and (1) repeatedly calculating the left side

with new value of unknowns.
IlI. Modified Algorithm

A set of n linear equations (0) and (1) can be

expressed

nEEE 2RFAA 3
[4)0X])=[b] (12)

where (A} is a nonsingular matrix, (b) is a given
independent vector, and (x} is an unknown solution
vector. If (A] is large and sparse, it is adventageous
to exploit the sparsity by performing the factoriza-
tion and solutions by sparse matrix methods.®?
The modified algorithm is equivalent to solving

the expanded equations:

al“ al’2 e a‘ln X bl()\

a’y v @by Xz by°

o

[ L Xn by," )

(13)

The m-th equation is solved for x
i=myy ,
X' = X"+ @ Lo = 24 a"ma(Xat™H—=x)]
“m+)

(14)

The procedure is to assume a set of starting
values for x and then calculate new values by substi-
tution into Eq. (14 These values are used as new
estimates and iterations are continued until some
criterion is met. Incorproated into the solution of
fast-decoupled load flow, modified algorithm is used
for solving the power mismatch Jacobian matrix
equations.

For a set of Eq. (10) start the procedure with a set
of starting values;

Jgkzekr‘k_.ekn (15)

for i>0 and 1<k <n, then the sequence of operation

becomes

1

Bmmm

0 f=m4p
20,0 = (22 P a0 (16
V! k5ma1
and is need as the initial vector for the next itera-
tion.
The computational steps for modified FDLF al-

gorithm are given as follows :
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The proposed method takes slightly more comput-
O’ =Om® + A0 an '

ing time per iteration than that of standard method.
0 p sb— P, (0, k 8 L. . . :
APn'= Pt = Pul6i™8) a8 This is mainly because of updating the residual
vector when solving the Gaussian elimination. How-
IV. Test Results

ever, this disadventage is offset by the superiority of

proposed method for ill-conditioned systems.
Numerical tests were carried out on the three

IEEE test systems, i.e., 14, 30, and 57 bus systems
using the proposed and standard FDLF algorithm.

Fig. 1-4 gives comparison of convergence charac-
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teristics of various systems. Numerical values

obtained from the figures are summerized in Table

1. For all studies the initial voltages assumed are 1 +

Largest Absalute Miseatch

jO for all the P-Q bussed. The convergence criterion
is taken to be 1.0x10~*(MW/Mvar) mismatch.

It is necessary to construct the ill-conditioned case - R u[ LR
from well-conditioned test system for comparative ' )
study. This is done by adding a amount of resistive Fig. 2 Convergence characteristics of 14 bus ill
value of lines in each system, thus the decoupling conditioned case

assumption (X/R is greater than unity) are violat-
ed. For 14 bus case, line parameters which includ e
transformer are added from base case to 0.2+j0. For

30 bus and 57 bus cases, same ones are added to 0.3+ e o
0.

olute Hisaatcn

According to the case studies, it can be observed
that proposed algorithm has more reliable conver-

gency than standard method for ill-conditioned sys-

tem. On the other hand, for well conditioned case, ; . .
standard method requires less iterations to obtain

the final solution. Fig. 3 Convergence characteristics of 30 bus ill

conditioned case
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Fig. 1 Convergence characteristics of 14 bus Fig. 4 Convergence characteristics of 57 bus ill
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Table 1. Comparison of iterations between

proposed and standard method

Well-conditioned Ill-conditioned

System

tyP€ | Proposed | Standard | Proposed | Standard

14 bus 7 5 11 15
30 bus 7 5 11 17
57 bus 8 5 10

16J

V. Conclusion

This paper presents a modified algorithm to
improve the convergency of fast-decoupled load
flow. Presented algorithm is a variation of conven-
tional method incorporated with Gaussian elimina-
tion what is done in the Gauss-Seidel process. The
procedure adopted in this algorithm is relatively
simple and can be easily incoporated in the existing
fast-decoupled methods. Compared to standard
method for IEEE test systems, the proposed methods
is particularly effective for solving ill-conditioned
systems. It is visualized that proposed method
should appeal to practising engineers for obtaining

guaranteed load flow solutions.
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