28 A7 =53 A2BH A2%F pp. 79~86, 4w
Jourmal of Engineering Research Vol. 26, No. 2, pp. 79~86 1995.
University of Ulsan.

AFAFA AXZE A 2HL 93 HAE A|AX0] Ay’

o] - Sang H. Son
A=A AF8E - Department of Computer Science
University of Uisan - University of Virginia

<8 %>

APAF4 AAIE Alz=Ele] A7) Modechart® o183t 43 o2 Fag A4
FA2EY) AL AFE AT WU E AART AlRbE S B3, Folx AT
Al2=¥lo] Modechart WAISH 2 &3 Aejyol ds=AE HAF87] AF HAE A4
25 WSk, JHG@AElelAl o] WA E H2E AFAE o)8ste] 1 Aol WAls
1= A 458 & A

e |

Generating Test Sequences for Event—Driven Real-Time Systems

Myung-Joon Lee - Sang H. Son
Department of Computer Science
University of Uisan - University of Virginia

< Abstract >

We present a method for testing event-driven real-time systems based on
Modechart specifications. From a Modechart specification, the proposed method
generates test sequences for checking whether there is a discrepancy between a
Modechart specification and its implementation. The implementation can be tested,
under virtual environment, by the generated sequences for conformance to its specification.

1. The preliminary version of the paper appeared in the Proceedings of 2nd IEEE workshop on Real-Time
Applications.

2 °]%® & - Sang H. Son

1. Introduction

A real-time syvstem supports time-critical applications such as aircraft avienics,
robotics, process control and traffic control. A failure in meeting timing constraints
associated with those applications mayv result in catastrophic consequences. Since
design errors of those syvstems are one of the main sources of the failure, much work
(5. 10. 4] has been done over the past several vears to find formal methods for
specifving real-time systems more rigorously and natually. and for verifyving the
properties automatically that must be satisfied by the specifications of those systems.
Among those formal methods. Modechart [8, 3] is well-known for specifying
event-driven real-time systems. where an appropriate response to certain events must
satisfv timing constraints. The semantics of Modechart can be defined using RTL
(Real-Time Logic) [7]. There are useful tools [4. 14] developed for supporting the
Modechart specification of real-time syvstems and the verification of the desirable
system properties.

Real-time applications. i.e.. implementations of those real-time systems, should be
tested hefore being actually used. If the testing of a real-time application is performed
under the associated real environment, it would be expensive and time-consuming.
Moreover. when a failure occurs in the process of testing, it is hard to determine
whether the failure is due to some inappropriate setting of the perating environment,
or due to some incorrectness in implementing the specification for the real-time
application. Thus, it is desirable to test real-time applications for conformance to its
specification under virtual environment.

To address this problem, in this paper., we propose a technique for testing whether
there is a discrepancy between a Modechart specification and its implementation. As is
the case with most techniques for protocol testing [13, 1], our technique is based on
transition testing -— forcing the Modechart implementation under test to experience
every transition in the specification. Thus, the principles of our technique might be

easily applied to other specification methods based on finite state machines such as
CRSM [10].

2. System Model

We use the restricted form of Modechart recently presented by Yang, Mok and
Wang [14]. It can be described bhriefly as follows. A modechart is a parallel mode
composed of a finite set of serial modes Each serial mode consists of a finite set of
atomic modes and a set of labeled transition edges between atomic modes. There is a
distinguished atomic mode called flinitial mode.

ARIEA QAT A2 g A% BB ARL A

RAILROAD CROSSING

(
MONITOR CONTROLLER
(3\ (")
APPROACH BC upP MOVEDOWN
(0 o=) BC.entry
— i e
{10C,100) (300.300) (20,100 BC.entry 20,50)
CROSSING.
o< | exit
PASSED CROSSING t MOVEUP DOWN
N J _/
. J

Figure 1. A Modechart Specification for Railroad Crossing System

A label of each edge is either triggering condition (a disjunctive normal form of
events or a timing condition (r and d are discrete times, and denote delay and
deadline, respectively.) Here, an event is either an entry event a.entry for some atomic
mode a or an exit event a.exit for some atomic mode a or a transition event a — a’
for some edge <a, a’>.

The following railroad crossing problem and the Modechart specification in Figure 1
is a famous example mentioned very often [8, 12, 14].

"The gate at a guarded railroad crossing is to be software controlied, and since the
gate cannot control the train, a real-time solution is needed. There is an early
warning signal at a distance from the crossing that gives notice to the gate controller
that a train is approaching (mode transition APPROACH — B(C), and it is known that

it takes the train at least 300 time units to reach the crossing from the signal (BC
- CROSSING). It is also known that the time required to lower the gate is between
20 and 50 time units (MOVEDOWN — DOWN). The controller itself can detect the
departure of the train (CROSSING — PASSED), and it requires between 20 and 100
time units to raise the gate (MOVEUP -— UP). It is also known that trains are
scheduled so that it takes at least 100 time units from the time a train leaves the
crossing until the next train reaches the early waming signal (PASSED
APPROACH).”

-

4 o] - Sang H. Son

3. Testing Method

When testing protocol implementations specified by finite state machines,
UTIO(Unique Input Output) sequences are usuallv used as state signatures. each of
which is a sequence of input/output pairs that can identify the state of a machine, not
requiring the name of the state. Such a black box approach might not be used directly
to test event-driven real-time svstems specified in NModecharts, because each atomic
mode* * a is essentially associated with syvstem events (a.entry. aexit, transition from
a or to a). each of which may cause a transition in other serial modes. as well as
may start an associated real-time behavior. In other words, events themselves
constitute the input/output of the implementation of each serial mode. Hence, the
behavior of the implementation of each serial mode can be checked by stimulating or
observing those input/output events. Regardless of whether serial modes communicate
through sharing variables or passing messages, we assume that those events can be
stimulated or observed by an external tester. Otherwise, the implementation cannot be
tested by the external tester.

In addition. the events not explicitly represented in Modechart specification should
be taken into consideration. For example. the transition from MOVEDOWN to DOWN
in the railroad crossing example is performed actually after the external behavior
associated with MOVEDOWN is completed.

Thus. for each atomic mode a associated with certain external behavior., we consider
a. done as an implicit event. indicating the completion of the behavior and causing the
explicit event a.exit. In this paper. we associate an implicit event with the source
atomic mode of each transition which has a timing condition, and regard it as an
input for the implementation under test. according to the model as illustrated in Figure
2. In this model, input events and implicit events are stimulated by the external tester,
whereas output events are observed by the tester.

Virtual Testing

Serial Mode w

Implementation

output

events events

external

behavior

Figure 2. System Model for Testing

AAFA A ALEE AT HAE A2 i) 5

Since a serial mode specification consists of labeled transitions, it is necessary to
test whether or not each labeled transition is implemerited exactly according to the
specification. A test case for a labeled transition is a sequence of input/output events
such that if any possible transition is described by the sequence, that transition is
identical to the transition under test. When testing a transition t = <a, a’> with
triggering condition e, the two output events a.exit and a’. entry should be observed
in that order as a response to the input event e = e; V ez V- e, Thus, the test
case for t is defined:

Testcase(t) = e / aexit / a’.entry / reset
Path(ag, a) / ez / a.exit / a’.entry / reset /

Path(as . a) / ea / aexit / a’entry

For testing a transition with a timing condition, we need more assumptions: (1)
Every implementation of a serial mode under test accepts a special input event reset
which initialize the serial mode to its initial mode.(2) Every implementation of a serial
mode under test generates a special output event time_error whenever the timing
condition is not satisfied. (3) As an interval between delay and deadline, a sequence of
adjecent times is enforced on every implementation of any timing condition even when
the erroneously implemented timing condition does not match the specified one. (Most
current real-time programming languages [2, 6] have programming constructs
supporting this assumption, enabling us to avoid testing each member in the timing
condition unreasonably).(4) The amount of time for passing or receiving events is
ignorable. (This can be achieved by preparing the virtual testing environment
properly.) In addition, the tester can wait for a specified amount of time units; wait(w)
denotes the action of the tester waiting for w time units. Since it is impossible to
wait(inf), we will use wait(INF) where INF is the appropriate value proposed by the
system designer.

For the convenience of description, let Path(a0, a) denote a sequence of input/output
events which brings the serial mode into the atomic mode a, starting from the initial
mode a sub 0. Path for each transition is defined as follows: for a transition <a, a’'>
with a timing condition (r), Path(a, a’) is (wait(r)/ a. done / aexit / a’ .entry),
whereas for a transition <a, a’> with a triggering condition, Path(a, a’) is (e/ a.exit /
a’. entry) which is Testcase(<a, a'>).

Under these assumptions, for testing a transition t = <a, a’> with the timing
condition (r), it suffices to check the time boundaries of the timing condition, i.e,
times r-1 and d+1 for failure and times r and d for success: Testcase(t) = (wait{r-1)
/ adone / time_error / reset / Path(ap, a) / wait(d+1) / a.done / time_error / reset /
Path(ap, a) / wait(r) / adone / aexit / a’. entry / reset / Path{as, a) / wait(d) /
adone / a. exit / a’ .entry).

In the case of r = 0, the subsequence "wait(r-1) / a.done / time_error / reset /
Path(as, a) " should be removed from the above definition; also, in the case of d = inf,
the subsequence "Path(an, a) / wait(d+1) / adone / time_ error / reset” should be

6 o] & - Sang H. Son

removed. Obviously, in the case of r = d, the subsequence "reset / Path(ac , a) /
wait(d) / a.done / aexit / a’ .entry” is unnecessary.

To combine test cases to form a test suite for testing an implementation of a serial
mode entirely, let a tour of a serial mode be a finite nonnull sequence of consecutive
transition edges that starts and ends at the initial mode. For simplifying the
discussion, consider a postman tour of which is a tour containing every transition
edge of at least once, assuming that there is a path between any two atomic modes.
Then a test suite for is a sequence generated by combining test cases for transitions

in a postman tour of orderly. In the railroad crossing system, a postman tour of
CONTROLLER mode is

(<UP, MOVEDOWN>, <MOVEDOWN, DOWN> <DOWN, MOVEUP> <MOVEUP,
MOVEDOWN>, <MOVEDOWN, DOWN>, <DOWN, MOVEUP>, <MOVEUP, UP>).

For efficient testing, clearly, the test cases for transitions occurring redundantly in
the tour can be replaced in the test suit by Path for those transitions. According to
the above discussion, a test suite for CONTROLLER in the rail-road crossing system
is presented in Appendix.

The implementation scheme for the proposed testing method may vary on the
communication methods between serial modes in the real-time application under
test. When serial modes communicate through some type of communication channels by

exchanging messages, the testing method might be implemented by stimulating and/or
observing those channels.

4. Concluding Remarks

Due to the lack of rigorous specification and testing methods, real-time systems
have been developed from an informal specification and verified and tested with ad
hoc techniques or with expensive and extensive simulations [11]. While the formal
specification and verification of real-time systems has received much attention
recently, the problem of testing implementations of specifications written in those
methods have not been considered yet.

We have challenged the problem of generating test sequences for implementations of
specifications written in Modechart, one of the successful formal methods with
supporting tools. As a result, the problem of testing whether or not the transitions in
a Modechart specification are implemented correctly, has been addressed. Future work
will include the development of a method for testing the transitions which are not
specified but happen to be implemented. Also, based on the same principle, a virtual
testing method for real-time applications specified by CRSM will be considered. We
believe that the testing problem is essential in developing real-time applications and
more research needs to be performed in this important area.

(1]

(2]

(3]

(4]

(5]
(6]
[7]
(8]

(9l

[10]
(113
(12}
[13]

[14]

AR FA AAL Al2EE A HEE Alfze] Wy 7

References

AYV. Aho, A'T. Dahbura, D. Lee and M. Umit Uyar, "An optimization technique
for protocol conformance test generation based on UIO sequences and Rural
Chinese Postman Tours,” Trans. on Communications Vol. 39, No. 11, Nov. 1991.
T. Baker and O. Pazy, "Real-time features for Ada9X,” roc. of 12th Real-Time
System Symposium, 1991

P.C. Clements, C.L. Heitmeyer and B.G. Labaw, "Applying formal methods to an
embedded real-time avionics system, “roc. of IEEE Real-Time Applications
Workshop, New York, NY, May 11-12, 1993.

P.C. Clements, C.L. Heitmeyer, B.G. Labaw and A.T. Rose, "MT: A toolset for
specifying and analyzing real-time systems, "roc. of 14th Real-Time System
Symposium, 1993.

IEEE Trans. on Software Engineering, Special issue on specification and analysis
of real-time systems, SE-18, Sep. 1992.

Y. Ishikawa, H. Tokuda and C.W. Mercer, "An object-oriented real-time
programming language,” [EEE Computer Vol. 25, No. 10, Oct. 1992,

F. Jahanian and A.K. Mok, "Safety analysis of timing properties in real-time
systems,” IEEE Trans. on Software Engineering SE-12, Sep. 1986.

F. Jahanian and D.A. Stuart, "A method for verifying properties of Modechart
Specifications,” Proc. of 9th Real-Time System Symposium, 1988,

D. Scholefield, “"The Formal Development of Real-Time Systems: A
Review,”Department of Computer Science Technical Report YSC-145, University
of York, Feb. 1992.

A. Shaw, “Communicating real-time systems,” IEEE Trans. on Software
Engineering SE-18, No. 9, Sep. 1992.

J.A. Stankovic, "Misconceptions about real-time computing,” IEEE Computer, Oct.
1988.

D. Stuart, "Implementing verifier for real-time systems,” Proc. of 11th Real-Time
System Symposium, 1990.

K. Sabnani and A. Dahbura, "A protocol test generation procedure,” Computer
Networks and ISDN Systems Vol. 15, No. 4, Sep. 1988.

J. Yang, AK. Mok and F. Wang, “Symbolic model checking for event-driven
real-time systems,” Proc. of 14th Real-Time System Symposium, 1993.

o] & - Sang H. Son

Appendix

A test suite for CONTROLLER mode implementation in the railroad crossing:.
(BCentry / UPexit / MOVEDOWNentry / wait(19) / MOVEDOWN.done /
time_error / reset / Path(UP, MOVEDOWN) / wait(51) / MOVEDOWN.done
time_error / reset / Path(UP, MOVEDOWN) / wait(20) / MOVEDOWN.done
MOVEDOWN.exit / DOWNentry/ reset /Path(UP, MOVEDOWN) / wait(50)
MOVEDOWN.done / MOVEDOWN.exit / DOWN.entry /CROSSING.exit
DOWN.exit / MOVEUP.entry / BCentry / MOVEUP.exit / MOVEDOWN entry
Path(MOVEDOWN, DOWN) / CROSSING.exit / DOWN.exit / MOVEUP.entry
wait(19) / MOVEUP.done / time_error / reset / Path(UP, MOVEUP) /wait(101)
MOVEUPdone / time_error / reset / Path(UP, MOVEUP) /CROSSING exit
DOWNexit / MOVEUPentry /wait(20) / MOVEUP.done / MOVEUP.exit
UPentry / reset /Path(UP, MOVEUP) /CROSSING.exit / DOWN.exit
MOVEUP.entry /wait(100) / MOVEUP.done / MOVEUP.exit / UP.entry)

S N N N

/

~ T~

where

Path(UP, MOVEDOWN) = BCentry / UPexit / MOVEDOWN.entry\
Path(MOVEDOWN, DOWN) = wait(20) / MOVEDOWN.done / MOVEDOWN exit /
DOWN.entry, Path(UP, MOVEUP) = BCentry / UPexit / MOVEDOWNentry /
wait(20) / MOVEDOWN.done / MOVEDOWN.exit / DOWN.entry CROSSING.exit /
DOWN.exit / MOVEUP.entry.

