2% A7ERA A4V A23 pp. 65~75, AUYR
Journal of Engineering Research Vol. 24, No. 2. pp. 65~75. 1993.
University of Ulsan.

VLSI dAd 328 HE& A5 A BA 7 3 A+

24
7 FE 23}

2 °b

VLSI 2% A8 + e ¥E AF AE dd Y471(UATPG) 9] 71 st &
7 3. UATPGE 71& ATPGH €32 &35 CAD AH&AloA H §3& AF
devl 2HE %30 AAHJG. FF AEL AEH =rt &9 ¥ ¥ F ALS
anAoz FHay] At APAA JNYEE ngsd ALagT. £F, AL 2P
AADFT) AH&sl+ 719 4A4H(Flip-Flop)7t 24t &g o2 oj&&o VLSI dAg 3
27 AEAEE 82 1o FAG. wEA, UATPGE AHE9 &olda JeddA $& 2
#g Bo FAU.

A study on a Universal ATPG For VLSI Digital Circuits

Jong-Kwon, Chang
Department of Computer Engineering

{Abstract)

In this paper we propose a Universal Automatic Test Pattern Generator (UATPG) for
VLSI digital circuits. UATPG is designed to extend the capabilities of the existing
ATPG and provide a convenient environment to Computer-Aided Design (CAD) users.
We employ heuristic techniques in backtracing and fault propagation for functional
gates. In addition, flip~flops with Design For Testability (DFT) [1] are exploited for
pseudo-PlIs and pseudo-POs to enhance the testabilities of VLSI digital circuits [2].
UATPG shows a good enhancement in convenient usage and performance.

65

L INTRODUCTION

Since the emergence of test generation
algorithm, the existing ATPG techniques [3,4,5,
6,7] have been developed for efficiency, by
adopting better heuristic methods in
backtracing and fault propagation, and by
organizing the search space and, thus, reducing
the number of backtrackings. It is also well
known that the existing ATPG techniques have
been used for circuit net lists consisted of
primitive gates only. However, in practice,
circuit designers are tending to use various
functional gates (such as mux, decoder, etc.) as
well as primitive gates, in designing VLSI
digital circuits. Circuit designers usually prefer
to design VLSI digital circuits making use of
various types of schematic menus provided in
the design software package. These functional
gates hide gate-level information necessary for
test generation. Therefore, we must take a
special care of these gates during backiracing
and fault propagation. In this paper, we
implemented an exhaustive table-driven
function for each functional gate and exploit it
for test generation.

As the size and logic complexity of VLSI
digital circuits have increased, the problem of
test generation has surfaced significantly due to
their poor controllability and observability [1,
2, 9]. The number of primary inputs (PI) and
primary outputs (PO) do not generally increase
proportionally to the size of VLSI chips. Thus,
the efficiency of the ATPG techniques has been
so limited. In this paper, we have attempted to
exploit the flip-flops with DFT for pseudo-Pls
or pseudo-POs. This ad-hoc technique has been
derived from the easy controllability of the flip-

66

flops with DFT by system clock pulse. This ad-
hoc technique requires the analysis of the
system clock and, thus, two or more test input
vectors for a single target fault. However, the
number of PI and PO has increased largely due
to the addition of pseudo-PI and pseudo-PO
and the efficiency of the ATPG has, thus,
resulted in significant enhancement as
expected.

Finally, this paper consists of seven sections.
Section II describes UATPG system in general
and section III discusses the preprocessing
technique of UATPG system. In section IV
table-driven functions are shown for backtrac-
ing and fault propagation, for example. We
propose an ad-hoc technique which exploits the
flip-flops with DFT for pseudo-Pls and pseudo-
POs, to enhance the testabilities of VLSI digital
circuits. Section VI shows the performance of
UATPG system with various digital circuits.
Final section summarizes the technique of
UATPG system.

I1. UATPG System

UATPG system consists of preprocessing,
ATPG algorithm and postprocessing as shown
in Figure 1. UATPG system is a CAD tool
which processes digital circuit net lists
described by design language or by schematic
menus in the design software package and
produces a test input vector for a stuck-at fault
assumed in VLSI digital circuits. Note that
VLSI digital circuits include various types of
functional gates and flip-flops with DFT as well
as primitive gates. In particular, a procedure

interpreting circuit net lists, from Texas

VLSI bAd g2& H& A% dd Y471 83 47

Description Language (TDL) or schematic
menus to Tegas Circuit Files (TCF) [8], is a
major preprocessing of UATPG system.

II1. Preprocessing

In this section we describe an interpreter
which processes digital circuit net lists
described by TDL or by CAD system and
produce a corresponding input form, i.e., TCF
file. The TCF captures a TDL circuit descript-
ion in a set of tables. Each table contains
contiguous entries, one entry per object being
described. For example, the PART TABLE has
one entry per type of part, the PART
OCCURRENCE TABLE has one entry per
occurrence of a part, etc. The TCF tables are
HEADER TABLE, PART TABLE, PIN
NAME TABLE, PART OCCURRENCE
TABLE, PIN OCCURRENCE TABLE, and
NET TABLE. All pointers in the TCF are
relative to the start of the table they point into.
For example, if a pointer points to the table
entry in a table, it will have the integer value

“3” . Linked lists of table entries in the TCF are

terminated by a “0" pointer value in the last
element of the list. This TCF input form is
exploited for designing a data structure for test
generation. At first we introduce two types of
circuit net lists for Figure 2. One type is
described by a standard TDL and another is by

a Manto Graphics TDL format. TDL s
symbols are treated as tokens in the interpreter
algorithm. The flow chart of the interpreter
algorithm is illustrated in Figure 3. we use three
different types of tokens for reserved word,
special symbol and user defined word,

67

respectively. The token (for reserved word) is

used to identify TDL' s six sections (such as
MODULE, INPUTS, etc.) and gate names. The
token (for special symbol) is used to distinguish
between tokens and the token (for user defined
word) is used to identify input/output pin
names, gate names and their pin names which
are produced by TDL or CAD system.

The interpreter algorithm produces a TCF
form on the basis of the data structures. These
data structures are composed of Gate Reference
Table (GRT), Gate Occurrence Table (GOT),
and String Pool, as shown in Figure 4. GRT

holds gate names and their input/output pin s
number in USE section. GOT handles
information of DEFINE section such as each

gate’ s pin number and PI and PO’ pin number.
Node indicates the location of String Pool to
which each gate's pin number is stored. Note
that 1* indicates the next node to be connected
and 2* the previous node. In String Pool, each
pin is stored according to the order of its
definition and appearance in GOT. After a TDL
file is interpreted, the associated TCF file
includes six tables which keep information for
circuit net lists.

IV. Functional Gate Test Generation

In real world VLSI circuits are déesigned
using many different types of functional gates
which hide gate-level information for test
generation. In this section we discuss table-
driven functions, for various types of functional
gates, which are designed and used for
backtracing and fault propagation. Firstly, for
example, we illustrate a table-driven function

for a half adder (ADHLF). Figure 5 shows
ADHLF's switching function and its function
table for D-propagation. It can be observed that
the outputs (SUM and CARRY) are easily
computed on the basis of table-driven function.
Secondly, a heuristic technique is employed for
backtracing. This heuristic technique is derived
from three bases of, the pending logic value to
be backtraced, the status of the currently
the
characteristic function, of the pending

assigned input logic values and
functional gate. For instance, according to our
proposing heuristic technique, we, at first, make
enable pin (EN) low when the Decoder is
pending for initial backtracing. In other words,
O-logic value at EN should be always selected
first to be backtraced, prior to backtracing from
any input. For reference, Figure 6 illustrates
eight cases of backtracing for a 2 4 Decoder.
Note that input selection is tightly related to
both the pending output pin number to be
backtraced and its logic value. Thirdly, as
shown in Figure 7, our proposing heuristic
technique also deals with fault propagation
efficiently. Our technique determines which
output pin should be selected first for better
fault propagation, in case of multiple output
gates (such as Decoder, Encoder). Finally, for
example, the procedure of implication for a 2 4
decoder should be performed for each of its
outputs, using five logic values (0, 1, X, D, on
the basis of the logic equation of the decoder.

V. Ad-hoc Technique For Digital
Circuits With DFT

Most DFT techniques [9] are employed to

2E4

68

enhance the testability of VLSI chips and deal
with either the resynthesis of an existing design
or the addition of extra hardware to the design.
In particular, DFT techniques convert
sequential networks into combinational
networks by scan design. Thus, the testing
problem of sequential networks becomes easy
to the level of the testing problem of
combinational networks. However, the density
and size of VLSI chips are growing
enormously. Testing problem is still difficult
and remains NP-complete, even with DFT
techniques [10]. In this section we introduce an
ad-hoc testing technique which exploits the
flip-flops with DFT for pseudo-Pls and pseudo-
POs, to enhance the controllability and
observability of VLSI circuits.

V.1. Testing Problem Of Digital Circuits
With DFT

Typical types of digital circuits designed with
DFT techniques are shown in Figure 8. It can
be observed that all flip-flops are chained with
a scan path. With this design, we can control a
logic value of each flip-flop at will. The
previously mentioned functional gate testing
technique cannot be directly applied to the
digital circuits designed with DFT techniques.
We have to handle the flip-flops with DFT in a
different way from dealing with general
functional gates. Usually, most DFT techniques
require the analysis of clocks to propagate
faulty signal to P.O. Thus, these techniques
have a drawback that requires two or more test
input vectors for a single target fault. In
addition, with the functional gate testing
approach, we have to compute D-propagation
on the basis of five-valued algebra and apply

VLSI tAdE 228 ¥H8 A% dd 447 dg 4+

the analyzed clocks [3,9]. This ad::s a big
overhead as shown in Table I which illustrates
propagation of D-values through a JK flip-flop,
to test generation.

Table I. Propagation of D values through a

JK FF
J K q Q
0 0 D D
D 0 D D
- D' 1 D
0 D' D D
D D' D D
1 1 D' D
D 1 D' D
D - 0 D
1 D' D' D
D D' D' D
V.2. Ad-hoc Technique

We propose an ad-hoc technique which

considers all flip-flops™ inputs as pseudo-POs.

Firstly, this technique stops executing test
generation and regards test generation to be
complete as soon as a faulty signal arrives at a
P.O. or a pseudo-PO during implication. With a
faulty signal arrived to a pseudo-PO, we can
then shift out the faulty signal by applying
clocks and observe its content at scan out pin.
Secondly, our proposing ad-hoc technique

considers all flip-flops’ outputs as pseudo-Pls.
We put all logic values at pseudo-Pls into a
decision tree and execute backtracking with the
aid of the decision tree [4]. Therefore, a test
input vector may consist of a combination of
Pls and pseudo-PIs. Finally, our proposing ad-
hoc technique enhances the testability of VLSI
chips by adopting the flip-flops with DFT as
pseudo-Pls and pseudo-POs. Since the number
of PIs and POs is actually increased and, thus,
the number of backtrackings is significantly
decreased. Table II shows technique char
acteristics for search space and target circuit.
However, we have to pay for this gain during
testing application.

Table II. Technique Characteristics

Algorithm D PODEM UATPG
Search Space | All Nodes All PI's PODEM + Pseudo PI's
Target Circuit | Combinational Network | Combinational Network | Combinational Network +
FFs withDFT
VL Performance Analysis of ings is limited to 100 times. The result of

UATPG System

UATPG was implemented in C-language on a
SUN4 running UNIX. Table IlII-(a) shows
circuit characteristics of six combinational
networks. Note that the number of backtrack-

69

UATPG performance for all faults is shown in
Table III-(b). In addition, we have UATPG
performance for seven digital networks
designed with DFT techniques. Table IV-(a)
shows circuit characteristics of seven digital
networks and Table IV-(b) shows UATPG
performance for all faults. Note that the number

in parenthesis indicates the result with our $2919 and S1804 are illustrated in Figure 9-(b)
proposing ad-hoc technique. Figure 9-(a) & 9- and 9-(d), respectively. It can be observed that
(c) shows the circuit diagrams of S2919 and our technique provides a better performance.

S1804, respectively. The fault analyses of

Table I1I. UATPG Performance of Combinational Circuits

NO. Circuit Gate Pis POs Pins fanout faults
1 C17 6 5 2 25 3 22
2 Cfulladder 5 3 2 20 4 26
3 Cschneider 8 3 33 7 38
4 Cdecoder38 21 4 8 68 10 58
5 C74is181 63 14 8 238 31 247
6 C432 160 36 7 539 31 474

(a) Circuit Characteristics (Combinational Circuit)

[No. | Redundant Faults | Aborted Faults | Backtracks | Fault coverage | Generation Ttime
1 0 0 100 0.017
%2 0 0 0 100 0.017
3 2 0 5 100 0.053
4 0 0 | 0 100 0.117
5 0 0 1 21 100 1.383
6 0 20 . 201 95.78 19.98
(b) UATPG Performance for All Faults
Table IV. UATPG Performance of DFT Circuit
NO. | Circuit Gate Pls POs Pins | fanout faults |
1 S12 18 10 4 61 5 36
2 S28 2 10 7 . o | 8 14
3 S56 29 12 9 | 19 | 12 18
4 S114 60 11 25 232 16 94
5 S322 37 68 9 247 12 98
6 S2919 1247 52 25 | 4115 339 ‘F 1200 |
7 S1804 823 12 55 } 3824 245 1025

(a) Circuit Characteristics (DFT Circuit)

_70,

VLSI "Ag #=2& ¥H& A% Ad A471d 88 d7 1

No. | Redundant Faults | Aborted Faults | Backtracks | Fault coverage | Generation Ttime
1 0 0 0 100(100) 0.067(0.067)

2 0 0 0 100(100) 0.033)0.033)

3 2 0 0 100(100) 0.033(0.033)

4 0 0 0 100(100) 0.567(0.567)

5 0 0 0 100(100) 0.400(0.400)

6 96(24) 24(0) 8291(331) 97/073(100) 219.29(78.9)

6 (15) 0) (174) (100) (89.9)

(b) UATPG Performance for All Faults
VII. Conclusions References

UATPG was implemented employing heuristics
and an ad-hoc technique. We attempted to extend
the capabilities of the existing ATPG for
practical usage. Thus, UATPG users can design
circuit net lists using either DL or schematic
menus and functional gates as well as primitive
gates. On the other hand, UATPG employed
heuristic techniques in backtracing and fault
propagation for functional gates. In addition,
UATPG made use of the flip-flops with DFT
and, thus, significantly enhanced the testabilities
of digital circuits. However, for this gain, we
have to pay for the increased number of test
input vectors. On the whole, application time of
test input vectors becomes longer but test
generation time and fault coverage result in
faster and better performance, respectively. For
further works, one attempt is to develop an
algorithm for scan chain ordering to minimize
the overall test time. Another direction would
be to research an automatic replacement
algorithm of the non-scanable flip-flops with
the DFT's scanable flip-flops, throughout the
VLSI digital circuits.

(1] E.B. Eichelberger and T.W. Williams, “A
Logic Design Structure for LSI Testabi-
lity,” Journal Design Automation & Fault
Tolerant Computing, Vol.2, No. 2, pp. 165-
178, May 1978.

[2] L.M. Goldstein and E.L. Thigen, “SCOAP:
Sandia Controllability/Observability
Analysis Program,” Proc. 17th Design
Automation Conf., pp. 190-196, June 1980.

[3] J.P. Roth, “Diagnosis of Automata Failures:

A Calculus and a Method,” IBM Joumnal of
Research and Development, Vol. 10, No. 4,
pp. 278-291, July 1966.

[4] P. GOEL, “An Implicit Enumeration
Algorithm to Generate Tests for Combina-
tional Logic Circuits,” IEEE Trans.
Compt., vol. C-30, no. 3, pp. 215-222,
March 1981.

[5] H. Fujiwara and T. Shimono, “On the
Acceleration of Test Generation Al-
gorithms,” IEEE Trans. on Computers, Vol.
C-32, No. 12, pp. 1137-1144, December
1983.

-71_

[6] T. Kirkland and M. Ray Mercer, “A To-

pological Algorithm For ATPG," 24th
Design Automation Conference, pp.502-
508, 1987.

(7] M. H. Schulz and E. Auth, “Advanced
Automatic Test Pattern Generation and
Redundancy Identification Techniques,”
Poceedings of the 18th Symposium on
Fault-Tolerant Computing, pp.30-35, June
1988.

{8] E.-W.Thomson and Szygenda, “Digital
Logic Simulation in a Time-Based, Table-

1

=

,72,

Driven Environment - Part 2. Paralle]l Fault
Simulation,” Computer, Vol.8, No.3, pp.34-
49, March 1975.

[9] M. Abramovici, M. Breuer, and A. D.
Friedman, Digital Systems Testing and
Testable Design, Computer Science Press,
Chapter 9, pp. 343-408, 1990.

[10] Ibara, O. H,, and S. K. Sahni, “Polynomially

Complete Fault Detection Problems,”
IEEE Trans. on Computers, Vol. C-24, No.
3, pp. 242-249, March 1975,

VLSl t2d 2% H& A5 dd 4471 & 47 9

Yes

read GRT(] table

|

[o e e[

ot

{ = * ‘ * | #
ot c-n exit exit
Preprocessing ATPPG Algorithm Postprocessing

Fig.l! UATPG System Flow Diagram

Fig.3 Flow Chart of the Interpreter Algorithm
<

:'H_L]:@‘m‘““‘ — Y

Gt L~
P SGRT(Gate Refcrence Table)
sate |inpue four,
name | prrout| pinout
2) 2 1
AR 2 1
o2 2 1
o

*GOT(Gste Occurrence Table)

'T‘B'EAS/N«IMH by SEC* ot Jingut_jour. .::_m .
JALIAS § -> -7
el 3 A A ! [
DELETE ~ 1 ~ ~ ~o! 3
eI eI CERIRERE NaDE Dnne
; ~$d" 'ﬁgé:u'g&-{ wez| 2 | H Sl |3 Juefaedefufzlie}a
om-zxon(u B1: ORZ i mlz gt 1] glsgrege
1; AAﬂ'BiCL ORI): RI'i)-BXOR(M-q, Bl=b):
)-EXOR(ORL Cl). Gl {'I. 3&-[”» *String Pool
-gxoa(om-q,"m-c)' olojofoloefafofofzfjzlofafajojale]o]s]s]o
G4(CO=c)=OR2(ANL=a, ANZ=s);
END MODULE : wlohsholoqufefispojupz|rfalofalsfs|rjzla
<Standard TDL format> <Mantor Geapbics TDL format> at Jae o | s foo [ar [jori]a fas juaja joni|aelom]a | s |wajeelm
Fig.2 Two Types of TDL Formats Figd. Interpreter Data Structure of Full Adder

,73_

10
A ADHLF l— SUM
B (Half Adder) CARRY
(s) Funtional View of ADHLF
SUM
B
0 [}

Q o x

si-ixiola|q

o x -

Fig.5 ADHLF (Half Adder)

@ output port X0

D output port X3

() D-prepagation for ADHLF

value=0

value=0

value=0

—{s0 DECIOF4x0"
—isl x!’

2
N x3’

T

T

value0

valuez)

Fig.6 Eight Cases of Backtracing for a 2X4 Decoder

of

o
Y

0D0ODOGCO

MY — 0

Ji4 Ll

O VAL~ — O

T

1 [}

)
l] Inputs

765%

Uecoder

4€121¢

I

(T v

XX00\VX00

NoT A WO

Fig.7 Example of D-Propagation through the Decoder & MUX

o)
Tl

4 -

Fig.8 DFT Design

B D Q f—7r

(X DFFPFN

Ti £2

TE Q' h

L

JL D Q SCAN OUT

CX DFFPFN

TL #3

——TE Q-

VLSI 0¥ =& ¥8 5 dd 4471« o a7

1 1311
PLET
k238
o e
v
i T
1 L1137

Fig.9-(c) S1804 Circuit

Fig.9-(a) S2919 Circuit

;
i 1
_L . ' o

Fig.9-(b) Fault Analysis of $2919

i
i
= {

Fig.0-(d) Fault Analysis of S1804

75

11

