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On an aspect of the undecidable problem

Choi, Kil-Nam
Dept. of Mathematics
(Received September 30, 1985)

{Abstract)

This paper introduces the fact tnat cardinality of the set of computable functions is &, and proves
that cardinality of the set of non-computable functions is at least equal to R (the cardinality of
continuum).

By this proof, we can see a matter of course that there are more undecidable problems than

decidable problems (that is, computable ones) in idealized computer.
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1. Introduction

Over the past fifty years there have been

many proposals for a precise mathematical

characterisation of the intuitive idea of eff-
ective computablity. The following are some
of the alternative characterisations that have
been proposed;

(a) Godel-Herbrand-Kleene (1936).

recursive functions defined by means of an

General

equation calculus.

(b) Church(1936) A-definable functions.

() Godel-Kleene (1936) p-recurisive functions
and partial recursive functions.

(d) Turing (1936) Functions computable by
finite machines known as Turing machines.

(e) Shepherdson-Sturgis (1936) URM-comp-
utable functions.

The remarkable result of investigation by
many researches is the follwing.

The fundamental result 1.

Each of the above proposals for a characteri-
sation of the notion of effective computability
give rise to the same class of functions.

In view of the fundamental result 1, there
claims are all mathematically equivalent. The
name Church’s thesis is now used to describe
any of these other claims. Thus, in terms of
the URM approach, we can state;
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Church’s thesis

The intuitively and informally defined class
of effectively computable partial functions
coincides exactly the class @ of URM-comp-
utable functions.

1. Computable functions

Our mathematical idealisation of a computer
is called an unlimited register machine(URM);
it is a slight variation of a machine first
conceived by Shepherdson & Sturgis (1963)
The URM has an infinite number of registers
lablelled R,, R. R....
moment of time contains a natural number; we
denote the number contained in R, by .. This
can be represented as follows.

., each of which atany

R, R, R R, R R R;

| rln L [rQr [n {n ]

The contents of the registers may be altered
by the URM in response to certain instructions
that it can recognise.

These instructions corrsespond to very simple
operations used in performing calculations with
numbers. A finite list of instruction constitutes
a program.

We summarise the response of the URM to
the four kind of instruction in table 1.

Table 1.

Type of instruction/Instruction/Response of
the URM

Replace », by 0
(0>R, or r,: =0)

Add 1 to 7,
(ra+1>R,,0r7,: =r,+1)

Transfer T(m,n) Re(;;laieanolr)yr r,:. =7

Zero Z(n)

Sucessor  S(n)

If 7o=7. jump to the gth
JCm,n. 0 instruction; otherwise go
on to the next instruction
in the program

Jump
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Definitions 1.

Let f be a partial function from N* to N.
(N={0,1,2,--:})
(a) Suppose that P is program, and let ¢,, @,
--a,, b=N.
(i) The computation P (a,, @z ---,2,) conv-
erges to b if P(a, as-a,) | and in the
final configuration & is in R,.
(ii) P URM-computes f if, for every a,
az, -, Qs b P(a,--a,) | b if and only if
(a., -, a)=Dom f and f (@, . a,)=0b
(b) The funtion f is URM-computable if
there is a program that URM-computes f.
The class of URM-computable functions is
denoted by &, and #z-ary URM-computable
functions by @..
Suppose that M(x,, xg--,%,) is an n-ary
predicate of natural numbers.
The characteristic function Cy(x) (letting
x=(%, %z, +-+, %a) is given by
Cu(x)= {1 %f M(x) holds
0 if M(x) doesn’t hold.

Definition 2.

The predicate M(x) is decidable if the
function Cy is computable.

M(x) is undecidable if M(x) is not decidable.

Let us now denote the set of all URM instr-
uction by ¥, and the set of all program by .77,
A program consists of a finite list of instruct-

ions.
Theorem 1.

# is effectively denumerable.

Proof. We define an explicit bijection a: #—
N that maps the four kind of instruction
onto natural numbers the forms 4u, 4u+1,
4u+2, 4u+3 respectively;

a(Z(n))=4n
a(S(n))=4n+1
a(T(m,n))=4X2" X3 +2
al J(m, n, q)) =4X2" X3 X543
This explicit definition shows that « is
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effectively computable. To find a™(x), find
#u,r such that x=4u+» with 0=r 4.
The

instruction o~ '(x)

value of r indicates which kind of
is, and from # we can
effectively find the particular instruction.

Hence o' is also effectively computable.
Corollary 1.

& is effectively denumerable,
Proof. The finite union of denumerable sets
is denumerable.

The cardinal number of the set of computable
partial functions is .

The following theorem is then well known
(see Cutland).

Theorem 2 (The s-m-» theorem).

Suppose that f(x,y) is computable function.

There is a total computable function &(x)
such that

(9= ¢ ().

[I. Undecidable problems in
computability

Definition 3.

For each ¢=N, and n=1;

(a) ¢=the n-ary function computed by P,

(b) W =domain of ¢={(x,, -, %) ¢ P, (%,
%) Lt EP=range of ¢ ¢P, WP and
E® are denoted by &, W, and E,.

Theorem 3.

‘=W, (or, equivalently, ‘¢.(x) is defined’,
or ‘P,(x)|’) is undecidable.

Proof. The characteristic function f of this

problem is given by
f(x):{l if x=W,
0 if x&W.,.

Suppose that f is computable; we shall obtain
a contradiction. Specifically, we make a diag-
onal construction of a computable function g
such that Dom(g)#W.(=Dom(s,)) for every
x;

undecidable problem 3

This is obviously contradictory.
The diagonal motto tells us to ensure that

Dom(g) differs from W, at x; so we aim to

make
r=Dom(g) v EW ..
Let us define g, then, by
2(1) = {o if %W, (ioe. if f(x)=0)
undefined if x<=W, (l.e. if f(x)=1)
Since f is computable, then so is g (by

Church’s thesis); So we have our contradiction.

Therefore, we can conclude that f is not
computable, and so the problem ‘x&=W,' is
undecidable.

The following theorems are well known (see
Cutland).

Theorem 4. (the Halting problem)

The problem ‘¢,(y) is defined’(or, equivalen-
tly ‘P.(y) or ‘y=W,') is undecidable.

Theorem 5.

Let ¢ be any number. The following problems
are undecidable.
(a) (the Input or Acceptance problem) ‘ce
W . (equivalently, ‘P.(c)]’ or c=Dom(¢,)’ ).
(b) (the Output or Printing problem) ‘¢ E.’
(equivalently, cc=Ran(g.)’).

7. Main Results

Theorem 6.

The cardinality of the set of all partial
functions from N to N is at least N.

Proof. Let F={flf: N>N} and G={f|f:
N—-{0,1}}.

Since Card G:==2"=8, Card F=W\.

Corollary 2

The set of all non computable functions from
N to N is nondenumerable.
Proof. Suppose that the set of all non-com-

putable function is denumerable. Since the
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set of all computable functions is denum-
erable and the union of two denumerable
sets is denumerable, this is a contradiction.
Therefore, the set of all noncomputable
functions is nondenumerable. That is, it
shows that there are more undicidable
problems that decidable problems.
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