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Equivalence of dipole sheet and vortex sheet both of
variable strength density*

Lee, Dong-Kee
Dept. of Naval Architecture and Ocean Engineering

<Abstract>

The equivalence of dipole sheet and vortex sheet is considered in this paper. The velocity
induced by dipoles distributed on an open surface is shown, by the use of vector differentiation
identities, to be superposition of velocities induced by a large number of ring vortices placed on
the surface. This expression is then changed to the sum of two terms; one a line integral along the
boundary of the open surface and the other a surface integral on the surface, both integrals
carrying the implication of velocity induced by vorticity. The derivation of this expression is
through the analysis of dipole strength variation across the cells of grid which covers the open
surface. An alternative derivation of equivalence through pure mathematical manipulation is also
presented.
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Notations

x,y,z ;  aCartesian coordinate system
i,j,k ;  the unit vectors in the direction of x, y and z, respectively

u ;  dipole strength density
n ;  the dipole axis, a unit vector normal to S
hY ;  an open surface on which dipole is distributed, the area of S
Sp ;  projection of S to the x-y plane, the area of Sp
C ;  the boundary of S, positively oriented with respect to n
X ;  aposition vector
u ;  the velocity induced by the dipole sheet or by the equivalent vortex sheet
s ;  the distance between a field point (x, y, z) and a point (x/, ', zY on S
v ;  the vector differential operator, |3‘9; + 1-57; + k—é":'z-
v’ ;  the vector differential operator, i% + jj?)—/ + k-t%
N ; the number of cellson S
Xok ;  the position vector of the center of the k-th cell on §
density is variable, however, derivation of the
useful expression for the velocity which bears
1. Introduction implication of being related to the equivalent
sheet vortex is not so straightforward. Hess®
It is frequently stated? that a finite open dealt with this problem by showing that the
surface on which dipole is distributed with its expression for the velocity induced by a
axis everywhere normal to the surface is vortex of variable strength along the arc of a
equivalent to a sheet vortex. In the case of a closed curve together with the sheet vortex
uniform dipole strength density, it can be on the surface within the closed curve can be
shown without much complexity, as can be manipulated to become identical to the
found in a standard text®, that the equivalent expression which represents the velocity
sheet vortex is in fact a ring vortex lying on induced by the dipole sheet. As a way of
the edge of the surface, the interior vorticity proving the equivalence, this seems not
being cancelled out. If the dipole strength satisfactory because of lack of interconnection
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between the physics of the problem and the unit vector n, normal to S and specified by
significance of mathematical expressions.
In this paper, the derivation is attempted,

1

d, a ag 2 dg 25

therefore, based on the analysis of velocity n=(k- i% i jﬁ) At (% o+ (ﬁ T

induced by a small cell, a large number of )]
which the surface is divided into, as is usual

with the proving procedure for the problem C, the boundary of S, is taken to be positively

of the similar sort. In addition, derivation by oriented with respect to the vector n. The

a formal manipulation which is more concise coordinate system is so chosen that Sp which

than Hess' is presented as an alternative. is the projection of S onto the x-y plane has

no overlapping part, though overlapping

creates no difference to the final results, and

2. Ring vortex system equivalent to that the direction of the z-axis should not be

the dipole sheet contradictory to eq.(2).

Suppose that the projected area Sp is

Suppose that dipole of continuously divided into a large number of rectangular

differentiable variable strength density interior cells and triangular boundary cells by

grid of straight lines parallel to x- and y- axis.

denoted by p is distributed on an open Let this grid be projected back to the surface

surface § specified by S. A cell so formed on S will have generally
_ ) irregular shape and the following relation of
z=g(x,y) area with the cell on Sp
1 3
dg 2 0g 272 27
AS=[1+(=—=) + (==)'] ASp+O(ASp)
z ax dy 3)

The velocity induced at a point P(x) by this

v dipole sheet is then given® by

/ = . .
Ay, |
A 1 1
= vy Ay eyl u(x) =- e VIS w(x"(x")V' =dS(x')

Ay
I 5 L s @
=_ 1 un'vV' —
. . e 4n 2 V,‘Isk §
Fig.1 The open surface and its projection P2
covered by grid where V'=i-%— + j 9 4 k-
ox’ ay’ dz’ 1
2 2 2.2
s=[x-x") + (¥-y') +(z-2')]
Let the axis of dipole, being everywhere S, ; the k-th cell on S

normal to the surface, be represented by the N : the number of cells on S.
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As upn is invariant with respect to the

operator V in the above integrals, the
integrand can be changed as the following

V BNV 1=+ Vx (un x V')
&)

Then eq.(4) becomes
1 o 1
u(x) =4 > Vx(j pn x V') dS ©)
et S

The dipole strength density function u on a
cell may be series expanded with respect to
its value at any point within the cell, for
instance the cell center - the point which
projects to the centroid of the corresponding
cell on Sp. Specifically

2
() = p(xe) + (x = X)) (Ve + O(x - xc )
where x. ; the position vector of the

Q)

cell center

Inserting this expansion into eq.(6), we have
.
- +(x'-xg )
-1 3 V"{-L; [(xe ) + (X' % )
=
(V i)y + .. Inx V'SL} ds

1 '
Sax ]+

IM=

®
where C, ; the positively oriented closed
contour of the k - th cell boundary.

o] 57
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This expression shows that the velocity field
associated with a dipole sheet of variable
strength density is the same as that associated
with large number of ring vortices distributed
gaplessly on the sheet, the strength of a ring
vortex being identical to the local strength
density of the dipole sheet.

3. The surface integral representation
of the effect of the interior ring vortices

Although eq.(8) shows the equivalence, as
for velocity inducing property, between the
dipole sheet and the ring vortex sheet, the
expression as it stands is not convenient for
practical use. The convenience can be
enhanced by segregating the contributions
from the boundary of S and those from the
inner mesh as follows. Supposing that the
grid on S has m strips of cells in the x-
direction and dropping the error term, we
have, instead of eq.(8), the expression

s

2

A

€1

u(x)=4l—n fc ;t(x')VsLxdx‘+2( i

=1

A 1 &
My L Vexdy'- 3 ——A
. 2 o By
'y $ e Ar "J.[

C ..
)

vl ax ©®)

with the understanding that #.~0 and that A
usy and A ey are defined respectively by

AMS/J‘ = (l‘)xco - (”)ch s
Aucjj = (”')XcQ - (”)xc()

Refer to Fig.2B for the notations appearing in
the above three equations. It is to be noted
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Fig.2A Gridon §

that only two sub-summations with their
member line integrals evaluated along the
respective directed line segments shown in
the magnified view of Fig.2B are necessary
to complete the closed contour integration for
each cell on S.

Now consider the interior cells, i.e, cells
clear from the boundary. For these cells,

By = (T + K )1 B+ OB,
(12)
. dg 2
Bty = (Tiigeo i+ (), ] Ax + O(A)
(13)

as the displacement vectors are given
respectively by

)xeo 1 Ay + OY7),

98
Xco = Xer = [j +k(5
(14)

J 2
Xeo - Xeo = [i+k(-£—)xd,]Ax+0(A.x’)
(15)

Hence, if the number of these cells is denoted
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r: a part of C

Neg

N,

X0

»

C

ch

cif )

%

Csij

\

a part of C

Fig.2B The i-th vortex strip

by Nc, remembering that one term each from
the sub-summations corresponds to one of
these cells, we have the following expression
for the second term in eq.(9),

ng

1 '
EA,us,.j LWVs—x dx' -

P

o

] m
5

Lo
V-S,-xdx
=L % (V) i +RCE Y, 1470, x
475 - u)xck ay xck N xd'

. Jg . dg
[i + k(;x— ), JAx- (V) li+ k(E b, ]
Ax(V% X, x i+ k(-g—f- W, 187} + os’ 1 v

(16)
1
where (VSL )";k =V[x-xu)(x-x5)]1"2

It is to be noted that neglect of the boundary
cells brings in the error of order

1 S
(IVt)max (V5 Dimax Ax x length of C = O(JT)
a7



which is smaller than the error creeping in by
the use of eq.(12) and eq.(13) together with
the line integrals approximated by the
corresponding terms in eq.(16) for the
interior cells. However these error bounds do
not exceed the error bound specified in eq.
(8).

The right-hand side of eq.(16) can be
changed to an integral as follows

L )
I [ Ve (VGG G k—g—,)

-[Vy(|+k-—)](.l ,)}dSp

:J; Lvs—x [V',ux(k-i;;j - j;;)]dSp
1 |-

=.L.‘_n_J'SVS—x(Vu><n)dS (18)

in which use is made of eq.(2) and eq.(3).
Inserting this result back into eq.(9) and
remembering that the sign changes if s is

operated by V' instead of V7, we obtain finally

IV—x

19)

u(x)=- —§ y(x)V' x dx' +

[n(x’) x V'u(x)] dS(x).

4. Derivation by formal manipulation

The final result eq.(9) can also be derived
from eq.(4) formally through the use of
vector identities and the Stokes' theorem as
follows,

)=VInV' & - 0 Vi)

= n-VV'sﬁ+nx(VxV'S£)-

.1
V(un-v T

Vu Vu
n-V—s— -nx(sz—)
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&7l

- M Viu
=nVVi & - V——+

nx(nyV';!—-)

u

: Vip
=n-VV E— - V-s— . (20)

The first term of the right-hand side can be
changed to the other form as shown below

nVY B Uxmx Vi) n(v-vie)

Vx(nx V‘T?—)+ n(Viu- V’-:—)_
(21

Then eq.(20) becomes
v 1, H , 1
V(un-v E—)—-Vx(nxV'?-)+n(V/,¢-Vs—)
V'
-0 v=E - vxmxv iy,

vl (nx v, (22)

Inserting this relation into eq.(4), we have

u(x) = -Z';L[-Vx(nxv'sﬁ)wslx

(n x V'w)] dS =‘—V><J' n xV’ ds

4
1
4nJ. §c
vy 1 1 ]
s— dx +E; ISVs—x(n xV'u) ds .
(23)

V‘—x(nxVy)dS TVx

That is

u(x)—- - iy(x)V' x dx' +

J' V'-—-x

[n(x') x V'u(x)] dS(x) (24)

which agrees with eq.(19).
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S. Interpretation of the surface
integral

The second term of the right-hand side of
€q.(19) still means the velocity induced by
sheet vortex of variable strength. To show
this, let us construct a curvilinear coordinate

system (&,1), lying on S, taking the &-axis
along the line y=constant and the n-axis
everywhere orthogonal to this line, positive
in the direction of increasing u. With this
coordinate system, since u is independent of

&and Vu is a vector locally parallel to the -
axis

du

hydn ¢

where h, ; the scale factor for the
M coordinate

e, ;a unit vector in the direction
of the E-axis

nxvVu=

p =const.

s

h; ; the scale factor for the E-axis

Fig.3 The orthogonal curvilinear coordinates
Therefore
41_:5 LV’:—x (0 x V') dS
-L vl xhj—Zn e hhdidn  (26)

_fde 1 1
> (415 IV’S x e hdE)dn
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m‘m p =const.

As the inner integral represents the velocity
induced by a sheet vortex strip between two

neighbouring y=const. curves, this integral
shows the velocity induced by the sheet
vortex within S,
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