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<Abstract>

This paper considers a multi-stage flow shop scheduling problem with lot streaming
allowed where makespan is the performance measure. Lot streaming is the process of
splitting a job into sublots so as to make the job process accelerated. Each sublot of
the job is initiated with an individual setup at each stage where the batch setup time
is independent of sublot size and non-separable from processing times. This study
characterizes the optimal solution single job scheduling problem in a two-stage flow

shop problem. Also, a heuristic procedure is introduced in a wmulti-stage flow shop
problem.
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1. Introduction

This paper consider a multi-stage flow shop scheduling problem with lot streaming
allowed where makespan is the performance measure. Lot streaming is the process of
splitting a job into sublots so that the sublots are processed sequentially but treated as
individual jobs so as to make the job process accelerated. Each sublot of the job is
initiated with an individual setup at each stage where the batch setup time is
independent of sublot size and non-separable from processing times. It is assumed in
the problem that the whole job is composed of a large number of items so as to be
treated as to be infinitely devisable. The analysis of the infinitely divisible case is
expected to provide some of the general insights of the solution properties for many
application variations of the problem.

In many practical situations, job processing times are greatly dependent on the way
of job batching or job splitting. For example, consider a manufacturing facility with a
queue of several items that are waiting for processing. The waiting jobs may need be
grouped intoe appropriately sized batches due to a work configuration at the facility.
On the other hand, a lot of items may be required to split into smaller batches by a
work flow management policy. Such batching decisions can incur a significant influence
on time related performance measures, such as flow times, makespan, and due date
performance.

In recent years, lot streaming has received greater attention with the growing
practical concern about manufacturing lead times. Nevertheless, there have been few
formal studies of lot streaming in the research literature. Szendrovits[7] has analyzed a
makespan problem in a flow shop where one job composed of equally-sized sublots,
and no machine idle times were permitted once processing began. Potts and Baker[5]
have considered the makespan measure for a flow shop schedule where lot streaming
was allowed. They have shown that it is optimal for one-job model to use the same
sublot size all machines, and proposed a hewristic solution procedure. Baker and
Pykell] have presented an algorithm for solving a two-sublot problem with respect to
the makespan measure, and examined several heuristic approaches to a problem with
more than two sublots involved. Kropp and Smunt[3] have considered the lot splitting
policies in a multi-process flow shop environment with the objective of minimizing
either mean flow time or makespan.

It is assumed in our study that items in batch are available individually for
processing at a machine only after the completion of the whole batch production run
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on its preceding machine. This situation is referred to Santos and Magazinel[6] as the
case of batch auailability (rather than item auailability) because no items in sublot are
available until the entire sublot is completed.

The objective of this paper is to find a schedule which minimizes the makespan of all
the sublots with respect to the batch availability. This objective can contribute to minimize
work-in—process inventory, which is significant in a work flow management where demand
and due dates can be manipulated, and can also contribute to item delivery lead time
shortening so as to reduce the level of safety stocks required by downstream customers.

2. Problem Description

This paper considers the lot streaming scheduling for one job in a multi-stage flow
shop with the objective of minimizing makespan under measuring scheme of batch
availability. The makespan of a lot is the period from starting the first operation on
the first item of the lot until the whole lot is processed in the production system.

For a single job with lot streaming model, let & denote the processing time of the job at
machine { ({ = 1, 2, ... , m). And let s; denote the batch setup time for a sublot at machine
i, which is independent of the sublot sizes and non-separable from the processing times. To
accelerate the progress of the job, its work can be split into sublots, where % (G = 1, 2, ...,
n) represents the proportions the work assigned to the fh sublot and n = 2. Moreover,
these proportions are assumed to be identical for all machines.

The basic lot streaming model involves a single job and sequence of machines at
which the single-job operations are performed. Figure 1 depicts the model with two
machines having the processing times of 10 and 8, and having the batch preparation
times of 2 and 3, respectively. If the job is produced without its lot splitting and so
x1=1, its makespan will be 23 time units. However, if the lot is split into two egual
sublots such as x1=1/2 and x2=1/2, the makespan of the lot is reduced to 21 time units.

Schedule 1 : x1=1

1 10 |
2 8 |
0 2 12 15 23
Schedule 2 : x1=1/2, x2=1/2
1 5 5 |
2 4
0 2 7 9 10 14 17 21

Figure 1. Two schedules for a two-machine flow shop.
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This paper considers the identically proportional sublot size x; as a continuous
variable, despite of dealing with discrete items, so that the total item quantity is
treated as being homogeneous and divisible in any proportion with the (given) number
of sublots n. This is because similar analysis results can be derived even if x/'s are
restricted to integer. The solution in the integer case may look quite different,
especially in items of the number of sublots produced.

In the aforementioned references, n was implicitly assumed given. In practice,
however, the size of n is dependent on the work process control system for tracing
sublots in the shop. It may also be constrained by the number of item carries on the
shop floor, the design of processing equipment, the packaging requirements of vendors
or the need to trace individual sublots for subsequent field service.

A network representation of the problem is given in Figure 2. The figure shows an
activity-on-node diagram with node (i, /) representing the processing of sublot j on
machine {, which takes time s; + £ Xx;. The makespan corresponding to the longest path
in the network, but in contrast to the usual critical path model, this one has
variable-length activity times because sublot sizes are decision variables. Thus, the
problem of minimizing the makespan involves allocating work to sublots to minimize
the length of the critical path in the network.

1, D — (1, 2) - C — 1, n
! S I
2, - 2, 2) - C. - 2, n
4 ) l
! 3 NS
(m, 1) — (m 2) — . - (m, n

Figure 2. Network representation of a lot streaming problem.

The timing of sublot j on machine i is constructed by two events: the completion of
sublot j on the previous machine (machine i-1) and the completion of the previous
sublot (sublot j~1) on machine i. The later of the these two times determines when
sublot j starts and when it is completed on machine {. Let Cq j denote the completion
time of sublot j on machine 1.

Then completion times can be determined as small as possible, subject to the
following constraints ;
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a) machine capacity constraints, Cy 5 = Cu jn + (s + & x)
b) production constraints, Cq 5 = Cuu, jy + (si + & X))

c) the initialization constraints, Cu, 1n = s1 + & x1

That is,
Cip=max { Cgjn, Cot, p Y + (si + i x), 1<i<m 1 <j<n

where Cq o) = 0 and Cep, ) = 0. The objective is to schedule the sublots in such
way that the entire job is completed as early as possible. Thus, the objective is to
minimize C¢n, , the makespan of the schedule.

3. A Two-Machine Problem

This section wants to characterize the optimal solution of single job scheduling
problem in a two-machine flow shop where the batch setup times are additionally
incorporated for each sublot and the makespan is to be minimized under the measuring
scheme of batch availability. '

In the case m=2, the makespan of the schedule can be viewed as the solution to the
critical path problem in the network representation. To develop an expression for the
network’s longest path, the following notation is introduced as :

X 0= X+ Xsl T ..t Xk,
where X¢, © = 0 for j > k. In other words, Xy » represents the sum of cumulative

proportional sizes from sublot j to sublot k.
Let M denote the makespan of the schedule. Then M is the longest path in the

network. For any sublot j (1 £j <n), the makespan must be at least as large as the
sum of '

(a) the processing time of sublots 1 through j on machine 1 and
(b) the processing time of sublot j through n on machine 2.

It can be expressed mathematically as
M22jsi+uaXgprhi+*)se+6Xom, 1<j<n

Therefore, the makespan can be determined as
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M=max; {jsi+tXgp+ j+l) s+ t2 Xy, m }

Let h denote an index j with which the maximum is attained. Then sublot A is
called critical sublot in this case.

Lemma 1.

I (n-1) = min { &/s1, ti/s2 }, then the makespan of the case with n sublots is
larger than that of the no-splitting case.

Proof. Let M; denote the makespan of no-splitting case. Then
M = 81 + t1+ S2 + b2

For the case with n sublots, the makespan M, must satisfy the following two
relations:

My 2nsi+t+ Se+taxn >s1+ s+ 1) st 2 My
and

M, Zs1+hxi+ns2+t >s1+u+rse+0m1lls = M

Therefore, M, > M under the above conditions.
Thus, the proof is completed.

This implies that the upper bound of n can be calculated when the number of sublot

is also a decision variable for the makespan problem where the batch setup times are
considered.

Lemma 2.

In the optimal solution for the case m = 2, all sublots are critical.

The proof can be easily done by a similar way to that in Potts and Baker{7]. As the
results of Lemma 2, the following relation is obtained as

sittlxa=S2+tx forj=223 ...n

And the additional conditions, 21 x = 1, are introduced. We can determine the
=
optimal sublot sizes.

Note that the optimal makespan is a convex function according to the number of
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sublots, which is bounded below in Lemma 2. Thus, we can also determine the optimal
number of sublots and each sublot size.

Numerical Example 1.

Consider a two-stage flow shop problem where processing times have 5 and 10 time
units, respectively. And setup times have 2 and 1 time units. For the results of
Lemma 1, the upper bound of n can be calculated as

n-1) < min{t/s, ti/s2 } = 5.

Then, the results of the example are given by Table 1.

Table 1. The results of example 1.

512:l)ots size of sublots (x;) makespan S::égje
1 )] 18
2 (0.4, 0.6) 16 *
3 0.26, 0.31, 0.43) 16.27
4 (0.21, 0.23, 0.25, 0.31) 17.07
5 0.2, 0.2, 02, 0.2, 0.2) 18

4. Heuristic Procedures

This section considers an m-stage rn-sublot problem with lot streaming allowed.
The upper bound of n can be calculated when the number of sublot is also a decision
variale foe the makespan problem where the batch setup times are considered. In a
simlar way to that of the two~machine case the following property is obtained.

Lemma 3.

-1 =2 mni:{(Tq, m - & / s }, then the makespan of the case of n
sublots is larger than that of the no-splitting case.

Proof. Let M; denote the makespan of the no-splitting case. Then

Mi=Sq m+ Ta m
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For the n sublots case, the makespan M, must be satisfy the following relations for
alli (=1,2 ..,m;

My 2 Sq, v+ To, #p X1 = nsi *+ t+ S, my + Stisl, m Xn
>Sum+ L+rn-1s = M

Therefore, the relation M, > M holds under the above conditions.
Thus, the proof is completed.

In an approach of solving a linear programming, there is no known method of
finding optimal solution to the m-machine n-sublot version of the problem. rather, in
an attempt to devise effective heuristic procedures for the problem, it makes sense to
build on the concepts of solving the two-machine problems. This approach reflects the
lessons of the traditional flow shop literature. In particular, the makespan problem can
be solved efficiently for the case with two machines by using the rsult of Johnson [2],
but no efficient optimization procedure exists for cases with m machines.

Equal-Sublot Heuristic

In order to get some perspective on how well a heuristic procedure might be
expected to perform, a very simple procedure is given in which the work is allocated
equally among the n sublots.

Two-Machine Heuristic

Step 0. Calculate the uppper bound of n.

Step 1. For each machine i, calculate the total processing time (n s; + ).

Step 2. Determine two machines; one has the largest processing time and
the other has the second largest.

Step 3. For selected two machines, solve the two-machine problem and
calculate the makespan,

Numerical Example 2.

Consider a three-stage flow shop problem described as follows ;

machine | 1 2 3
setup time s; 1 3 2
processing time ¢ 5 6 7
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As the results of Lemma 3, the upper bound of n can be calculated as
m-D<mni{(To,m-t/s)=4

Then, according to the heuristic algorithms for the problem, the results of the
example are given by Table 2.

Table 2. The results of example 2.

Equal Heurstic Two-Machine Heuristic
" Xx; makesapn X; makesapn
1 1 24 1 24
2 (1/2, 1/2) 21 (0.54, 0.34) 20.92
3 (1/3, 1/3, 1/3) 22 (043, 0.34, 0.23) 21.76
4 (174, 1/4, 1/4, 1/4) 24 (041, 0.32, 0.20, 0.07) 2354

5. Conclusion

This paper has presented a solution algorithm for a multi-stage lot-streaming
problem with batch setup times required. The solution algorithm provides an easy
method for computing the optimal sublots for the two-machine case, and near optimal
sublots for general case. The calculations required to determin the allocation of the lot
to the sublots can be done readily by hand in simple steps.

The solution algorithm is exploited by use of the concept of a critical sublot based
on a critical path analogy in network theory. It is demonstrated that an optimal
schedule for the two-machine problem must have all critical sublots. Also, a heuristic
procedure is introduced in a multi-stage flow shop problem, it makes sence to build on
the concepts of solving the two-machine problems.

Further research on the lot streaming problem will consider more than on e case,
along with performance measures other than makespan. Another interesting subject will
be a dynamic version of the problem.
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