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A study on Filtering in a Discrete H” Setting
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<Abstract>

The problem of filtering for a discrete time linear system in a discrete H” setting is
derived. The measurement noise and process noise have bounded energies. The case
with known initial conditions is considered. The approach uses basic quadratic game
theory in a discrete domain H™ setting.
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I. Introduction

In this paper, the problem of filtering for a discrete time linear systems in a
discrete H™ setting is considered. When the time at which an estimate is desired
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2 2@ A
coincides with the last measurement time, the problem is called filtering. Here, the
problem of discrete filtering with an H™ performance criterion is considered. The
results can be used to solve the associated smoothing and deconvolution problem.

The Kalman filter approach gives the optimal filter algorithm for estimating the
states of a linear system when the measurement noise and process noise are zero
mean white process with known statistics. The solution to the estimation problem for
a linear dynamic system, subjected to exogenous signals whose statistics are known,
is well understood in the control literature. When there is significant uncertainty in the
power spectral density of the exogenous signals a new measure of performance - the
H” norm - is sometimes useful. Initially introduced by Zames @), it ensures a more
robust design. H™ setting control problem have received considerable attention in the
last decade. The control aspect of H” sense optimization has been studied extensively
by Zames @, Francis and Doyle ), Bryson [y and Stoorvogel . Filtering and
smoothing results in the continuous time domain have been derived by Nagpal and
Khargonekar 5 , with alternative proofs given by Banavar and Speyer . Kim 3 has
derived the solution to the problem of prediction in both a full and reduced order
discrete H” setting with unknown initial conditions. Here, the filtering problem for a
linear discrete time varying system, considered over a finite time interval in a discrete
H” setting is developed. the approach uses basic quadratic game theory in the discrete
time domain, and is similar to the approach used by Banavar ) and Kim 3.

II. Problem statement for discrete filtering in an H~ setting

In this part, the problem of filtering for discrete time linear system is considered.
The measurement noise and process noise are not discrete, white noise vectors, but
rather, they are arbitrary discrete disturbances with bounded energy 1. Only the
Riccati equation is derived completely here. Due to algebraic complexity, the filtering
portion has been derived using a software tool, MATHEMATICA™ , and the result
presented here.

xG+D = AGIxG) + BEw((G) (1
with linear measurement m(j) = C(G)x(j) + v(j) (2)

where w(j) and v{j) have bounded energies. Define a discrete vector, z(j), which is
a linear combination of the states,

z(j) = Lx() (3

where L is selection matrix. Our goal is to estimate z(j) by minimizing the given
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Filtering in a Discrete H™ Setting 3

performance index. The measure of performance is in the form of disturbance
attenuation function and can be written as

N-1 R
ZO lz(G) — 2%
- (4)

N
i2=:0[ lw (DI +IvG +DIIR]

sup J=

where, llzG) - z()I% is defined as [2() - z(3)] "U[ z(j)—2z(j)] . The error is
defined as e(j) = z() - z(j)

where, () = Lx(j), 2(i) = L x(j) and e(j) = Lix(}) - ()1

The objective is to ensure that the maximum of the ratio of the energy in the error
to the energy in the disturbance is bounded by a positive number 7. It will be seen

that this cannot be achieved for arbitrarily small value of . The main result is
presented in the form of a theorem 1 stated as follows :

Theorem 1 . Let the initial condition be known (without lose of generality, it is
assumed that x(0) = 0.)

(1) There exists an estimator such that J < 7 if and only if there exists a positive
symmetric matrix P(j) for all j=0, 1, 2, .., N-1 which satisfy

PG+1)= duPG I=aPG)] T m BB e (5)

where the initial condition is assumed as P{0) = 0 and

0=1 O THBTCT RTICB] 1 oo 6)
Bt =A—BOBTCT R T A oo )
$u=7U~A"CT R'CA+ACT R'CBOBCT R™'CA oo (8)

(ii) Moreover, if (i) is satisfied, one estimator for which J < 7 is given as follows

RG ALY 25 ARG wooreeoeeseroesssseeeessosseeesssissee s isss s s (9)
RGH14AD =G+ FKG DI mG+H1) —CXG)T oo (10)

where the initial condition is assumed as x(0) = 0, and

KG+D=PGHD) CT R T s oo e a1
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Note that the equation (11) can be described in the same format as the standard
discrete Kalman filter gain when 7y =00,

Prodf :

The performance measure (4) in terms of a game formulation can be shown to be
equivalent to

minmax] =4 3 Ix() - RGO~ 5. 2 2
L D =R 2 (I HivG + D)

I
=]

.......................................................................................................................................................... (12)
Since v(j+1) = m(+1) - CG+Dx(+1) from (2), e}) = LIx(G) - x(j)] and
U=L"0L, equation (12) can be defined Hamiltonian as follows :

1 4y NS! A2 . 2
H= 5 2 YIx ()= RGNE - Z (W@l +IvG +DI%-)

+2 T(]+1)7’[ Ax(f)+Bw(/)]
.......................................................................................................................................................... (13)

where A(j+1)y is a Lagrangian multiplier. Optimization for the worst input, for
w(j) gives :

oH

oW |W=W i (14)
Then we get

w'(i)=6BT[ AG+D+CT R mG+1D) —CGHDARG]T o (15)
The Lagrangian multiplier propagates backwards according the dynamics :

v  _0H

O = aGy ;

= U{—x(D+AC" R™[ mG+D—-CG+DAx()—CG +DBw()]
“+yATAGHD)
............................................................................................................................................................... (16)

or alternatively as
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Filtering in a Discrete H™ Setting 5

A'G) = %U(x(j)—%)HATCT R m(+1)~CG+DAxG) —CG+1)Bw()]

+ AT G+
........................................................................................................................................................ an
By substitution of the value of w(j) and (15) into (17) and some simplification,
we can get equation (18).

/1*(])= ¢21X(])+¢22/i*(] +1)+ w‘z .......................................................................................... (18)
where
n="JU-ATC"R'CA+ATCT RT'CBBTCTRT'CA a9
B = AT = ATCT RTIOBOIBT oot (20)
U=~ UR(+[ ATCTRT-ATCTRVCBBCT R m() @D
Also when W’ (j) is applied, the dynamics for x(j+1) are given as
x(j+1) =Ax(§)+BBT[ 2 (]+1)+cT R (m(+1) - C(J+1)Ax(1))]
= (A—B6B"CT R 'CA)x(j) +BOB™A*(j +1) +BBTCT R 'm(j +1)
.......................................................................................................................................................... (22)
or
XG+D) = Bux() FBuA G L) F L et (23)
where
ey s 27 R O i €. N (24)
¢12=B6BT .................................................................................................................................. (25)
Ty =BOBTCT R 7TMG A1) oottt e (26)

The equation (18) and (23) can be written as two point boundary value problem :

] =[5 L] ] ) o

with boundary condition as x(0) = 0 and A(N)= 0
Let us define as
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K1) = XKp() FPGIATG) e (28)

in order to express x from (27) in terms of A. Then, (18) can be described as

A =da[ x,()FPHDA D] +d0A"GHD F Ty e (29)
or

G =1 I=¢uPD] [ bauxo(D)+BpA GHD 5] e (30)
Therefore,

G+HDAPGE+HDAG+HD = 3%,6) + 6 PGT =8 PG) 7 duix,(3) +82A G+ 1) + ¥]
+épA" G+ + ¥

which can be factored as

%,(i +1) — ¢11%,() —puPGYI = ¢ P(3)) "' dnxp(i) — pnPGII — $nP()) ' &,
-+ PG+D =PI —85P(G)) 'dn—¢i] G+ = 0

From (32) we get the vector expression X,(j+1) and the discrete matrix Riccati

equation for the filtering cases as :

%,(j +1) = $11%,() + PG I — ¢ P () "', (i) + P GHIL — ¢y P(GY) 7' W, + &

.......................................................................................................................................................... (33)
PG +1) =g yP G I = GnP()) T 1 =812 oo (34)
s O T (35)
and @y, Pa, P12 are given as (24), (19), and (25) respectively.
To prove part (ii), let us rewrite equation (33) as follows :

Xp(j +1)= ¢11Xp(j) +¢11P(])(I—¢ZIP(]))~1[ ¢21Xp(j) + @'2] + ZP] .................... (36)

Now, substituting the values of ¢y, ¢9, ¥ and ¥, into (36) we obtain
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Filtering in a Discrete H™ Setting 7

%G +1) = $ux,()+uPGA— g PGY T —17—U—ATcT R7'cA
+ATCT R7'CBEBTCT R™'CAX,() - L URG)
+(ATCT R'=ATCT R7'CBABTCT R Hm( +1)]
+BOB™CT R 'm(j+1)

The result of simplification and factorization of (37) is shown as follows :

x,(i+1)= (A-BBTCT R7'CAN,(5) +¢uPGYT— PG HUL 509 — ()]
+ (ATCT R7'[ m(j+1)—CAx,())] —ATCT R™'cBmB'CT R™
[ m(G+1)—CAx,(i)] }4+B6B™CT R™'m(j+1)

(38)
or alternatively as

xp(i+1)= Ax(i) +BBTCT R7'CA) m(+1)—CAx,())] +¢PG)(1—uP()) ™!

(UL %p=%@)] +ATCT R7'[ m(+1) —CAx,(i)]
—ATCT R7'cBMBTCT R m(j+1) —CAx,(3)] }

Solving the remaining min-max optimization problem with respect to m and X as

K

suggested in [6], we get the optimal values, m" and X as

m* (G +1)=CAx,(i) and Xp()= X () oo (40)
Letting X (j+1)=Ax,(j) and % (3+D=x,(G+1), (39 can be written as

G+D)= X GHD+L guPOA—4xPG) (AT-ATCT RTCBBCT R )
+B6B™ CT R7'[ m(i+1)—CA X" (i)

or alternatively as

X G+D= X G+ ¢uPGXT—42P() ' ¢11+BEB'] (42)
C"RI mG+D-CAX (D] s

where ¢y, and ¢y are defined in (24) and (19), respectively.

This is similar to the Kalman filter as we can see by defining
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K1) = [ ¢uPGU=¢uP()) '$H+BB™] CT R™ oo (43)
or

KGH1D) = PG AH1CT R T ottt (44)
Therefore,

RG ALY = ARG oo et e (45)
G+ +1D=xG+1)+KG+DL mG+HD) —CAX(] o (46)

The form of (45) and (46) is obviously similar to the Kalman filter. The gain
expressed in (47) is also similar to the Kalman gain, but this fact is less obvious
because the Kalman gain is usually expressed in the form :

KG+D=PG+15CT R+ACPGHIUNCTT Tl o (47)
Therefore, we present the following lemma.

Lemma 1 :
The discrete Kalman filter gain,

KG+1)=PG+1)CTT R '+CPG+1)CT] * can be described as
KG A1) = PG ADCT R T oo (48)

Proof :
The Kalman filter gain in its standard discrete form can be express as

KGHD)=PG+U)CTT RHACPGHINCTT i (49)

or

KG+1) =PG+INCT R —=PG+1H)CT R +PG+1)CT( R+CPG+1H)CH 'R R™
=P +1H)CT R —PG+IDCTT CPG+1KCT+ RT ~'cPG+1ic” R™
=P(j+15)CT R~ =K (G +1)CPG +1j))CT R~
=[ I-KG+1C] PG+1i)CT R™

But, P(+1) = [I = K(+1) C] PGHL) woreerrmverreeescsmemssasssesioossasssssmssesssecesmmoeessessacssoee (50)
Therefore, K(j+1)=P(G+1)C" = (51)

Since where y =9, P(j+1) is the same as the Kalman error covariance matrix, the
gains are identical when no restrictions are placed on the maximum value of ] as
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Filtering in a Discrete H” Setting 9

indicated by (4). Although when y= o°, the result is identical to the Kalman filter,
the interpretation is not the same, i.e, w and v are not white noise. Furthermore, R

o
and @Q are scaling matrices and not covariance matrices.

II. Simulation

Given the discrete linear system of the form by the equations (1) and (2) with the
following information :

—0.11 —=0.70 1.00 0 100
A=l —1.00 0.30 1.00 ] , B=l 0] , C=[ 01 0}
1.30 —1.30 —0.50 1 001/

The covariance of the noise term w and v are Q and R, respectively, with the
following values (Q an R known as weighing matrices).

SO W
O w o
b 5 W amn ¥ can

The initial state and its statistical information are assumed to be

2
-3

4.0 600
—-6.0] , var{X(O)}=l 090
—-2.5 005

needed to compare the Kalman filter results with the H” filter.

x(0)= , Ex(0)}= so that they are

Figure 1 shows that a comparison of the actual state x3 and an estimate of the
state x3 using the H” filtering algorithm. Reference g shows the results of
considering this example with Kalman filter. This can be compared with our results.
In figure 1 we used the white noise for measurement noise and got a very nice
estimate of xs , although a Kalman filter designed for white noise would be better.
Figure 2 is the same as figure 1 except that the white noise is replaced with bounded
non white noise. This figure demonstrates that even in unusual noise circumstances
we can still get a very nice estimate by using the above mentioned H” filter
algorithm. Since our technique does not require any assumption other than that the
noise should be bounded, it is sometimes more practical, although the results are not
always better than that of the Kalman filter. Finally, figure 3 shows that if one
violates the zero mean requirement of the white noise process the results of H™ filter
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is better than that of Kalman filter. In the simulation, the value of 7 = 7.3 was used.

IV. Conclusion

We solved the problems of filtering for a discrete time linear system in a discrete H
oo setting. The measurement noise and process noise were not necessarily white, but
rather bounded energy disturbances. The case with known initial conditions was
considered. the approach used basic quadratic game theory in a discrete time domain
H” setting. The results in figure 1, 2 and 3 support the theoretical development. The
performance of the H” setting algorithms depend on the value of 7. When 7is equal
to o, the results of Kalman filter and H" filter are the same. Due to a matrix
singularity in the Riccati equation, sometimes the problem does not have a solution for
a small value of 7.
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