ON BI-IDEAL AND QUASI-IDEAL OF Γ-SEMIGROUP

DONGSOO LEE AND CHULHWAN PARK

ABSTRACT. In this paper we shall introduce the concept of a bi-ideal(quasi-ideal) in S where (S,Γ) is a Γ -semigroup and study some properties between S and M where M is the left operator semigroup of Γ -semigroup (S,Γ) . We also give a characterization of regular Γ -semigroup

1. Introduction

In his pioneering paper [5], M.K.Sen and N.K.Saha introduced the concepts of a Γ -semigroups and many authors have studied the theory of Γ -semigroups ([1,2,5]). D.K.Dutta and N.C. Adhikari [1] studied properties between Γ -semigroup and operator semigroup of Γ -semigroup. In this paper, bi-ideal and quasi-ideal of Γ -semigroup S are defined, and their relationships with corresponding structure in operator semigroup M of Γ -semigroup are established by similar methods.

Let S and Γ be nonempty sets. S is called a Γ -semigroup if there exists mappings

- (1) $S \times \Gamma \times S \rightarrow S$, written as $(a, \alpha, b) \rightarrow a\alpha\beta$, and
- (2) $\Gamma \times S \times \Gamma \to \Gamma$, written as $(\alpha, a, \beta) \to \alpha a \beta$,

such that $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$, for all $a,b,c \in S$ and $\alpha,\beta \in \Gamma$. We call a Γ -semigroup S both sides if it futher satisfies the identities $\alpha a(\beta b\gamma) = (\alpha a\beta)b\gamma = \alpha(a\beta b)y\gamma$ for all $\alpha,\beta,\gamma \in \Gamma$ and $a,b \in S$.

Key words and phrases. Γ-semigroup.

Throughout this paper we consider only both sided Γ -semigroup denoted by (S, Γ) and call it simply Γ -semigroup.

2. Preliminaries

We recall some notations and definitions ([1,5]). Let (S,Γ) be a Γ -semigroup. For $I,J\subseteq S$, we define $I\Gamma J=\{x\alpha\beta\mid x\in I,y\in J,\alpha\in\Gamma\}$

Let (S, Γ) be a Γ -semigroup. A nonempty subset I of S is called a left(right) ideal of a S if $S\Gamma I \subseteq I(I\Gamma S \subseteq I)$. If I is both a left and a right ideal then we say that I is two sided ideal or simply an ideal of S. The ideals of Γ are defined analogously.

Let (S, Γ) be a Γ -semigroup. We define a relation ρ on $S \times \Gamma$ as follows: $(x, \alpha)\rho(y, \beta)$ if and only if $x\alpha s = y\beta s$ for all $s \in S$ and $\gamma x\alpha = \gamma y\beta$ for all $\gamma \in \Gamma$. Obviously ρ is an equivalence relation.

Let $M = \{[x, \alpha] : x \in S \text{ and } \alpha \in \Gamma\}$. and denote the equivalence class containing (x, α) by $[x, \alpha]$ We define a multiplication in M by $[x, \alpha][y, \beta] = [x\alpha y, \beta] = [x, \alpha y\beta]$. Then M forms a semigroup, and we call the left operator semigroup of the Γ -semigroup (S, Γ) . Dually we can define the right operator semigroup $N = \{[\alpha, a] : \alpha \in \Gamma \text{ and } a \in S\}$ of the Γ -semigroup (S, Γ) where the multiplication in N is defined by $[\alpha, a][\beta, b] = [\alpha a\beta, b] = [\alpha, a\beta b]$.

The set S is a left M-set and a right N-set under the definitions $[a, \alpha]s = a\alpha s$ and $s[\beta, b] = s\beta b$. Furthermore $([a, \alpha]s)[\beta, b] = [a, \alpha](s[\beta, b])$. So S is (M, N)-biset. Similary Γ is a (N, M)-biset.

For $P \subseteq M(N)$ we define $P^+ = \{x \in S : [x, \alpha] \in P \text{ for all } \alpha \in \Gamma\}, +P = \{\gamma \in A\}$

$$\begin{split} \Gamma \,:\, [x,\gamma] \,\in\, P \quad \text{for all } x \,\in\, S\}, \ (\text{resp.} \quad P^* \,=\, \{x \,\in\, S \,:\, [\alpha,x] \,\in\, P \quad \text{for all } \alpha \,\in\, \Gamma\}, \\ ^*P \,=\, \{\gamma \in \Gamma : [\gamma,x] \in P \quad \text{for all } x \in S\}. \end{split}$$

Similary for $Q\subseteq S(\Gamma)$ we define $Q^{+'}=\{[x,\alpha]\in M:x\alpha s\in Q \text{ for all }s\in S\}$ and $Q^{*'}=\{[\alpha,x]\in N:s\alpha x\in Q \text{ for all }s\in S\}$ (resp. $^{+'}Q=\{[x,\alpha]\in M:\gamma x\alpha\in Q \text{ for all }\gamma\in \Gamma\}$ and $^{*'}Q=\{[\alpha,x]\in N:\alpha x\gamma\in Q \text{ for all }\gamma\in \Gamma\}$.) [1,5]

Definition 1.1 [5]. Let (S,Γ) be a Γ -semigroup, M be the left operator semigroup and N be the right operator semigroup of (S,Γ) . b We say that S has the left unity (right unity) if there exists an element $[e,\delta] \in M([\delta,e] \in N)$ such that $e\delta x = x$ ($x\delta e = x$) for all $x \in S$. Similarly we can define the left unity and right unity of Γ .

Propositin 1.2 [5]. Let (S,Γ) be a Γ -semigroup.

- (1) If $[e, \delta]$ is a left unity of S and a right unity of Γ then $[e, \delta]$ is an identity element of M.
- (2) If $[\delta, e]$ is a left unity of Γ and a right unity of S then $[\delta, e]$ is an identity element of N.

Definition 1.3 [5]. Let (S,Γ) be a Γ -semigroup. (S,Γ) is said to be Γ -semigroup with unities if S has left unity and right unity which are also right unity and left unity of Γ respectively and vice-versa.

2. Results

We first establish some relationships between bi-ideal of S and M.

Definition 2.1 [5]. Let (S,Γ) be a Γ -semigroup. Let B be a nonempty subset of

a Γ -semigroup M. The subset B is called a bi-ideal of M if $B\Gamma M\Gamma B\subseteq B$ Every one-sided ideal is bi-ideal.

Proposition 2.2. Let (S,Γ) be a Γ -semigroup. If A is a bi-ideal of M, then A^+ is a bi-ideal of S. If S has a left unity and B is a bi-ideal of S, $B^{+'}$ is a bi-ideal of M. Proof. Since $A \subseteq M$, we have that $A^+ \subseteq S$. Let $a,b \in A^+$, $\gamma,\mu,\nu \in \Gamma,s \in S$. Then $[a,\gamma],[b,\nu] \in A$. Since A is a bi-ideal of M, $[a,\gamma][s,\mu][b,\nu] \in A$ and so $[a\gamma s\mu b,\nu] \in A$. Hence $a\gamma s\mu b \in A^+$, whence $A^+\Gamma S\Gamma A^+ \subseteq A^+$. Therefore A^+ is a bi-ideal of S.

Assume that S has a left unity $[e, \delta]$ and B is bi-ideal of S. Let $[a, \alpha], [b, \beta] \in B^{+'},$ $[x, \epsilon] \in M$ and $y \in S$. By Definition of $B^{+'}$, we have $a\alpha e \in B$ and $b\beta y \in B$. Since $\delta x \epsilon \in \Gamma$ and B is a bi-ideal, $(a\alpha e)(\delta x \epsilon)(b\beta y) \in B\Gamma B \subseteq B$, and so $[a, \alpha][e\delta x, \epsilon][b, \beta]y \in B$. Hence $B^{+'}MB^{+'} \subseteq B^{+'}$. Therefore $B^{+'}$ is a bi-ideal of M.

Lemma 2.3.

- (1) Let $A, B \subseteq M$. Then $A^+\Gamma B^+ \subseteq (AB)^+$
- (2) Let $A \subseteq S$. Then $MA^{+'} \subseteq (S\Gamma A)^{+'}$ and $A^{+'}M \subseteq (A\Gamma S)^{+'}$

Proof. (a) Let $a \in A^+, b \in B^+$, $\gamma \cdot \mu \in \Gamma$. Then $[a\mu b, \gamma] = [a, \mu][b, \gamma] \in AB$. Hence $a\mu b \in (AB)^+$ and so $A^+\Gamma B^+ \subseteq (AB)^+$

(b) Let $[a,\alpha] \in A^{+'}$, $[b,\beta] \in M$, $s \in S$ Then $a\alpha s \in A$. Whence $[b,\beta][a\alpha]s = [b,\beta]a\alpha s = b\beta(a\alpha s) \in S\Gamma A$. Hence $[b,\beta][a,\alpha] \in (S\Gamma A)^{+'}$ and so $[b,\beta][a,\alpha] \in (S\Gamma A)^{+'}$ Similary, $A^{+'}M \subseteq (A\Gamma S)^{+'}$

Definition 2.4 [5]. Let (S,Γ) be a Γ -semigroup. Let Q be a nonempty subset of a Γ -semigroup M. The subset Q is called a quasi-ideal of M if $Q\Gamma M \cap M\Gamma Q \subseteq Q$.

Every one-sided ideal is a quasi-ideal and every ideal is a quasi-ideal.

Proposition 2.5.

- (1) If A is a quasi-ideal of M, then A^+ is a quasi-ideal of S.
- (2) If B is a quasi-ideal of S, then $B^{+'}$ is a quasi-ideal of M.

Proof. (a) Clearly, $A^+ \subseteq S$ by $A \subseteq M$. Since $M^+ = S$, we have, from Lemma 2.3 (1), that $A^+\Gamma S = A^+\Gamma M^+ \subset (AM)^+$. Similarly, $S\Gamma A^+ \subseteq (MA)^+$, whence $(A^+\Gamma S) \cap (S\Gamma A^+) \subseteq (AM)^+ \cap (MA)^+ = ((AM) \cap (MA))^+ \subseteq A^+$, since A is a quasi-ideal of S. Hence A^+ is a quasi-ideal of S.

(b) $B^{+'} \subseteq S$. By Lemma 2.3 (2), we have that $B^{+'}M \subseteq (B\Gamma S)^{+'}$ and $MB^{+'} \subseteq (S\Gamma B)^{+'}$. Hence $(B^{+'}S) \cap (SB^{+'}) \subseteq (S\Gamma B)^{+'} \cap (S\Gamma B)^{+'} = ((B\Gamma S) \cap (S\Gamma B))^{+'} \subseteq B^{+'}$, since B is a quasi-ideal of S. Therefore $B^{+'}$ is a quasi-ideal of S

We now establish some relationships between semiprime quasi-ideals of S and M.

Definition 2.6. Let (S,Γ) be a Γ -semigroup. Let Q be a nonempty subset of a Γ -semigroup S. A bi-ideal or quasi-ideal P is called semiprime ideal if $x \in S, x\Gamma S\Gamma x \subseteq P$ implies $x \in P$

Proposition 2.7.

- (1) Let P be a semiprime quasi-ideal of M. Then P^+ is a semiprime quasi-ideal of S.
- (2) Let Q be a semiprime quasi-ideal of S. Then $Q^{+'}$ is a semiprime quasi-ideal of M.

Proof. (a) Let P be a semiprime quasi-ideal of M. Then P^+ is a quasi-ideal of $S(\text{Proposition } 2.7\ (1))$. Let $a \in S - P^+$. Then there exists $\alpha \in \Gamma$ such that $[a, \alpha] \notin P$. Since P is semiprime, there exists $[c, \gamma] \in M$ such that $[a, \alpha][c, \gamma][a, \alpha] \notin P$. Then $[a\alpha c\gamma a, \alpha] \notin P$, whence $a\alpha c\gamma a \notin P^+$. Hence $a\Gamma S\Gamma a \subsetneq P^+$. So P^+ is semiprime.

(b) Let Q be a semiprime quasi-ideal of S. Then $Q^{+'}$ is a quasi-ideal of M(Proposition 2.7 (2)).) Let $[a,\alpha] \in M - Q^{+'}$. Then $a\alpha x \notin Q$ for some $x \in S$. Since Q is semiprime, there exists $\gamma, \mu \in \Gamma, s \in S$ such that $(a\alpha x)\gamma s\mu(a\alpha x) \notin Q$. Therefore $[a,\alpha][x\gamma s,\mu][a,\alpha]x \notin Q$. Thus $[a,\alpha][x\gamma s,\mu][a,\alpha] \in Q^{+'}$. So $[a,\alpha]M[a,\alpha] \subsetneq Q^{+'}$. Therefore $Q^{+'}$ is semiprime ideal in S.

Definition 2.8. Let (S,Γ) be a Γ -semigroup. An element a of a Γ -semigroup M is called regular if $a \in a\Gamma M\Gamma a$. A Γ -semigroup M is called regular if every element of M is regular.

Proposition 2.9. A Γ -semigroup S is regular semigroup if and only if every bi-ideal in S is semigrime.

Proof. Let S be a regular Γ -semigroup and B any bi-ideal of S. Suppose $x\Gamma S\Gamma x\subseteq B$ for $x\in S$. Since S is regular, $x\in x\Gamma S\Gamma x\subseteq B$. Therefore B is semiprime ideal. Conversely, assume that every bi-ideal of S is semiprime. Let $a\in S$ and consider $B=a\Gamma S\Gamma a$. Then B is bi-ideal of S. Hence $a\Gamma S\Gamma a$ is semiprime for any $a\in S$. Since $a\Gamma S\Gamma a$ is semiprime, we have $a\in a\Gamma S\Gamma a$. Therefore S is regular Γ -semigroup.

REFERENCES

 D.K.Dutta and N.C. Adhikari, On Netherian Γ-semigroup, Kyungpook Math.J. 36 (1996), 89-95.

- 2. G.L.Booth and N.J.Groenwald, On Prime one-sided ideals, bi-ideals and quasi-ideals of Gamma ring., J.Austral.Math.Soc 53 (1992), 55-63.
- 3. Y.I.Kwon, On characterizations of some classes of Gamma semigroups Γ -semigroups, East Asian Math.J. 14 (1998), 393-997.
- 4. S. Kyuno, Prime ideals in gamma rings, Pacific J. math. 35 (1982), 375-379.
- 5. M.K.Sen and N.K.Saha, On Γ -semigroup I, Bull. Cal.Math.Soc. 78 (1986), 180–186.
- 6. H.J. le Roux, A Note on Prime and semiprime Bi-ideals, Kyungpook Math.J. 35 (1995), 243-247

DEPARTMENT OF MATHEMATICS. UNIVERSITY OF ULSAN, ULSAN, 680-749