Semi T_D -topological spaces

Chae, Gyu-Ihn K.K. Dube* and R.K. Sengar*
Dept. of Mathemactics
(Received April 30, 1985)

(Abstract)

 T_0 and T_1 separation axioms are well-known. T_D -axiom introduced by E.C. Aull and W.J. Thron is one of the significant separation axiom between T_0 and T_1 . The purpose of this note is to introduce the concept of semi T_D -topological spaces and study their properties. We show the semi T_D -axiom is stronger than the semi T_D -axiom but weaker than the semi T_1 -axiom.

Semi T_D -위상 공간에 대하여

채규인, K.K. Dube*·R.K. Sengar* 수 학 과 (1985. 4. 30. 접수)

〈요 약〉

우리는 Semi T_{o} -위상 공간을 도입하여 그 성질을 알아보고 이 위상 공간은 Semi T_{o} -위상 공간과 Semi T_{i} -위상공간 사이에 있음을 보인다.

1. Introduction

In 1963 N. Levine [6] defined a set in a topological space to be semi open if there exists an open set O such that $O \subset A \subset cl(O)$, where cl(O) denotes the closure of O. In [2], authors defined a set to be semi closed iff its complement is semi open. A point p is said to be a semi limit point of a set A if each semi open set containing p contains some points of A other than $p\{4\}$. Semi closure, semi interior, a semi derived set and etc. are known to be defined in manner analogous to the standard concepts of closure, interior and a derived set. By scl (A), sint(A) and sd(A) we shall denote the semi closure, semi interior and the semi derived

set of a set A, respectively. We can also find their definitions in [3].

 T_0 and T_1 separation axioms are well known. T_0 -axiom introduced by E.C. Aull and W.J. Thron[1], is one of the significant separation axiom between T_0 and T_1 . In [7], Maheshwari introduced the semi T_0 and semi T_1 axioms by considering the separation of points through the semi open sets.

The purpose of this note is to introduce the concept of semi T_{ρ} -topological spaces in such a way that the semi T_{ρ} -axiom is an analogue of the T_{ρ} -axiom.

The semi T_D -axiom is found to be stronger than the semi T_0 -axiom but weaker than the semi T_1 -axiom. Further, the semi T_D -axiom is strictly weaker than the T_D -axiom. However,

^{*}Professors in Department of Math, University of Saugar, India.

it may fail to be the T_0 -axiom, in general. The semi T_0 -axiom is profitably used to obtain the following significant result [5].

If X and Y are semi T_p -topological spaces such that both SO(X) and SO(Y) are closed under finite intersections and SO(X) is lattice isomorphic to SO(Y), then X and Y are semi-homeomorphic in the sense of S.G. Crossley [2], where SO(X) and SO(Y) mean the families of all semiopen sets of X and Y, respectively.

Throughout this note, a space means a topological space and iff means if and only if.

II. Semi To-axiom

Definition 2.1. A space X is said to be a T_D -space [1] if for each $x \in X$, the derived set of $\{x\}$ is closed.

Definition 2.2. A space X is said to be semi T_0 [7] if for any $x, y \in X$, $x \neq y$, there exists a semi open set G such that either $x \in G$, $y \in G$ or $x \notin G$, $y \in G$.

Definition 2.3. A space X is said to be semi T_1 [7] if for any x, y = X, $x \neq y$, there exists a semi open set G such that x = G, and a semi open set H such that $x \notin H$, y = H.

It may be mentioned here that every semi T_1 -space is semi T_0 , but converse may not be true, in general. Now we shall introduce the concept of semi T_0 -space.

Definition 2.4. A space X is said to be semi T_D -space if for any $x \in X$, $sd(\{x\})$ is semi closed.

Every topological space is not semi T_{ν} . The following example is given for this purpose.

Example 2.5. Let $X = \{a, b, c, d\}$ be a space with $\mathcal{F} = \{0, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then (X, \mathcal{F}) is not semi T_{D} .

Following characteriztion of semi T_0 -space will be useful in the next discussion.

Theorem 2.6. A space (X, \mathcal{F}) is semi T_0 iff for every $x \in X$, $sd(\{x\})$ is the union of

semi closed sets.

Proof. In a space X, for any $x \in X$, $\operatorname{sd}(\{x\}) = \{y \in X : x \neq y, y \in \operatorname{scl}(\{x\})\}$. Also, $y \in \operatorname{scl}(\{x\})$ implies $\operatorname{scl}(\{y\}) \subset \operatorname{scl}(\{x\})$. If the space X is semi T_0 , Then $x \neq y$, $y \in \operatorname{scl}(\{x\})$ implies $x \in \operatorname{scl}(\{y\})$ and hence $\operatorname{scl}(\{y\}) \subset \operatorname{sd}(\{x\})$. Thus, in a semi T_0 space X, for any $x \in X$, $\operatorname{sd}(\{x\}) = \bigcup \{\operatorname{scl}(\{y\}) : x \neq y, y \in \operatorname{scl}(\{x\})\}$.

Conversely, suppose that the space X is such that for each x = X, $sd(\{x\})$ is the union of semi-closed sets. For any $x \neq y$, either $y \equiv sd(\{x\})$ or $y \not\equiv sd(\{x\})$. In case $y \equiv sd(\{x\})$, there exists a semi-closed set F such that $y \equiv F \subseteq sd(\{x\})$. Hence X - F is a semi-open set such that $y \not\equiv X - F$, $x \equiv X - F$. In other case $y \equiv sd(\{x\})$, there exists a semi-open set G such that $y \equiv G$, $x \equiv G$. Thus the space is semi-T = T. The proof is complete.

The next theorem is concerned with the implication relations of semi T_D -axiom between some of other known separation axioms.

Theorem 2.7. (a) Every semi T_p -space is semi T_e .

- (b) Every semi T_1 space is semi T_D .
- (c) Every T_D -space is semi T_D .

Proof of (a). It is clear in view of Theorem 2.6.

Proof of (b). It follows from the fact that in a semi T_1 space X, for any x = X, $\{x\}$ is semi closed and hence $sd(\{x\}) = 0$ is semi closed.

Proof of (c). Since, for any x in a space X, $scl(\{x\}) \subseteq cl(\{x\})[3]$, if the space X is $T_{\mathcal{L}}$, then, for any $x \equiv X$, the derived set of $\{x\}$ is closed. Therefore, x can not be a limit point and hence can not be a semi limit point of sd $(\{x\})$. Thus, in order to show that $sd(\{x\})$ is semi closed, it is enough to show that each semi limit point y (other than x) is the point of $sd(\{x\})$. If $y \neq x$, y is a semi limit point of $sd(\{x\})$, then y is also a semi limit point of $\{x\}$. Hence $y \equiv sd(\{x\})$. It follows that every $T_{\mathcal{L}}$ space is semi $T_{\mathcal{L}}$.

For some of other implication relations, the following example is useful.

Example 2.8. Let $X = \{a, b, c\}$ be a space with $\mathcal{F} = \{\emptyset, \{a\}, X\}$. Then the space X is semi T_p but not T_p . Also X is neither semi T_1 nor T_1 .

\mathbf{II} . Characterizations of the semi T_{D} -axiom

Theorem 3.1. A space X is semi T_D iff for each $x \in X$, there exists some semi open set G and semi closed set H such that $\{x\} = G \cap H$.

Proof. Suppose X is semi T_D . Then, for any $x \in X$, $sd(\{x\})$ is semi closed. Taking $G = X - sd(\{x\})$ and $H = scl(\{x\})$, we have $\{x\} = G \cap H$ where G is semi open and H is semi closed in X.

Conversely, suppose that the space X is such that each $x \in X$ can be expressed as the intersection of a semi open set and a semiclosed set. Then, for any arbitrary point $x \in X$, suppose $\{x\} = G \cap H$ where G is semi open and H is semi closed. Now,

$$sd(\{x\}) = scl(\{x\}) - \{x\} = scl(\{x\}) - (G \cap H)$$

$$= scl(\{x\}) \cap [(G \cap H)]$$

$$= scl(\{x\}) \cap [(X - G) \cup (X - H)]$$

$$= [scl(\{x\}) \cap (x - G)] \cup [scl(\{x\}) \cap (X - H)]$$

$$= scl(\{x\}) \cap (X - G), \text{ since } scl(\{x\}) \subset H.$$

Therefore, $sd(\{x\})$ is a semi closed set since any union of semi open sets in a space is semi open.

In a space, if the semi derived set of every set is semi closed, then, obviously, the space is semi T_{D} . For the converse part, we have the following theorem.

Theorem 3.2. If, in a semi T_p -space, the family of all semi open sets is closed under finite intersection, then the semi derived set of any set is semi closed.

Proof. Suppose that the space X is a semi T_D -space such that intersction of any two

semi open sets is semi open. Let A be any subset of X. If $sd(A) = \emptyset$, or has no limit point, then there is nothing to prove. Let x be a semi limit point of sd(A). Because scl(A) $=sd(A) \cup A[4]$, x must belong to either sd(A)or A. In order to show that sd(A) is semi closed, we have to remove the possibility of x belonging to $A-\operatorname{sd}(A)$. For, that if $x \in A$ and $x \not\equiv sd(A)$, then there exists a semi open neighborhood U of x such that $U \cup A = \{x\}$, x being the semi limit point of sd(A), U must contain some point y of sd(A) other than x. We notethat each such point $y \in sd(\{x\})$. For, if one such point $v \notin sd(\{x\})$, then there would exist a semi open neighborhood V of y such that x $\not\in V$, and hence $U \cap V$ would be a semi open neighborhood of y such that $(U \cap V) \cap A = \emptyset$. This contradicts the choice of $y \in sd(A)$. Hence all such $y \in sd(\{x\})$. Since X is semi T_D , sd $(\{x\})$ is semi closed, but $U \cap (X-\operatorname{sd}(\{x\}))$ is a semi open neighborhood of x disjoint from sd (A). This contradicts the assumption that x is the semi limit point of sd(A). Hence $x \in A$, x $\not\in sd(A)$ is impossible. Thus sd(A) is semi closed.

Corollary 3.3. A space is semi T_p -space iff semi drived set of any subset is semi closed provided the intersection of any two semi open sets is semi open.

References

- 1. C.E. Aull and W.J. Thron, Separation axioms between T_0 and T_1 , Indag. Math., 24(1962), 26-37.
- S.G. Crossley and S.K. Hildebrand, Semi topological properties, Fund. Math., 74 (1972), 233—259.
- 3. GyuIhn Chae and DoWon Lee, Feebly closed sets and feeble continuity in topological spaces, (submitted to UOU Report).
- 4. P. Das, Note some applications on semi open sets, Prog. Math., 7(1973), 33-44.

- K.K. Dube and R.K. Sengar, Homeomorphism between semi T_D-space, Math. Vesnik, 4(17) (32) (1980), 425-429.
- 6. N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math.
- Monthly, 70(1963), 36-41.
- 7. S.N. Maheshwri and R. Prasad, Some new separation axims, Ann. Soc. de Bruxelles, 89(1975), 395-402.