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<Abstract>

To quantitatively measure the robustness bounds of the discrete-time LQ state feedback
control in the presence of nonlinear perturbations, two theorems are proposed. The
robustness bound obtained using the Euler operator converges to the corresponding
continuous—time cases both algebraically and numerically. This analysis will help a
designer to understand the performance of the discrete-time LQ state feedback control in
the presence of nonlinear perturbations, and to select an appropriate sampling interval,

which ensures a proper system responses.
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I. INTRODUCTION

The numerical superiority over the usual shift operator of digital control laws using
the Euler operator has been examined extensively [1]~[3]. These studies show that the
Euler operator formulation offers better finite-word-length coefficient representation and
less finite-word length rounding error performance in many cases. Moreover, the use
of the FEuler-operator formulation provides a close correspondence between continuous-time
and discrete-time results [4], [5]. Unlike the shift operator, the discrete-time theory based
on the Euler operator converges to the appropriate continuous—time results as a sampling
rate increases. Such connections provide more flexibility in specifying performance
requirements, thereby allowing the digital controllers to be evaluated in a continuous time
context. The discrete realization of a continuous~time system is often subject to parameter
variations due to finite-word-length effects. Such variations are often very large, and
therefore, deteriorate the stability obtainable with the continuous—time LQ state feedback
control. This phenomenon becomes more worrisome when the system to be controlled
possesses multiple, high-frequency resonances. It is well known that high-frequency
resonances in the plant may cause unacceptable sensitivities to disturbances in
conjunction with the discretization [6]. Hence, it is important to examine the robustness of
the discrete LQ) state feedback control in the presence of systermn uncertainty.

In this regard, an allowable bound in nonlinear perturbations for continuous-time LQ
state feedback is extended to the discrete-time LQ state feedback case for easy
assessment of its robustness. A quantitative measure of the robustness of the
discrete-time LQ state feedback is then used to study the effect of the two different
representations: the Euler and the shift operator formulations. It is shown that the
discrete-time LQ state feedback using the FEuler operator is more robust against
nonlinear perturbations than that using the shift operator. Moreover, the resulting
response becomes much closer to that of the continuous LQ state feedback as the
sampling rate increases, than the shift-operator case. Taking a rotating flexible beam
as an example, simulation studies have been performed to assess the allowable level of
nonlinear perturbations. It is noteworthy that the said system gives rise to a
noncollocated control problem,; ie., the sensors and actuators are placed at different
locations on the flexible structure. This introduces unstable zeros, which impose an
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upper limit on the bandwidth that can be achieved and increase the overall sensitivity
to disturbances in the passband of the system. Furthermore, the unmodelled higher
modes may reduce the stability margin of the closed-loop system, and thus cause
instability associated with the linear-quadratic-Gaussian compensator design [7].

On the other hand, it has been well known that the discrete realization for the plant
possessing multiple bending modes might cause the system degradation associated with
the selection of the sampling interval. [6], [8]. Such phenomenon can be readily avoided
by measuring the level of robustness against nonlinear perturbations at the selected
sampling interval. This is because the robustness level get drastically reduced where
there the co-relation exists between the sampling interval and the higher frequency
bending modes. Hence, the proposed approach not only provides the robustness bound,
not also gives us a guideline to choose a proper sampling rate.

II. ROBUSTNESS OF THE LQ STATE FEEDBACK
CONTROL

In practice, the actual system is nonlinear and often subjected to parameter and
structural variations, thereby it is usually difficult to acquire accurate mathematical
models. Tt is therefore, necessary to measure the robustness of the linear-quadratic
controller in the presence of nonlinear perturbations [8]. In this section, the allowable
bound for nonlinear perturbations is sought, in order to deal with the control spillover
resulting from modelling errors. This bound helps to quantify the effects of unmodelled
residuals on the closed-loop system. " '

The nonlinear perturbations associated with parameter variations and modelling
errors are taken into account by the addition of a vector g, namely,

x(t) = Ax(t) + bu(t) + g(x(t),u®)) (1)

Since the exact expression of the nonlinear perturbations is not available, the control
input is assumed to be generated based on the linear model; ie., first two terms in the
right-hand-side of eq.(1). Under the state feedback law u(t)=—k'x(t), the resulting
closed-loop system is given by

x= A x+gx) (2)
1= xTe@+Lrk Mxva ®
where

A.=A-bk" (4)

To minimize ], the stabilizing gain k must satisfy the necessary condition.
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=1g, (5)
r
where S satisfies the matrix Riccati equation
0= ATS+SA~L5bbTS+Q ()

Then there exists a sufficient condition for an allowable level of nonlinear
perturbation such that the stability of the closed-loop system is not disturbed. We now
recall

(8] Let D:Q+%SbbTS. The closed-loop system, given in eq.(2),

remains asymptotically stable if the nonlinear vector function g satisfies the following

condition:
LGl g 1 Omn(D) (1)
x|l 2 IIDHISIs — 200 (S)
where |} - || and || - ||S denote the Euclidean and the spectral norms, respectively.

Moreover, 0. (S) denotes the largest singular value of S, while 0'min (D) denotes the

smallest singular value of D,
The bound for the nonlinear perturbation that guarantees stability of the closed-loop
system can be obtained by considering a suitable Lyapunov function, namely,

V(x)=x TSx (8)
where S is the solution of eq. (6). The time-rate of change is then given by
Vix)= x Sx+x'Sx (9)

Using eq.(2), the above expression becomes

Vix) =x"(ATS+SA) +2g"Sx (10)
= x"(ATS+SA —L-SBb™S+Q)x —xT(Q+-LSbb S)x + 2575k
an
Since the first quadratic form becomes zero by virtue of eq.(6), we obtain the
following Lyapunov equation

AIS+SA.=-D (12)
where
D=Q+—1{Sbst (13)

[t should bhe noted that D is positive-definite due to the stabilizing characteristic of
the 1.Q state feedback. Moreover, S is symmefric and positive-definite when D is
symmetric and positive-definite, provided that Ac is asymptotically stable. Then, the
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time derivative of eq.(8) becomes
V(x)=—x"Dx+2g7Sx (14)

I[f the closed-loop system is stable, V must be negative definite, which requires
that

V=—x"Dx+2¢7Sx<0, Vx+0 (15)

For the preceding inequality to hold, the following condition has to be met,

. e lgTSX|<—% 0 (xDx) (16)

The left hand side of eq.(16) leads to

Max o g T Sxl < Ilgll 1Sl < [lgll HUSI 1 %Il = 6 (S &l 112l

g,Xx €R
amn
where || - ||, denotes the matrix spectral norm, defined as
HSIls = 0max (S) (18)

and 0. (S) is the largest singular value of S. Consequently, eq.(17) becomes

max T
| &7 SXIZ (S 1l 1 19
Moreover, the right-hand-side of eq.(16) satisfies
max T 2
xERz“lx Dx | = 0 (D)1l (20)
since D is symmetric positive definite [11], namely,
Cain (D) x> < x"Dx < 6 (D) ][] (21)

where Omn( * ) and o, ( * ) denote the smallest and the largest singular values

of D), respectively. Summing eqs.(17) and (20) leads to the bound for the nonlinear
perturbation function g(x) such that the closed-loop system of eq.(2) remains stable in
the presence of nonlinear perturbations, namely,

GnﬁnD — 1
Omax(S) — 2/ID7YI4IISI,

AlgGOll g 5 92)

x|l
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M. ROBUSTNESS OF THE DIGITAL CONTROL LAWS

IM.T. The Shift Operator
The discrete-time system representation using the shift form can be written as

x(k+1)=Ax(k)+bulk) + g(x(k),ulk)) (23)

where the vector g(x(k),u(k)) denotes the nonlinear perturbations associated with
the discrete-time realizations due to finite-word-length effects such as roundoff errors.
The control input is then assumed to be generated by the linear model

x(k+1)=Ax(k)+bu(k) (24)
such that
u(k) =—kix(k) (25)

Here, kq is the steady-state, discrete-time controller gain, which minimizes the
continuous—-time cost function given by

Nh

J:_% fk=0(XT(t)QCX(t)+qcu2(t))dz )

in which Qc is symmetric and positive-semidefinite, while ¢, is a positive real
number. In an effort to attain the performance of the LQ state feedback in
continuous-time, the discrete equivalent of the continuous cost function is used, namely

1 -1 r Qn dp x(k)
J== S lx0 w01 @
B aiz &gl lulk)
where
Qu d12 T AqT 0 Qc 0 Aq bq
= fo dr (28)
an & bl 1107 ¢ L0 1

An algorithm for obtaining the solution of eq.(28) is well established and is readily
available in commercial software packages. It should be noted that the resulting
discrete weighting matrices include cross terms, containing the product of x and u
Such cross terms can be eliminated by defining a fictitious control input such that
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us= o x+u (29)
where 0‘=—é;,L' g1z ,Then, eq.(27) becomes
q
1 =1 T wq 0 X(k)
=4 Bx00 0, 017| (30
O é‘q uf(k)
where
¥o=Qu — ano’ (31)
The gain is then obtained by virtue of eq.(29), namely,
= kito (32)
where
ke= (L,+ b TS,by) 'ATS T, (33)
Sq satisfies the following discrete algebraic Riccati equation
0=S,—ATS A, + (§+bIS,h) 'ATSHHISTA,— ¥, (34)
The closed-loop system is thus obtained by
x(k+ 1= 0,x(k)+g(xk)) (35)
where
@,= Aq*bqu (36)

In eq.(35), g becomes a function of only x after applying the admissible control law.
The following theorem provides a sufficient condition on the nonlinear vector
function g such that the resulting closed-loop system remains stable, )

Iet Dg be the solution of the following discrete fime algebraic

Lyapunov eguation :

®1s8,0,~-S,=— D, (37)
The discrete time, closed-loop system given in eq.(35) remains asymptotically stable
if the nonlinear vector function g satisfies

Hxﬁlm_( ¢o=—1+V1+k, Vxe R® (38)
where

= 1 _— dmin( Dq)
K= DT, TSal, = 20me(Sq) " (30)
in which [|-|| and |||l denote the Euclidean and spectral norms, respectively.

Moreover, 0 nux(Sq) is the largest singular value of Sq, while 6 g (Dq) is the
smallest singular value of Dq. The theorem can be proved by defining
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Vix(k)=xT S x (40)
where Sq is the solution of eq.(34). Taking the difference of the foregoing Lyapunov
function produces

aV=V(x(k+1))—Vixk)) (41)
Substitution of eq.(23) into eq.(41) leads to

AV =xT(®] §,0,—Sx" +2g70 x +g"S g,

=— x"Dx+2g7S, 0 x+g’ S,g (42)

where

OIS, 0,— S,=— D, (43)

Moreover, Dq is positive-definite due to the stabilizing characteristic of the LQ state
feedback. It should be realized that eq.(43), for the given positive-definite Dq, has a
unique solution for Sg and this Sq is positive definite, provided that the closed-loop
system is asymptotically stable. The stability condition of the closed-loop system
requires

AV=—xT"Dx+2g7 S, O.x + 27 $,80,(Vx+0) (44)

To satisfy the foregoing inequality, the following condition has to be met :

X ml2gT S, Ooxt g Sl ¢ I, (27 D (45)

From the left-hand side of eq.(45),

“ Xm;XR wl28T Sq Ox+g" Sqg

<NeMNS oM+ e" S,z
<2011 (1Sall , 11 @4ll [Ixll + 6 max ( So) Mgl 2
<20ma (S & Tl 1xl+ 0 may ( So) Nlgll? (46)

The preceding derivation requires that all the eigenvalues of @, have a magnitude
less than 1. This is true if the closed-loop system given in eq.(35) is stable. Hence,
the largest eigenvalue of ©, which is also the spectral norm of || @, has

magnitude less than 1. In light of eq.(21), the right hand side of eq.(45) must hold,
namely

XZ‘E&,(XT D X)= 6 min ( Do) Hxll? (47)
Assembling eq.(46) and eq.(47) leads to
Omax ( D) 1l 242 6 max (SO g TNl — 0 € S,) [l 5<0 (48)

Since ||+ || is always greater than zero by definition, there is only one solution that
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satisfies eq.(48), namely,

|Ix}1{1 ¢ —=1+V1+k (49)
where

— 6min( D )
K S Gpun (S (50

M.I0. The Euler Operator

The discrete-time system representation using the Euler operator is defined as

_z—1
e=—"g (51)

where z is the shift operator and T the sampling interval. When expressed in terms
of the Euler operator, the discrete-time, closed-loop system given in eq.(35) has the
form

ex(k)= 0 x(k)+g(x(k)) (52)
where
®,=A,—b. k7T (53)

The desired gain is then obtained by

k,=k¢to (54)

where o= é q 2. To use the same cost function as obtained in the shift operator
q

formulation, the fictitious gain kf is chosen to minimize the cost function given below :

- LUE 0 X(k)
1=5 S x00u 001" | (55)
0 Ce Uf(k)
where
r
_ ¢
Ce_ Tq (57)
Finally,
ki= (£+TbS.b.) 'bIS(1+TAL) (58)

where S ¢ satisfies the following discrete-time Riccati equation [5]

O=¥,+S., A.+ATS+TATS, A,
—(EATHIS b)) " kek ] (59)

The same sufficient condition as given in Theorem 2 can also be written in the
Euler form:
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Let De be the solution of the following discrete algebraic Lyapunov

equation:

orls.+s.0l+T0fs,0.,= - D, (60)
The discrete time, closed-loop system given in eq.(52) remains asymptotically stable
if the nonlinear vector function g satisfies

¢ o= (C1HV T ) (61)
where
j— dmln( DE)
k=g DT TS T, =T (50 (62)
in which [|+]l and || - |l denote the Euclidean and spectral norms, respectively.

Moreover, 0 mux (S &) is the maximum singular value of S¢ |, while ¢ ., (De) is the
minimum singular value of De . A Lyapunov function candidate is selected as
V==xT(k) S.x(k) (63)
where Se is the solution of eq.(59). The difference rate of the Lyapunov function is
performed uging the Euler operator, ie,

V=exT S, x(k)+ xT(k) S,ex(k) + 7T (ex(£) " (ex(B) (64)
Upon substituting eq.(52) into the foregoing equation, we obtain

eV=—x"D)x+2g"S.(1+Td)x+Tg S, (65)
where

~-D,=08,+s5.,07+T0rS.0, (66)

Notice that De is positive-definite due to the stabilizing characteristic of the LQ
state feedback. Moreover, there exists a unique solution for S e which satisfies eq.(66).
Furthermore, Se& is positive-definite if the closed-loop system given in eq.(52) is
stable [5].

For the nonlinear vector function g, the bound that keeps the closed-loop system
asymptotically stable, can then be obtained from the relation given below

&V=—xTDx+2¢S.(1+T 0 )x +Tg” S.g <0 (67)
Since @,=1+7T @, , it follows that »
268, 0.x+Tg"S.2 ¢ xTDx (68)

In order to satisfy the preceding equality, the following relation should be satisfied

maX oo TS, dx+Tg’ Sl ¢ MO (27 Dy (69)
g,x €R x ER

Considering that eigenvalues of @ ¢ have magnitude less than unity, the left hand
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side of eq.(69) satisfies

cxopn28 S 0ux+Te" Segl <2IScl llell Il +Te" Seg (700

<20 max Sl %Il + T (S ligll
Since D¢ is symmetric and positive-definite, the right hand side of eq.(69) satisfies

I (2T D)= oy (D) Il (71)

Summing eq.(71) and eq.(71), we obtain

gl -+ =2 [l llgll =k Il 2 < 0 (72)
where
— dnﬂn(Ds)
k = ... (5.) >0 (73)

Since llgll > 0 if g+0, the bound on ||gl] that satisfies eq.(72) is obtained as

Jlguﬂnxm (A(=14+V T+ TE) (74)

A key aspect of the Euler operator is that all discrete-time quantities converge to
the corresponding continuous~time quantities as the sampling rate increases, whereas
these convergences are not obvious when using the shift operator. To prove the
convergence of the discrete-time solution to the corresponding solution for the
underlying continuous—time problem, the limit of the partial derivative of eq.(61) with
respect to T, as the sampling interval approaches zero, is taken, namely,

- va_ 1, _ Gun(De)

Moreover, the following relations are known to hold [5]:

lTi_rpoom(Se) = Cpax (S) (76) ITiglOamin(De) = Gpin (D) (77)
Then,
1119058 = ¢ (78)

where ¢ is defined in Theorem 1. The preceding result shows that the results
obtained using the Euler operator are close representations of the corresponding
continuous-time results when a high sampling rate is used,

IV. NUMERICAL EXAMPLES

Taking a rotating flexible beam as an example, we apply the above theorems to
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assess the allowable level of nonlinear perturbations arising from the use of
discrete-time LQ state feedback. In these studies, the rotating flexible beam is used as
a model to be controlled. The vibrational behaviour of the beam is described using
cubic splines[16].

Table 1. Material properties of the beam

number of nodal points(cubic-spline model) 5
number of modes to be considered (normal-mode 4
maodel)
mass per unit length(m) 0.6697 [kg/m]
o flexural rigidity (ED 14.8535(kgm’/s?]
moment of inertia of the hub (Iy) 2.0927 % 10[kg-m]
moment of inertia of the unflexed rigid beam (Ip) 0.2232 [kg-m*]
length (L) 1 {m]
L cross-section 0.0762% 0.0032[m?)

For the given material properties, the system matrices can be obtained as follows;

{ O 1 (21 % 2n)
A = R
_ 79
“MK 0 (9
0 ¢
b= ep®™ (80) C= eR?™ (81)
M™'p 0
where
[0.4469 0.0244 0.0355 0.0179 0.0054 0 0 0 0 0
0.0244 0.0027 0.0039 0.0020 0.0006 0 1.2378 0.6189 0 0

M= 0.0355 0.0039 0.0059 0.0031 0.0010|(82) K=]0 0.6189 2.4756 0.6189 0 |(83)
0.0179 0.0020 0.0031 0.0018 0.0006 0 0 0.6183 2.4756 0.6189

10.0054 0.0006 0.0010 0.0006 0.0002 0 0 0 0.6189 2.4756
§=11.0000 0.1146 0.1875 0.1250 0.0625] (84)

with O and 1 denoting the #X#% zero and identity matrices, respectively. Moreover,

3

0 is the n-dimensional zero vector and the permutation vector p is given by
p= [1 0,7 (85)
The discrete-time LQ state feedback control law is then formulated using both the

Euler and the shift operators. The tolerable bounds for nonlinear perturbations, given in
Theorems 2 and 3, are evaluated in terms of the sampling interval and the penalizing
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factors in their weighting matrices. It should be noted that the discrete cost functions,
for both the Euler and the shift operator formulations, are obtained in such a way that
they are equivalent to an analog cost function in continuous time, This will provide a
fair basis for comparison of the aforementioned discrete-time systems relative to the
continuous-time system.

To facilitate the comparison, the robustness bound for the continuous-time 1Q state
feedback, given in Theorem 1, is calculated with the cost function given in eq.(3),
whose weighting matrices are given below, namely,

pl, O,
Q:

, r =1

O, vl1,
where p is the weighting factor for the generalized coordinates (in this simulation,
p=100) and r is for the time-rate of change of the generalized coordinates, which
varies 0 to 0.001. Moreover, 1n is the n-dimensional identity matrix.
Identical conditions are used for discrete-time LQ state feedback based on both the
Euler and the shift operators. The robustness bounds can then be evaluated in terms
of the sampling interval T and the weighting factor .
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Figurel, Measure of Robustness & for the Figure2. Measure of Robustness ¢ P
continuous time LQ state feedback using the shift operator .

The robustness envelop obtained using the shift operator shows that the robustness
bound increases as the penalizing factor ¢ is increased, whereas the bound decreases
as the sampling rate is increased(Fig.2). In fact, when using the shift operator, the
obtainable bound is reduced by as much as about 2 orders of magnitude, compared to
the continuous case. Consequently, the said digital control system may become more
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sensitive to parameter variations and more vulnerable to disturbances as the sampling
rate increases. This is contrary to the commonly made assumption that the
performance of a digital controller improves as the sampling rate is increased.

On the other hand, the bound envelop obtained using the Euler operator shows that
the robustness bound increases as both the penalizing factor and sampling rate are
increased(Fig.3). Moreover, the overall magnitude tends to converge to that of the
continuous-time case as the sampling rate increases. This suggests that a higher
sampling rate allows the continuous-time system to be better approximated by the
discrete-time system based on the Euler operator. It should bhe mentioned that
unacceptable regions exist for nonlinear perturbations in both the shift and the Euler
operators, and they occur at the same sampling rates (Figs. 2, 3).

-3

x10
25+

Mensure of robustnoesa
— @ ~
L z L

=4
Cal

¥

o
4N

08

0.0 . N
04 x 10

0.002

Sampling intarvalia sac 0 0 VWaighting tacior v

Figure3. Measure of Robustness . using the Euler Operator

This implies that such regions are independent of the choice of operator, but rather
dependent on the selection of the sampling interval. Such phenomenon, explained by
[6], 18], is induced by the discrete-time state feedback for a plant possessing multiple
hending modes with a sampling rate which is slower than twice the selected open-loop
plant resonance. Under this situation, the controller has no information about the
motion to be controlled, thereby producing uncontrollable system.

Considering that the plant to be controlled possesses higher-frequency bending
modes, the sampling rate has to be chosen in such a way that the unacceptable
regions for the nonlinear perturbations are avoided. Hence, the preceding analysis not
only provides the robustness bound, but also gives us a guideline to choose a proper
sampling rate.
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V. CONCLUSIONS

The discrete-time realization of the control scheme has been achieved using the
Euler operator, which is known to be numerically more robust than the shift operator.
When using the Euler operator, the close connections between the continuous and
discrete-time results were established, ie, the discrete-time results converge to the
continuous-time counterparts as the sampling rate increases. Moreover, bounds for the
nonlinear perturbations were formulated in an effort to quantitatively measure the
robustness of the discrete-time L& state feedback associated with both the Euler and
shift operators. Simulations for the rotating flexible beam showed that the feedback
control obtained using the Euler operator is more robust against nonlinear
perturbations.
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