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Abstract 

 
GRID CONVERGENCE INDEX ESTMATION OF 

LARGE EDDY SIMULATION FOR 

TURBULENT HEAT TRANSFER FLOW USING NEK5000 

Large eddy simulation is performed in heat transfer of turbulent flow with 

NEK5000 code based on spectral element method to study uncertainty quantification 

by Grid Convergence Index. Two geometries are investigated including simple 

geometrical configurations, pipe flow, and more complex geometrical configurations, 

rod bundle flow.  

The turbulent pipe flow with heat transfer is considered with Reynolds number 

𝑅𝑒 =  19,000  and Prandtl number 𝑃𝑟 =  0.71 . Three meshes (fine, medium, and 

coarse) with the fixed interpolation polynomial order, 8 and three orders (4th, 6th, and 

8th) of interpolation polynomial with the fine mesh are examined. The effects of 

different grid and interpolation polynomial order are studied to highlight the 

effectiveness of high order spectral element. The Grid Convergence Index using two 

modified versions from original Roache’s GCI method are estimated based on 

simulation results. Two modified versions include the modification of Roache’s GCI 

method described in the ASME V&V 20-2009 guideline and the simplified least square 

method version GCI. Though GCI estimation, it was found that the accuracy of the SLS 

– GCI method is better than that by Mod. – ASME. 

The rod bundle simulation takes the advantage of the symmetries of the domain that 

can be divided into twelve homologous sections. The rod is chosen with the case of 

𝑃/𝐷 =  1.24  with Reynold number 𝑅𝑒 =  10,000  and Prandtl number 𝑃𝑟 =  1.0 . 

Three meshes (fine, medium, and coarse) with the fixed interpolation polynomial order 
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of 7th order are examined to study quantify the uncertainty by GCI estimation with SLS 

– GCI method.  

 

 

Keywords: Large Eddy Simulation (LES), Nek5000, Uncertainty Quantification 

(UQ), Grid Convergence Index (GCI). 
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Chapter 1. Introduction 

 
1.1 Overview 

The examination of the spatial convergence is important issue in a simulation to 

determine the error discretization order. The simulation on two or more finer mesh are 

required for this method. While the grid and time step are refined the spatial and temporal 

discretization errors, respectively, should asymptotically approaches zero. The solution of 

the discrete method in the choice of finite time and space resolution appears discretization 

error. To estimate discretization error, Roache (1998) [1] provides a discretization error 

estimation, the Grid Convergence Index (GCI) methodology as a procedure to determine 

and report discretization errors estimation in the CFD simulation. The GCI permits the 

uncertainty quantification (UQ) due to discretization grid. This method is based on a grid 

refinement error estimator derived from the generalized Richardson’s extrapolation 

(Richardson 1908, 1927) [2, 3]. 

The Roache’s GCI estimation is a method popular in the CFD, as a traditional method 

of the estimating discretization error, however, the constructed grids should be a constant 

grid refinement ratio. To overcome the drawback of the traditional method, there are the 

two modified method from Roache’s GCI method (Roache, 1994 and 1997) introduced in 

the ASME guideline (ASME,2009) [4], the modified ASME V&V 20 (mod. -ASME), and 

the least square version GCI method that is developed by Eca and Hoeksta (2006) [5], the 

simplified lest square version GCI (SLS – GCI). The T – pipe problem with three different 

mesh arrangements at common boundary condition is examined by Tanaka and Miyake 

(2015) [6] to prove the effectiveness of the above two GCI methods. 

Uncertainty quantification (UQ) in the computational fluid dynamics (CFD) field has 

been a hot issue, with various attempts to quantify the uncertainty and obtain the statistical 
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distribution of a quantity of interest (QoI) based on CFD results. Among various methods 

for UQ in CFD, the polynomial chaos expansion (PCE)-based method is able to produce 

predictions as highly accurate as the previous sample-based Monte Carlo method and can 

save computational time and cost. One often-used PCE-based method is the intrusive 

polynomial chaos approach, which is based on the stochastic Galeskin method. The SEM 

methodology is considered a promising alternative for UQ of CFD, since SEM is able to 

consider probabilistic input based on the given basis function and can produce highly 

accurate results with fewer grid points. 

Nowadays, computational fluid dynamic is becoming common and important in the 

industrial process. Turbulent heat transfer flow is an important problem in CFD and 

extensively investigated in engineering application such as nucleating reactor, combusting 

chambers, etc. The problems that are mainly focused on the control of turbulent 

characteristics with effect of heat is a challenge. Many studies make to examine the effect 

of different Prandtl number and Reynolds numbers on turbulent heat transfer flow. 

Tavakoli et al. (2014) [7] performed turbulent heat transfer in circular pipe flow using large 

eddy simulation for a frictional Reynolds number, 𝑅𝑒𝜏 = 180, and the low Prandtl number 

which ranged from 0.1 to 1.0. The statistical analysis of the probability density functions 

(PDFs) for the Nusselt number for different Prandtl numbers are also presented. The LES 

for the turbulent heat transfer in pipe flow at the different Prandtl number larger than 0.71 

and for high Reynold numbers up to 20,000 is presented by Ould-Rouiss, Bousbai, and 

Mazouz (2013) [8]. The fully developed turbulent channel flow using direct numerical 

simulation with the use of the finite difference method and the three Reynolds numbers 

(𝑅𝑒𝜏 =180,395, and 640) by Hiroyuki Abe et al. (2001) [9]. 

Recently, increase of computing powers is able to hand on numerical simulation with 
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high accuracy and with the timely response of the current requests. Introduced by Patera, 

A.T in 1984 [10], spectral element method is a combination of the generality of finite 

element methods with the high accuracy of the spectral techniques that uses high order 

piece wise polynomials as basic functions. In SEM, the domain is divided by the hexahedral 

spectral elements and the solutions is defined by Legendre polynomials at the Gauss – 

Lobatto – Legendre (GLL) quadrature points. Legendre polynomials is a family of high – 

order orthogonal polynomials. Thus, SEM has large of local computational work at each 

element and only the global work as boundary condition and pressure coupling on the 

global mesh. The open – source – based SEM, Nek5000, is developed by Fischer, Lottes, 

and Kerkemeier (2008) [11]at the Argonne National Laboratory (ANL, US Dept. of 

Energy) with purpose to overcome the current drawback of the standard CFD solvers. 

Nek5000, is written by Fortran and C, used portable message passing interface (MPI) 

platform for parallel calculation is able to scale up to millions of processors. The accuracy 

and computability of SEM with Nek5000 are proven along to studies. The spectral element 

code Nek5000 has been used for DNS and LES techniques. In the study of Khoury et al. 

(2013) [12] the fully developed DNS in turbulent pipe flow at moderately high frictional 

Reynolds numbers up to 𝑅𝑒𝜏 =1,000, the solutions are compared with previous studies and 

showed that a high – order polynomial is necessary for accuracy with high Reynold number 

simulation. The inhomogeneous heat flux on the pipe wall via DNS based on SEM to 

calculate turbulent forced convection in the report of Antoranz, A et al. (2015) [13]. LES 

technique with SEM is performed by Ryzhenkov et al. (2016) [14] for the turbulent heat 

transfer in channel flow at 𝑅𝑒 =  6,800 and compared the value of friction velocity and 

temperature indicating the near wall solution accuracy with 2% accuracy interval, even 30 

times fewer grid point than DNS. Nek5000 is able to work well in more complex 

geometries and provide reliable results in compound boundary condition problem requiring 
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high precision. Zhixin Wang and Yongmann M. Chung (2018) [15] perform a DNS of a 

turbulent 900 bend pipe flow with long straight pipe section 40D. The Reynold number in 

pipe flow is 𝑅𝑒 = 5,300 and bend curvature is 𝛾 = 0.4. Rod bundles, which is an essential 

component of nuclear power plant, is presented by Javier Martínez el at. (2019) [16]. The 

simulation uses LES of a small section of a single rod with 𝑃/𝐷 of 1.12 and 1.24. The 

Nek5000 steady state solver is chosen for solving the temperature field in the pseudo – 

RANS approach. 

1.2 Research object 

The aim of this thesis focuses on large eddy simulation in the turbulent flow under heat 

transfer using the open source, Nek5000, based on spectral element method with two 

geometries, the simple geometrical configuration of the pipe flow and more complex 

geometrical configuration of the rod bundle flow. The turbulent heat transfer in pipe flow 

is an important problem in engineering applications such as heat exchangers, combustion 

chambers, etc. On the other hands, the rod bundles are an essential component in the 

nuclear power plants. Moreover, the two modified methods from Roache’s GCI method 

are considered to measure the percentage difference between the numerical value and the 

asymptotic value, as well as indicate changes in the solution.  

Heat transfer in a fully developed turbulent pipe flow is considered by Reynolds 

number, 𝑅𝑒 =19,000, and Prandtl number, 𝑃𝑟 =0.71. The flow of an incompressible 

viscous fluid is examined in a smooth circular pipe with a diameter, 𝐷, and axial length, 

𝐿 = 10𝐷. The results of three different grid levels and three polynomial orders of the 

spectral elements are showed to study the effect of grid levels and polynomial orders to 

accuracy of the solution. From that, the accuracy of the solution in spectral element method 

with effect of polynomial order or grid level are shown. Two GCI method are mod. – 
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ASME and SLS – GCI used to measure the percentage difference between the numerical 

value and the asymptotic value, as well as indicate changes in the solution when the grid is 

further refined, and the polynomial order is increased or decreased in spectral element 

method.  

The bare rod cases have been chosen with 𝑃/𝐷 =  1.24  and 𝐿𝑧 = 2𝜋𝐷  with the 

Reynold number, 𝑅𝑒 = 10,000  and the Prandtl number of the fluid, 𝑃𝑟 = 1.0 . The 

periodic boundary condition is applied in vertical direction. To reduce the computing cost, 

one may take advantage of the symmetries of the domain. The three difference grid levels 

are considered with the fixed polynomial order of 7th order. The SLS – GCI is chosen for 

GCI estimation in this case with three gird levels arrangement due to the GCI estimation 

results of the pipe flow simulation show that the accuracy of the estimate by SLS – GCI is 

greater than that by Mod. – ASME. 

1.3 Thesis Outline 

This thesis is divided in 5 chapters. The first chapter is a brief introduction to relevant 

studies and subjects. The second chapter summaries the governing equation, the numerical 

method, and the formulation of the grid convergence index estimation. The third and fourth 

chapters shows the results of pipe flow and rod bundle flow calculation. The last chapter 

implies the conclusions, and future works.  
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Chapter 2. Governing equation and Numerical Methods 

In this chapter, the numerical method used in the present work is explained. Grid 

convergence index (including Roach’s method, ASME. -  mod method and SLS – GCI 

method) are explained below. 

2.1 Governing equations 

Time dependent Navier – Stokes equation with the assumption of incompressible flow 

and advection diffusion equation for thermal field are shown below, 

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 = −𝛻𝑝 +

1

𝑅𝑒
∆𝒖, 𝛻 ∙ 𝒖 = 0, (2.1.1) 

𝜕𝜃

𝜕𝑡
+  𝒖 ∙ 𝛻𝜃 =

1

𝑅𝑒𝑃𝑟
∆𝜃,  (2.1.2) 

where 𝒖, 𝑝, and 𝜃 are the dimensionless velocity, pressure, and temperature, respectively. 

The Reynolds number 𝑅𝑒 = 𝜌𝒖𝐷/𝜇 is defined using the mean velocity of the fluid 𝒖, the 

density ρ, the diameter of the pipe 𝐷, and the dynamic viscosity of the fluid 𝜇. The Prandtl 

number 𝑃𝑟 = 𝑐𝑝𝜇/𝑘  is the ratio of convection diffusivity and conduction diffusivity, 

where 𝑐𝑝 is specific heat, and k is thermal conductivity. 

The open-source spectral element code, NEK5000, which was developed by Fischer et 

al. [11] at the Argonne National Laboratory (U.S. Dept. of Energy), solves incompressible 

Navier–Stokes equations analyzed as Lagrangian interpolations based on Gauss – Lobatto 

– Legendre points. The velocity space is approximated by typical 𝑁th – order Lagrangian 

polynomial interpolations on the GLL points, and pressure space employs 𝑁  or 𝑁 –  2 

order of Lagrangian interpolants on the Gauss–Legendre quadrature points, which herein 

was 𝑃𝑁 − 𝑃𝑁 or 𝑃𝑁 − 𝑃𝑁−2 as proposed by Maday and Patera [17]. The time integration 

scheme in NEK5000 uses a semi-implicit method, with the viscous terms treated implicitly 

by a 𝑘-order backward differentiation (BDF𝑘), and the non-linear terms explicitly by a 𝑘-
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order extrapolation (EXT𝑘) treatment with detail in section (2.1.2). 

In this thesis, since the considered Reynolds number in both geometries is high. Direct 

Numerical Simulation is not feasible for problems of a certain geometrical complexity due 

to a high computational memory and cost. Large eddy simulation is an attractive alternative 

(shown in section 2.2) which is cheaper than DNS. 

2.1.1 Boundary conditions 

Based on the geometry and flow types, the different boundary conditions are applied. 

The mathematical formulation and physical interpretation of boundary conditions for 

velocity and temperature fields are used in this thesis as below, 

• The wall boundary condition (“W”) is known as the no – slip condition, 

mathematically this is equivalent to homogeneous Dirichlet conditions, 𝒖 = 0. 

• The periodic boundary condition (“P”) corresponds to 𝒖(𝑥) = 𝒖(𝑥 + 𝐿), where 

𝐿 is the periodic length. 

• The symmetric boundary condition (“SYM”) is defined with formular by the 

normal vector, 𝒏,  and the tangent vector, 𝒕, as below, 

           𝒖 ∙ 𝒏 = 0, (2.1.3a) 

(𝛻𝒖 ∙ 𝒕) ∙ 𝒏 = 0, (2.1.3b) 

• In the thermal field, the temperature boundary condition (“t”) is standard 

Dirichlet boundary condition.  

2.1.2 Time discretization 

The order of time discretization is important for accuracy and stability of solution. The 

temporal discretization which is widely used in Nek5000 is backward differentiation and 

extrapolation of order k (BDF𝑘/ EXT𝑘) scheme. 

Considering a simple equation of the form 𝑑𝑦/𝑑𝑡 = 𝑓(𝑦) . The kth order implicit 

backward differentiating scheme is based Taylor expansion, the BDF𝑘 scheme is given by, 
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1

∆𝑡
∑ 𝛽𝑖𝑦

𝑛+1−𝑖 ≈ 𝑓(𝑦𝑛+1) 

𝑘

𝑖=0

 (2.1.4) 

where {𝛽}𝑖=0
𝑘  are BDF coefficients and 𝛥𝑡 is the time step size. The number of implicit 

relations to be solved are the same for different orders 𝑘 . In the Navier – Stokes 

discretization, there are difficult to solve when treated implicitly creates non – symmetric, 

non – linear system. While the explicit method uses the implements high order 

extrapolation on the non – linear terms including the advection part. The 𝑘th order 

extrapolation (EXT𝑘) of a general nonlinear term 𝑓(𝑦𝑛+1) is given by, 

𝑓(𝑦𝑛+1)  ≈ ∑ 𝛼𝑖𝑓(𝑦𝑛+1−𝑖)

𝑘

𝑖=1

 (2.1.5) 

where {𝛼𝑖}𝑖=1
𝑘  is a set of extrapolation coefficients corresponding to the specific order of 

the scheme. From equation (2.1.4) and (2.1.5), Adding the BDF𝑘  and EXT𝑘  schemes 

together result in the BDF𝑘/ EXT𝑘 scheme, 

1

∆𝑡
∑ 𝛽𝑖𝑦

𝑛+1−𝑖 

𝑘

𝑖=0

 ≈ ∑ 𝛼𝑖𝑓(𝑦𝑛+1−𝑖)

𝑘

𝑖=1

 (2.1.6) 

In Nek5000, the second and third order BDF𝑘/EXT𝑘 schemes is considered for the time 

integration schemes with the viscous terms treated implicitly by a 𝑘 -order backward 

differentiation (BDF𝑘), and the non-linear terms explicitly by a 𝑘-order extrapolation 

(EXT𝑘). 

2.1.3 Interpolating Polynomial 

The two families that are most relevant in the context of the spectral element method 

are the Legendre polynomials and the Lobatto polynomial. Legendre polynomials, denoted 

by 𝐿𝑛(𝑥), are orthogonal with respect to the flat integration weight 𝑤(𝑥) = 1 and the 

integration interval [−1, 1]. The Legendre polynomials are explicitly given by, 
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𝐿𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛 (2.1.7) 

And the Legendre polynomial satisfy the differential equation, 

𝑑

𝑑𝑥
[(𝑥2 − 1)𝐿̇𝑛(𝑥)] = 𝑛(𝑛 + 1)𝐿𝑛(𝑥) (2.1.8) 

The Lobatto polynomials, denoted by 𝐿𝑜𝑛(𝑥) , are orthogonal with respect to the 

integration weight 𝑤(𝑥) = (1 − 𝑥2)  and the integration interval [−1, 1] . The Lobatto 

polynomial are defined in terms of the Legendre polynomial, 

𝐿𝑜𝑛(𝑥) = 𝐿̇𝑛+1(𝑥)  (2.1.9) 

The Lobatto polynomials satisfy the differential equation, 

𝑑

𝑑𝑥
[(𝑥2 − 1)𝐿𝑜𝑛−1(𝑥)] = 𝑛(𝑛 + 1)𝐿𝑛(𝑥) (2.1.10) 

Given a set of 𝑛 + 1 data points 𝑥𝑖. The 𝑁th degree Lagrange Polynomial Interpolation 

have a form, 

𝑙𝑖
(𝑁)(𝑥) = ∏

𝑥 − 𝑥𝑘

𝑥𝑖 − 𝑥𝑘

𝑁+1

𝑘=1,𝑘≠𝑖

,     𝑖 = 1, 𝑁 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (2.1.11) 

For 𝑗 = 1,2, … , 𝑁 + 1, the cardinal interpolation property, 

𝑙𝑁,𝑖(𝑥𝑗) = {
0,       𝑖𝑓 𝑖 ≠ 𝑗
𝛿𝑖𝑗 ,    𝑖𝑓 𝑖 = 𝑗

   (2.1.12) 

where  𝛿𝑖𝑗  is Kronecker’s delta representing the identity matrix. The interpolating 

polynomial can be expressed in terms of the Lagrange polynomial as, 

𝑃𝑁(𝑥) = ∑ 𝑓(𝑥𝑖)𝑙𝑁,𝑖(𝑥)

𝑁+1

𝑖=1

   (2.1.13) 

From that, to satisfies the property (2.1.8) and requirement of the interpolating 

polynomial condition, 

𝑃𝑁(𝑥) = ∑ 𝑓(𝑥𝑖)𝐿𝑁,𝑖(𝑥)

𝑁+1

𝑖=1

= ∑ 𝑓(𝑥𝑖)𝛿𝑖𝑗

𝑁+1

𝑖=1

= 𝑓(𝑥𝑖) (2.1.14) 

Replacement of the 𝑁th degree Lagrange interpolating polynomial emerges by 𝑁 +  1 
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degree generating polynomial, which is 0 at all data points, 

𝛷𝑁+1(𝑥) = ∏(𝑥 − 𝑥𝑖)

𝑁+1

𝑖=1

 (2.1.15) 

Straightforward differentiation of (2.1.11) and substituting the results into (2.1.7) can 

be rewrite as the form, 

𝐿𝑁,𝑖(𝑥) =
1

𝑥 − 𝑥𝑖

𝛷𝑁+1(𝑥)

𝛷̇𝑁+1(𝑥𝑖)
 (2.1.16) 

is the 𝑖th Lagrange interpolation polynomial. 

Without loss of generality, we restrict our attention to the interval [−1, 1]. For a given 

set of collocation points 𝑥𝑖  with 𝑖 = 1,2, … , 𝑁 + 1. The collocation point distribution is 

such that the 𝑁 − 1 optional conditions are satisfied for the internal nodes, 

𝑙𝑁̇,𝑖(𝑥𝑖) = 0 (2.1.17) 

 The internal node points as the roots of the Lobatto polynomial 𝐿𝑜𝑁−1(𝑥). The second 

derivative of the generating polynomial,𝛷𝑁+1(𝑥) vanishes at the node points 𝑥𝑖, with 𝑖 =

2,3, … , 𝑁, i.e 𝛷̈𝑁+1(𝑥𝑖) = 0, thus, 

𝛷̈𝑁+1(𝑥) = 𝑐
𝛷𝑁+1(𝑥)

(𝑥 − 1)(𝑥 + 1)
= −𝑐

𝛷𝑁+1(𝑥)

(1 − 𝑥2)
 (2.1.18) 

where c is a constant. The coefficient of the highest power monomial 𝑥𝑁+1 of 𝛷𝑁+1 is 

equal to 1. This implies 𝑐 = 𝑁(𝑁 + 1), therefore, the generating polynomial satisfies the 

differential equation, 

(1 − 𝑥2)𝛷̈𝑁+1(𝑥) + 𝑁(𝑁 + 1)𝛷𝑁+1(𝑥) = 0 (2.1.19) 

The completed Lobatto polynomial is defined as, 

𝐿𝑜𝑛−1
𝑐 (𝑥) = (1 − 𝑥2)𝐿𝑜𝑛−1(𝑥) (2.1.20) 

They are commonly referred to as Gauss – Lobatto – Legendre points (GLL points). 

Figure 1 shows the Lagrange polynomial of degree 4th, 6th, and 8th with GLL points as 



19 

 

collocation points. 

 
(a) 

 
(b) 

 
(c) 

Figure 1 The Lagrange polynomials of degree 4th (a); 6th (b); and 8th (c). The 

collocation points, indicated by vertical lines, are the Gauss – Lobatto – 

Legendre (GLL) points. 

Nek5000 provides some basic tools for generation of mesh, genbox. This tool cannot 

handle with more complex geometries. An automatic way of converting a mesh created 

from .msh file to the format required by Nek5000 is msh2nek. The way the mesh is created 

in this thesis is shown in figure 2. 

 
 

Figure 2 The way to generate the mesh. 

In this thesis, the elemental mesh is generated by python code and gmsh, the msh2nek 

tool converts this to a .re2 file and after that the GLL – nodes are distributed by the 

initialization in Nek5000. 

Element grid gmsh2nek 
Nek5000 

GLL – nodes 

.msh .re2 
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2.2 Large eddy simulation models 

Even though DNS is able to resolve turbulent quantities correctly without any model, 

this methodology requires high computational memory and cost. LES is one of most 

powerful tools for simulating turbulent flows.  

The filtered Navier – Stokes can be written (“Nek5000 note” 2005 [18]) as below, 

𝜕𝒖̅

𝜕𝑡
+ (𝒖̅ ∙ 𝛻)𝒖̅ = −𝛻𝑝̅ +

1

𝑅𝑒
∆𝒖̅ − 𝛻 ∙ 𝜏, 𝛻 ∙ 𝒖̅ = 0, (2.2.1) 

𝜕𝜃̅

𝜕𝑡
+ (𝒖̅ ∙ 𝛻)𝜃̅ =

1

𝑅𝑒𝑃𝑟
∆𝜃̅ − 𝛻 ∙ 𝑞,  (2.2.2) 

where overbar denotes the filtered (or resolved) field that is computed on the computational 

grid, 𝒖̅(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝑟)𝒖(𝑟, 𝑡)𝑑𝑟 with the filter function G. The extra stress term 𝜏 =

 𝒖 ∙ 𝒖̅̅ ̅̅ ̅̅ − 𝒖̅ ∙ 𝒖̅ is the sub – grid stress tensor and 𝑞 = 𝒖𝜃̅̅̅̅ − 𝒖̅𝜃̅ is the sub – grid heat flux 

vector.  

The sub – grid stress tensor and sub – grid heat flux vector can be expressed as follows: 

𝜏𝑖𝑗 −
𝛿𝑖𝑗

3
𝜏𝑘𝑘 = −2(𝐶𝑠∆)2|𝑆̅|𝑆𝑖̅𝑗, (2.2.3) 

 𝑞𝒊 = −𝑟𝑡
−1(𝐶𝑠∆)2|𝑆̅|𝜕𝑖𝜃̅,                              (2.2.4) 

               𝑆𝑖̅𝑗 =
1

2
(𝜕𝑗𝑢̅𝑖 + 𝜕𝑖𝑢̅𝑗), (2.2.5) 

where 𝛿𝑖𝑗 is the Kronecker delta, 𝐶𝑠 and 𝑟𝑡 are the Smagorinsky coefficient and turbulent 

diffusivity, respectively, ∆ is the filter width, and 𝑆𝑖̅𝑗 is the strain-rate tensor which has a 

norm |𝑆̅| = (2𝑆𝑖̅𝑗𝑆𝑖̅𝑗)
1/2

. The Smagorinsky coefficient and turbulent diffusivity are 

defined as: 

𝐶𝑠
2 =

〈(𝑢̂̅𝑖 𝑢̂̅𝑗 − 𝑢̅𝑖𝑢̅𝑗
̂ )〉

〈2 (∆̂2 |𝑆̅̂| 𝑆̅̂
𝑖𝑗 − ∆2|𝑆̅|𝑆𝑖̅𝑗

̂ ) 𝑆𝑖̅𝑗〉
, (2.2.6) 
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                    𝑟𝑡 = 𝐶𝑠
2 [

〈(𝑢̂̅𝑖𝜃̅ − 𝑢̅𝑖𝜃̂̅)〉

〈2 (∆̂2 |𝑆̅̂| 𝜕𝑖 𝜃̂̅ − ∆2|𝑆̅|𝜕𝑖𝜃̂̅) 𝜕𝑖𝜃̅〉
]

−1

, (2.2.7) 

where <∙> denotes a spatial averaging procedure along the homogeneous direction of the 

flow. 

2.3 Grid convergence index 

One important issue in CFD simulations is which grid level is appropriate to obtain the 

most reasonable results. To determine this, a grid refinement study to assess the effect of 

the grid resolution is necessary, and quantitative measurement according to the grid 

refinement study should be addressed. We therefore proposed a GCI estimation based on 

grid refinement to quantitatively represent the results of the grid test. This method involves 

performing the simulation on two or more successively finer grids. The GCI computes a 

percentage error between the numerical solution and the asymptotic value and indicates 

how the solution will change with a further refinement of the grid. Basically, two grid 

levels are required to calculate GCI, but three grid levels are recommended for accurate 

estimation of the order of convergence. Three meshes were constructed with the grid 

refinement factors, defined as 𝑟12 = ℎ2/ℎ1 and 𝑟23 = ℎ3/ℎ2, where ℎ1 < ℎ2 < ℎ3 is the 

representative cell size and the value 𝑓𝑘  at the corresponding grid level (𝑘 = 1,2,3) is 

normalized by an appropriate representative value.  

In this section, three GCI estimation methods are introduced, including Roache’s 

original GCI method, the modified methods from the Roache’s GCI method described in 

the ASME V&V – 20 guidelines (Mod. - ASME) [4], and the Eca – Hoekstra ‘s least square 

version GCI (was named Simplified least square version GCI estimation method, SLS–

GCI) [6]. 

2.3.1 Roache’s GCI method 

Roache (1998) [1] has provided a method based on a grid refinement error estimator 
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derived from the generalized Richardson’s extrapolation (Richardson 1908, 1927) [2, 3]. 

Roache’s GCI method can be used to calculate a higher-order estimate of the flow field 

from a series of lower-order discrete values.  

The order of accuracy can be obtained from three solutions using a constant grid 

refinement ratio 𝑟, 

𝑝 = 𝑙𝑛 (
𝑓3 − 𝑓2

𝑓2 − 𝑓1
) /𝑙𝑛 (𝑟). (2.3.1) 

The Richardson extrapolation is able to be generalized by introducing a 𝑝th order 

method and 𝑟 value of the grid refinement ratio as:  

𝑓ℎ=0 = 𝑓1 +
𝑓1 − 𝑓2

𝑟𝑝 − 1
. (2.3.2) 

The GCI provides an estimation of the discretization error in the finest grid solution 

relative to the converged numerical solution. The GCI on the finest grid is defined as: 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠|𝜀|

𝑟𝑝 − 1
, (2.3.3) 

where 𝐹𝑠 is a safety factor (it is recommended to be 𝐹𝑠 = 3 if two grids are compared, and 

𝐹𝑠 = 1.25 if three or more grids are compared); 𝜀 = (𝑓2 − 𝑓1)/𝑓1 is the relative error. 

In engineering design or analysis requiring many CFD simulations, the coarser grid 

might be desirable. Thus, it is necessary to evaluate the error for the coarser gird. In this 

case the GCI in the coarse mesh is defined as:  

𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒 =
𝐹𝑠|𝜀|𝑟𝑝

(𝑟𝑝 − 1)
. (2.3.4) 

It is important that each grid level yield solutions that are in the asymptotic range of 

convergence for the computed solution. This can be checked by observing two GCI values 

as computed over three grids, 

𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑟𝑝𝐺𝐶𝐼𝑓𝑖𝑛𝑒. (2.3.5) 

Roache’s GCI method has a simple formula, and it is easy to estimate the GCI. 
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However, in the original method the accuracy order is computed by the logarithmic 

function of the differences of the 𝑓𝑘  value. Thus, the value of 𝑓𝑘  needs to increase or 

decrease commensurately with a constant refinement ratio (i.e., 𝑓1 < 𝑓2 < 𝑓3 or 𝑓1 > 𝑓2 >

𝑓3). Besides that, requiring a constant grid refinement ratio, over three meshes, can become 

a computational burden, especially for three dimensional problems. 

2.3.2 Modified ASME V&V 20 method 

A modified method was introduced in the ASME V&V 20-2009 guideline (ASME 

2009) [4], based on Roache’s original method, to overcome the deficiency described 

immediately above. We arranged three meshes for estimation of the GCI value, and the 

observed order of convergence 𝑝̂ was estimated as: 

𝑝̂ =
𝑙𝑛 [

𝜀32

𝜀21
+ 𝑞(𝑝̂)]

𝑙𝑛(𝑟21)
, (2.3.6) 

𝜀32 = 𝑓3 − 𝑓2, 𝜀21 = 𝑓2 − 𝑓1 (2.3.7) 

𝑞(𝑝̂) = 𝑙𝑛 (
𝑟21

𝑝 − 𝑠

𝑟32
𝑝 − 𝑠

), (2.3.8) 

𝑠 = 1 × 𝑠𝑖𝑔𝑛 {
𝜀32

𝜀21
}. (2.3.9) 

When 𝑟21 ≠ 𝑟32, the convergence order 𝑝̂ is calculated iteratively with 𝑞(𝑝̂). If the rate 

of mesh refinement is constant, this iteration step can be skipped. 𝑝̂ can take the value of 

less than one even though the higher-order scheme is used. Moreover, for simple laminar 

flow problems, 𝑝̂  nearly equals zero. A lower threshold must be introduced for the 

observed 𝑝̂, and the order of convergence 𝑝 is defined as: 

𝑝 = 𝑚𝑎𝑥(𝑝𝑙, 𝑝̂). (2.3.10) 

where 𝑝𝑙 is the lower threshold of the order [17,18], as the lowest order of accuracy of the 

discretization schemes (𝑝𝑙 = 1). The GCI value 𝑢𝐺𝐶𝐼 and the extrapolated value 𝑓𝑐 can be 
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defined as: 

𝑓𝑐 =
𝑟21

𝑝 𝑓1 − 𝑓2

𝑟21
𝑝 − 1

,   (2.3.11) 

𝑢𝐺𝐶𝐼 =
𝐹𝑠 × |𝑓2 − 𝑓1|

𝑟21
𝑝 − 1

= 𝐹𝑠 × |𝑓𝑐 − 𝑓1|,   (2.3.12) 

Here, 𝐹𝑠 is a safety factor. Although 𝐹𝑠 = 1.25 is recommended in the ASME guideline, 

in this case 𝐹𝑠 is varied according to the convergence order 𝑝. If 𝑝𝑙 < 𝑝 ≤ 𝑝𝑢, then 𝐹𝑠 =

1.25  is applied. Otherwise, 𝐹𝑠 = 3.0  is applied as a conservative value. The upper 

threshold of the order 𝑝𝑢 (= 2.0) is the highest order of accuracy of the discretization 

scheme (Tanaka, Ohshima, and Monji 2009, 2010) [19, 20]. 

The Mod. – ASME method is more accurate than the original method. However, it 

would be convergence problematic if the grid refinement factors did not have a constant 

rate, and the iteration step needs to be solved to determine the observed order of 

convergence.  

2.3.3 Simplified least square version GCI 

The simplified least square version GCI (SLS—CGI) was proposed by Tanaka and 

Miyake (2015) [5] based on the least square CGI method by Eca and Hoeska (2006) [6]. 

To estimate the order of convergence, the original method requires the numerical values 

for many more than three different meshes (𝑘 > 3), whereas the SLS–GCI method is 

devised to work with three numerical values in different meshes (𝑘 = 3), the minimum 

number to reduce the cost. 

In SLS–GCI, the convergence order 𝑝, the extrapolated value 𝑓𝑐, and coefficient α are 

computed by the least square method following these equations: 

𝑓𝑘 = 𝑓𝑐 + 𝛼(ℎ𝑘)𝑝,   (2.3.13) 
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𝑆 = ∑[𝑓𝑘 − (𝑓𝑐 + 𝛼(ℎ𝑘)𝑝)]2

3

𝑘=1

,   (2.3.14) 

As a result, the GCI value 𝑢𝐺𝐶𝐼 and the error of estimation between the numerical and 

estimated results 𝑢𝑒 can be computed accordance with the order of convergence 𝑝: 

• Case 1, 𝑝𝑙 < 𝑝 

𝑢𝐺𝐶𝐼 =
𝐹𝑠 × |𝑓2 − 𝑓1|

𝑟21
𝑝 − 1

= 𝐹𝑠 × |𝑓𝑐 − 𝑓1|, 𝑢𝑒 = √
1

3
∑[𝑓𝑘 − (𝑓𝑐 + 𝛼ℎ𝑘

𝑝)]
2

3

𝑘=1

 (2.3.15) 

If 𝑝 > 𝑝𝑢, 𝐹𝑠 = 3.0 is applied. Otherwise, 𝐹𝑠 = 1.25 is applied. 

• Case 2, 0 < 𝑝 < 𝑝𝑙, 𝑝 = 𝑝𝑙 = 1 

𝑢𝐺𝐶𝐼 =
3.0|𝑓2 − 𝑓1|

𝑟21
𝑝 − 1

, 𝑢𝑒 = √
1

3
∑[𝑓𝑘 − (𝑓𝑐 + 𝛼ℎ𝑘

𝑝)]
2

3

𝑘=1

 (2.3.16) 

In this case, 𝑝 is set to 𝑝𝑙, then the coefficient 𝛼 and the extrapolated value 𝑓𝑐 must be 

re-estimated according to Equation (2.3.13) and (2.3.14). 

• Case 3, 𝑝 ≤ 0 or 𝑝 is not converged, then: 

𝑢𝐺𝐶𝐼 = 0, 𝑢𝑒 = √
1

3
∑(𝑓𝑘 − 𝑓𝑐)2

3

𝑘=1

, 𝑓𝑐 =
1

3
∑ 𝑓𝑘

3

𝑘=1

   (2.3.17) 

The strength of SLS–GCI is to reduce the cost of verification and validation and to 

achieve accuracy similar to the two above methods. Nevertheless, the formula of this 

method is quite complicated.  

2.3.4 Combination of Uncertainties 

The global GCI 𝑢𝐺𝐶𝐼 is estimated by the root mean square (RMS) function with respect 

to the local GCI as 



26 

 

𝑈𝐺𝐶𝐼 = √
1

𝑀
∑{(𝑢𝐺𝐶𝐼)𝑗}

2
𝑀

𝑗=1

   (2.3.18) 

The index of 𝜀𝑐 estimated by the RMS of the differences between the reference result 

𝑓0  (e.g., experimental, and analytical results) and the extrapolation result 𝑓𝑐  is also an 

uncertainty factor. The index of 𝜀𝑐 estimated is estimated as follows: 

𝜀𝑐 = √
1

𝑀
∑{|(𝑓0)𝑗 − (𝑓𝑐)𝑗|}

2
𝑀

𝑗=1

 (2.3.19) 

Moreover, for the SLS-GCI, the local error of estimation 𝑢𝑒 is counted as an uncertainty 

factor, as follows: 

𝑈𝑒 = √
1

𝑀
∑{(𝑢𝑒)𝑗}

2
𝑀

𝑗=1

 (2.3.20) 

Therefore, the combined standard uncertainty 𝑈𝑆 of the numerical discretization as the 

over-all value in the domain can be estimated by the root sum square (RSS) function 

regarding the global values of the GCI of 𝑈GCI with a modification coefficient of 1.15 to 

fit the value to the standard deviation, the error of estimation 𝑈𝑒, and the difference 𝜀𝑐 

between the extrapolation and the reference: 

𝑈𝑆 = √(
𝑈𝐺𝐶𝐼

1.15
)

2

+ (𝑈𝑒)2 + (𝜀𝑐)2 (2.3.21) 
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Chapter 3. Deterministic Simulation for Pipe Flow 

3.1 Simulation domain and numerical scheme  

Figure 3 shows a sketch of the computational domain and boundary conditions. The 

incompressible pipe flow was heated with uniform temperature at the pipe wall can be 

defined as below, 

𝜃 =
𝑇𝑤𝑎𝑙𝑙 − 𝑇

𝑇𝜏
 (3.1.1) 

where 𝑇𝑤𝑎𝑙𝑙  is the average of temperature along the wall of the pipe, 𝑇𝜏 =
𝑞𝑤𝑎𝑙𝑙

𝜌𝐶𝑝𝑢𝜏
 is the 

frictional temperature with heat flux at the pipe wall 𝑞𝑤𝑎𝑙𝑙, 𝑢𝜏 = √
𝜏𝑤𝑎𝑙𝑙

𝜌
 is the frictional 

velocity, with regard to shear stress on the wall 𝜏𝑤𝑎𝑙𝑙 = 𝜇
∆𝑢

∆𝑥
. 

 
Figure 3 Schematic of the computational domain and the boundary conditions. 

The computational domain consists of a circular pipe of diameter D and the pipe length 

in the streamwise direction, 𝐿 = 10𝐷 . The effect of different orders of interpolated 

polynomials led to an increase in the number of grid points. The  𝑃𝑁 − 𝑃𝑁  SEM 

formulation is considered for solution that mean the velocity space is approximated by 

typical 𝑁th order Lagrangian polynomial interpolations on the GLL points, and pressure 

space employs 𝑁  order of Lagrangian interpolants on the Gauss–Legendre quadrature 

points. The polynomial orders 𝑁 were set to 4, 6, and 8 on three different grid levels. The 
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accuracy of the solution with Reynolds number 𝑅𝑒 = 19,000 and Prandtl number 𝑃𝑟 =

0.71 was examined according to three different grids. The time integration scheme uses 

the viscous terms treated implicitly by a third-order backward differentiation (BDF3), and 

the non-linear terms explicitly by a third-order extrapolation (EXT3) treatment, is BDF3/ 

EXT3 scheme. 

Table 1 Mesh characteristics. 

Mesh levels Spectral elements 
Polynomial orders 

(𝑁) 
Number of nodes 

Coarse 1,120 

4 71,680 

6 241,920 

8 573,440 

Medium 4,800 

4 307,200 

6 1,036,800 

8 2,457,600 

Fine 15,360 

4 983,040 

6 3,317,760 

8 7,864,320 

Table 1 shows the details of the computational meshes of each case. Three grid levels 

were generated in coarse, medium, and fine mesh, with three different polynomial orders 

for each mesh. The nodes were distributed based on Gauss–Lobatto–Legendre points inside 

each spectral element. The GLL points distribution density of each element are based on 

number of orders of the elements. The high order elements will have more degree of 

freedom (Dof) due to the increased order. This is difference from increasing the refinement 

of the mesh by divide the computation domain more times to reduce element size. Thus, 

the total numbers of elements and nodes were promoted by increases of the polynomial 

order. 
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3.2 Statistical properties of velocity and temperature 

3.2.1 Mean velocity profile  

 

    (a)    

 
(b) 

Figure 4 Mean streamwise velocity profiles: (a) polynomial order effect, and (b) 

mesh effect. 

In Figure 4, the profiles of the mean streamwise velocities of the present simulation are 

compared with the DNS results by Khoury et al. (2013) [12] at the same Reynolds number 

and the law of the wall based on the wall unit 𝑦+ (black line). In the viscous sublayer, the 

interval 0 ≤ 𝑦+ ≤ 5 is adhered to the linear law 𝑈𝑧
+ = 𝑦+ and the interval 5 < 𝑦+ ≤ 30 

is the buffer region, while farther away from the wall, the interval 𝑦+ > 30 follows the 

logarithm law as 𝑈𝑧
+ =

1

𝑘
𝑙𝑛(𝑦+) + 𝛽 with the standard values of 𝑘 = 0.41 and 𝛽 = 5.5. 
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In Figure 4(a), the mean streamwise velocity profile is shown with the increasing 

polynomial orders (to the 4th, 6th, and 8th) which considered with fine mesh (15,360 spectral 

elements). The results of every order agree well with the DNS data and the law of the wall 

in the viscous sublayer region. However, the 4th order polynomial shows higher values than 

the results of the other orders and the reference data in the log law region the results, even 

though the finest mesh was employed. At the 6th and 8th polynomial orders the mean axial 

velocities 𝑈𝑧
+are in good agreement with the DNS results of Khoury et al. (2013) [12]. 

The effect of the mesh type, coarse, medium, and fine, under the same polynomial 

order 𝑁 =  8 are showen in Figure 4(b). Overall, the axial velocity profiles for the adopted 

three meshes agree well with the reference data [12] in all cases. This means that when the 

higher order of polynomial was adopted (in the current case, the 8th degree), the turbulent 

velocity profile in even the coarse mesh could be predicted well. 

3.2.2 Root mean square velocity 

Figure 5 and Figure 6 show the root mean square of the velocity fluctuations, 𝑈𝜃,𝑟𝑚𝑠
′+  

in the azimuthal direction, 𝑈𝑟,𝑟𝑚𝑠
′+  in the axial, and 𝑈𝑧,𝑟𝑚𝑠

′+  in the radial, according to the 

different polynomial orders and the different grid levels. Figure 5 describes the root mean 

square of the velocity fluctuation of the 4th through 8th polynomial orders at the finest mesh. 

In the case of  𝑈𝜃,𝑟𝑚𝑠
′+  in the azimuthal direction, as the polynomial order increases at the 

fixed grid points the maximum value increase and the maximum value of RMS velocity 

moves around 𝑦+ = 15. 
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    (a)    

 
(b) 

 
(c) 

Figure 5 RMS velocity as related to the polynomial order: (a) azimuthal, 𝑈𝜃,𝑟𝑚𝑠
+ ; 

(b) axial, 𝑈𝑟,𝑟𝑚𝑠
+ ; (c) radial 𝑈𝑧,𝑟𝑚𝑠

+ . 
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(a) 

 
(b) 

 

(c) 

Figure 6 RMS velocity as related to the grid level: (a) azimuthal, 𝑈𝜃,𝑟𝑚𝑠
+ ; (b) axial, 

𝑈𝑟,𝑟𝑚𝑠
+ ; (c) radial 𝑈𝑧,𝑟𝑚𝑠

+ . 
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However, at the fixed polynomial order 𝑁 =  8, the peak decreases with the increasing 

number of grid points (Figure 6(a)). Similar behavior can be seen in 𝑈𝑟,𝑟𝑚𝑠
′+  in the axial 

direction in Figure 5(b) and Figure 6(b). In the radial direction, 𝑈𝑧,𝑟𝑚𝑠
′+ , as the polynomial 

order increases or the number of grid points increases, the peak value decreases. However, 

the location of the maximum value is predicted to be around 𝑦+ = 15 in all cases. This 

demonstrates that the velocity fluctuation in every direction is more sensitive to the 

polynomial order than to grid level. 

3.2.3 Mean temperature profile 

The mean temperature distribution versus the distance in the wall unit, 𝑦+ with the 

different polynomial orders and grid levels are showed in Figure 7 which are compared 

with the LES computation by Ould-Rouiss, Bousbai, and Mazouz (2013) [8], Their 

simulation is considered heat transfer pipe flow at the Prandtl number 𝑃𝑟 = 0.71 and the 

Reynolds number 𝑅𝑒 = 20,000, and the uniform heat flux was applied to the wall instead 

of the uniform temperature in the present simulation.  

Similar to the comparison of mean axial velocity profiles above, the mean temperature 

profiles in cases of the 6th and 8th polynomial orders agree fairly well with the reference 

value (Ould-Rouiss, Bousbai, and Mazouz, 2013) [8], as shown in Figure 7(a). However, 

the predicted profile in the 4th order case shows a large discrepancy from the reference. 

These correspond to the result in the fine mesh. 

In the case of the 8th polynomial order (Figure 7(b)), the predicted mean temperature 

profile does not depend on the grid level, and all the predicted values are consistent with 

each other and the reference data (Ould – Rouiss, Bousbai, and Mazouz 2013) [8]. 
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(a) 

 
(b) 

Figure 7 Mean temperature profiles: (a) polynomial order effect, and (b) mesh effect. 

3.2.4 Heat flux 

In Figure 8 shows the streamwise/axial turbulent heat flux as a function of the distance 

from the wall 𝑦+, at various polynomial orders (Figure 8(a)) and grid levels (Figure 8(b)). 

Our simulation results are compared with the LES results from Ould – Rouiss, Bousbai, 

and Mazouz (2013) [8], with different wall conditions (the uniform heat flux was applied 

to the wall instead of the uniform temperature in the present simulation) and small 

differences in the Reynolds number, 𝑅𝑒 = 20,000 (the Reynolds number in present work 

is 𝑅𝑒 = 19,000). We wanted to compare only the behavior of the heat flux with increases 
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in the wall distance. The turbulent heat flux increased as the distance to the wall increased, 

with a peak at approximately 𝑦+~10, and then decreased to zero.    

 

(a) 

 
(b) 

Figure 8 Streamwise turbulent heat flux: (a) polynomial order effect, and (b) mesh 

effect. 

In the difference of polynomial order cases (Figure 8(a)), the profile of the turbulent 

heat flux in the streamwise direction approached the values of the LES results by Ould – 

Rouiss, Bousbai, and Mazouz (2013) [8], However, the position of the maximum turbulent 

heat flux was located at approximately  𝑦+~ 20 instead of  𝑦+~ 10 in the LES results. This 

discrepancy was caused by the different boundary conditions at the wall. 
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in Figure 8(b). The mesh is finer, and the agreement with the profile from LES Ould – 

Rouiss, Bousbai, and Mazouz (2013) [8] is better. Although the higher-order polynomial 

(up to 8th degree) was used, the coarse mesh in our present work was not enough to resolve 

the turbulent heat flux. The interesting point is that all the cases with different grid levels 

predicted the peak of the heat flux near the same position, at 𝑦+~ 20. 

3.2.5 Instantaneous flow fields 

Figure 9 shows the contours of the instantaneous axial velocity at the cross section 

(𝑥/𝐷 =  5.0) of the computational domain in Figure 3. The contours in Figures 9(a), (b), 

and (c) correspond to the same number of spectral elements, 15,360, which is the fine mesh 

case with three different polynomial orders, the 4th, 6th, and 8th. In the results, the total 

numbers of nodes are 983,040 in 4th order case, 3,317,760 in the 6th, and 7,864,320 in the 

8th. As the polynomial order increased, the flow fields were able to be resolved with smaller 

eddies, especially near the wall. However, when the polynomial order was low, it can be 

seen that only large eddies were resolved.  

The effect of the grid number is presented in Figures 9(c), (d), and (e), where the total 

spectral elements for each case are 1,120, 4,800, and 15,360, respectively. The polynomial 

order is fixed as 𝑁 =  8 in this figure. More small eddies near the wall can be observed in 

the fine mesh. However, the resolution difference between the coarse and fine meshes is 

not more severe than that between the low and higher polynomial orders shown in Figures 

9(a), (b) and (c). This result can be confirmed by the predictions of mean velocity and 

temperature in Figures 4 and 7. 

The instantaneous temperature fields in the pipe at the center cross section of the 

computational domain (Figure 3) for the different polynomial orders are shown in Figure 

10(a), (b), and (c). The thermal structures exist in the whole pipe section and extend from 

the pipe center to the wall. The molecular heat flux is reduced when the polynomial order 
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is reduced. As the polynomial order is increased, the wall normal turbulent heat flux is 

intensified. The motion near the wall is more resolved in the higher-order polynomials.  

The effect of the grid number on the instantaneous temperature field is shown in Figure 

10(c), (d), and (e). The normal wall turbulent heat flux is enhanced when a finer grid is 

used. However, the difference between the coarse mesh and the fine mesh is insignificant 

compared with that between the low and higher polynomial orders. 
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(a) (b) (c) 

  

(d) (e) 
Figure 9 Contours of the instantaneous axial velocity: (a) fine mesh with 𝑁 =  4; (b) fine mesh with 𝑁 =  6; (c) fine 

mesh with 𝑁 =  8; (d) coarse mesh with 𝑁 =  8; (e) medium mesh with 𝑁 =  8. 
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(a) (b) (c) 

  

(d) (e) 
Figure 10 Contours of the instantaneous temperature: (a) fine mesh with 𝑁 =  4; (b) fine mesh with 𝑁 =  6; (c) fine 

mesh with 𝑁 =  8; (d) coarse mesh with 𝑁 =  8; (e) medium mesh with 𝑁 =  8. 
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3.2.6 Computing memory and runtime 

In analysis and design processes based on CFD, the computational time is equally as 

important as the accuracy of the solution. This section provides detailed information 

pertaining to computational efficiency, including running time and memory used. Table 2 

presents the information of all the cases according to the mesh number and polynomial 

order. All simulations were carried out on a high-performance computing system with an 

Intel® Xeon® E5-2690 processor. 

Table 2 Run time and computer memory.  

Mesh levels 
Polynomial orders 

(𝑁)  

Total time 

(minutes) 

Time/one step 

(second) 

Memory used 

(GB) 

Coarse 

4 5.754 0.081 2.57311 

6 26.223 0.232 6.00920 

8 116.686 0.467 8.44489 

Medium 

4 30.636 0.505 2.72006 

6 298.838 1.517 9.95910 

8 2,027.100 4.422 15.7682 

Fine 

4 167.650 1.810 5.46292 

6 2,081.333 6.836 11.4328 

8 13,354.100 21.348 22.0713 

Considering the size of the mesh and the polynomial order is important for optimal 

computation time and memory capacity while still ensuring the accuracy of the results. In 

the fine mesh case with the polynomial order of 8, 15,360 spectral elements were used, and 

the total grid points were 7,864,320. The total run time in this case was up to 13,354 

minutes and required more than 22 GB of memory. 

The total runtime and required memory capacity based on the 6th order polynomial are 

much less than those of the 8th order polynomial in the same mesh. The total runtime based 

on the 6th order polynomial is four times less than in coarse mesh, six times in medium 

mesh and fine mesh. Moreover, nearly two times less for memory capacity when the 6th-
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order polynomial is applied, while the difference of the 6th and 8th order polynomial results 

are insignificant. In the comparison to difference mesh (coarse, medium, and fine mesh) 

with the same order of polynomial (𝑁 =  8), there is no difference between the results of 

medium and fine mesh (see in sections 3.2.1, 3.2.2 and 3.2.3), although the total runtime 

in medium mesh is only 2,027 minutes which is six times less than that in fine mesh and 

the memory capacity can be saved nearly two times. 

3.3 Grid convergence index 

In this section, two GCI estimations are investigated to the grid and polynomial order 

in the adopted SEM. The Nusselt number, which is typically a dimensionless parameter in 

the heat transfer of a pipe, was selected as the quantity of interest (QoI) in the present study. 

The mathematical formula of the Nusselt number based on the bulk temperature can be 

expressed as follows: 

𝑁𝑢 =  
ℎ𝐷

𝑘
=

2𝑞𝑤𝑟𝑤

𝑘(𝑇|𝑟=𝑟𝑤
− 𝑇𝑏)

 (3.3.1) 

where the mass average (bulk) temperature, 𝑇𝑏, is defined as follows by averaging the 

velocity profile 𝑢̃(𝑟) and the temperature 𝑇̃(𝑥, 𝑟) in time, 

𝑇𝑏(𝑥) =
2

𝑟𝑤
2𝑢𝑚𝑒𝑎𝑛

∫ 𝑢̃(𝑟)

𝑟𝑤

0

𝑇̃(𝑥, 𝑟)𝑟𝑑𝑟 (3.3.2) 

To calculate the GCI value, three different grids (coarse, medium, and fine) at one fixed 

order, 𝑁 =  8, and three different polynomial orders (𝑁 = 4, 6, and 8) at the fine mesh 

were considered. Figures 11(a), (b), and (c) show the fine mesh at the cross section with 

4th, 6th, and 8th order polynomials. Figures 11(d) and (e) correspond to the coarse and 

medium mesh, respectively, at the fixed polynomial order, 𝑁 =  8, with 8 GLL points at 

each element. These study parameters are summarized in Table 3 and Table 4 for 

polynomial orders effect and mesh levels effect, respectively.  
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Among the three available GCI estimation methods (the original Roache’s method, 

Mod. – ASME, and SLS – GCI), we used the latter two in the present study since the 

original Roache’s method requires a monotonic solution (increasing or decreasing results 

simultaneously between different grid systems). However, the present results do not show 

this behavior, which is typical in most engineering simulations. 

Table 3 Characteristics of polynomial orders effective with number of spectral 

elements, 15,360. 

Polynomial orders 

(𝑁) 
Number of elements 

f-value 

(Nusselt number) 

4 414,720 50.564 

6 1,920,000 49.803 

8 5,268,480 49.947 

Table 4 Characteristics of mesh levels effective with polynomial order, 𝑁 = 8. 

Mesh levels Number of elements 
f-value 

(Nusselt number) 

Coarse 382,160 49.901 

Medium 1,646,400 49.324 

Fine 5,268,480 49.947 

In the GCI estimation, the is reference solution of the Nusselt number is necessary 

considered, here as the correlation proposed by Gnielinski [21]. This correlation can be 

calculated using the friction coefficient correlation, the Prandtl number, and the Reynolds 

number as follows: 

𝑁𝑢 =  
(𝑓/8)(𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7(𝑓/8)1/2(𝑃𝑟2/3 − 1)
 (3.3.3) 

where the friction coefficient correlation is given by 

𝑓 = (0.79𝑙𝑛(𝑅𝑒) − 1.64)−2 (3.3.4) 

The Gnielinski correlation is valid for 0.5 ≤ 𝑃𝑟 ≤ 2,000  and 3 × 103 ≤ 𝑅𝑒 ≤

5 × 106.  
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(a) (b) (c) 

  

(d) (e) 
Figure 11 Mesh arrangements: (a) fine mesh with 𝑁 =  4; (b) fine mesh with 𝑁 =  6; (c) fine mesh with 𝑁 =  8; (d) coarse 

mesh with 𝑁 =  8; (d) medium mesh with 𝑁 =  8. 
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In this simulation, the computed Nusselt number by the Gnielinski correlation [21] is 

𝑁𝑢 = 49.753  when the Reynolds number Re = 19,000  and the Prandtl number 𝑃𝑟 =

0.71 as the reference result.  

Table 5 GCI estimation. 

Effects 
Mod. – ASME  SLS – GCI 

𝑢𝐺𝐶𝐼 𝑓𝑐 𝜀 (%) 𝑢𝐺𝐶𝐼 𝑢𝑒 𝑓𝑐 𝜀 (%) 

Polynomial orders 0.2486 50.030 0.5562 0.0635 0.3867 49.865 0.2248 

Mesh levels 0.8489 50.230 0.9584 0.0179 0.1182 49.636 0.2365 

The results of our two GCI estimations by the Mod. – ASME and the SLS–GCI 

methods are summarized in table 5. The extrapolation value from the SLS–GCI method 

seemed to be better in terms of difference from the reference solution: 𝜀 =  0.2248% for 

the polynomial order effect case and 𝜀 =  0.2365% for the mesh number effect case. In 

the Mod. – ASME method, the difference from the reference solution, 𝜀, are more than two 

times larger than those of the SLS – GCI, as listed in Table 5. The GCI values, 𝑢𝐺𝐶𝐼, by 

SLS–GCI are 0.0635 and 0.0179 for the polynomial order and the mesh cases, respectively, 

while the Mod. – ASME method predicted these up to 0.2486 and 0.8489 for the two effect 

cases. The GCI value from the Mod. – ASME method was estimated based on the 

difference between the extrapolated value and the numerical value at the fine mesh, while 

the SLS – GCI method estimated the GCI value through the difference between the two 

values by a power law. Thus, the Mod. – ASME’s insufficient results of the GCI value was 

due to its poor extrapolation compared with the SLS – GCI, although the difference 

between the Mod. – ASME’s extrapolation results and the exact results was not bad. 
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Chapter 4. Deterministic Simulation for Rod Bundle flow 

4.1 Computational domain and numerical scheme 

 
 

Figure 12 Geometry for bare rod. 

The bare rod is hexagonal rods that are close together, thus, there is symmetry between 

the rods (figure 12). We are able to be take the advantage of the symmetries of the flow to 

solve single rod instead of the full domains. 

 

 
(a) (b) 

Figure 13 (a) Geometry for single rod; (b) Geometry definition for LES presentation. 

In this simulation, the single rod is considered with P/D of 1.24. To reduce 

computational cost, one may take advantage of the symmetries of the domain.  In single 

rod able to be divided into twelve homologous sections as figure 13(a). Figure 13(b)show 
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the geometry employed for the different simulation performed with the length of domain 

is 𝐿𝑧 = 2𝜋𝐷. The simulation has been performed under incompressible conditions and in 

their dimensionless form. The Reynold number based on those is 𝑅𝑒 = 10,000 and the 

Prandtl number of the fluid is a constant 𝑃𝑟 = 1.0. The energy equation has been solved 

in its dimensionless form as, 

𝑇∗ =
𝑇 − 𝑇0

∆𝑇
 (4.1.1) 

where 𝑇0 s the uniform temperature at the inlet. 

   

(a) (b) (c) 
Figure 14 Mesh arrangement with polynomial order of 7: (a) coarse mesh; (b) medium 

mesh; (c) fine mesh. 

The  𝑃𝑁 − 𝑃𝑁−2 SEM formulation is considered for solution with 𝑁 =  7 that mean 

the velocity space is approximated by typical 7th order Lagrangian polynomial 

interpolations on the GLL points, and pressure space employs 5th order of Lagrangian 

interpolants on the Gauss–Legendre quadrature points. The time integration scheme with 

the viscous terms treated implicitly by a second – order backward differentiation (BDF2), 

and the non-linear terms explicitly by a second – order extrapolation (EXT2) treatment, is 

BDF2/ EXT2 one.  

Structured meshes have been considered for three different grid levels (coarse, 

medium, and fine) at the fixed order of 7th order, which is showed in figure 14. Table 6 

shows the details of the computational meshes of coarse, medium, and fine mesh case. The 
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Gauss – Lobatto – Legendre points distribution, leading to total number of grid points 𝑛 =

𝐸𝑁3.  

Table 6 Mesh arrangement for the fixed order, 𝑁 =  7. 

Case Spectral element 

Coarse 12,600 

Medium 21,870 

Fine 29,760 

4.2 Evaluation results of velocity and temperature  

4.2.1 Velocity profile 

 

    (a)    

 
(b) 

Figure 15 Velocity profile: (a) Axial velocity, and (b) Radial velocity. 
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In Figure 15, the profiles of the axial velocity (figure 15(a)) and radial velocity (figure 

15(b)) of the present simulation are compared with the single rod bundle results by Javier 

Martínez et al. (2019) [16] at the same Reynolds number. The axial velocity profiles 

approached the values of the single rod LES results by Javier Martínez et al. (2019) [16]. 

In radial velocity (figure 15(b)), the profile with mesh finer is agreement with that from 

reference results (Javier Martínez et al. (2019) [16]). 

4.2.2 Instantaneous flow fields 

   

(a) (b) (c) 
Figure 16 Contours of the instantaneous axial velocity: (a) coarse mesh; (b) medium 

mesh; (c) fine mesh. 

Figures 16 (a), (b), and (c) show the contour of the instantaneous axial velocity, where 

the total spectral elements for each case are 12,600, 21,870, and 29,760, respectively. The 

polynomial order is fixed as 𝑁 =  7 in this figure. This shows that the resolution of fine 

mesh is higher than that of coarse mesh. 

4.3 Grid convergence index 

Though GCI estimation according to the polynomial order and grid levels in the pipe 

simulation results, it was found that the accuracy of the SLS – GCI method is greater than 

that by Mod. – ASME. Thus, the SLS – GCI method is chosen to study uncertainty 

quantification by GCI estimation for rod – bundle results effect of grid level. 
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    (a)    

 

(b) 

Figure 17 Velocity profile of time averaged: (a) Axial velocity; (b) Radial velocity. 

The error bars on the numerical results of the combined standard uncertainties 𝑈𝑆.    

Specifications of the mesh arrangement for GCI estimation are listed in table 5 (in 

section 4.1). The total number of elements in the mesh arrangement of coarse, medium, 

and fine meshes are 2,721,600, 4,723,920, and 6,428,160, respectively. The simulation 

results for axial/radial velocity are performed in section 4.2 to provide the data for GCI 

estimation. Table 5 summarizes the estimation results of the uncertainty quantification by 

the SLS – GCI. The error of exact and numerical results 𝜀0 in axial and radial velocity are 

13.24% and 6.38%, respectively, as listed in table 7. The combined standard uncertainty 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

U
z/

U
0

y/y

 Ref.Javier Martinez el at.(2019), Small LES

 Present LES, Coarse mesh

 Present LES, Medium mesh

 Present LES, Fine mesh

0.0 0.2 0.4 0.6 0.8 1.0

0

2x10-3

4x10-3

6x10-3

U
r/

U
0

y/y

 Ref.Javier Martinez el at.(2019), Small LES

 Present LES, Coarse mesh

 Present LES, Medium mesh

 Present LES, Fine mesh



50 

 

US of 16.46% and 8.47% of axial velocity and radial velocity are showed by the error bar 

on the numerical results, respectively, as showed by the error bar on the numerical results 

in Figure 16.  The error of exact and numerical results 𝜀0 is smaller than that of uncertainty 

value 𝑈𝑆. 

Table 7 Summarizes the results of SLS – GCI estimation. 

Case ε0 
SLS - GCI 

𝑈𝐺𝐶𝐼 𝑈𝑒 𝜀𝑐 𝑈𝑆 

𝑈𝑧/𝑈0 0.1324 0.1009 0.0593 0.1209 0.1554 

𝑈𝑟/𝑈0 0.0638 0.0538 0.0301 0.0830 0.1000 

Where the index of 𝜀0  in table 6 is the error between the reference results and the 

numerical result in case – F, 𝑓1. The index of 𝜀0 estimated is estimated as follows: 

𝜀0 = √
1

𝑀
∑{|(𝑓0)𝑗 − (𝑓1)𝑗|}

2
𝑀

𝑗=1

 (4.3.1) 
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Chapter 5. Conclusion 

5.1 Conclusion 

Large eddy simulation of turbulent heat transfer flows (with two geometries, pipe flow 

and rod bundle flow) were conducted using NEK5000 code based on the spectral element 

method and two GCI estimation methods were used here, the modified Roache’s method 

introduced in the ASME V&V 20-2009 guideline (Mod. – ASME) and Eca’s least square 

version (SLS–GCI). 

In pipe flow simulation, the diameter of the pipe was D, and the axial extent of the 

domain was 10𝐷  at Reynolds number 𝑅𝑒 =  19,000 and Prandtl number 𝑃𝑟 =  0.71. 

The objective of the present research was to observe the interpolation effects of different 

polynomial orders and grid sizes on SEM-based simulation results. The polynomial order 

ranged from 4th to 8th, and three grids (coarse, medium, and fine) were considered. The 

statistical quantities, including the mean velocity, the RMS of the velocity fluctuations, the 

mean temperature, and the axial heat flux, were examined, and the results were in good 

agreement with the reference results at higher-order polynomials. The effect of grid size at 

the higher-order polynomials was less than the effect of the polynomial order at the fixed 

mesh size. This means that even coarse mesh was able to resolve the small turbulent eddies 

near the wall if a higher-order polynomial was adopted. However, if the polynomial order 

was low, the fine mesh was not able to capture the flow and temperature features correctly. 

The modified Roache’s method introduced in the ASME V&V 20-2009 guideline 

(Mod. – ASME) and Eca’s least square version (SLS–GCI), along with three mesh 

arrangements (coarse, medium, and fine) and three difference polynomial order (4th, 6th, 

and 8th). The error index from the SLS–GCI estimation was two times less than that of the 

Mod. – ASME estimation. Further, GCI was estimated as being smaller by SLS–GCI than 
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by Mod. – ASME.  

Though GCI estimation of polynomial order and grid levels effect case in the pipe 

results, it was found that the accuracy of the SLS – GCI method is greater than that by 

Mod. – ASME. Thus, the SLS – GCI has been chosen to study uncertainty quantification 

by GCI estimation for rod – bundle results effect of grid level in rod bundle simulation. 

The error of exact and numerical results is smaller than that of uncertainty value. 

5.2 Future work 

The turbulent kinetic energy of the rod bundle simulation will be investigated. The 

thermal field for rod – bundle simulation will be studied and the GCI estimation for the 

numerical results will be conducted.  

In the future, uncertainty quantification with the spectral element method will be 

investigated in the influence of other input parameters on the numerical solution, the 

computing time, and the number of solver iterations, for instance.
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