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Abstract

BaTiO3 has 4 structures. These are cubic (Pm3̄m), orthorhombic (Amm2), rhombohedral
(R3m), and tetragonal (P4mm). These structures has a constant energy when the k point
meshes are 888 (Gamma centered grid). These also has a constant energy when the energy
cutoff is around 700 eV. Their the phonon band structures and Gibbs free energies were calcu-
lated by DFT and phonon method. The phonon dispersions of Pm3̄m, Amm2, R3m, and P4mm

are the unstable phases. On the other hand, their stabilities of the phases were measured by a
experiment. Pm3̄m, Amm2, and P4mm were the unstable phases. R3m was the stable phase.
Using the quasi harmonic approximation, I could compute their Gibbs free energies. From
their Gibbs free energies, we could get a phase diagram. Temperature has a significant impact
on the phase transition. Gibbs free energies of the phases were calculated under the tempera-
tures 0 ~ 500 K at a pressure 0 GPa. The diagram was calculated as orthorhombic ! tetragonal
! cubic, and the corresponding transition temperatures are 242 and 391 K, respectively. The
rhombohedral structure was computed that the structure did not transform to the orthorhombic
structure. The experiment requires that the crystal structure transforms among from the rhom-
bohedral (R3m) to the orthorhombic (Amm2) between 200 and 240 K, then to the tetragonal
(P4mm) between 250 and 280 K, and to the cubic (Pm3̄m) between 300 and 320 K.

The phase diagrams and phonon band structures of HfO2 was calculated for cubic (Fm3̄m),
monoclinic (P21/c), tetragonal (P42/nmc), orthorhombic (Pca21, Pbca, and Pnma). Fm3̄m, P21/c,
and P42/nmc belong to the nonpolar phases. These has a constant energy when the k point
meshes are 666 (Monkhorst-pack). When the energy cutoff has around 550 eV, they have a
constant energy. The orthorhombic phases (Pca21, Pbca, and Pnma) have a constant energy
when the k point meshes are 444 (Monkhorst-pack). When the energy cutoff has around 550
eV, the phases have a constant energy. From the phonon band structures of HfO2, Fm3̄m and
P42/nmc are the unstable phases. P21/c, Pbca, Pnma, and Pca21 are the stable phases. I got
the different result on the phonon dispersion of the orthorhombic phases (Pnma). The refer-
ence argued that the orthorhombic phase (Pnma) is the unstable phase. The phase diagram
was calculated under the temperatures from 0 to 3000 K and at the pressures between 0 and
30 GPa. The diagram is described the monoclinic (P21/c) is the most stable at the low tem-
peratures and at the low pressures. When the pressure is from 9 to 15.8 GPa, the orthorhombic
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(Pbca) or the tetragonal (P42/nmc) are the most stable. When the pressure increases more
than 15.8 GPa, the orthorhombic (Pnma) is the most stable. This results are similar to their
the equilibrium of phase diagram for HfO2. In addition, when Fm3̄m and Pca21 consider into
the phase diagram, I got the new phase diagram. The cubic phase transforms to the tetragonal
at P = 10.1 GPa. The monoclinic phase (P21/c) is the most stable at the low temperatures and
at the low pressures. When the temperature increases, the orthorhombic (Pca21) or the tetrag-
onal (P42/nmc) are the most stable. Between the pressures 9 and 15.8 GPa, the orthorhombic
(Pbca) is the most stable at the low temperatures. When the temperature increases, P42/nmc

or Pca21 are the most stable. Also, when the pressure increases more than 15.8 GPa, the
orthorhombic (Pnma) is the most stable.
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Chapter 1

Introduction

In this context, there are a harmonic, a quasi harmonic, and an anharmonic approximations
for theoretically. These two harmonic sections included theories and results of a phonon cal-
culations. However, the anharmonic part considered only theoretically. I contemplated bar-
ium titanate BaTiO3 (BTO), that represents a perovskite structure. In addition, I considered
hafnium oxide HfO2 (hafnia). The material is known as a high dielectric material. Recently,
HfO2 used in a semiconductor industry. Because the material can make to increase a capacity
of semiconductor.

The material BaTiO3 has four phases. These are cubic (Pm3̄m), orthorhombic (Amm2),
rhombohedral (R3m), and tetragonal (P4mm) crystal structure. The cubic phase is known as
a paraelectric structrue, while the other phases are known as a ferroelectric structures. Also,
HfO2 has five phases. These are cubic (Fm3̄m), monoclinic (P21/c, P21/m, Cc, and Pm),
orthorhombic (Pca21, Pmn21, Pbac, and Pnma), tetragonal (P42/nmc), and triclinic (P1 and
P1̄) phases. Monoclinic (Cc, Pm), orthorhombic (Pca21 and Pmn21), and triclinic (P1) phases
have a ferroelectricity. In addition, a phase transition of the BaTiO3 is known as the cubic
(Pm3̄m) transforms to the tetragonal (P4mm), and from the tetragonal to the orthorhombic
(Amm2), and to the rhombohedral (R3m). Furthermore, a phase transition of HfO2 is the mon-
oclinic phase (P21/c) transforms to the tetragonal (P42/nmc) and the orthorhombic (Pbca and
Pnma). In a computational physics, a scientist often use the density functional theory (DFT)
method for analyzing the composition of a material. The method used the Vienna Ab initio
simulation package (VASP). This tool deals with the calculation of the first principle (Ab ini-
tio). This method used the formulas without considering experiment’s values [1]. In addition,
a phonon calculation is an important for condensed matter physics. One of the phonon cal-
culations is called phonopy. Phonopy is an open source package for a phonon calculation at
harmonic and quasi harmonic levels. In the material science, phonons play a major role in
many of the physical properties of condensed matter, such as thermal conductivity and electri-
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cal conductivity. I tried to calculate using DFT-VASP and phonopy for BaTiO3 and HfO2. In
this article, I attempted to compare with a results of several papers [2] [3] [4] [5]. The results
contain the phonon band structures, as well as the phase transitions. I considered that are cu-
bic (Pm3̄m), orthorhombic (Amm2), rhombohedral (R3m), and tetragonal (P4mm) phases for
barium titanate. Also, I considered that are cubic (Fm3̄m), monoclinic (P21/c), orthorhombic
(Pca21, Pbca, Pnma), and tetragonal (P42/nmc) phases for hafnium oxide.



Chapter 2

Theoretical Harmonic, Quasi harmonic,

and Anharmonic Approximations

2.1 The Harmonic Approximation

I have studied a harmonic, a quasi harmonic, and an anharmonic approximations. First I have
focused on a general principles of dynamics of diatomic crystals. In the simple model of a
linear chain of atoms, they have a mass m, and located a between each others. They interacted
each neighbours. The interaction is represented by

E = Nf(a). (2.1)

The energy is in terms of a distance a and the total energy of N atoms. I assume that the move
of the number of N atoms and the displacement u of an atom along the chain. The equation
(1) denotes that

E = Nf + Â
s�1

1
s!

∂ sf
∂us Â

n

(un �un+1)
2. (2.2)

The equation of a first derivative of f is zero due to the distance a is the equilibrium unit cell
length when s = 1. Thus, the terms of s = 2 is the first term for first. The term is respect to
the harmonic part, and if it handle with more than 2 order, the higher order is respect to the
anharmonic terms. Then, we are able to contemplate one dimensional monatomic chain. In
this case, the harmonic energy (when s = 2) stands for

Eharmonic =
1
2

∂ 2f
∂u2 Â

n

(un �un+1)
2;un = Â

k

ũk exp(i[kx�wkt]) (2.3)
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where k is a wave vector 2p
l and ũk is the amplitude. In conclusion, the angular frequency that

is wk = (4J

m
)1/2|sin(ka/2)|. Moreover, the formula can expand if the equation considers more

interactions in the atoms. It is represented by

E = NÂ
p

fp(pa)+
1
2Â

n,p
(
∂ 2fp

∂u2 )rp=pa(un �un+p)
2 (2.4)

where p is the order of p-th atom, and the distance rp = pa. In addition, the harmonic en-

ergy with when s = 2 that is Eharmonic =
1
2

∂ 2fp

∂ r2
p

Â
n

(un � un+p)2. Therefore, the angular fre-

quency that is w2
k
= 4

m
Â
p

∂ 2fp

∂ r2
p

sin2( kpa

2 ). Furthermore, we have to consider that the atoms are

each difference. Simply, we can suggest a configuration that are two different atoms’s chain
with the different force constant G and g, the mass M and m, and the displacement U and
u . The harmonic energy that is E = 1

2Â
n

[G(Un � un)2 + g(un�1 �Un)2]. From the energy, it

induces that the solutions of the monatomic chain are that Un = Â
k

Ũk exp(i[kna�wkt]) and

un = Â
k

ũk exp(i[kna�wkt]). The solutions lead the angular frequency [6] :

w2
k
=

(M+m)(G+g)

2Mm
± ((M+m)(G+g)�16MmGgsin2(ka/2))1/2

2Mm
(2.5)

The angular frequency can deliberate about the different cases. First of all, it is for the long
wavelength limit. In this case, the frequency written by

w2
k
=

(M+m)(G+g)

2Mm
[1± (1� 2MmGgk

2
a

2

(M+m)2(G+g)2 )] (2.6)

if k ! 0 limited, the frequency replace that w2
k
= (M+m)(G+g)

Mm
�O(k2) ; Ggk

2
a

2

(M+m)(G+g) . In
addition, here is the conditions for the angular frequency:

• For same force constants: w2
k
= 2G( 1

M
+ 1

m
); Gk

2
a

2

2(M+m) , w2
k
= 2G

M
; 2G

m
(at the Brillouin

zone boundary)

• For same masses: w2
k
= 2(G+g)

M
; Ggk

2
a

2

2M(G+g) , w2
k
= 2g

M
; 2G

M
(at the Brillouin zone boundary)

• For equal masses with the force constants G � g: w2
k
= 4g

(M+m) sin2(ka/2); G(M+m)
Mm

For explaining the atoms move, we have to know a concept of the normal modes and the
normal mode coordinates, the displacement equation should represent in three dimensional
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crystal with monatomic model. The equation is

u(jl, t) = Â
k,v

U(j,k,v)exp(i[k · r(jl)�w(k,v)t]) (2.7)

where k is a wave vector, and j-th atom in l-th unit cell. The equation (7) can rewrite another
form that is u(jl, t) = 1

(Nmj)1/2 Â
k,v

e(j,k,v)exp(ik · r(jl))Q(k,v). The vector e( j,k,v) is the dis-

placement vector. The quantity Q(k,v) has a time dependence, also it has a complex scalar.
The quantity Q(k,v) can write by using the reverse Fourier transform of equation.

Q(k,v) =
1

N1/2 Â
jl

m
1/2
j

exp(ik · r( jl))e⇤( j,k, l) ·u( jl, t) (2.8)

The equation is the vibrational modes, also is called the normal modes of the model. The
normal modes is orthogonal each others. This means that the modes satisfied the condition [6]

Â
j

e( j,k,v) · e( j,�k,v0) = dv,v0 (2.9)

where the value v and v
0 are the modes. The hamiltonian H can induce in terms of the quantity

Q(k,v).

H =
1
2Â

k,v

Q̇(k,v)Q̇(�k,v)+
1
2Â

k,v

w2(k,v)Q(k,v)Q(�k,v) (2.10)

2.2 The Quasi Harmonic Approximation

The quasi harmonic approximation is based on the harmonic approximation. The approxima-
tion considers the harmonic approximation from different each volumes. It is volume depen-
dence of phonon frequencies as a sort of anharmonic effects. In addition, it can calculate a
thermal expansion and a phase transition. First, we have to contemplate the Helmholtz free
energy F. The energy is represented by the quasi harmonic approximation at constant volume
V :

F(T,V ) = Elattice(V )+Uvibration(T,V )�T S(T,V ) (2.11)

where Elattice is the lattice energy, and Uvibration is the vibration energy, T is the temperature,
and S is the entropy. The vibration energy is that

Uvibration =
1
N

Â
k,v


1
2
+nk,i(T,V )

�
h̄wk,i(V ) (2.12)
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where k is wave vector in i-th band at volume V , and nk,i is the number of (k,i)-phonons.
Therefore, the Helmholtz free energy can represent

F(T,V ) = Elattice(V )+
1
N

Â
k,v

1
2

h̄wk,i(V )+
1
N

Â
k,v

kBT ln
⇥
1� exp(Qk,i(V )/T )

⇤
(2.13)

where Qk,i(V ) = h̄wk,i(V )/kB. In addition, the entropy S = �(∂F/∂T )
V

. Therefore, F =

U �T S is satisfied. Moreover, if we regard constant pressure, Gibbs free energy is defined at
a constant pressure P. The minimal value for Gibbs free energy is found at the equilibrium
volume for a given temperature and pressure.

G(T,P) = min
V

[Uvibration(V )+F(T,V )+PV ] (2.14)

2.3 The Anharmonic Approximation

The harmonic approximation can not explain some phenomenons. For give an example of
the phenomenons, temperature dependence of equilibrium properties, occurrence of phase
transitions, and transport properties. These are related with anharmonic interactions. The
anharmonic Hamiltonian is that it added anharmonic terms in the harmonic Hamiltonian [6] .

H =
1
2Â

k,v

Q̇(k,v)Q̇(�k,v)+
1
2Â

k,v

w2
0 (k,v)Q(k,v)Q(�k,v)+ Â

k>2

1
k! Â

k1,,v1

· · · Â
kk ,vk

Vk

 
k1 · · · kk

v1 · · · vk

!

⇥Q(k1,v1) · · ·Q(kk ,vk)D(k1 +k2 + · · ·+kk) (2.15)

where Vk is the k-th order coupling constant, w0(k,v) is the harmonic frequency of the mode
(k,v), and the function D(G) has a value of unity whether Gis a reciprocal lattice vector.



Chapter 3

Phonon Analysis for Barium titanate and

Hafnium oxide

This context explains that the results of the phonon calculations for barium titanate and hafnia.
Barium titanate is one of a perovskite structure. The system has a chemical formula ABX3.
The material has four crystal structures. These are cubic (Pm3̄m), orthorhombic (Amm2),
rhombohedral (R3m), and tetragonal (P4mm). The cubic phase is a paraelectric structure.
The other phases are ferroelectric structures. The phase transition of BaTiO3 noticed exper-
imentally that is from the cubic to the tetragonal between 300 and 320 K, the tetragonal to
the orthorhombic between 250 and 280 K, and the orthorhombic to the rhombohedral around
from 200 to 240 K at P= 0 GPa [2].

HfO2 is the high dielectric material. The material has a same structure as ZrO2. Haf-
nia has five structures. This chapter is concentrated on cubic (Fm3̄m), monoclinic (P21/c),
orthorhombic (Pca21, Pbca, Pnma), tetragonal (P42/nmc) structures. The low energy of
hafnia can classify two ways. Cubic (Fm3̄m), tetragonal (P42/nmc), orthorhombic (Pbca

and Pnma), and monoclinic (P21/c) are in nonpolar [3]. Orthorhombic (Pca21), mono-
clinic (Cc, Pm), and triclinic (P1) are belong to polar [3]. The phase transition of hafnia
is monoclinic ! tetragoanl ! orthorhombic. The polar points group can be categorized as
the ferroelectric space group [7] by Table 3.1. From the categorization, Amm2, R3m, and
P4mm are belong to the ferroelectric space group. Cc, Pm, P1, Pca21 and Pmn21 have a
ferroelectricity. The structures of BaTiO3 and HfO2 are shown in Figure 3.1 and Figure 3.2.
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Point group Space group
C1 P1
C2 P2, P21, C2
C1h Pm, Pc, Cm, Cc

C2v
Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pbc2, Pna21,

Pnn2, Cmm2, Cmc21, Ccc2, Amm2, Abm2, Ama2, Aba2, Fmm2, Imm2, Iba21, Ima2
C4 P4, P41, P42, P43, I4, I41

C4v
P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc

P42bc, I4mm, I4cm, I41md, I41cd

C3 P3, P31, P32, R3
C3v P3m1, P31m, P3c1, P31c, R3m, R3c,
C6 P6, P61, P65, P62, P64, P63
C6v P6mm, P6cc, P63cm, P63mc

Table 3.1: The ferroelectric space groups.

Figure 3.1: Structures of the material BTO. The green colour is Ba atom, the red is O atom,
and the grey is Ti atom. (a) cubic, (b) orthorhombic, (c) rhombohedral, and (d) tetragonal
polymorphs.
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Figure 3.2: Schematic representation of HfO2. These are (a) cubic, (b) monoclinic, (c) or-
thorhombic, (d) tetragonal phases. The blue colour is Hf atom and the red is O atom.
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3.1 Computational method

Density functional theory (DFT) is a computational quantum mechanical modeling method
to calculate the ground state energy using an electron density. DTF obtains an approximate
solution to the Schrödinger equation of a many body system. The method decreases the com-
putational cost of calculation the ground state wave functions due to the electron density is a
function within the three dimensional spatial space while a wave function is a function within
the four dimensional space containing the normal spatial coordinates and the spin coordinate.

3.1.1 Hohenberg-Kohn theorem

Hohenberg and Kohn suggested a new method to the many body electron system. The theo-
rem related to any system consisting of electrons moving under the influence of an external
potential. They introduced their two theorems.

Theorem 1: The external potential Uext(r) is a unique functional of the electron density
r(r). The energy functional E [r(r)] implied in the first Hohenberg-Kohn theorem can be
written in terms of the external potential Uext(r) and where F [r(r)] is an unknown.

E [r(r)] =
Z

r(r)Uext(r)+F [r(r)] (3.1)

Theorem 2: The ground state energy can be gotten variationally. The density minimises
the total energy is the exact ground state density.

E0 = minE [r(r)]⌘ E [r(r)] (3.2)

3.1.2 The local density approximation (LDA)

The functional Exc [r(r)] is approximated by the exchange correlation energy of an electron
in an homogeneous electron gas of the density r(r), the exchange correlation functional for
LDA can be written as,

E
LDA

xc [r(r)] =
Z

r(r)exc [r(r)]dr (3.3)

where exc [r(r)] is the exchange correlation energy density of a uniform electron gas with
locally computed density r(r). The most right data for exc [r(r)]is from Quantum Monte
Carlo computations. The LDA gives often very good results for a geometrical quantities, a
vibrational frequencies, and an energy differences. The principle advantage of LDA-DFT over
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Space group a (Å) b (Å) c (Å) a (�) b (�) g (�)
Pm3̄m 4.0358 4.0358 4.0358 90.000 90.000 90.000
Amm2 5.6625 5.7636 4.0446 90.000 90.000 90.488
R3m 4.0000 4.0000 4.0000 89.665 89.665 89.665

P4mm 3.9994 3.9994 4.2288 90.000 90.000 90.000

Table 3.2: The lattice parameter for BaTiO3 phases.

methods such as Hartree-Fock is that where the LDA many experimentally relevant physical
properties can be determined to a useful level of accuracy.

3.1.3 The generalised gradient approximation (GGA)

The generalised gradient approximation (GGA) was suggested to surmount some of the lim-
itation of LDA. The GGA can be represented in terms of an analytic function known as the
enhancement factor Fxc [r(r),—(r)] that modifies the LDA energy density:

E
GGA

xc [r(r)] =
Z

r(r)exc [r(r)]Fxc [r(r),—(r)]dr (3.4)

where r(r) is the electronic density and —(r)is the gradient density. The GGA has an espe-
cially powerful advantage that it has over the LDA in calculating which the LDA may over-
value by a much as 100 %, whereas the GGA takes an errors of less than 10 %.

3.2 Computational details

The phases of BTO, cubic (Pm3̄m), orthorhombic (Amm2), rhombohedral (R3m), and tetrago-
nal (P4mm) structure are calculated by DFT and phonopy. Electronic structure have calculated
using density functional theory (DFT). Also, the exchange and the correlation effects are cal-
culated by the Perdew Burke Ernzerhof (PBE) method. Ba atom is used from ’PAW_PBE
Ba_sv’. It has 10 valence electrons, and s2p3 for the valence orbitals. The energy of the
pseudoatom is 700.8560 eV. Ti atom is used from ’PAW_PBE Ti_pv’. It obtains 10 valence
electrons, and d3s1 for the valence orbitals. The energy of the pseudoatom is 1042.5995 eV.
O atom used from ’PAW_PBE O’. It contains 6 valence electrons, and s2p4 for the valence
orbitals. The energy of the pseudoatom is 432.3788 eV. The lattice parameters are shown in
Table 3.2. The lattice parameters of space group Pm3̄m are 4.0358 Å (x-direction), 4.0358Å
(y-direction), and 4.0358 Å (z-direction). The cubic phase constructed 90�for all direction.
In addition, Amm2 considered 5.6625 Å (x-direction), 5.7636 Å (y-direction), and 4.0446 Å
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(a) The k-point meshes. (b) The energy cutoff.

Figure 3.3: The convergence for BaTiO3. Figure 3.3a explains k-point convergence for cubic
(Pm3̄m), orthorhombic (Amm2), rhombohedral (R3m), and tetragonal (P4mm). Each of them
have a constant energy when k-point meshes 888. Figure 3.3b indicates the energy cutoff
convergence. When energy cutoff is around 700 eV, the phases have a constant energy.

(z-direction). The phase structured 90� for all directions. The lattice parameters of R3m are
4.0000 Å (x-direction), 4.0000 Å (y-direction), and 4.0000 Å (z-direction). The rhombohedral
structure is made up 89.665� for all directions. The lattice parameters of P4mm are 3.994 Å
(x-direction), 3.994 Å (y-direction), and 4.2288 Å (z-direction). The P4mm has 90� for all
directions. Next, the k-point meshes (k-points) and the energy cutoff convergences are shown
in Figure 3.3. In Figure 3.3a, the x-direction represents k-point meshes and the y-direction
symbolizes ground state energy. The x-direction values mean simply k-point meshes, such as
the value number 4 intends 4-4-4 k-point meshes and the number 10 represent 10-10-10. The
k-point meshes are generated from a Gamma centered grid. When k-point meshes are 888,
the cubic phase has a constant energy. The Figure 3.3b describes that the cutoff energy. The
x-direction means a value of the energy cutoff and y-direction intends a energy. It converged
around 700 eV. Next, the material is HfO2 and the phases are cubic (Fm3̄m), monoclinic
(P21/c), orthorhombic (Pca21), tetragonal (P42/nmc) . The material was calculated by PBE
method. Hf atom used from ’PAW_PBE Hf_sv’. It contains 12 valence electrons and the
valence orbitals (5s5p6s5d). The energy of the pseudoatom is 1349.7602 eV. O atom used
from ’PAW_PBE O_GW ’. It obtains 6 valence electrons and the valence orbitals (s2p4). The
energy of the pseudoatom is 432.3788 eV. The lattice parameters of HfO2 are shown in Table
3.3. The lattice parameters of Fm3̄m are 5.0741 Å (x-direction), 5.0741 Å (y-direction), and
5.0741 Å (z-direction). The phase composed 60� for all directions. The monoclinic phase
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Space group a (Å) b (Å) c (Å) a (�) b (�) g (�)
P42/nmc 3.5933 3.5933 5.2247 90.000 90.000 90.000

Pnma 3.3336 5.5564 6.5050 90.000 90.000 90.000
Fm3̄m 5.0741 5.0741 5.0741 60.000 60.000 60.000
Pca21 5.2659 5.0470 5.0772 90.000 90.000 90.000
Pbca 5.0857 5.2484 10.0588 90.000 90.000 90.000
P21/c 5.1400 5.1897 5.3247 80.325 90.000 90.000

Table 3.3: The lattice parameters for HfO2 phases.

(P21/c) is made up 5.1400 Å, 5.1897 Å, and 5.3247 Å for each x, y and z-direction, and the
phase constructed 80.325� for x-direction , and 90� for y and z-directions. The lattice param-
eters of (Pca21) are 5.1400 Å, 5.1897 Å, and 5.3247 Å. The orthorhombic phase constructed
90� for all directions. In addition, the other orthorhombic phase (Pbca) is consist of 5.0857 Å
(x-direction), 5.2484 Å(y-direction), and 10.0588 Å (z-direction). The phase is made of 90�

for all directions. Another orthorhombic phase (Pnma), the corresponding lattice parameters
x,y, and z are 3.3336 Å, 5.5564 Å, and 6.5050 Å, respectively. The phase structured 90� for
all directions. The tetragonal phase (P42/nmc) is made up 3.5933 Å, 3.5933 Å, and 5.2247 Å.
The phase has 90� for all directions. When k-point meshes (k-points) are 666, the phase has
a constant energy for cubic (Fm3̄m), monoclinic (P21/c), and tetragonal (P42/nmc) phases .
The k-point meshes are generated from Monkhorst-pack. Energy cutoff converged around 550
eV for all phases. These are shown in Figure 3.4. The orthorhombic (Pca21, Pbca, Pnma)
phases converged k-point meshes are at 444. The orthorhombic phases converged around 550
eV for the energy cutoff. Furthermore, k-path of BTO and HfO2 are shown in Figure 3.5 and
Figure 3.6.

3.3 Stability

This section concentrated on a phonon dispersion for the stability of BaTiO3 phases, such as
cubic (Pm3̄m), orthorhombic (Amm2), rhombohedral (R3m), and tetragonal (P4mm) phases
by 2⇥ 2⇥ 2 supersell. The results of the phonon band structures are shown in Figure 3.7.
Also, the phases have an electric property. Thus, the phonon band structures have to consider
Born effective charge. These phonon dispersions considered a non-analytical term correc-
tion. The Figure 3.7 from (a) to (d) describes the phonon dispersions of each phase with
the projection density of state at P = 0 GPa. From Figure 3.7 (a), the phonon dispersion
indicates that the cubic (Pm3̄m) is an unstable because there is the imaginary frequencies.
Also, the reference has shown as similar to the band structure [9]. Symmetry points passed
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(a) The k-point meshes. (b) The energy cutoff.

Figure 3.4: The convergence for HfO2. These explain k-point mesh convergence and energy
cutoff convergence. When k-point meshes are at 666 (the violet line), the energy has a constant
for c, m, and t-HfO2, and o-HfO2 has a constant energy when k-point meshes are at 444 (the
blue line). The k-point meshes generated from Monkhorst-pack. When energy cutoff is around
550 eV, all phases of HfO2 have a constant energy.

Figure 3.5: The k-path of BTO. These indicates that K-path of BTO. (a) Cubic: G = (0, 0, 0), R
= (0.5, 0.5, 0.5), X = (0, 0.5, 0), M = (0.5, 0.5, 0). (b) Orthorhombic: G = (0, 0, 0), S = (0, 0.5,
0), R = (0, 0.5, 0.5), Z = (0, 0, 0.5), T = (-0.5, 0.5, 0.5), Y = (-0.5, 0.5, 0). (c) Rhombohedral:
G = (0, 0, 0), L = (0.5, 0, 0), H0 = (0.5, -0.49476, 0.49476), F = (0.5, 0, 0.5). (d) Tetragonal:
G = (0, 0, 0), X = (0, 0.5, 0), M = (0.5, 0.5, 0), Z = (0, 0, 0.5), R = (0, 0.5, 0.5), A = (0.5, 0.5,
0.5).
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Figure 3.6: The k-path for hafnia. These Figures describes that k-path of HfO2. For instance
of the cubic, k-path of each points are G = (0, 0, 0), X = (0.5, 0, 0.5), W = (0.5, 0.25, 0.75), L
= (0.5, 0.5, 0.5). In case of the monoclinic: Z = (0, 0.5, 0), G = (0, 0, 0), Y2 = (-0.5, 0, 0), C2
= (-0.5, 0.5, 0), D = (0, 0.5, 0.5), B = (0, 0, 0.5). The orthorhombic: Z = (0, 0, 0.5), G = (0, 0,
0), Y = (0, 0.5, 0), T = (0, 0.5, 0.5), R = (0.5, 0.5, 0.5), U = (0.5, 0, 0.5). The tetragonal: M =
(0.5, 0.5, 0), G = (0, 0, 0), Z = (0, 0, 0.5), R = (0, 0.5, 0.5), X = (0, 0.5, 0).

through G�X�M�G�R�M 3.5. (b) The orthorhombic phase is not a stable due to the
negative frequency, as shown by Amm2 phonon dispersion. The negative frequency appeared
between points G and S, and between Y and G(K-path: G�S�R�Z�T�Y�G) 3.5. (c)
The phonon band structure for R3m is described as unstable because of the imaginary fre-
quency. On the other hand, the reference indicated that the rhombohedral (R3m) phase is a
stable [8] [10–13]. The tetragonal (P4mm) phase is an unstable, because the band structure
has the negative frequency as well as the phonon band structure of the reference [14]. K-path:
G�X�M�G�Z�R�A�Z|X�R|M) 3.5. In case of HfO2is considered for 2⇥2⇥2 su-
persell. These are cubic (Fm3̄m), monoclinic (P21/c), orthorhombic (Pca21, Pbca, Pnma),
tetragonal (P42/nmc). The phonon band structures and the projection density of state for haf-
nia are shown in Figure 3.8. The Figure 3.8 (a) is the phonon dispersion of the space group
Fm3̄m. The symmetry points considered in G�X�W�L�G. The phonon band structure of
Fm3̄m has a valley at X point. However, the experiment results shows the valley at L points.
It demonstrates that the structure of phonon bands differs from their phonon dispersion. [15].
Although the valley placed the different position, both the phonon dispersions indicate that
Fm3̄m is an unstable. (b) P21/c is a stable. The reason for this is that the imaginary frequency
does not exist. The phonon method seems to be similar to the one used in the reference
[15]. The k-path of P21/c contemplated in Z�G�Y�C�D�B�G. (c) The band struc-
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Figure 3.7: The BTO phonon band structures and projection density of states at P = 0 GPa.
From (a) to (d), these indicate that the phonon dispersions and involved the projection density
of state. We can notice the stability from the phonon dispersions. (a) is the cubic phonon
dispersion. The cubic (Pm3̄m) phase has an imaginary frequency. It means that the phase is
unstable. The other phases, the orthorhombic (Amm2) and the tetragonal (P4mm) are unstable
phases. Also, the rhombohedral (R3m) is unstable phase. However, R3m was calculated as
stable by their computations [8].
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Figure 3.8: The phonon band structures and projection density of states for HfO2 at P = 0
GPa. These are the phonon dispersions for HfO2 phases by phonony. (a) Cubic (Fm3̄m)
and (c) tetragonal (P42/nmc) phases of phonon dispersions have imaginary frequency. The
band structures intend that Fm3̄m and P42/nmc are unstable due to the imaginary frequency.
Phonon band structures (b) monoclinic (P21/c) and (d) orthorhombic (Pbca), (e) orthorhom-
bic (Pnma), and (f) orthorhombic (Pca21) have no imaginary frequency. Thus, P21/c , Pbca,
Pnma, and Pca21 are stable.
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ture shows that the P42/nmc is an unstable due to the imaginary frequency. The reference [15]
argued the tetragonal structure is unstable. (d) The orthorhombic phase (Pbca) is a stable. Be-
cause there is not the imaginary frequency. (e) Pnma is a stable, and the imaginary frequency
does not exist. However, their result of the phonon dispersion of Pnma argued that the phase
is not a stable. There is the imaginary frequency at G point [15]. The two orthorhombic phase
(Pbca and Pnma) of k-path considered in Z�G�Y�T�U�X�G. (f) The phonon disper-
sion of Pca21 describes that the phase is a stable. The phonon band structure by the reference
has same result that Pca21 is a stable [15]. In addition, the phonon dispersions contemplated
the non-analytical term correction.

3.4 Quasi harmonic approximation

The quasi harmonic approximation is used for volume dependence of phonon frequencies as
a part of anharmonic effect. A part of the temperature effect can be included into total energy
of electronic structure through phonon Helmholtz free energy at constant volume (Equation
2.13). The equation can transform from function of V to function of P (Equation 2.14). The
right terms of the equation means to find a unique minimum value in the brakets by a chang-
ing volume. The quasi harmonic approximation indicates volume dependent thermal effects.
From the results of properties by the phonon calculation, thermal expansion and heat capacity
at a constant pressure can be calculated under the approximation [6]. The method suggests
five volume points to run for volume fitting at least. The results of the quasi harmonic approx-
imation for c-HfO2 (Fm3̄m) is shown in Figure 3.9. Left side of picture describes the volume
fitting versus free energy for cubic (Fm3̄m). This approximation should contemplate different
volumes of phase. In Figure 3.9, there are six blue points. The points represent the different
volumes of cubic (Fm3̄m). The each volume point are original volume (V0), plus-minus two
percent V0±2 %, V0±4 %, and V0±6 % points. The red points mean that the minimum volume
from 0 to 3000 K. The original volume is 32.70 Å. The volume is generated by a parameter
of Fm3̄m in Table 3.3. In addition, the approximation gives the information that is relation
with a temperature (K) and a volume (Å3), and a temperature (K) versus a thermal expansion
(K�1). These are calculated from the temperature is 0 to 3000 K at a pressure 0 GPa. In ad-
dition, it was also expanded to compute Gibbs free energy for BaTiO3 and HfO2 under varied
pressures.

First of all, Gibbs free energy for the BaTiO3 phases was calculated at P = 0 GPa with the
temperatures T = 0 ~ 500 K. It is shown in Figure 3.10. There are two phase transitions. As
the experiment, the effect of temperature for phase transition is known as R3m to Amm2, then
to P4mm, and to Pm3̄m. On the other hand, the rhombohedral (R3m) did not transform to the
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Figure 3.9: The results of the quasi harmonic approximation for c-HfO2 (Fm3̄m). The results
involved a volume fitting, a relation of temperature and volume, and temperature versus a
thermal expansion at P= 0 GPa for c-HfO2. The computation should contemplate more than
five points. The points used original volume (V0) point, V0 ± 2 % points, V0 ± 4 % points,
and V0 ± 6 % points. From the volume points, these can obtain a thermal properties, such as
temperature vs volume and temperature vs thermal expansion.

orthorhombic (Amm2). The diagram shows that R3m is the most stable under the temperatures
from 0 to 500 K. The reason is that the phonon band structure for R3m has a problem. R3m

has to be stable, but Figure 3.7 (c) described the phase is not stable structure. As the result
raised that the rhombohedral did not phase transform. Although, R3m did not phase transform
to Amm2, the sequence of the temperature induced the phase transitions are the orthorhombic
(Amm2) transformed to the tetragonal (P4mm) around 242 K, and then to the cubic (Pm3̄m)
around 391 K. The reference [2] reported the phase transitions that are from R3m to Amm2
between 200 and 240 K, then to P4mm between 250 and 280 K, and to Pm3̄m between 300
and 320 K. Their results demonstrate that the temperatures of phase transitions are different
to the temperatures (Figure 3.10). Because they calculated the phase transitions by using the
PBE0 functional.

Second, Gibbs free energies for the HfO2 phases calculated at temperatures T between
0 and 3000 K and under pressures P from 0 to 30 GPa. It is shown in Figure 3.11. Figure
3.11 shows Gibbs free energy at different pressures P for the phases. These describe the
phase-transition about the temperatures T = 0 ~ 3000 K and at pressure 0, 3, 6, and 9 GPa.
In Figure 3.11 (a), the monoclinic (P21/c) is the most stable phase at T = 0 K. At P = 0
GPa, the phase transition occurred that the cubic (Fm3̄m) to the orthorhombic (Pca21) around
2057 K, the orthorhombic phase transforms to the monoclinic (P21/c) around 2001 K. When
P = 3 GPa, the cubic (Fm3̄m) phase transformed to the orthorhombic (Pca21) around 1800
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Figure 3.10: The Gibbs free energy for BaTiO3 phases. Computed Gibbs free energy by an
increasing temperature (0 ~ 500 K) at a pressure of 0 GPa. The sequence of the phase transi-
tions is orthorhombic (Amm2) ! tetragonal (P4mm) ! cubic (Pm3̄m) and the corresponding
transition temperatures are 242 and 391 K, respectively. The rhombohedral (R3m) did not
transform to the orthorhombic (Amm2). R3m is the most stable under the temperatures T = 0
~ 500 K.
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Figure 3.11: The Gibbs free energy for HfO2at different pressures P. Calculated Gibbs free
energy by temperatures T = 0 ~ 3000 K when the different pressures have P = 0 GPa, P =
3 GPa, P = 6 GPa, and P = 9 GPa. The purple colour line is the cubic (Fm3̄m). The green
line is the monoclinic (P21/c), The sky blue line is the tetragonal (P42/nmc), the yellow line
is the orthorhombic (Pca21), the red line is the orthorhombic (Pbca), and the blue line is the
orthorhombic (Pnma). The most stable phase is the monoclinic (P21/c) at T = 0 K and P = 0
GPa. Phase transition: cubic (Fm3̄m) to orthorhombic (Pca21), then to monoclinic (P21/c) at
P = 0, 3, 6, and 9 GPa.
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(a) (b)

Figure 3.12: The equilibrium of phase diagram for HfO2. The phase diagrams are made by
the phase transition points using the relation of Gibbs free energy for different the phases.
The diagram considered from the low temperatures to the high temperatures (0 ~ 3000 K) and
contemplated from the low pressures to the high pressures (0 ~ 30 GPa). Figure 3.12a included
tetragonal (P42/nmc), monoclinic (P21/c), and orthorhombic (Pbca and Pnma). Figure 3.12b
just added the cubic (Fm3̄m) phase and the orthorhombic (Pca21) phase in the left figure.
When the nonpolar monoclinic (P21/c ) phase is at the low temperatures and the low pressures,
the phase is most stable. In addition, when the phase diagram considers the high temperatures
and the high pressures, the orthorhombic phase (Pnma) is the most stable.

K and then to the monoclinic (P21/c) around 1014 K (Figure 3.11 (b)). When P = 6 GPa,
the phase transitions: Fm3̄m to Pca21 around 1604 K, then to P21/c around 373 K (Figure
3.11 (c)). When P = 9 GPa, the phase transitions: Fm3̄m to Pca21 around 1449 K, then
to P21/c around 290 K (Figure 3.11 (d)). Furthermore, it is expanded to investigate how
the material phase transforms under pressures P from 0 to 30 GPa. The phase diagram of
HfO2 is shown in Figure 3.12. The phase diagrams explain an equilibrium of phase for HfO2.
Figure 3.12a included the tetragonal (P42/nmc), the monoclinic (P21/c), the orthorhombic
(Pbca and Pnma). The monoclinic phase (P21/c) is the most stable at the low temperatures
and the low pressures. Between 9 and 15.8 GPa, the orthorhombic phase (Pbca) is the most
stable at the low temperatures (0 ~ 1150 K). The tetragonal phase (P42/nmc) is the most
stable at the high temperatures. In addition, when the pressure increases more than 15.8
GPa, the orthorhombic (Pnma) phase the is most stable. From the reference, the computed
Gibbs free energy with temperature for nonpolar the tetragonal (P42/nmc) phase by phonopy
did not transform to the monoclinic phase (P21/c) under the pressures P = 0 ~ 4 GPa. The
computed equilibrium phase diagram [3] indicated that P42/nmc transforms to P21/c under
the pressures P = 0 ~ 10 GPa. The reference was argued that Pbca is the most stable the
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pressures between 10 and 20 GPa with the temperatures 0 ~ 2500 K. The tetragonal phase
(P42/nmc) is the most stable at over 2400 K when the pressures are from 0 to around 20 GPa.
And Pnma the is most stable when the pressure increases more than 19 GPa [3]. The phase
diagram (Figure 3.12a) is similar to their phase diagram [3]. In addition, two phases (Fm3̄m

and Pca21) added in the Figure. Another phase diagram is shown in Figure 3.12b. Fm3̄m,
P42/nmc, P21/c, Pbca, and Pnma are affiliated with the nonpolar structure. Pca21 belongs
to the polar phase. The orthorhombic (Pca21) phase is known as a stable phase when the
phase doped. The orthorhombic phase is known that HfO2 may adopt two other orthorhombic
metastable phases (Pca21 and Pmn21) over a wide range of pressures and temperatures [3]. On
the other hands, I used the orthorhombic phase (Pca21) without doping. Because the phonon
band structure shows that the phase is a stable (Figure 3.8 (c)). The reference equilibrium of
phase diagram for hafnia considered the ferroelectric phases (Pca21and Pnm21). However, I
considered only Pca21. From Figure 3.12b, the monoclinic phase (P21/c) is the most stable
when the temperatures consider under 0 ~ 2000 K and the pressures are between 0 and 9 GPa.
The cubic phase (Fm3̄m) transforms to the tetragonal phase (P42/nmc) at the pressure P =
10.1 GPa. Then, the tetragonal phase transforms to Pca21 under the pressures P from 10.1
to 15.9 GPa. When the temperatures are low (0 ~ 1150 K), the orthorhombic phase (Pbca)
is the most stable. Then, when the temperature increases, the orthorhombic phase (Pca21) or
the tetragonal (P42/nmc) are the most stable. Furthermore, when the pressure increases more
than 15.8 GPa, the orthorhombic phase (Pnma) is the most stable. The phase diagram showed
that is similar to their results in its totality [3].





Chapter 4

Conclusion

Using the phonon technique and density functional theory (DFT), the phase diagrams and
phonon band structures of BaTiO3 and HfO2 are computed. BTO has four phases. The phases
are cubic (Pm3̄m), orthorhombic (Amm2), rhombohedral (R3m), and tetragonal (P4mm). These
structures have relaxed when the k-point mesh at 888 (Gamma centered grid), and the energy
cutoff is around 700 eV. Compared to the reference with respect to the phonon band structure,
phonon calculation indicates that Pm3̄m, Amm2, R3m, and P4mm are an unstable. However,
the reference showed that the rhombohedral phase (R3m) is a stable [8] [10–13]. Because
the rhombohedral (R3m) is calculated by 2⇥ 2⇥ 2 supersell, but they calculated larger than
2⇥ 2⇥ 2 supersell. In addition, the phase transition of BaTiO3 was calculated orthorhombic
! tetragonal ! cubic and the corresponding transition temperatures are 242 and 391 K, re-
spectively. The rhombohedral (R3m) has to transform to the orthorhombic (Amm2). However,
R3m did not transform to Amm2. Because the phonon dispersion for R3m is an unstable (Fig-
ure 3.7 (c)). As the experiment, the rhombohedral phase is a stable structure. Because of the
unstable phase, R3m did not phase transform to Amm2.

Second, HfO2 has five phases. The phases can be categorized a nonpolar and a polar.
This phonon calculations focused on the nonpolar phases that are cubic (Fm3̄m), mono-
clinic (P21/c), tetragonal (P42/nmc), orthorhombic (Pbca and Pnma). The polar phase is
orthorhombic (Pca21). The nonpolar phases (Fm3̄m, P21/c, and P42/nmc) considered the
k-point meshes are 666 (Monkhorst-pack) and the energy cutoff considered around 550 eV. In
addition, the orthorhombic phases (Pbca, Pnma, and Pca21) contemplated the k-point meshes
are 444 (Monkhorst-pack) and the energy cutoff is around 550 eV. The phonon dispersions of
hafnia indicates that P21/c, Pbca, Pnma, and Pca21 are the stable phases, while the phases
Fm3̄m and P42/nmc are the unstable phases. Also, the reference was argued the materials,
P21/c, Pbca, Pnma, and Pca21 are the stable phases, and Fm3̄m and P42/nmc are the unstable
phases. However, the orthorhombic phase (Pnma) was measured as the unstable phase [15].
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The phonon dispersion of Pnma was described that the phase is the stable phase (Figure 3.8
(e)). The reason is that it is estimated by the different supercell size and it was used the differ-
ent the number of electrons on DFT calculation. The phase transition (Figure 3.11) describes
the cubic (Fm3̄m) to the orthorhombic (Pca21) around 2057 K and to the monoclinic (P21/c)
around 2001 K at P = 0 GPa. However, the tetragonal (P42/nmc) has not phase transition
to the monoclinic phase (P21/c) at P = 0 GPa. From Figure 3.12, it deduced the monoclinic
phase (P21/c) is the most stable at the pressures P from 0 to 9 GPa. When the pressure in-
creases until 15.8 GPa, the orthorhombic phase (Pbca) or the tetragonal phase (P42/nmc) are
the most stable. In addition, when the pressure increases more than 15.8 GPa, the orthorhom-
bic phase (Pnma) is the most stable. From the reference [3], the tetragonal (P42/nmc) phase
transformed to the monoclinic phase (P21/c) at 0 to around 10 GPa. However, the phase dia-
gram 3.12a describes that P42/nmc transformed to P21/c between P = 5 ~ 9 GPa. When the
pressure is increasing, the two orthorhombic phases (Pbca or Pnma) are the most stable. The
phase diagram is similar to their diagram [3]. Furthermore, the new phase diagram (Figure
3.12b) demonstrated that P21/c is the most stable between 0 and 9 GPa at low temperatures.
When the temperature increases, Pca21 or P42/nmc or Fm3̄m are the most stable. Moreover,
when the pressures are in 9 ~ 15.8 GPa, Pbca is the most stable at the low temperatures. When
the temperature increases, Pca21 or P42/nmc are the most stable. If the pressure increases
more than 15.8 GPa, Pnma is the most stable.
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