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1 Introduction

Neural networks originally mimic the way the human brain operates as a set of
neurons joined together by a set of connections. Neurons here have a weighted
sum of inputs followed by an activation function. The McCulloch [1] neuron is
the simplest and earliest example of an artificial neuron. The perceptron was in-
troduced first by Rosenblatt [2] which is a parameterized function that takes a
real-valued vector as input and produces a Boolean output. And in machine learn-
ing, the perceptron is an algorithm for supervised learning of training data that
should be classified into corresponding only two categories for classification called
binary classifiers. Coolen [3] defined a student feed-forward network having its
single binary neuron learning rule as: Let questions be the classification of data
in Q) = {:vz|:v’ ERN 1<i< r} for some positive integers N and r. Let teacher’s
answer T be a function from  to {0,1}

1 if  (w*-x'—6*>0),
T(z') = and ming | w* - ' — 6* [> 0,
0 if  (w*-x'—6* <0),

for some w* € RN and 0* € Randall1 <i <r.Letw € RY and 6 € R. Student’s
answer Sy, ¢ is a function from 2 to {0, 1} defined as

N1 if (w-z'—60>0),
S‘”"’(w)_{o if (w-zi—0<0),

which can be represented as Figure

question: X = (X, X5, Xg,**, Xy )
teacher's answer: T (0 or 1)
student's answer: S (0 or 1)
2=W-Xx-6>0: S=1
2=W-Xx-6<0: S=0

Figure 1.1: Student feed-forward network



Since the values of w and # are unknown, it was a question to construct sequences
{w,} and {6,} with the limits w and 6 satisfying Sy, ¢ = 7. So Coolen [3] defined
the sequences as follows:

Initial elements wo € RY and 6, € R are random.

Let n >0, and [ ={1,---,r}.

Case 1. For all i € I, Sy, 0, (z') = T'(x").
Define (w11, 0n41) = (wy, 0,).

Case 2. For some i € I, Sy, 0, (x) = T(x') (1 <1< i—1)and Sy, g, (x)) =
1, T(z") = 0.

Define (wy41,0p41) = (W, — =*, 0, +1).

Case 3. For some i € I, Sy, 0, (x') = T(2') (1 <1 <i—1)and Sy, g, (") =
0,T(x") = 1.

Define (w41, 0n41) = (w, +x',0,, — 1).

Our goal is to extend this theorem and to construct approaches to increase the
convergence speed. In Chapter 2 a brief history of Neural Networks is given with
supervised learning algorithms, linear classifiers, single-layer neural networks, and
multi-layer neural network. In Chapter 3 we present extensions of the perceptron
convergence algorithm. Since the perceptron algorithm can be convergent slowly if
() is a big data set, we provide approches to make the algorithm converge faster in
Chapter 4. Finally, in Chapter 5 we present numerical examples of our extended
theorems and convergence speed.



2 Neural Networks

Neural networks are part of a broader family of machine learning, which is one
of the most important topics in computer science and is a category of Artificial
Intelligence (AI). Here AI provides systems with the ability to automatically learn
and improve from experience without any intervention or assistance of human
beings [4]. The aim of it is to make the computers modify their actions in order
to adjust actions to get more accuracy, where accuracy is the number of correctly
predicted data out of all the data.

2.1 Brief history

According to [5,6] artificial neural networks are techniques that mimic the mecha-
nism of learning in biological organisms. The human nervous system contains cells,
called nerve cells or neurons, which are specialized to carry "messages” through
an electrochemical process. And they are connected to each other with axons and
dendrites. The connecting regions between axons and dendrites are referred to as
synapses. This biological mechanism is simulated in artificial neural networks as
in Figure 2.1 which contains computation units that are referred to as neurons.
Throughout this thesis, we use the term “neural networks” to refer to artificial

neural networks rather than biological ones.
Wl
X1 — @ Synapse
Axon from neuron W1X1
Dendrite

Dendrites

Activation
function

Cell body

Figure 2.1: Biological neural network and artificial neural network

The earliest reported work in the field of neural networks began in the 1940s with
McCulloch [1] neuron, which is the simplest example of an artificial neuron. In
1957, Frank Rosenblatt [2] applied McCulloch idea to early AT when he introduced
the perceptron. Rosenblatt conceived of the percetron as a simplified mathematical



model of how the neurons in brains take an input real vector & (nearby neurons)
and real vector of weights w (the synapse strength to each nearby neuron). The
model returns 1 if the dot product of the two vectors is more than some threshold
6. Otherwise the model returns 0. In 1965 Ivakhnenko and Lapa [7] introduced the
group method of data handling to learn multi-layered networks, which is perhaps
the first deep learning systems of the feedforward multilayer perceptron(MLPs). In
1982 Fukushima [8] proposed a neocognitron model, which is the inspiration to the
modern convolutional neural networks (CNNs), and at the same year Werbos [9]
applied the chain rule and backpropagation to multilayer perceptrons. Yann Le-
Cun [10], the first work on modern CNNs in the 1990s, combined backpropagation
with CNNs to get a successful classification of hand writing digits. And also back-
propagation was used in recurrent neural networks (RNNs) [11]. Hochreiter and
Schmidhuber [12] made an extension of RNNs and designed long short-term mem-
ory (LSTMs). Until 2006 researchers were unsuccessful at training deep networks
so they were not sure whether deep networks could be trained. The interest of deep
feedforward networks was revived by two papers in 2006 [13] and 2010 [14], where
they found that backpropagation indeed can work well with deep networks as long
as appropriate activation functions are used and the weights are initialized in a
clever way. And lately at 2014 Kyunghyun Cho [15] introduced gated recurrent
unit (GRU) is like a LSTM with a forget gate, but has fewer parameters than
LSTM.

Nowadays neural networks are highly valuable because it is used in real life
applications. In many fields they use collection of data that is huge in volume
and grows exponentially with time. This type of data is called big data with so
large size and complexity that none of traditional data management tools can
store it or process it efficiently. So Al here comes to solve storing and managing
such big data using various methods like artificial neural networks. Al and big
data complement each other: lots of data are needed for Al to be efficient. Neural
networks play a very important rule in technology such as in robotics, social media
applications, online shopping, medical robots and biology, where Sang-Mok Choo
[16] proposed a boolean feedforward neural network modeling by combining neural
network and boolean network modeling to identify control targets that can induce
desired cellular state conversion.



2.2 Supervised machine learning algorithms

For a classification task, supervised machine learning algorithms take a training
set of data (z1,v1), (Z2,%2), - -, (Tn, yn) to learn how to predict a random variable
y € Y, which is called a class label based on an input data z € X [17]. Some of
these algorithms are linear classifier, single layer neural network the perceptron
and multi layer neural network.

2.2.1 Linear classifier

According to 18] in machine learning, the goal of classification is to put items of
same feature values into same groups. Timothy [19] stated that a linear classifier
achieves this by making a classification decision based on the value of the linear
combination of the features. A linear classifier is often used in situations where the
speed of classification is an issue, since it is often the fastest classifier, especially
when data is sparse, and linear classifiers often work very well when the number
of dimensions is large. The most famous linear classifier is the perceptron as in
Figure [2.2] where x is an input data and w are weights. The perceptron returns
1 if the dot product of the two vectors is more than threshold (#) and otherwise
returns 0.

y=1if w-x-6>0,

y=0 if w-x-6<0.

Figure 2.2: Linear perceptron

2.2.2 Single and multi layer neural network

A single-layer neural network is the simplest form of neural networks, in which
there is only one layer that sends the activation of weighted input values to an



output node as in Figure [2.3] This simple neural network is also referred to as the
perceptron which is defined in the subsection [2.2.1]

X (a) Perceptron without a bias X (b) Perceptron with a bias

Figure 2.3: The basic architecture of the perceptron

From [20] the variables @ = (21,22, -+ ,zy) of neuron are called inputs of the
neuron and the symbol > is a weighted sum of the inputs. Sometimes a constant,

called bias b, is added.
Z =w-x (without a bias) Z =w-x+b (with a bias)

Function f is termed an activation function and the output y of a neuron with
input « is given by y = f(w -« +b).

Multi-layer neural networks [5] contain multiple computational layers and the
additional intermediate layers (between input and output) are referred to as hidden
layers. The basic multi-layer neural networks are called feed-forward networks,
because each neuron in one layer has directed connections only to the neurons
of the subsequent layer, where the direction is from input to output. This neural
network is also referred to as the multilayer perceptron(MLP).



Inputs X

Inputs X Y oOutputs

Bias neuron Bias neuron

Figure 2.5: Multilayer perceptron with a bias

Figures and are the general forms of multi layer neural network without
and with bias, where each has K hidden layers. Starting from the input layer,
data is propagated forward to the output layer, which step is called the forward
propagation. Then the parameters of the network is updated in the direction of
decreasing the error (sum of squares of the difference between the predicted and
known outcome) by using a backpropagate algorithm. Repeating such an update
we finally get the weights that give us good predicted class labels.



3 Extensions of the perceptron convergence al-
gorithm
Haykin [21] present the proof of the perceptron convergence algorithm. In this

chapter we rewrite the proof the convergence of perceptron learning algorithm and
make extension theorems of perceptron learning algorithm.

3.1 The perceptron convergence algorithm

Theorem 3.1. Let Q = {x'|x’ € RN,1 < i <r} for some positive integers N and
r. Let T be a function from Q to {0,1}. Assume that there exist w* € RN and
0* € R such that for 1 <i<r

ming | w* - &' — 0* |> 0
and
: 1 ' el —0*>0
T(x') = iyoowna :
0 if  w*-xt—0"<0.
Let w € RY and 6 € R. Function Swy : Q@ — {0,1} is defined such that for
1< <r

, 1 : L
Sl = { if w-x'—60>0,

0 if w-xz'—60<0.

Sequences {w,} and {0,} are defined as follows:
Initial elements wy € RN and 0y € R are random.
Letn>0and I ={1,---,r}.

Case 1. For all i € I, Sy, o, (") = T(x").

Define (w1, 0p41) = (wp, 0,).

Case 2. For some i € I, Sy, 0, (") =T(z") (1<1<i—1) and
Swn o, (") =1, T(x") = 0.

Define (Wpi1,0n41) = (w, — ', 0, +1).



Case 3. For some i € I, Sy, 0, (') =T(z!) (1<1<i—1) and
Swn 0, () =0, T(x") =1.
Define (wyy1,0n41) = (w, +x*, 0, — 1).
Then {w,} and {0,} are finite sequences.
Proof. Using the definitions of the sequences, we have
(wy, 0,) - (w*,0%) (Case 1)
(W1, Onpr) - (W, 0%) = ¢ (wy, 0,) - (w*,07) — (' - w* = 6") (Case2) (1)
(wy,, 0,) - (w*,0%) + (2" - w* — 6*) (Case 3)
Suppose, on the contrary, that {w,} and {6, } are infinite sequences.
Then (Casel) in (/1)) is not possible, which give that for n > 0
(wy,, 0,) - (w*,0%) — (x" - w* — 6*) (Case 2)

(W, 0,) - (w*,0°) + (=" - w* —0*) (Case 3)

(Wnt1, Ong1) - (w",07) = {

Claim 1. (w,, 0,,) - (w*,0*) > (wq, ) - (w*, 0*) + nming | - w* —0* | for alln > 1
Claim 2. | (wy,, 0,) |< \/| (wo, Ao) | + n {maxq | @ ” + 1} forall n >1

Using Claim 2, Cauchy-schwarz inequality and Claim 1, we have that for all n

| (w",6") | \/! (wo, 0) [* + n(maxg | @ | + 1) 2| (wn, 0) || (w*,67) |
> (wy, 0,) (w", 07)
> (wo, bh) - (w*, 6")
+nming | ' - w* — 6 |
Then
wy, Op) - (w*, 0*) + nming | ' - w* — 6* |

w6 > : u
\/| (wo, O) | +n{maxQ|a:Z| _|_1}

)

which gives
> lim (w0760) . (w*’0*> + nming ’ T wt — 0* ‘ .
n—00 \/| ('lUO,QO) |2 +n{maXQ | i |2 + 1}




This is a contradiction. Therefore, {w, } and {6,} are finite sequences.
Proof of Claim 1.
Case 2: T(x') = 0. Then x' - w* — 6* < 0, which gives
(W1, 0ps1) - (W5, 07) = (w,,0,) - (w*,0) — (" w* — %)
= (wn, On) - (", 0%)+ | (2" - w" = 0") | (3)

> (wy,0,) - (w*,0%) + ming | " - w* — 6% |.
Case 3: T(x') = 1. Then «' - w* — 6* > 0, which gives

(War1, Onsr) - (W, 07) = (wn, 0,) - (w", 0) + (' - w" — 07)
= (W, 0) - (", 0")+ | (x" - w* —07) | (4)

(wy, 0,) - (w*, 0%) + ming | " - w* — 0" |.

Vv

Using (2)), (3), and (), we obtain
(wjs1,0541) - (", 07) > (w;,05) - (w*,07) + ming | - w* — 0" | .

Taking a summation, we have

_.
|
—

n— n

(Wjs1:0541) - (", 07) > > {(w;,0;) - (w*,0%) + ming | &' - w* — 60" |}

j=0 7=0
and then
n—1 n—1
N (w1, 0540) - (w™,07) > 3 (w;,0) - (w*,67) + nming | ' - w” — 0" .
J=0 j=0
This gives
n—1
S (w;, 0)) - (W, 0%) + (wy, 0,) - (w",0")
j=1
n—1

> (wo, 0) - (w",0%) + }_(w;,0;) - (w",07) + nming | & w” — 0" |
1

<.
Il

and hence

(W, 0,) - (w*,0%) > (wo, B) - (w*,0%) + nming | ' - w* — 0% | .

10



Proof of Claim 2.
Case 2: Sy, 9, (") = 1. Then w,, - ' — 6,, > 0, which gives

[ (W1, 0ns1) [P = | (w, — 2,6, +1)
= (w, —«',0,+1) - (w, —x',0,+ 1)
= (w, — x') - (wn—a:i)+(9n+1)2
= | w, |* - 2w, -z’ + |z’ \2—1—9”2—1—29”4-1
= w, P+ 6,2 — 2w, ' +20,+ |z | +1
= | (wn,00) > = 2(wy, - — 0,) + | @' |P+1

< | (wn,0,) [> + maxq| 2 | + 1.

Then

| (wis1,0;41) |* < | (w;,6;) | + maxg| ' |* + 1 for all j > 0.

Taking a summation, we have

—_

n—

i 12
[ (wir,8300) [P < 3 {1 (05,6 [P+ maal @' | +1
J

[y

n—

.
I
<)
Il
=)

and then

—_

n—

D1 (W, 0550) P 4] (wa0) P <] (w),6) [+ n(maxg| @' [ +1).

j=0 =0
This gives
n—1 -1
Z| w;,0;) |+ (w,, 6,) Z (w;,0,) | + | (wo, 0) |” + n(maxq| * \ +1)
J=1 J=1
and hence
| (wy,0,) |* < | wo,0p) |* + n(maxq| =’ |° + 1). (5)

Case 3: Sy, 9, (") = 0. Then w,, - ' — 6,, < 0, which gives

11



| (Wor1bn1) | = | (wp + 2,60, — 1) | = (w,, + 2,0, — 1) - (w, + .6, — 1)

= (w, + ") - (w, +x") + (0, — 1)2

= | w, |* + 2w, - ' + | z° |2+0n2—20n+1

= | w, |* + 0,2+ 2w, - &' — 20, + | =’ |2+1

= | (wn, 00) P+ 2w, - — 0,) + | 2 |F + 1

< | (wy, 0,) \2 + maxgq| x' |2 + 1.

Similarly to case 2, we can obtain that
| (wn, 0) * < | (wo,00) |* + n(maxo| &' |* +1). (6)

Using and @, we obtain the desired result

| (wn8,) < /| (w0, 60) P+ nlmaxg | @[>+ 1).
]

Theorem 3.2. Let ) = {w’\m’ ERN,1<i< 7’} for some positive integers N and
r. Let T be a function from Q2 to {0,1}. Let ¢ be a function from Q to RN . Assume
that there exist w* € RN and 6* € R such that for 1 <i <r

1 if  w* - o(xt) —6* >0,
T(z') = and ming | w* - ¢(x') — 0* |> 0.
0 if  w*-é(xt) — 6% <0,

Let w € RY and 6 € R. Function Syg : Q@ — {0,1} is defined such that for
1< <r

a1 if  w-g(x) —0 >0,
Sw,O(CE ) {0 if  w- ¢(mz) -9 <0.

Sequences {w,} and {0, } are defined as follows:
Initial elements wy € RN and 0y € R are random.
Letn>0and I ={1,---,r}.

12



Case 1. For all i € I Sy, g, (x") = T(x").
Define (wn 41, On41) = (wy, 0,).

Case 2. For some i € I Sy, 0, (") = T(x") (1 <1 <i—1) and Sy, 4, (z") =1,
T(z') =0.

Define (Wpy1,0ns1) = (w, — d(x), 0, + 1).
Case 3. For some i € I Swn o, (@) =T(x") (1 <1 <i—1) and Se,s,(x') =0,
T(x') =1.

Define (W y1,0n+1) = (W, + ¢(x*), 0, — 1).
Then {w,} and {0,} are finite sequences.

Proof. Using the definitions of the sequences, we have

(W, 0,) - (w*, 67) (Case 1)
(W1, Basr) - (W7, 0%) = { (w0, 0,) - (w",6) — (w" - (&) — %) (Case 2). (7)
(wy, 0,) - (w*,0%) + (w* - p(x') — %) (Case 3)

Suppose, on the contrary, that {w,} and {6, } are infinite sequences.
Then (Casel) in [7|is not possible, which give that for n > 0

(Case 2)
(Case 3)

. (8)
Claim 1. (wy, 6,) - (w*,0%) > (wo, Op) - (w*, 6*) + nming | w* - p(x’) — 0* | for all
n>1

Claim 2. | (w,,, 0,) |< \/| (wo, 0p) | + n(maxq | p(xi) | + 1) for all n. > 1

(W, 0,) - (w*,0%) — (w* - oz’
wy,, 0,) - (w*,0%) + (w* - p(x*

~—
|
>
*
S~—

—
~—
|
>

*
~—

(Wni1,0010) - (W, 07) = {

Using Claim 2, Cauchy-schwarz inequality and Claim1, we have that for all n

| (w",0%) | \/l (wo, 0o) |* + n(maxq | (@) [ +1) >| (wy, 0,) || (w*,6%) |
> (wy, O,) (w*, 0%)
Z (wOveO) : (w*70*>

+ nming | w* - ¢(x") — 0% | .

13



Then
(wo, B) - (w*, 0*) + nming | w* - ¢(x?) — 6* |

| (w",07) | |
\/| (wo, 0p) |* +n {maxq | ¢(a) | + 1}
which gives
[ (0] = Jim | (w07
> lim (wo, Op) - (w*, 6*) + nming | w* - ¢(x') — 6* | = 00

" \/| (wo, 00) |* + n {maxq | p(z?) | + 1}

This is a contradiction. Therefore, {w, } and {6,} are finite sequences.
Proof of Claim 1.
Case 2: T(x") = 0. Then w* - ¢(x") — 0* < 0, which gives

(wn—i-la 0n+1) : (W*a 0*) = (wn7 Qn) : (w*v 0*) - (w* ' ¢(m2) - 0*)
= (wn, 0) - (", 07)+ | (w" - p(x") — 07) | (9)
> (wy, 0,) - (w*,0) + ming | w* - ¢(x") — 6* |.
Case 3: T(x%) = 1. Then w* - ¢(x') — 0* > 0, which gives
(Wpi1, Ony1) - (W5, 0%) = (wy,0,) - (w*,0°) + (w* - p(z') — %)
= (W, 0) - (0", 07)+ | (w" - p(x") — ") | (10)
> (wy, 0,) - (w*,0%) + ming | w* - ¢(x') — 6% |.
Using , @, and , we obtain
(wjs1.0511) - (w7, 07) > (w,05) - (", 07) + ming | " - G(a) — 0" |

Taking a summation, we have that

3
—_
3
—_

(w1, 050) - (w7.67) > 3 {(w,.6,) - (w"6) + ming | w” - §(a') — 6° |}

<
Il
=)
<
Il
=)

and then

S
—

—

n

(wy41,0511) - (w",0%) > 3 (w;,6) - (w°,6%) + nming | w* - (') — 0 | .

<
Il

o
<
Il

o

14



This gives

n—1
> (w; b)) - (W, 67) + (w,,6,) - (w", 67)
=1
n—1
> (wy, Oo) - (w*,0%) + (w;,0;) - (w*,0%) + nming | w* - p(x') — 6" |
j=1
and hence

(wy, 0,) - (w*,0%) > (wo, O) - (w*,0%) + nming | w* - p(z') — 6* | .
Proof of Claim 2.
Case 2: Sy, 9, (") = 1. Then w,, - ¢(x*) — 6,, > 0, which gives

| (Wor1, ) [ = | (w, — d(2), 6, + 1) |
= (wn - ¢(ml)a en + 1) . (wn - Qb(ml)a en + 1)
= (w, — ¢(x")) - (w, — P(x')) + (6, + 1)°
= | w, > = 2w, - (') + | 6(a) | +6,% + 26, + 1
— | w, [*+ 6, — 2w, - p(x') + 26, + | p(x’) | +1
— | (wn, 0,) |* = 2(w,, - p(@") — 6,) + | (') | +1
< | (wn, 0,) |* + maxe| ¢(=)) |* + 1.
Then
| (w1, 0551) P < | (w;,0;) |* + maxg| ¢(2) | +1 for all j > 0.

Taking a summation, we have

n—1 n—1
i 12
> 1wy 0530) P < Y {1 (w;.09) P+ maxal o) " +1}
=0 =0
and then
2

Z‘ Wjt1, ]+1)‘ + | (wn, 0 ‘ <Z| w;, 0, | + n(maxg| (=) | +1).
7=0

15



This gives

§j| (w;, 0;) |* + | (wn,6,) | <:§j| (w;,8;) | + | (w, 00) |* + n(maxq| d(x') [ +1)
and hence
| (wn,0,) 1> < | wo, 60) |* + n(maxg| ¢() |* +1). (11)

Case 3: Sy, 9, (") = 0. Then w,, - #(x*) — 6,, < 0, which gives

| (W1, Onr) [P =1 (w, + $la), 0, — 1) |
= (w, + ¢(x"),0, — 1) - (w, + ¢(x'),6, — 1)
= (w, + ¢(a")) - (w, + p(a))) + (6, — 1)
= | wy, |* + 2w, - d(x') + | p(x?) |° + 6,2 — 20, + 1
= | w, >+ 6,2+ 2w, - d(x') — 20, + | p(z’) |* + 1
= | (wn,0,) [* + 20w, - p(a’) = 0,) + | (") [* +1
< | (wy,8,) |” + maxq| o(z') |2 + 1.

Similarly to Case 2, we can obtain
N 12
| (wn, 00) [ < | (wo,00) |* + n(maxq| ¢(a') |+ 1). (12)
Using and ((12)), we obtain the desired result

| (wn,00) 1< /| (w0, 00) [ + n(maxq | o) [ +1).
]

Theorem 3.3. Let () = {:13’|:13Z ERN 1<i< 7“} for some positive integers N and
r. Let T be a function from Q to {0,1}. Let ¢ be an increasing function from R
to R. Assume that there exist w* € RN and 6* € R such that for 1 <i <r

1 if  Yw* - xt) —0* >0,
T(xz') = and ming | w* - ' —1(6%) |> 0.
0 if  Y(w*-xt) —6* <0,
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Let w € RY and 0 € R. Function Sye : Q — {0,1} is defined such that for
1< <r

1 if  Y(w-x')—60>0,

Sw,é(wl) = {O Zf ¢(w . .’BZ) —6<0.

Sequences {w,} and {0, } are defined as follows:
Initial elements wy € RN and 0y € R are random.
Letn >0, and I = {1,---,r}.

Case 1. For all i € I, Sy, o, (x") = T(x").

Define (w1, 0p41) = (wp, 0,).

Case 2. For some i € I, Sy, 0, (x)) = T(x!) (1 <1 <i—1) and Sw, ., (') =1,
T(z') =0.

Define (wni1, ¢ (Onr1)) = (wn — 2,007 (0) + 1).

Case 3. For some i € I, Sy, 0, (x)) = T(x!) (1 <1 <i—1) and Sw, ., (x") =0,
T(z') = 1.

Define (wnr1,¥™" (Bn41)) = (wp + 2,97 (0n) — 1)
Then {w,} and {0,} are finite sequences.

Proof. Note that

1 if wxt—yi(0) >0,
0 if w'-z'—¢ (%) <0.



Similarly,

o)1 if w-x' —Pp71(h) > 0,
S“’e(m)_{o if  w-x'—¥H0) <0.

Using the definitions of the sequences, we have

(Wni1, 07 (0nr1)) - (w*, 7H(07))

(Wi, ¥71(0,)) - (w*, 71 (0%)) (Case 1)
= (wp, ¥H0,)) - (w*,7H(0")) — (w* - 2" —¢~1(6")) (Case 2)
(Wa, 0 1(0,)) - (w*, = 1(6%)) + (w* - & — ~1(6%)) (Case 3)

Suppose, on the contrary, that {w,} and {6, } are infinite sequences.
Then (Casel) in [13|is not possible, which give that for n > 0

(wn+17 ¢71(9n+1)) : (w*v ¢—1(0*))

_ {(wn, $H0n) - (w*,07(07)) — (w - @ — Y(67))  (Case 2)
(wn, §71(62)) - (w",$7(07)) + (w” - @' — 1(0%))  (Case 3)

(13)

(14)

Claim 1. (wy,, ¥ "1(6,)) - (w*,0*) > (wo, (b)) - (w*,6*) + nming | w* - &’ —

p7H(0*) | for all m > 1

Claim 2. | (w,,¥1(6,)) |< \/| (wo, v=1(0) |> + n(maxq | 27 |°+1) for all n > 1
Using Claim 2, Cauchy-schwarz inequality and Claim1, we have that for all n

| (w*, 6%) |\/| (wo, v =1(6y) |2 +n{maXQ | |2 + 1}

2| (wa, ™ (00)) || (w”,607) |
> (Wi, 7 () - (w",07)
> (wo, bp) - (w*,0%) + nming | w* - " — 1 (6%) | .

18



Then
(wo, Bp) - (w*, 0*) + nming | w* - ' —p=1(0*) |
V1 (@0, 071(60)) [P+ {maxq | @1 [* + 1)

which gives
. * * . * el o ofy2—Ll(p*
> lim (wo, Bp) - (w*, 0%) + nming | w* - x* — Y1(6*) | -
V1 (o, 071(60)) [+ {maxq | 21 [* +1)

n—o0

This is a contradiction. Therefore, {w, } and {6,} are finite sequences.
Proof of Claim 1.
Case 2: T(x') = 0. Then w* - ' — ¢~ 1(6*) < 0, which gives

(Wyt1, 0 (Ontr)) - (w*,071(0%))

YH07) = (" at — ((0))
= YO+ | (w2t — (07H(0)) | (15)
Z(wmw‘l( )) (w", 971 (0")) + ming | w" - @' — ¥ (07) |.
— ¢

Case 3: T(x') = 1. Then w* - & 1(6*) > 0, which gives

(Wng1, V7 (Ong1)) - (w*,p71(07))
= (W, 7 (0n)) - (w7 (07)) + (w - 2" — (¥71(07))
= (wn, 71 (0,)) - (w7 (07)+ | (w" - &' = (¥71(07)) | (16)
> (w71 (0,)) - (w471 (07)) + ming [ w” - &' — 7 (07) |.
Using , , and , we obtain

(Wit1, 07 (Or11)) - (W, 07H(07))
> (we, 71 (0k)) - (w", 471 (07)) + ming [ w” - 2" — ¢~ (07) |.
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Taking a summation, we have that

S wpent” Br0)) - (w07 (0)
> 3 {(wn v (00)) - (w07 (67) 4 ming w2 — 07 6) )
and then
(gt ) - (w07 0)
>3 (w07 (00) - (', 07 (0)) + mmming w2t 97 (0) |
This gives
> w0307 (6,)) - (", 07 (87) + (10,07 (6,)) - (0, 67)
> (100,07 (00) - (w0, 0°) + D0y, 07(6) - (07 (6)
+ nming | w* - x' — (Y1(0%)) |
and hence

(i, 7 (02)) - (w*,0%) > (wo, v (0y)) - (w*,0") + nming | w* - 2 — 4~ (6") |
Proof of Claim 2.
Case 2: Sy, 9, (") = 1. Then w,, - ' —1»~(6,) > 0, which gives
| (Wi, 07 (Onin)) | = | (w, — 2,972 (0,) + 1) [
= (w, — ' Y7 (0,) +1) - (w, — 2,7 (0,) + 1)
= (w, — ') - (w, — @) + (V' (0,) +1)°
= w, [P = 2w, &' + | @ "+ (0 7H(0,)" + 2071 (0,) + 1
= w, [+ @7 (0,)" — 2w, - &+ 2071 (0,) + | 2 [+ 1
= | (w71 (0,) [ = 2(w, - &' =7 (0,) + ] 2 | +1
< | (W, ¥ (0)) " + maxg| 2 | + 1.
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Then
| (w1, (0540)) P < | (wy, 7 1(6;)) |” + maxq| & |* + 1 for all j >0,

Taking a summation, we have

H
i
L

n—

[y, 0™ (0500)) 1 < {1 (g, 07 0) [ + maxal @ [* 1]

Il
o
<.

Il
o

J

and then
n—1 n—1 .
| (Wi 07 (0550)) [P <D ] (wy,074(0;) |* + nmaxg| & | + 1.
j=0 j=0
This gives
n—1
| (wj, 01 0) [+ | (wn, 7 (00) |
j=1
n—1
<3| (s w1 (6;) [P+ | (wo, 7 (60) [* + n(maxg| @ [* +1)
j=1
and hence
| (W, 1 (00)) P < | (w0, (60)) [* + n(maxa| 2 [* + 1). (17)

Case 3: Sy, 9, (") = 0. Then w,, - ' —»~(6,) < 0, which gives

| (Wi, (Oir)) [ = | (w, — 2,71 (0,) = 1) |
= (w, — ' Y7 (0,) — 1) - (w, — ' Y7 (6,) — 1)
= (w, + ') - (w, + ') + (¥7(0,) — 1)°
= w, [P = 2w, @'+ |2 [+ (07 (0,)" — 207 (0) + 1
= w, P+ @ N0)) + 2w, &+ 207 (0,) — |2 |+ 1
= | (W, 1 (0) " + 20wy, - @' — 71 (0,)) + |2’ [+ 1
< | (wp, ¥ 1(6,)) |* + maxg| ' |° + 1.

21



Similarly to case 2 we can obtain
| (wa, 07 (00) [ < | (wo, 7 (00)) | + n(maxo| @' ' +1).  (18)

Using and , we obtain the desired result

| (w671 (00)) 1< /] (00, 671(00)) P+ nlmaxe | @ [2+ 1)
]

Theorem 3.4. Let Q = {a|x’ € RN,1 <i <r} for some positive integers N and
r. Let T be a function from Q to {0,1}. Let ¢ be an increasing function from R
to R. Assume that there exist w* € RN and 0* € R such that for 1 <i <r

1 if  Y(w* -zt —0%) >0,
T(z') = and ming | w* - x' — 0* |> 0.
0 if  Y(w*-xt—60%) <0,

Let w € RY and 0 € R. Function Sye : Q@ — {0,1} is defined such that for
1<i<r

1 if  Y(w-x'—0) >0,
0 if  Yw-xt—0) <0.

Sequences {w,} and {0, } are defined as follows:
Initial elements wy € RY and 0y € R are random.
Letn >0 and I ={1,---,r}.
Case 1. For all i € I, Sy, o, (x") = T(x").
Define (w41, 0p41) = (wp, 0,).

Case 2. For some i € I, Sy, 0, (x") = T(x!) (1 <1 <i—1) and Su, 0, (") =1,
T(x') =0.

Define (Wpi1,0n41) = (w, — ', 0, +1).
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Case 3. For some i € I, Sy, 0, (x") = T(x!) (1 <1 <i—1) and Su, ., (x') =0,
T(x') = 1.

Define (w1, 60p41) = (w, + 2,0, — 1).
Then {w,} and {0,} are finite sequences.

Proof. Note that the assumption of Theorem [3.4]is the existence of a hyper-surface
Y(w* - x' — 6*) = 0(z € R) that separates the given set

Q= {wllm’ ERN 1<i< T}, where w* € RY and increasing function 1 from R
to R. Then

Similarly,

which is equivalent to

S o) 1 if w-x'—60>0,
wol(x') = .
o 0 if w-xi—60<0.

Using the definitions of the sequences, we have
(wp, 0,) - (w*,0%) (Case 1)
(Wpt1, Ont1) - (W*,0%) = ¢ (wy,, 0,) - (w*,0%) — (' - w* — 6*) (Case 2) (19)
(wy,, 0,) - (w*,0%) + (2" - w* — %) (Case 3)
Suppose, on the contrary, that {w,} and {0,} are infinite sequences.
Then (Casel) in is not possible, which give that for n > 0
(wy,, 0,) - (w*,0%) — (x" - w* — %) (Case 2)

(w, 6,) - (" 6) + (w07 (Cased) 0

(W1, Oni1) - (w",07) = {
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Claim 1. (wy, 0,,) - (w*,6*) > (wy, bp) - (w*, 6*) +nming | " w* —0* | for alln > 1

Claim 2. | (w,,, 0,) |< \/| (wo, Bo) | + n {maxq | ” + 1} foralln >1
Using Claim 2, Cauchy-schwarz inequality and Claim1, we have

| (w,60%) | \/l (wo, 00) [* + n(maxq | @ | +1) > (wy,6,) || (w",67) |
> (wy, 0,)(w*, 0%)
> (wo, bh) - (w*, 6")
+ nming | ' - w* — 6" |
for all n. Then
S (wg, Op) - (w*, 0*) + nming | " - w* — 0* |

T weto) P fmaxa [ @ P+ 1)

| (w”,07) |

)

which gives

| (w*,0%) |= lim | (w",6")|> lim (wo, b0) - (w”, 0) + nming [ &' - w” — 67| _

e e | (wo, 0p) |? + n {maxq | ' ” + 1}

This is a contradiction. Therefore, {w, } and {6,} are finite sequences.

Proof of Claim 1.
Case 2: T(x') = 0. Then x' - w* — 6* < 0, which gives
(wn-l—la 0n+1) ) (w*7 9*) = (wn’ 071) ) (w*7 0*) - (ml rw' — 0*>
> (wy,, 0,) - (w*,0%) + ming | =" - w* — 6* |.

Case 3: T(x?) = 1. Then x' - w* — 6* > 0, which gives

(W1, 0n11) - (w",07) = (W, 0n) - (w7, 07) + (" - w™ = 6)
(W, 0,) - (W, 07)+ | (' - w* — 07) | (22)
0

> (wy,, 0,) - (w*,0) + ming | =" - w* — 6% |.

Using , , and , we obtain

(Wjs1,0541) - (", 07) = (w;, 05) - (w”,07) + ming | &’ - w" — 6" | .
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Taking a summation, we have

-1

—_
3

n—

(]

(Wjis1,0541) - (", 07) > > {(w;,0;) - (w*,07) + ming | &' - w* — 0" |}

j=0 7=0
and then
n—1 n—1
> (wji,0541) - (w,0%) > (w;,0;) - (w*,6%) + nming | =’ - w* — 6" | .
5=0 5=0
This gives
n—1
D (w;.05) - (w6 + (wy,6,) - (w", 6°)
j=1
n—1
> (wo, bp) - (w*,0%) +Zw], (w*, 0*) + nming | =" - w* — 6* |
7=1
and hence

(W, 0,) - (w*,0%) > (wy, B) - (w*,0%) + nming | ' - w* — 0% | .
Proof of Claim 2.
Case 2: Sy, 9, (") = 1. Then w,, - ' — 6,, > 0, which gives
| (W1, Ops1) P = | (w — 2,0, + 1) |° = (wn — 2,0, + 1) - (w,, — ', 0, + 1)
= (w, — @) - (w, — ") + (0, +1)°
=|w, |” — 2w, @' +| & " +60,>+20, +1
= |w, [ +6,°— 2w, -’ + 20, + | =’ |2+1
= | (W, 0,) [P = 2w, - &' —0,) + | ' [P+ 1
< | (wy, 0,) |* + maxg| |2 + 1.

Then

[ (w1, 051) [ < | (w;,6;) [* + maxo| & |” + 1 for all j > 0.
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Taking a summation, we have

—_

n—

n—1

i 12
> 1wy by0) P <D {1 (w3,8)) P+ maxol @ [ + 1}
Jj=0 J

Il
=)

and then

—_

> (s, 0551) P+ ] (wn, 0,) [P <) | (w),05) [P+ n(maxg| @' | + 1).
7=0

.
Il
=)

This gives

n—1 n—1

> 1wy, 05) P 4| (w,60) P <> | (w5, 65) [P+ (wo, 6) | + n(maxo| @ | +1)

j=1 j=1

and hence
| (w,,0,) |* < | wo,00) | + n(maxq| ' |° + 1). (23)

Case 3: Sy, 9, (") = 0. Then w,, - ' — 6,, < 0, which gives

| (Was1,0n1) | = | (w, + 2,0, — 1) | = (w, + 2", 0, — 1) (w, + 2,0, — 1)
= (wp + ') - (wy + @) + (0, — 1)°
= | w, |* + 2w, - &' + | 2’ ]2+9n2—20n+1
= | w, \2+0n2+2wn-wi—29n+]a}i |2—|—1
= | (wn, 00) P+ 2w, -2 —0,) + | 2" [P+ 1
< | (wn, 0n) | + maxe| =’ |* + 1.

Similarly to case 2, we can obtain
| (wn,600) > < | (wo,60) [* + n(maxg| @' |* + 1). (24)
Using and , we obtain the desired result

[ (wn 00) 1< /1 (w0, 80) [ + nfmaxq | @ +1).
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3.2 Extensions of the algorithm

In this section we present extensions of the perceptron convergence algorithm to
networks of two or three layers with m output nodes.

Theorem 3.5 (Extension of Theorem ). Let I be the set of positive integers less
than or equal to r and ) = {a: € RN|i € I} for some positive integers N and r.
Assume that there exist (w},,0%) € RN x R satisfying mingcq |w?, - ' — 0% | > 0

m?’m

for a positive integer M and all 1 < m < M. Let T,, be a function from € to
{@m,bm} for real numbers a,, and b,, (a,, > by,) such that for all i € I

) " * i_ o* 0’
T (') = {Z o
m i wy, -zt =0 <.

Let (wy,,0,,) € RN x R and define S¥? : RN — {a,,, b} as

A if  w,,-x—06, >0,
Sw(x) =< by, if  w,-x—0, <0,
randr({am,bn}) if  wp-x—0, =0,

where randr({am,bn}) is a number randomly chosen from {am,by}. Sequences
{wmn}o—y and {0p, 1} are defined recursively as follows:

i) Initial elements wy, o € RN and Omo € R are randomly sampled.

i) Wnr1 and 1 (n > 0) are defined depending on the values S¥=%(x?)
and T, (") .

a) Case 1: (Wyni1,0mni1) = (Won, Omn) if SC0(x') = T,,(x) for all
1€ 1.
b) Case 2: (Wynit,Omni1) = (Winn — T, 0+ 1) if S0 (%) = T, ()
and S¥» 0 (x') = a,,, T, (2?) = by, for somei € I and all 1 < £ <i—1.
(
) =

wmn+ar; O — 1) if S¥fn () = T, (")
m for somei €I and all1 < { <i—1.

¢) Case 3: (Wi pi1, Onps1) =
and S¥» 0 (x') = b,,, T, (!

Then {w,, } and {0} are finite sequences for any fixed m.
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Proof. Using the definitions of the sequences, we have

(wm,na em,n) : (w:na 9;) (Case 1)

(W15 Omni1)-(wy,, 05,) = (Wins Omn) - (w5, 07 — (2" -wr, —65) (Case2)
(wm,na em,n) : (’UJ:,L, Q:n) + (331 . ’lU:fn — 9:;1) (Case 3)

(25)

Suppose, on the contrary, that {w,,,} and {6,,,} are infinite sequences.
Then Casel in is not possible, which give that for n > 0

mons Omn) - (W), 07) — (- wy, — 6y,)  (Case 2
(Wi g1 Omns1)- (W), 05) = (Wi, n) - (w ) (33 w ) (Case 2)
| (Wi Omn) - (W), O5) + (& - w}, = 07,)  (Case 3)
(26)

So, we can obtain two claims:
Claim 1. (Wi, Omn) - (W2, 05) > (W0, Omo) - (w5, 05,) +nod for alln > 1

Claim 2. | (W0, ) 1< /] (W0, 0u0) 1 (x 4+ 1) for all n > 1
Here ‘ o
d=min |z w,, —0; |, x=max|x'|".
Q Q

Using Claim 2, Cauchy-schwarz inequality and Claim1, we have

| (@3 85) | /] (Wi, Omo) 41 (0 + 1) =

v

(W s Omn) || (w5 67,) |

(wm,m em,n) (w:m 9:1)
(W05 Omo) - (Wi, 07,) +nd

AVARAYS

for all n. Then

| w) 05,) [ () (0o D) £ 00

| (wm,07 9m,0) ’2 +n(x+1)

which gives

|y, 0) |= lim | (why, 60 [> lim Lm0 Omo) (Wi O) 00

‘ (wm,(h em,O) ‘2 +n(x+1)

n—oo n—oo

This is a contradiction. Therefore, {w,,,} and {6,,,} are finite sequences.
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Proof of Claim 1.
Case 2: T,,(z') = 0. Then x* - w}, — 6%, < 0, which gives
(W1, Omni1) - (W, 05) = (Winy Omn) - (Wi, 07,) — (wz cw,, —0,,)
= (Win,ns Onn) + (Wi, 07,)+ | (wz ~w;, —0r,) | (27)
> (wm,na em,n) ' (’LU* o, ) + 9.

m)’m

Case 3: T(x') = 1. Then =' - w}, — 6, > 0, which gives

('wm,n—f—la em,n—i-l) ) ('w:w Q:n) = (’wm,m van) ) ('w;:w 9;> + (wz ) wjn - 92})
= (’wm,m em,n) ’ ('w:m 9;>+ | (mz ’ w;z - 9;) | (28)
2 (wm,ru Qm,n) : (’lU* o, ) + 0.

Using , , and , we obtain
(W1, Omjr) - (W, 07,) = (Wi, O j) - (W, 07,) + 0.

Taking a summation, we have that

[y

n—1 n—

D (Wi g, Omjr) - (W, 05) = {(Win g, Om) - (w,, 05,) + 6}
§=0 =0
and then
n—1 n—1
D (Wi g1, Omgir) - (Wi, 05) > (W j, O g) - (w5, 65,) + 06,
§=0 j=0
This gives
n—1
N Wi O ) - (W, 03) + (Wi, 0,) - (], 07)
j=1
n—1
> (Wi 0, 0m,0) - (W, 05) + Y (W g, Omj) - (why, 0,) + 0
j=1
and hence

(wm,m em,n) (wy,, 0r,) > (wm,O’ ‘9m,0) - (wy,, 0;,) + nd.
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Proof of Claim 2.
Case 2: S¥»% (z%) = 1. Then w,,, - ' — 0,,,, > 0, which gives

i 2
‘(lvnun+179nun+1>’2 ::’(1Unun _'aﬂaenun‘+'1)|

= (W — T O + 1) - (Wpy — T, O + 1)

= (W — ") - (W — ") + (O + 1)?

= | Wpn \2 —2W X'+ | T \2 + Gmmz + 20, + 1
= | W 2+ O — 2Wep - &+ 200, + | @ |+ 1
= | (W, Oo) |* = 2(We - T — ) + | @ |* + 1
< | (Wi, Omn) [+ (X + 1),

Then

| (Wit O ger) [ < | (Wi, bng) [+ (x + 1) for all j > 0.

Taking a summation, we have

[y
—

n— n—

| (W1, Omjs1) ’2 < {\ (W55 Om,j) \2 + (x + 1)}
j

.
I
o
Il
o

and then

[y

n—

D Wingr Omgen) P4 | (Wi On) P <Y | (Wi Ong) [P+ 10 (x + 1),
j=0

<.
I
o

This gives

[y

n—1 n—
2 2 2 2
> @i Omg) P+ 1 @, On) <Y | (Wi g Omg) [P+ | (Wi, 0m0) [P+ 1 (x + 1)

Jj=1 1

<.
Il

and hence

| (wm,mem,n) ’2 <| wm,anm,O) |2 +n(x+1). (29)

Case 3: S¥»% (z%) = 0. Then w,,, - ' — 0,,,, < 0, which gives
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i 2
| (wm,n+179m,n+1) ’2 = | (wm,n +x aem,n - 1) |
- (wm,n + wi, em,n - 1) : (wm,n + ‘,L,i’ em,n - 1)
= (W + x') - (Wi + x') + (O — 1)2
= | Wpn \2 + 2w '+ | T ]2 + O — 20 + 1
| W [+ O + 2We - @ — 20, + | 2 |+ 1
= ’ (wm,na em,n) ‘2 + 2(’u}m,n : wi - em,n) + ‘ wi ’2 +1
< ’ (wm,nyem,n) |2 + (X + 1)

Similarly to case 2, we can obtain

| (wm,mgm,n) |2 <| (wm,mem,o) |2 +n(x+1). (30)

Using and , we obtain the desired result

| WO 1\ (Wi, ) [F 41 (x +1).
]

Theorem 3.6 (Extension of Theorem ). Let Q = {a'|z’ € RN,1 <i<r} for
some positive integers N and r. Assume that there exist (w},,0%) € RN x R(1 <
m < M) and function ¢ from Q to RN satisfying mingicq |w?, - ¢(x') — 0%,| > 0
forall1 <m < M. Let Ty o= be a function from  to {am, b} for any fized real
numbers a,, and by, (4, > by) such that for all1 < i <r

: ¢(wz) - e;kn > 07
~p(x') —0r, < 0.

Let (Wy,0,) € RN x R and define Sy,

myem °

a, if Wy o(x') — 0, >0,
Swf(xh) = { by, if Wy, o(x') — 0, <0,
randr({am, by }) if  wp, - d(x') — 6, =0,

where randr({am, bm}) is a number randomly chosen from the set {apm, by }. Se-
quences {Wy, ,} and {0} are defined as follows.
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Initial elements wy,o € RY and 6,,0 € R are random. Wy, i1 and Oy iy (n > 0)
are defined depending on the values of S¥m%(x') and T,,(¢(x?)).
Case 1. For alli € I, S® (%) = Typs o (x').

Deﬁne (wm,n—i-la Hmm-‘,—l) = (wm,ny Qm,n)

Case 2. For somei € I, S¥m0 (x!) = Ty o+ (') (1 <1<i—1) and SEm(a') =
Ay s Tw;«mg;;L (ZB’L> = bm

Deﬁne (wm,n-‘rh Qm,n-‘rl) = (wm,n - ¢(mz)7 em,n + 1)

Case 3. For somei € I, S0 (x') = Type o+ (') (1 <1<i—1) and S¥(x') =
bm, Tw;*n’g;«n (:1:1) = U

Deﬁne (wm,n+1> 9m,n+l) = (wm,n + ¢(wl)7 (9m7n - 1)

Then {w,, ,} and {0} are finite sequences.

Proof. Using the definitions of the sequences, we have

(Wi Omn) - (w5, 05) (Case 1)

(Win,nt1s Omn1)- (Wi, 07) = § (Wi Omn) - (w3, 607,) — (S(') - wy, —67)  (Case 2)
('wm,na gm,n) ’ (’w:m 9:1) + ((Zb(wl) ’ 'w:;@ - Q:n) (Case 3)
(31)
Suppose, on the contrary, that {w,,,} and {6,,,} are infinite sequences.
Then (Casel) in [31]is not possible, which give that for n > 0
(0 es, B o) (a0 6 = {(wm, ) - (7,.6;,) = (9(") - w), —6;,) (Case 2)
(Wi s Omn) - (Wi, 0r) + (O(') - wy, — 0y,)  (Case 3)
(32)
Claim 1. (W, On) - (W, 05) > (Wino, Omo) - (W, 0) +nming | ¢(x*)-w}, —0%, |
foralln >1

Claim 2. | (Wpn, Omn) |< \/| (W05 Om0) |2 + n(maxq | ¢(x?) |2 +1) for all n > 1

32



Using Claim 2, Cauchy-schwarz inequality and Claim1, we have

| (@3, 0,) | /] (W, 0m0) |2+ nl(maxg | 6(@) P +1) 2| (W, Onn) || (w67, |
Z (wm,nygm )(w 9* )

Z (wm,Oa em,O) (wm7 0;)
+ nming | ¢(z') - wi, — 07, |

for all n. Then
(Win0,0mp) - (Wi, 05) + nming | ¢(x?) - wr, — 67, |
\/’ (wm,Ou 6m,0> ’2 +n {maXQ | ¢<w’) |2 + 1}

| (wp,,05,) =

m?7m Y

which gives

(W) 07,) | = lim | (w],,0}) |
> lim (W0, Omp) - (wy,, 0r) + nming | ¢(x') - wy, — 0, |
n—o0

\/| (Wm0, 0m.0) |2 +n {maXQ | d(x?) | 2, 1}

This is a contradiction. Therefore, {w,,,} and {6,,,} are finite sequences.

Proof of Claim 1.
Case 2: Ty gx (x') = 0. Then ¢(a') - w}, — 07, < 0, which gives

(wmm-&-lv Qm,n—f—l) (wm7 Q:n) = (wm s Om n) (wm7 ‘9:@) (Qs(wz) cw,, — 0 )
= (wmmemn) (wmﬁe* )+ | ( ( ) ;n_@*) |
> (Winn, Onn) - (W}, 07,) + ming | (') - wy, — 07, |.
(33)
Case 3: Ty gx (2') = 1. Then ¢(a') - w}, — 07, > 0, which gives
(wm,n-&-lv Qm,n—f—l) (w:m Q:n) = (wm s Om n) (wm7 ‘gjn) (d)(mz) wy, — 0 )
= (wm s Om n) (wmﬁe;kn)—f_ | (Qb(ml) ’ :(n 0, ) |
> (W Omn) - (W), 00,) + ming | ¢(x') - w), — 05, |.
(34)

Using , and , we obtain

(wm,jJrlaem,jJrl) (w;,,07,) > (wm,ja em,J) (w,,,0;,) + ming | ¢<wl) — 05 |-
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Taking a summation, we have that

n—1 n—1

> (Wit Omjr) - (W 05) =Y {(Winj Oniy) - (w},, 0;,) + ming | (') - w), — 05, |}
j=0 =0

and then

n—1 n—1

Z('wm,jJrh Omj1) - (W, 05) > > (Wi, O j) - (Wi, 07,) + nming | o) - w), — 6y, |-
=0 =0

This gives

—_

n—

('wm,j, 0]) ’ (’w:m Q:n) + (wm,m Qmm) ' (wjnJ ‘g;kn)
1

<.
I

n—1

> (W0, Om) - (3 05) + S (Weng Orn) - (w5, 05,) + naning | (') - w, — 07, |
j=1

and hence

(wm,n; em,n) : (w:w 0;51) Z (wm,Oa em,O) ' (w;kna Q:n) + nminﬂ | gb(a‘:l) ' w:n - e:n | .
Proof of Claim 2.
Case 2: S¥ (z%) = 1. Then wy,, - ¢(x') — 0, > 0, which gives

| (W1, Ominsr) [F = | (Wi — G(2), O + 1) |
= (Wi — &), O+ 1)+ (Wi — G(), O + 1)
= (W — H&)) - (Wi — D)) + (O + 1)
= | W | = 2w - d(@) + | (@) | + Oy + 200 + 1
= | W > + O — 2Win - S(@) + 2000 + | B(2') | + 1
= | (W On) * = 2(Wi - D) = ) + | d(2') |* + 1
< | (Wi Omn) \2 + maxqg| ¢(wz) |2 + 1.

Then

i 12 .
| (wm7j+1,9m7j+1) ’2 S ’ (me,@mJ) ’2 + maXQ] ¢<CU ) ’ + 1 fOI' all ] 2 0.
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Taking a summation, we have

—_
[y

n— n—

i 12
| Wit 0mgs1) P < {1 (W bng) P+ maxa] ofa) [ + 1}

Il
=)
.

Il
o

J

and then
n n—1
i 2
> 1 W1, Omgir) P | @y Omn) 7 < | (Wi g, Omg) |2+ n(maxel| ¢(a') |+ 1).
§=0 =0
This gives
n—1
D 1 Wy 07) 1P+ | (Wi, On)
j=1
n—1
i 2
< | (W, ) 1P+ | (Win0, o) [P+ n(maxg| ¢(x) | + 1)
j=1
and hence
| (Wan Omn) 2 < | Wi, Omo) 2 + n(maxo| (@) [* +1). (35)

Case 3: S¥»% (z%) = 0. Then wy,,, - ¢(x') — ., < 0, which gives

| (W1 Omni1) ° = | (Wi + S, Oy — 1) [
= (Wmp + O(x"),0mn — 1) - (Wi + S(x"), 0y — 1)
= (Wi + (@) - (Wi + B(2")) + (O — 1)
= [ W |+ 2w - S(&) + | @) |+ O — 200 + 1
= | W > + O + 2We - S(@) — 200 + | B(2') | + 1
= | (Wi On) >+ 2w - S(&) = Oo) + | p’) [*+ 1
< | Wy, On) |* + maxq| o(z') | + 1.

Similarly to case 2, we can obtain that
| (Wi, On) [ < | (W0, 0n0) 2 + nmaxgl o) |* +1). (36)
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Using and , we obtain the desired result

| (W O) 1\ (W0 00n0) |2 + nmaxq | o(a) [* + 1),
]

Theorem 3.7 (Extension of Theorem ). Let Q = {x'|z' € RN, 1 <i<r}

for some positive integers N and r. Assume that there exist (wm,(?;‘n) € RN x

R(1 < m < M) and increasing function v from R to R with ¥(0) = 0 satisfying
Mingicq |w}, - &' — Y= H05)] > 0 for all 1 < m < M. Let Ty o= be a function
from Q to {am, by} for any fized real numbers a,, and by, (a,, > by,) such that for
alll < <r

, am i w - x') — 0% >0,
Tw;;l,ez‘n(wl) = / ¢( N ) N
b if  Y(wl, -x') -0 <O0.
Let (wp,,0,) € RN x R and define Sy, 0, : RY — {am,bn} as
A, if  Y(wy, - x') =0, >0,
S’ (@) = b if (wn @) = O <0,
mndr({am, bm}) Zf w(wm ’ wz) - em -

where randr({am, by, }) is a number randomly chosen from the set {a,, by }. Se-
quences {W, ,,} and {0,,,} are defined as follows.

Inatial elements w,, o € RN and Omo € R are random.

W1 and Oy nyt (n > 0) are defined depending on the values of S¥ (x?)
and Ty, (x").
Case 1. For alli € I, S®n (%) = Typs p: (x').

Deﬁne (wm n+1, mn+1) (wm n mn)
Case 2. For somei € I, S¥m0(x!) = Ty o: (') (1 <1 <i—1) and SEmo(a') =
QA s Tw:mg;h (CBZ> = bm
Deﬁne (wm,nJrl; em,nJrl) = (wm,n - wi’ w(z/}fl(emﬂﬁ + 1))
Case 3. For somei € I, S0 (x') = Typs o+ (2') (1 <1<i—1) and S¥(x) =
bm, wa;*mg;«n (ml) = U
Define (W,n+1, Omni1) = (Winp + $i>¢(¢_1(6m,n) - 1)).

Then {w,, ,} and {0} are finite sequences.
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Proof. Note that

T (@) — ay, if  YP(wk - x') — 0% >0,
O T Vb i W(wr - @) — 65, < 0,

which is equivalent to

7 (2) a, if w;, Y
WSS by i w @t — 1(6) < 0

Similarly,
A it Y(w, - -z") -0, >0,
Swl(xh)y =L b, if  Y(w,-x') -0, <0,
randr({am,bn}) it Y(w,, - x') —6,, =0,
which is equivalent to
A, if  w, -z — 10, >0,
Swf () =< by, it w, -z —v1(0,) <0,
randr({am, bm}) if  w, -zt — 97 0,) =0

Using the definitions of the sequences, we have

(wm,n+1v¢_1(9m,n+l)) ' (w:n? w_l(ejn))

(Wi, 7 (Omn)) - (w5, 71(67)) (Case 1)
= 4 (Wop, 07 (Omn)) - (wy,, 07H(07,)) = (wy, - @' —71(67,))  (Case 2)
(Wi @7 (Omn)) - (wr, 071 (67,) + (w), -2 —¢7H(0),))  (Case 3)

Suppose, on the contrary, that {w,,,} and {6,,,} are infinite sequences.
Then (Casel) in [37]is not possible, which give that for n > 0

('wm,n-i—h wil(emm-&-l)) : (w:m 71(6:1))

_ {(wmyn,w(emm» (w1 (0:)) — (w), - @ — v 1(6;,)) (Case 2)
(Wi ¥ () - (w7 (63,)) + (w3, - @ — 1 (8,))  (Case 3)
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Claimn 1. (0, 6 (O)) - (W, 05) > (w000 (60)) - (w5, 65,) + naning, | wr,
x' — (o )|f0ralln>l
Claim 2. | (Wyp, ¥ (Omn)) |< \/] (W0, 10 (60) | —l—n{maXQ]azﬂ + 1} for all
n>1

Using Claim 2, Cauchy-schwarz inequality and Claim1, we have

| (wy,,0r) \\/| (W0, ¥~ 1(00) |* + n {maxq | 2 |° +1}
2] (Wan, ¥ (Omin)) || (W], 07,) |

(Wi ™ (Omn)) - (w0, 65,)
(W0, 60) - (w 0r) + nming | w’, - ' — 167 |

mr)’m

| (w;km 0;) |Z (wm,()? QO) (wm7 Q:n) + nminQ | ’w:@ ) wi - Qbil(e:n) |’
V1 (W0, 671(80)) >+ n {maxq | @i [* + 1}

which gives

(w03 | = T | (0,65,
> lim (Win0,0) - (meQ:n) + nming | wy, - @' —¢~'(6;) | = 00.
o \/’ mea ) | +n{maXQ ‘ ! | + 1}

This is a contradiction. Therefore, {w;,,} and {6,,,} are finite sequences.
Proof of Claim 1.
Case 2: Toys g» (x') = 0. Then a' - w}, — ¢ 1(07,) < 0, which gives

(W1, (Omns1)) - (w7, 1071(67,))

= (Wi, ¥ (Omn)) - (Wi, 07H(0;,)) = (wy, - 2" = (¥7(6},))
= (Wi, ¥ (Omn)) - (W, 07 (05)) 4 | (w), - 2" — (¥7(67,)) | (39)
> (Wi, ¥ (Omn) - (W), 07 H(0;,)) + ming [ w), -2 —¢7(0]) |

Case 3: Ty gx (€') = 1. Then a' - w}, —¢~'(07,) > 0, which gives
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(wm,n+1aw_1(9m n+1)) : (w* ) _1<9:n>>
= (W, O™ (Omn)) - (Wi, 071 (05,) + (w2 — (07(67,))
= (W, 0™ (Or)) - (Wi, 071 (O5,)+ | (- 2" = (7(6;,)) | (40)
> (wm,n,¢’1(9m,n)) - (w;,, 7(6;,)) + ming | wy, - &' —»7H(6),) |.
Using , , and , we obtain

(Wes1 ™ (Or1)) - (w07 (07,))
> (Wi, ¥ (Onyg)) - (wh 71 (07,)) + ming | wy, - &' — v (6]) |.

Taking a summation, we have

—_

n—

(W g1, ¥ (Omgien)) - (W), 07 H(0],)

<.
Il
=)

1

> ) AW o™ (Omy) - (wr,, 07 (6]) + ming [ w), &’ —7H(0],) [}

3
|

j=0
and then
n—1
Z(wm,j+1a¢7l(9m,j+1)) - (w;,, vH(0),))
j=0
n—1
> (Wi, 07 O y)) - (w),, ¥ 7H(6y,)) + nming | w}, - &' —~H(6;,) |.
j=0
This gives
n—1
> (w5 07N 0;)) - (W 67 O5) + (Wi 7 Orn) - (], 6)
j=1
n—1
Z (wm,07 ¢_1(00 ’lUm, ejn + Z w]u 'lU 1<8:n))
7=1
+ nming | w;, — (¢~ (0 ) |
and hence

(wm,nawil(em,ﬂ)) (wrm 9:1) - (wm,O, w71<90)) (wm7 Q:n) + nminﬂ w:n, ’ ‘IE' - ¢ (9* ) ‘ :
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Proof of Claim 2.
Case 2: S¥» (%) = 1. Then w,,, - ' — ¥ ~(#,) > 0, which gives

| (W10 Grnn)) [ = | (Wi — 2,90 (O) + 1) |

|
= (Wi — &, Omn) + 1) - (Wi — 907 (O ) + 1)
= (W — ') - (W — &) + (7 (0) +1)°

= | W |* = 2w - @ + | @ [P+ (07 (00)° + 207 (6,) + 1
= | Wy P+ (071 (00))° = 2w - @' + 207 (0,) + | @ |F + 1
= | (W 07 (00) | = 2000 - ' — 71 (0)) + | 2 [+ 1
< | (Wi, v (6,)) | + maxg| @' |° + 1.

Then

| (W41 0 Omyir)) [* < | (Wi 71(6))) [° + maxg| ¥ | + 1 for all j > 0.

Taking a summation, we have

n—1

_ s
Zl(wmj+1>¢ m]+1 Z{ wmyw )) |2—|—maXQ|:B | +1}
J=0 =0

and then
n—1 ) -

Z| (Wi jr1, 0™ (Omjin) | < Z| (Wi 5, ¥ X (0;)) |" + nmaxo| = [* + 1.
§=0
This gives
n—1
_ 2 _ 2
S 1wy v (0;) |+ | (Wi " (Omn)) |
j=1
— 2 2 2
<Y | (Wi, ;) |7+ | (Wi, ¥ (60)) | + n(maxq| ' |” + 1)
j=1
and hence
| (Wans 07 (02)) 1” < | (Wi, 07 (00) [* + n(maxg| @' "+ 1), (41)

40



Case 3: S¥»% (z%) = 0. Then w,,, - ' — ¥ ~(h,) < 0, which gives

2 2

| (W s1, @ Oniin) [ = | (Wi — 07 O) — 1) |
= (Wi — 2 On) = 1) - (Wi — 2,7 () — 1)
= (Wi + &) - (Wi + ) + (07(0,) — 1)

= | Wi |2 = 2w - @+ | & [P+ (071(0))° = 207 (6,) + 1
= | W [P+ (@ 7H(00))" + 2w - &+ 2071(0,) — | & P+ 1
= | (Wi 0 O) [+ 20w - & — 071 (0,)) + |2’ " 41
< | (Wi, 071 (00)) [* + maxo| &' * + 1.

Similarly to case 2, we can obtain

| (Wns 71 00)) [* < | (W0, 01 (00)) |* + n(maxg| &' [P+ 1), (42)

Using and , we obtain the desired result

| (W ¥ O} < A1 (0,671 (00) [ + mlmax | @ 2+ 1).
]

Theorem 3.8 (Extension of Theorem [3.4)). Let Q = {@'|x’ € RN, 1 <i <r} for
some positive integers N and r. Assume that there exist (w?,,0F) € RN x R(1 <
m < M) satisfying mingicq |w}, - € — 0% | > 0 for all 1 < m < M. Let 1) be an
increasing function from R to R with (0) = 0. Let Ty o be a function from
Q to {am,bn} for any fized real numbers a,, and by, (ay > by) such that for all
1<i<r

Tw’*"’%(wz):{bm if pw

Let (W, 0,,) € RY x R and define Sy, 0, : RY — {am, by} as

mHUm

. if  (wy, -zt —0,) >0,
S’ () = b if (W =) <0,
randr({am,bm}) if  Y(wy,, -x'—0,) =0,
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where randr({am, by }) is a number randomly chosen from the set {ap, by }. Se-
quences {Wy, ,} and {0} are defined as follows.

Initial elements wy, o € RN and Om.o € R are random.

Wopi1 and O, vy (n > 0) are defined depending on the values of S¥n% (z)
and T, (x").
Case 1. For alli € I, S¥m (x') = Ty o (x') .

Deﬁne (wm,nJrla 6m,n+1) = (wm,rm em,n)

Case 2. For somei € I, S¥rn(x') = T o« (') (1 <1 <i—1) and S¥(x") =
A, Tw:n’g;kn (fBZ) = bm

Define (Wpni1,Ommnt1) = (Win — x’, Omm + 1).

Case 3. For somei € I, S¥m0(x!) = Ty - (') (1 <1 <i—1) and S (a') =
bm7 T’w,*n,@fn (mz) = Q-

Deﬁne (wm,n—i-l; em,n—l-l) = (wm,n + wi) Qm,n - 1)

Then {w,, »} and {0} are finite sequences.

Proof. Note that

T’w* 0 (m’) =

mi’m

am if Y(wk, -zt —67) >0,
by if W(w? @ —67) <0,

which is equivalent to

T () a, if w,
w* * | = .
i by if  wi -al— 0% < 0.

Similarly,

Qpm it Yw, -z —0,) >0,
Swl(x) = { by, if  Yw, - -z —0,) <0,
randr({am,bm}) i Y(wy, -z —0,) =0,
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which is equivalent to

Ay, lf wmwl_0m>07
Swf(z) =< by, if  w,, -x'—0, <0,

randr({am,bm}) if  w, - -x'—06, =0.

Using the definitions of the sequences, we have

(wm,na Hm,n) ' (’ll):n, e;kn) (C&SG 1)

(Wi nt1, Omns1) (W, 00) = < (Winy Op) - (wi, 05) — (28 - w), — 07)  (Case 2)
(Wi, Om) - (w3, 00) + (2 - wi, — 07,)  (Case 3)

(43)

Suppose, on the contrary, that {w,,,} and {6,,,} are infinite sequences.
Then (Casel) in is not possible, which give that for n > 0.

(Wi, Om) - (Wi, Oy,) — (- w5y, — 07 (Case 2)
(wm,ny em,n) : (w:w Q:n) + (fL'Z . w;kn - 9:;1) (Case 3)

(44)
Claim 1. (W p, Omn) - (W, 05) > (wo, 00) - (Wi, 0%) + nming | ' - wi, — 6%, |
foralln >1

(wm,n—‘rly Qm,n—l—l)'(w:m 0:1) = {

Claim 2. | (Wi, Omn) |< \/| (Win0, Omo) |* + 1 {maxq | @’ * + 1} for alln > 1
Using Claim 2, Cauchy-schwarz inequality and Claim1, we have

| (wp,s 07 | \/| (Wm0, 0m0) |” + n(maxq | @ |* +1) | (Wi, Omn) || (w), 05, |
> (Winny Omn) (W, 07,)
> (Wi 0, 0mo0) - (w,,0r,)
+ nming | ' - w}, — 0%, |

for all n. Then

mim

| |> (W0, Omyo) - (W, 0%) + nming | ' - wi, — 0, |7
\/| (Wm0, 0m0) |2 +n {maXQ | |2 + 1}

| (w05,
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which gives

m?rm m?m

[ (], 05,) | = T | (w],.65,) |

o i (0o Ono) - (W, 05) + nming | @y, — 05, |

oo \/| (W0, Om.o) \2 +n {maXQ | ! |2 + 1}

This is a contradiction. Therefore, {w,,,} and {6,,,} are finite sequences.
Proof of Claim 1.
Case 2: Ty o+ (x') = 0. Then @' - w}, — 07, < 0, which gives

(W1, Omnt1) - (Wi 03,) = (Wi, Omn) - (Wi, 07,) — (' w;, —0y,)
= (Wi, Omn) - (wy,, 07,)+ | (' w;, —6y,) |
> (Wi Omn) - (Wi, 05) + ming | &' - wk, — 67, |.
(45)

Case 3: Toys g» (2') = 1. Then &' - w}, — 6%, > 0, which gives

(W1, Omni1) - (Wi On) = (Wi Onn) - (Wi, Or) + (- 2wy, — 07
= (Win,ns Omn) + (Wr,, 07,)+ | (wl cwy, —0) |

> (W Omn) - (Wi, 0r,) + ming | - w: —0" |

(46)

Using , , and , we obtain

(Winjis1, Omge1) - (W, 00) = (Wi, Omg) - (Wi, 05,) +ming | &' w;, — 67, |
Taking a summation, we have that
n—1 n—1

(W1, Omger) - (W5, 00) = > {(Winj, Omyg) - (wy,,07,) + ming | &' - wy, — 07, [}
j=0 j=0
and then

—

n—1

D (Wagir, ) - (0, 07) 2 D (Wi, Ony) - (w],,6;,) +nming | 2w}, —6;, |
j=0

3

<.
I
o
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This gives

n—1

Y (Wi 0) - (Wi 05) + (Wi Onn) - (w5, 67)

j=1

> (W0, Omo) - (w3, 07, +Z'wm], ) - (w5, 05) 4+ nming | 2 - w, — 6%, |

and hence

(Wons Om) - (W 05) > (Win0, Omo) - (wi), 0F) + nming | ' - wk, — 607, | .

m’’m m?? -’ m

Proof of Claim 2.
Case 2: S¥n% (z%) = 1. Then w,,, - ' — 0,,,, > 0, which gives

| (Wi i1 Omsr) [ = | (Wins — 2 O +1) |
= (W — " an—i—l) (Wi — 2, O + 1)
= (’wm,n —a') - (Wop — &) + (O + 1)
= | Wmn \2 — 2W,p - '+ |z \2 + Gmm? + 20, + 1
= | Wpn |2 + 0m7n2 — 2w - x' + 20, + | ' |2 +1
= | W bnn) [* = 2w 2" — ) + 2 [ 41
< | (Wips O) |2 + maxgq| |2 + 1.

Then
| (W j1, O ji1) | < | (Winj, Oms) |* + maxg| @ |° + 1 for all j > 0.

Taking a summation, we have

[y
—_

n— n—

2 2 i 12
| (W1, 0mgs1) < 3 {1 (Wi ) P+ maxa| @' |+ 1}
J

I
)
Il
=)

J

and then

—

n n—

i 12
D W1, 0m11) P4 | (Wi, ) [P <D | (Wi, 0 g) [* 4 n(maxa| @' [+ 1).
7=0

<.
Il
o
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This gives

—_

n—

2 2
| ('wm,j?gj) "+ ('wm,mem,n) |
1

J

—1
2 Wiy, ) P+ | (Win0, 0000) >+ n(maxa| @ [+ 1)

and hence

| Wiy Oan) |* < | Win, Omo) | + n(maxg| ' |° + 1). (47)

Case 3: S¥»f (z%) = 0. Then wy,, - ' — O,,,, < 0, which gives

| (W1, Omns1) [* = | Wy + 20 = 1) |
= (W + 2, 0pmn — 1) (Wi + 2,0, — 1)
= (W + ) - (W + ) + (O — 1)°
= | Wnn \2 + 2wy '+ | T ]2 + O — 20 + 1
= | Wy |* + Opn® + 2Win - T — 20, + | 2 P+ 1
= | (Wi, Omn) >+ 200 - @ = O ) + | @ [+ 1
< | (Wmn,Omn) |2 + maxgq| x' |2 + 1.

Similarly to case 2 we can obtain that
| (W Omn) 2 < | (Wi 0, Om0) |2 + n(maxe| & [* + 1), (48)

Using and , we obtain the desired result

| (Woms Bun) 1<\ | (W0, 60n0) ” + nmag | @ >+ 1)
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4 Convergence speed of extended algorithms

In this chapter we present a generalized upper bound of the extended algorithm
and construct the order of training data for accelerating convergence speed.

Theorem 4.1. Let I be the set of positive integers less than r + 1 and ) =
{a:' € RNJi € ]} for some positive integers N and r. Assume that there exist
(w?,,0%) € RY x R satisfying mingicq |w?, - ' — 07| > 0 for a positive inte-
ger M and all 1 < m < M. Let T,, be a function from Q to {am,b,} for real
numbers a,, and by, (4, > by,) such that for all i € 1

{am if  wr @ — 0%, >0,

T(a") = .
(@) by, if w; -x'—0; <0.

Let (wp,,0,) € RN x R and define S¥ : RN — {a,,, by} as

A, if  wycx—0, >0,
Sl (x) =< by, if Wy —0, <0,
randr({am,bn}) if  wp-x—0, =0,

where randr({am, by, }) is a number randomly chosen from {am,, by }.
Sequences {W,n}o— o and {Op,} - are defined recursively as follows:

i) Initial elements wp,o € RN and 6,,0 € R are randomly sampled.

) Wypi1 and Oppnyy (n > 0) are defined depending on the values S¥% (x?)
and Ty, (") .

a) Case 1: (Womni1, Omni1) = (Won, Omn) if SE0(2?) = T,,(x) for all
1€ 1.

b) Case 2: (W1, mn+1) (Wi — T, Oy + 1) if SEmbn () = T, (xf)
and S¥»O (x') = a,,, T, (x?) = by, for somei € I and all 1 < ¢ <i—1.

c) Case 3: (wmnH, Omni1) = (W + T, 00y — 1) if SO0 () =T, (")
and S¥ 0 (x') = by, T, (x') = ay, for somei € I and all 1 < <i—1.

Then for any fixzed m, {Wpn}t and {0pn} reach to Case 1 (the update stops) at
iteration number n if the following inequality satisfies

DE - 1AC \/(DE—%A(J)Q D2 — AB
n>-———207 - ,
B B B
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where A =| (w;,,0%,) [*, B = | (W0, 0mo) ', C = max | @ ’+1, D = (W0, Omo)-

m?’m

2
. ; DE—1AC 2_
(w;‘n,ejn),E:Hmez’-w:@—Q:Jand( o ) — DB > .

Proof. Using the proof of Theorem we have that when (w, ,, 0;,,,n) is updated,
n must satisfies the following inequality

m?’m

y . (Wm0, Omo) - (Wi, 0%) + nmin |z’ wk — 0" |
w,,,0,,) [>
1 o) 4 (mgx 27 1)

= 03030 || 0 O) P (e 21 1)

> (w0, 000) - (). 05) + nmin | 2 - w0, — 6, |
= (@3 0) P {| (Wi, Omo) P+ (max | 2 [*+1) }

> L (0. O0) - (05,05 + mmin | 2w, — 6, |}
= A{B+nC} >{D+nE}* = D>+ 2nDE + n*E®

< 0> (D*—-AB) +2n (DE — %AC) +n’E?

2 _ DE — LAC
<:>02E2(n2+D AB+2n 2 )

2 2

DE—1AC D?— AB
B T B

DE — LAC \/(DE—%AC)Q D2 — AB

— 0>n’+2n

E? E? E?

DE - 1AC DE - 1AC\® D?-AB
e \N\\Te ) T e
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.. _DE-1AC l¢<DE—%AC)2 D2— AB

E? E? E?

DE - 1AC /J(DE—%AC)Q D2— AB
<p<-——— 20 () 22

B2 B2 E?
Note that
0

(DE—%AC)Q D> — AB
— >
B 2=

1
since n satisfies the inequality 0 > n? + 2n by ] 4D 2};2‘43 . Therefore if

n >

DE - 1AC DE —1AC\® D?-AB
e E? S Er

then the update stops. O

Remark 4.1. Assume (wy,0,0n0) = 0. Then we have B = D = 0 in Theorem
4.1], which gives that if

max | ' |° 41

n>| (w05 | ———
meem ms%n|a:1-w;‘n—«9;‘n|2’

then the update stops.
Remark 4.2. Assume that (wy, ., 0m,) is updated. Define

ay, = argmax |z w), | .
P18 ()£ T (1)

We consider Case 2 and Case 3.
Case 2: T(x) = 0. Then % - w}, — 6% < 0, which gives

(wm,n+17 em,n+1) ’ (w:m 9;) = ('wm,nv 9m,n) ’ (w:w e;kn) - (man ’ w;kn - e;kn)
= (Wi, Omyn) - (Wi, 07,)+ | 2 - wy, — 07|
Case 3: T'(z®) = 1. Then % - w} — 6, > 0, which gives
(wm,n+17 9m,n+1) : (w:m ejn) = (wm,n7 9m,”> ’ (w:m G:n) + (wan ’ w:n - 9:1)
= (wm,nv 9m,ﬂ> ’ (w:m 9:,1)+ ’ x" w:z - (9:1 ’
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Then

('wm,n—f—l: em,n-f—l) ’ (w:n7 Q;kn) - ('wm,m Hm,n) ’ (w:n7 Q:n)—'— | " - w:n - an |v

which gives

(wm,m Qm,n) : ('w:m e;kn) = (wm,n—h Qm,n—l) : (w* 0, )+ | et 'w;kn - 9;51 |

mi’rm

= (wm,07 em,O) ' (w:n’ Q:n) + Z | - w:n - Q:n |

0<k<n—1
If (wm,07 9m,0) = 07 then
(wm,n7 Qm,n) . ('lU:;,L, 0;) = Z | T - w:(n - G:n | .
0<k<n-—1

We again consider the two cases:
Case 2: S¥n 0 (2) = 1. Then w,, , - ™ — 0,,, > 0, which gives

| (wm,n+1> 9m,n+1) ’2 = (wm,n - xan7 em,n + 1) |2

(49)

|
= (wm,n - wan’ em,n + 1) : (wm,n - wana em,n + 1)

= (wm,n - wan) : (wm,n - man) + <6m,n + 1)

2

= | W |* = 2Wip - % + | % |* + O + 20,0 + 1
= | Wpn |2 + 9m7n2 — 2Wy - XM A 20, + | T |2 +1
= | (W, Omn) |> = 2(Wep - T — Op) + | ™ | 41

= | (Wyms Omm) |* = 2)We - & — O] + | 2 |* + 1.

Case 3: ¥ () = 0. Then w,, , - ™ — 0,,, < 0, which gives

2
= |

‘ (wm,n+17 9m,n+l) ’ (wm,n + wan’ em,n - 1) |2

= (wm,n + manv em,n - ]—) . (wm,n + man7 em,n -

= (W +2™) - (Wi + ) + (O — 1)
— 2+ 1
= | Wy |+ O + 2Wpp s - % — 20, + | % | + 1
= | (W O) |2+ 2(Wi - & — Op) + | 2 |2 41

= | (W, Omn) |> = 20Wnn - % — O] + | 2% |* + 1.

= | Wmn \2 + 2Wy - ™ | |2 + 6m7n2

20
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Then we have
| (wm,n+1>9m,n+1) |2 - | (wm,naem,n) |2 - 2|wm,n Szt — 9m,n| + | " |2 + 17

which gives

|(wm,n, mn)‘ ’(wmn 17 m,n— 1)‘ —2|wmn 1 xon-1 _0m7n71|+|wan_1 ’2+1
= | (W, b) P+ Y0 {20 2% — O] + | 2% [+ 1},
0<k<n—1

If (’I.Um’(), Qm’()) = O, then

| Wiy ) | = | D {—2lwmp - &% — O] + [ @2 |+ 1}, (50)

0<k<n—1

Using and , we obtain

| (wy,,07,) | Z {_Q‘wm,k S — Oy | + | |2 + 1} cos b,
0<k<n—1
:| (w,,,0,,) | | (wmmgmn) |COSbn
:(wm,mem ) - (wy,, 0,,)
= > la™w, -0,
0<k<n-—1

where b,, is the angle between (w,,0},) and (W, pn, Om.n). So, we have

m?’m

(Wi r) || Y (F2lwag @ =] + 2o PH1) > Y 2w

0<k<n—1 0<k<n—1

If 07, = 0, then

lwi | [ (2w e ) > e, |

0<k<n—1 0<k<n—1

Thus when updating (W, n—1,0mn—1), the number n must satisfy the following
inequality

Z (—2|wyy g - %] + | @ |2) > Z

0<k<n—1 0<k<n—1
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If the just above inequality fails to hold, the update stops. So, in order to make the

update stop faster we reorder (z',x? &®, -, &) as (&%, 2%, a%,---  x*) such
that .
w
& = argmax x'
i€T, S0k (28) £ T () [w;|

Theorem 4.2. Let I be the set of positive integers less than r + 1 and €2 =
{di € RN|i € I} for some positive integers N and r. Let w?, € RN satisfying
mingicq |w?, - d'| > 0 for a positive integer M and all 1 < m < M and let Ty, be
a function from Q to {aum, Bm} for real numbers o, and By, (v > By) such that
foralli el

T (d) = Qm  if  wi -d >0,
T B if wr - d < 0.

Let w,, € RN and define S¥ : RN — {ay,, B} as

Oy, Zf wy, - d > 0,
Si(d) = § B if wy-d <0,
randr({am, Bm}) if W, -d=0,

where randr({am, Bm}) is a number randomly chosen from {u,, Bm}. Sequence
{wpn},", is defined recursively as follows:

i) Initial elements w,,o € RN is randomly sampled.
) Wmny1 (n>0) is defined depending on the values S¥(d') and T,,(d").
a) Case 1: Wy pi1 = Wy if SE(dY) = T, (d?) for alli € 1.

b) If Case 1 is not true, define the sequence &, as

*
m 7

& = argmax .
|w?,|

IE1,S8" () AT ()

1) Case 2: Wy py1 = Wiy —do if S¥n(d5) = vy, and Ty, (d5) = By,
2) Case 3: Wy i1 = Wi +d if S (do) = B, and T, (d*) = ayy,.

Then {w,, .} is a finite sequence for any fived m.
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Proof. Using the definitions of the sequences, we have

Wy - W, (Case 1)
Wi 1 - Wy, = § Wiy - W, — wh, - ds (Case 2) (51)

Wy p W+ wh - d (Case 3)

Suppose, on the contrary, that {w,,,} is an infinite sequence. Then Casel in (51
is not possible, which give that for n > 0

o WS, — WY, - dér (Case 2
W1 - W = Wy, - Wi, — W) (Case 2) (52)
Wy p - W)+ wh, - d (Case 3)

So, we can obtain the following two claims:

. n—1
Claim 1. Wy, - WS = Wy - Wi+ Y opry | W, - d |

Claim 2. | wy,, |= \/ | Wi |+ 520 (=2 | - e | +] a5 )

Using Claim 2, Cauchy-schwarz inequality and Claim1, we have

Then
n—1
W0 - Wi, + > | wh, - d |
k=0

n—1 .
| Wi 0 |2 + > {—2 | W - dE* | +| dén |2}
k=0

| wy, [>

Let 0 = min | w?, - d | and y = max| d’ |°. Then we have
iel iel
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n—1
W0 w4+ > | wr, - do |
k=0

n—1
W0 Wy, + ), 6
k=0

n—1
\/| Wm0 |2 + Z X
k=0

Wy 0 - W), + N0

/| Wi |2+nx

Now take the limit as n goes to infinity

Vv

RSN £ > =
| wy, |= lim |y, [> lim - 00,
| W0 |+ ny
which is a contradiction. Therefore {w,,,} is finite sequence.
Proof of Claim 1.
Case 2: T(d*") = 0. Then w?, - d* < 0, which gives
Wyl - W, = Wy - W, — W, - de
= Wy - Wyt | w0y, - dE .
Case 3: T'(d**) = 1. Then w, - d* > 0, which gives
Winil Wy = Wiy - W) + W, - ds
= Wy - Wyt | Wy, - .
Using , and , we obtain
Wi - Wiy = W - Wi+ | W), - d |
Taking a summation, we have that
n—1 n—1
(Wanks1 - wy,) = ) AW - wy+ | wy, - d™ [}

0

i

0

il

o4

n—1
\/’ W0 ‘2 + Z {—2 | Wi,k * déx ’ —|—| dén |2}
k=0

W0 Wy, + 10



and then

n—1 n—1 n—1
Z(wm,k-&-l ‘wy,) = Z(wm,k “w,y, ) + Z | w, - d% | .
k=0 k=0 k=0
This gives
n—1 ne1 1l
(W = W}) + (W - W) = (Wino - W) + (W - w)) + > [ w), - d |
k=1 =1 —
and hence
n—1
Wy - W), Z'wm,o'wfn—l—Z]w;'dgk | .
k=0

Proof of Claim 2.
Case 2: S¥»(d*) = 1. Then w,y,, - d** > 0, which gives
|2 _ (wm7n . dfn) . (wmm‘ _ dfn)

2
= | Wpn |2 — 2W,p - d" + | ds |

| W, n+1 |2 - | Wmyn — dEn

2
:|'wm,n|2—2|wm7n-d5”|—|—|d§"|.

Taking a summation, we have

—_

2
| wangerr P =3 {l w2 [y d® | +] % [}
0

—
3

n—

=
Il

0

B
Il

and then

—_

n n—1
2
Z| W, k+1 |2 + | Wi |2 = Z | W i |2 + {_2 | Wi g - d* | +| d* | }
k=0 k=0 0

3

T

This gives

n—1 n—1 n—1

2
Sl P [ = S [ [ o Y {2 | ] )
k=1 k=1 k=0
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and hence

n—1
| W P = [ w0 [P+ Y {—2 | Wy dS* | +] d* \2}. (55)
k=0

Case 3: S¥»(d*) = 0. Then w,y, , - d** < 0, which gives

| Wi | = | Wyn + d | = (W + d) - (Wi + dE)
= | W [* + 2wy - @ 4 | S [
= | W > = 2 | Wy - d | +] dE |

Then we have
n—1 )
| W |2 = | Wimo |2+Z{—2|wm,k.d€k | +] dé | } (56)
k=0

Using and , we obtain the desired result

n—1
[ 1= | T D0 { =2 [ | 4] de .
k=0
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5 Numerical examples

Example 5.1. In order to find {w,} and {6, } defined in Theorem let

Q= {z'lz' € RN,1 <i<r}={(1,1),(2,4),(3,1)}, where ' = (1,1), x® = (2,4)
and 3 = (3,2). Let w* = (—1,1) € R? and 6* = 1 € R. Then ming, | w*-z'—6* |=
1 > 0. Let T be a function from 2 to {0, 1} satisfying

1 if  w*-xz— 0" >0,
T(z') = forall 1 <i <3.
0 if w*-x'—0" <0,

Let wy = (1,1) € R* and 6y = 1 € R. Since w*-x' —6* = (—1,1)-(1,1) -1 = —1,
we have T'(z') = 0. Similarly we have (T'(z'),T(x?),T(x®)) = (0,1,0). Since
wo -zt —0=(1,1)-(1,1) — 1 = 1, we have Sy, (') =1 > T(x'), which is Case
2 and then (wyq,6;) = (wo — x*,60p + 1) = ((0,0),2). Repeating the same process
we get {w, } and {6,} in Table 5.1} where w = w, = (0,2) and § = 0, = 3.

TP ] O (T TOET) | (S, (4) 800, (x7): 800, (7)) | ©2°

0| (11 |1 (0,1,0) (1L11) Case 2
11(00)]| 2 (0,1,0) (0,0,0) Case 3
21 (24)| 1 (0,1,0) (111) Case 2
31 (13 | 2 (0,1,0) (111) Case 2
41(02)| 3 (0,1,0) (0,1,0) Case 1

Table 5.1: Construction of {w,} and {6, }

Example 5.2. In order to find {w,} and {6,} defined in Theorem let Q =
{xi|x" € RN, 1 <i<r}={(1,1),(2,4),(3,1)}, where ' = (1,1), ©* = (2,4) and
3= (3,1). Letw* = (=1,1) € R?2,0* =1 € Rand ¢(x,y) = (¢1(x,y), 2(x,y))=
(tanh(x), tanh(y)). Then we have ming | w* - ¢(x') — 6* |= 1.23346 > 0. Let T
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be a function from €2 to {0, 1} satisfying

1 it w*-¢(x’) —6* >0,
T(z') = forall 1 <i¢ < 3.
0 it w-o(x’) —6*<0

Let woy = (1, 1)

(tanh(1),tanh(1))—1 = —1, we have T'(x') = 0. Similarly we have (T'(z'), T(x?),
T(x3)) = (0,0,0). Since wy - ¢p(x') — Op=(1,1) - p(1,1) — 1 = 0.5232, we have
Swo.to(®') =1 > T(x'), which is Case 2 and then (wy, 0;) = (wo—@(x'),0y+1) =
((0.238406, 0.238406), 2). Since w; - d(x*) — 6, =(0.238406,0.238406) - ¢(1, 1) — 2 =
—1.6369, we have Sy, g, (z') = 0 = T'(x'), which is Case 1. Repeating the same
process, we get (Sy, 0, ('), Sw, .0, (€?), Sw,y 0, (%)) = (0,0,0), which leads to Case
1, where w = (0.238406, 0.238406) and 6 = 2.

€ R* and 6y = 1 € R. Since w* - ¢(z') — 6 = (-1,1) -

Example 5.3. In order to find {w,} and {6,} defined in Theorem let Q =
{xi|x" € RN, 1 <i<r}={(1,1),(2,4),(3,1)}, where ' = (1,1), ©* = (2,4) and
3 = (3,1). Let w* = (—1,1) € R* 0* = 1 € R and ¢(x) = tanh(zx). Then
we have | w* - &’ — ¢~1(0*) |= 1.964 > 0. Let T be a function from Q to {0,1}
satisfying

1 if  Yw*-x) —0* >0,
T(z') = forall 1 <i<3.
0 it Y(w-x) -6 <0

Let wy = (1,1) € R? and 6y = 1 € R. Since Y(w*-x')—0* = ((—1,1)-(1,1))—1 =
—1, we have T'(z') = 0 and same with i = 2,3 and then (T'(z'), T(2?),T(x%)) =
(0,0,0). Since Y (wp-x) —0=1((1,1)-(1,1))—1 = —0.03597, we have Sy, g, (")

0 = T'(x'), which is Case 1. Repeating the same process we get

(Suwo.00 (T1); Suwg.00 (%), Swo.o(X®)) = (0,0,0), which leads to Case 1 and then
w=(1,1) and § = 1.

Example 5.4. In order to find {w,} and {6,} defined in Theorem let Q =
{zi|x' € RN, 1 <i<r}={(1,1),(2,4),(3,1)}, where ' = (1,1), ©* = (2,4) and
3 = (3,1). Let w* = (—1,1) € R ¢* = 1 € R and ¢(x) = tanh(x).Then
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ming | w* - &' — 0* [=1 > 0. Let T be a function from Q to {0, 1} satisfying

1 if  Yw* -z’ —6%) >0,
T(x") = forall 1 <i<3.
0 it Y(w* -z —60%) <0

Let wy = (1,1) € R? and 6y = 1 € R. Since ¢(w* - x' — %) = ((—1,1) - (1,1) —

1) = tanh(—1) = —0.7616, we have T'(x') = 0 and same with ¢ = 2,3 and then
(T(@"), T(2?), T()) = (0,1,0). Since 4(ay - @ — 6)=((1,1) - (1,1) — 1) =
tanh(1) = 0.7616, we have Sy, g,(2') = 1, which is Case 2. Then (wy,6;) =
(wo — =, 0y + 1) = ((0,0),2). Repeating the same process we get {w,} and {6, }
in Table 5.2 where w = w, = (0,2) and § = 0, = 3.

T [ (TODTOE)T)) | (Sua () S0, () S, (x7) | 25

0| (11 |1 (0,1,0) (1L11) Case 2
1] (00)| 2 (0,1,0) (0,0,0) Case 3
21 (24)| 1 (0,1,0) (111) Case 2
31 (13 | 2 (0,1,0) (111) Case 2
41(02)| 3 (0,1,0) (0,1,0) Case 1

Table 5.2: Construction of {w,} and {6,}

From Examples [5.5] to[5.7] let M = 1 and then we do not use the subscript m,
a=1and b=0.

Example 5.5. In order to find w, € that leads to Case 1 and the number of
iterations defined in Theorem. let Q= {w |cc eRN1<i< r} such that N =
8 and r = 40, where x* x? --- ;" are in Table
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X X X X X X X X X
WwWwW RN NN NN N N NN NP TR TR, TP TR, TR TR, TR TR
I—\O‘OOO\I@01bwmpoom\lmmhw[\),_‘o@m\lmmhwmp—-

><w><><><><><><><><><><><><><><><><><><><><><><
S

0.44272
-0.00677
0.431855
0.058985
0.634855
0.419503

0.31048
0.455246
0.531183
-0.02897
0.561937
0.635684
0.581569
0.480978
0.679279
0.521988

0.53143
0.339508
0.354661
0.467657
0.096565
0.427007
0.330051
0.176966
0.281953

0.43732
0.574156
0.596989
0.232824
0.602654
0.353448
0.580819

-0.69902
-0.29784
0.716738
-0.42012
0.668843
-0.29161
-0.88587
-0.48992
-0.17446
-0.17137
-0.37556
0.910769
0.51616
-0.62797
-0.03162
-0.07088
-0.87798
-0.28165
0.307192
-0.47586
0.60532
-0.68598
-0.29608
-0.42137
0.548729
-0.30187
-0.54568
-0.31944
-0.44555
-0.4502
0.53548
0.806498

0.909558
-0.63347
0.458921
-0.98384
-0.81776
-0.36516
-0.73828
0.392558
-0.49782
-0.9097
0.629851
-0.89435
0.546931
-0.30449
-0.53604
-0.74965
-0.59905
0.175025
-0.84761
0.945785
-0.09686
-0.173
0.685491
-0.1656
0.364887
-0.00423
0.516704
0.291238
0.621784
-0.71431
-0.80249
-0.75229

0.999933
-0.39371
0.797586
-0.95925
-0.05379
0.994753
-0.9999
0.963671
0.983906
0.710488
0.997869
-0.94524
0.998924
-0.93841
0.997346
0.554874
-0.99906
0.155895
0.997344
0.998901
0.899977
0.14405
0.999544
-0.99993
-0.9122
-0.95839
0.999543
0.990407
0.999842
-0.87881
-0.9991
-0.29988
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-0.90059
-0.67471
0.785902
-0.30428
0.864826
0.316163
-0.98824
-0.53593
0.296514
-0.00362
-0.55949
0.980058
0.69866
-0.92211
0.31815
0.31291
-0.9856
-0.68307
0.746837
-0.87908
0.655663
-0.86564
-0.5849
-0.96272
0.006079
-0.70415
-0.54386
0.017806
-0.60958
-0.64501
0.44722
0.965447

-0.6037
-0.0709
0.739946
-0.41613
0.318731
-0.16754
-0.82213
-0.12044
-0.2296
-0.13496
-0.03214
0.803153
0.268211
-0.51968
-0.32859
-0.03698
-0.75454
-0.25625
0.039741
-0.10909
0.619522
-0.6212
-0.2587
-0.19926
0.517735
0.051552
-0.50762
0.125437
-0.31764
-0.32602
0.399881
0.701746

0.948375
0.592109
-0.19779
-0.81827
-0.88349
-0.53998
0.864173
0.705057
-0.48844
-0.49437
0.899936
-0.97635
-0.41202
0.778296
-0.41015
-0.50226
0.929371
0.788899
-0.81946
0.983356
-0.28118
0.622508
0.813085
0.921883
0.504913
0.664572
0.528823
0.308341
0.779583
0.410362
-0.73014
-0.95769

-0.82722
0.033357
-0.64469
0.963871
0.812109
0.267101
0.910545
-0.54854
0.428006
0.638931
-0.71128
0.847138
-0.1819
0.716912
0.598961
0.655467
0.867073
-0.51905
0.656389
-0.95427
-0.67485
0.637621
-0.77179
0.313346
-0.59972
0.293177
-0.21029
-0.27502
-0.7473
0.724883
0.801815
0.715671



33 | 0.045781 0.188572 -0.41702 0.996414 0.504292 0.222294 -0.27646 -0.38928
34 | 0.471454 0.088356 -0.26911 0.999918 0.518818 -0.17207 -0.54161 0.300503
35 | 0.411829 0.367499 -0.96168 0.957686 0.90004 0.085952 -0.97106 0.905397
36 | 0.72806 0.044155 -0.58074 0.939977 0.587735 0.166467 -0.46193 0.586048
37 10.473735 -0.0302 -0.3807 -0.99919 -0.73134 0.254257 0.628837 0.535523
38 | 0.237162 0.668166 -0.53674 -0.10169 0.812937 0.454635 -0.86589 0.364313
39 | 0.432439 0.062215 -0.21667 0.882506 -0.1216 0.235702 0.597194 -0.34654
40 |0.349254 -0.03274 -0.83492 -0.98987 -0.18896 -0.21626 -0.5644 0.849977

X X X X X X X X

Table 5.3: Data set Q with N = 8 and r = 40

Let w* =(0.06552036, -1.6806747, 1.712667, -2.7097487, -3.393183, -1.0610393,
3.2309122, -1.1821818)€ R® and 0* = —0.8439462. Then ming | w* - &' — 6% |=
0.159001671262379 > 0. Let T be a function from 2 to {0, 1} satisfying

1 if w'-x -0 >0,
T(x") = for all 1 < < 40.
0 if w'-x'—0* <0,

Let wy = (0,0,0,0,0,0,0,0) € R® and 6, = 0. By using a MATLAB code we get
the number of iterations 8, where w = (-0.316182588, -1.94431553, 0.78118317,
-1.863868405, -2.988500945, -1.29417711, 1.58361996,-0.52080689) and 6 = —1.

Example 5.6. In order to find w that leads to Case 1 and the number of iterations
defined in Theorem , let Q= {x'lx’ € RN, 1< Sﬂ such that N = 8 and
r = 40, where &2, x?, - -+, x" are the same in Example 5.5 Let w* =(0.06552036,
-1.6806747, 1.712667, -2.7097487, -3.393183, -1.0610393, 3.2309122, -1.1821818)€
R®. Then ming | w* - &' |= 0.337028247412895 > 0. Let T be a function from
to {0, 1} satisfying

1 if w'-x' >0,
T(x") = for all 1 < < 40.
0 if w*-x' <0,
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Let wo = (0,0,0,0,0,0,0,0) € R By using a MATLAB code we get 7 iterations
without using the sorting in Theorem , where w = (-0.960143586, 0.19196406,
1.21689047, -1.73142355, -1.4117441496, -0.66065294, 1.85266342, -1.19607602).
Applying the sorting in Theorem with

w* ;
&= argmax T

1€1,5wn (x))#T (x?)
the update stops after 2 iterations with w = (-0.41182914, -0.3674993, 0.9616763,
-0.95768565, -0.90004015, -0.085952446, 0.971062, -0.90539664). Here {&,} is the
sequence of 35, 19, 32, 5, 17, 24, 7, 12, 14, 38, 36, 1, 26, 20, 34, 21, 13, 15, 18,
33, 16, 9, 3, 6, 37, 10, 22, 30, 29, 31, 23, 11, 2, 25, 8, 27, 4, 40, 28, 39, which is
obtained by using a MATLAB code.

Example 5.7. In this example we show the application of our theorems to linearly
non-separable data. At first we generate 50 input and target data sets of Boolean
states and next add 10% same input data with different target data for each data
set to make linearly non-separable data as Table where the dimension and
the number of input data are denoted by ‘Dim. of data’ and ‘No. of data’, respec-
tively. To select linearly separable data §2 from the non-separable data as well as T’
definded on 2, we use a deep neural network, which is net=nn.Sequential(nn.Linear
(dim,10), nn.Tanh(), nn.Linear(10,8), nn.LeakyReLU(), nn.Linear(8,1)).

)

|

@ %mnh(@

LeakyReLU(h,,)

™

net

Figure 5.1: Neural Network architectures of net and netl

62



In case of the first input and target data set (I';;, 1, ['ar1) in Table we define
the linearly separable data set € as netl(I';,1). T} is defined by using parame-
ters in nn.Linear(8,1) and [';,,.1, where netl= nn.Sequential(nn.Linear(dim,10),
nn.Tanh(), nn.Linear(10,8), nn.LeakyReLU()) as in Figure . The number of
data of €2; and the update number are 224 and 446 which are denoted by ‘No. of
selected data’ and ‘Update No.” in Table [5.4] respectively. Sorting the data of €2,
with &, in Theorem [4.2] we can reduce the update number 446 to 104 (‘Update

No. with sorting” in Table . Applying Remark on Theorem then the
update stops if

max | @' |
n > w* [ —<
min | 2’ - w* [*
1€

In order to satisfy the inequality faster we introduce threshold ¢ = 0.01 to make
rznelln | ' - w* | bigger by removing the data @’ such that have | ' - w* |< (.
Applying the threshold to 2, gives the set §2; - of 242 data as in ‘No. of threshold
data’. In the case of ); ¢, the update numbers without and with sorting are 487
and 30, respectively.

Similar process is applied to other data sets, which gives in Table|5.4] This show

that update can stop faster if our sorting and threshold approaches are applied.

] No. of Update No. No. of Update No. ppdate No.
Data set |Dim. of | No. of | selected | Update No. with sorting | threshold data | with threshold with thres.hold
ID data | data | data and sorting
N1 nl n2 (n2/n1*100) | N2(N2/N1*100)| n3(n3/n1*100) [ n4 (n4/n1*100)

1 10 344 244 446 104(23.3%) 242(99.18%) | 487(109.19%) 30(6.73%)
2 11 683 424 1022 195(19%) 419(98.8%) 918(89.82%) 75(7.34%)
3 12 1356 728 38619 1395(3.6%) 701(96.29%) 613(1.59%) 42(0.108%)
4 13 1752 955 3103 1499(48.3%) 917(96.02%) 222(7.154%) 135(4.35%)
5 14 1977 | 1098 97889 2571(2.6%) 1050(95.62%) 371(0.38%) 156(0.159%)
6 15 2092 1131 3298 278(8.43%) 1109(98.05%) | 416(12.61%) 105(3.184%)
7 16 2155 1163 3946 1147(29.1%) 1113(95.7%) 145(3.674%) 51(1.3%)
8 17 2190 | 1178 375 601(160.3%) 1167(99.07%) 135(36%) 56(14.93%)
9 18 2204 1187 7259 1184(16.3%) 1137(95.7%) 521(7.18%) 91(1.254%)
10 19 2212 1185 377753 4794(1.2%) 1128(95.2%) 1957(0.52%) 585(0.155%)
11 20 2217 1171 2638 446(16.9%) 1146(97.9%) 287(10.88%) 72(2.79%)
12 21 2222 1255 61435 2627(4.27%) 1225(97.6%) | 2572(4.187%) 208(0.339%)
13 22 2222 1202 15484 1215(7.8%) 1136(94.5%) 219(1.414%) 20(0.13%)
14 23 2221 1213 5733 878(15.3%) 1187(97.9%) 348(6.07%) 100(1.744%)
15 24 2220 1283 1470 104(7.07%) 1275(99.4%) 550(37.415%) 102(6.9%)
16 25 2222 1225 898 577(64.3%) 1195(97.6%) 525(58.46%) 89(9.9%)
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No. of Update No. No. of Update No. ppdate No.
Data set |Dim. of| No. of | selected | Update No.| - ic i o | threshold data | with threshold | VT threshold
D data | data data and sorting
N1 nl n2 (n2/n1*100) | N2(N2/N1*100)| n3(n3/n1*100) | n4 (n4/n1*100)
17 26 | 2222 1276 45260 635(14%) | 1252(98.12%) | 877(1.938%) | 114(0.252%)
18 27 2222 1290 49352 249(0.5%) 1277(99%) 412(0.835%) 78(0.158%)
19 28 | 2222 1283 18977 3662(19.3%) | 1266(98.7%) | 1009(5.32%) | 236(1.244%)
20 29 2222 1298 13361 1339(10%) 1272(98%) 1086(8.12%) 54(0.4%)
21 30 2222 1228 4389 591(13.5%) 1201(97.8%) 406(9.25%) 244(5.56%)
22 31 2222 1315 3836 1547(40.3%) 1302(99.01%) | 704(18.35%) 117(3.05%)
23 32 2222 1291 180148 2758(1.5%) 1259(97.52%) | 443(0.246%) 207(0.115%)
24 33 2222 1365 4067 696(17.11%) 1346(98.6%) | 1306(32.11%) 297(7.3%)
25 34 2222 1353 12797 1752(13.7%) 1343(99.26%) | 760(5.939%) 480(3.75%)
26 35 | 2222] 1354 55223 1939(3.5%) | 1333(9845%) | 920(1.67%) 516(0.93%)
27 36 | 2222 1319 5697 2206(38.7%) | 1302(98.711%) | 1279(2245%) | 425(7.46%)
28 37 | 2222] 1369 20944 | 12471(59.5%) | 1344(98.17%) | 265(1.26%) 257(1.23%)
29 38 2222 1287 13962 2400(17.19%) 1252(97.3%) 756(5.414%) 196(1.4%)
30 39 [ 2222 1428 25478 2257(8.86%) | 1415(99.1%) | 583(2.29%) 317(1.24%)
31 3 2 2 2 2(100%) 2(100%) 1(50%) 1(50%)
32 40 | 2222 1338 10655 1303(12%) | 1308(97.8%) | 1075(10.09%) | 136(1.28%)
33 41 2222 1311 3451 1207(35%) 1299(99.08%) 742(21.5%) 138(4%)
34 42 [ 2222 1428 1030 1355(131.5%) | 1417(99.23%) | 468(4543%) | 44(4.272%)
35 43 2222 1452 2128 343(16.11%) 1446(99.6%) 1446(67.9%) 310(14.57%)
36 44 2222 1448 8252 733(8.9%) 1439(99.4%) 711(8.61%) 292(3.54%)
37 45 2222 1440 4925 768(15.6%) 1432(99.44%) | 3724(75.6%) 257(5.22%)
38 46 2222 1334 4855 1383(28.5%) 1320(98.95%) | 824(16.97%) 78(1.6%)
39 47 2222 1446 4947 466(9.4%) 1437(99.37%) 212(4.29%) 254(5.13%)
40 48 2222 1462 12592 3837(30.5%) 1453(99.38%) | 3584(28.46%) 279(2.22%)
41 49 | 2222 | 1408 4063 560(13.8%) | 1403(99.645%) | 1384(34.06%) | 355(8.74%)
42 4 5 5 2 2(100%) 5(100%) 2(100%) 2(100%)
43 50 | 2222 | 1465 4049 1213(30%) | 1457(99.45%) | 1213(29.96%) | 300(7.41%)
44 51 2222 1337 2241 1125(50.2%) | 1323(98.952%) | 771(34.4%) 162(7.23%)
45 52 | 2222 | 1471 86607 2464(2.85%) | 1453(98.77%) | 3989(4.6%) 527(0.61%)
46 5 10 9 2 2(100%) 9(100%) 2(100%) 2(100%)
47 6 17 16 2 2(100%) 16(100%) 2(100%) 2(100%)
48 7 44 40 10 5(50%) 40(100%) 7(70%) 2(20%)
49 8 87 79 4 9(225%) 79(100%) 4(100%) 9(225%)
50 9 171 152 163 34(20.8%) 152(100%) 152(93.25%) 45(27.61%)
Table 5.4: Update numbers with sorting and threshold. Dim. and No. denote di-

mension and number, respectively.

The update numbers nq, no, n3, ny in Table can be represented as Figure [5.2]
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Figure 5.2: Update numbers with sorting and threshold in Table
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Figure below is a subfigure of Figure that shows the update numbers
decrease when sorting or threshold for data set is applied, where Dim. of data and
and No. of selected data are 25 and 1125, respectively.

1000

500

Update number

89
1000 : . . :
No sorting Sorting No sorting Sorting
No threshold No threshold  Threshold And threshold

(25, 1125)

Figure 5.3: Update numbers with sorting and threshold for data set with Dim. of
data = 25 and No. of selected data = 1125
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Matlab code for generationg input and target

%Generating input and target
r all, close all, clc

clea

n=|]

R=]:

)

Y

maxN=>50;
K=randperm (maxN,maxN) +1;
i= 1:maxN

for

end

%Stepl :
N=K(1);

Generate (N,r)

r=min (2000,0.9%2"N) ;

%Step2: Generate numbers 0 or 1 in each cell
input=randi ([0,1], fix(r) ,N);

output=randi ([0,1], fix(r),1);

Y%make all different input_target

[diff_input ,ia,ib]=unique (input, ‘rows , stable

for

uniqueness between rows

diff _out=output(ia);
Y%make 10% repeated input with different output (nois

data)

g=size (diff_out);
new_r=q(1);
numberOfRepeated=fix (new_r*0.1)

for k=1:

numberOfRepeated

a=diff_input (k,:);

diff input (new_r—k,:)=a;
diff_out (k)=1;

diff _out (new_r—k)=0;

end

last_input_output=[diff_input ,diff_out |;
[r,N]=size (diff_input);

%Step3 :

save the generated data with csv

file

") ;%check

csvwrite (7.\input_N_r_target\input_"+N+" _"4r+" _target .

csv’,
n=[n,NJ;
R=[R,r];

last_input_output)
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Nr=[n ; R]’;
csvwrite (7.\input_N_r_target\Nr.csv” Nr)

PyTorch code for finding parameters

import os

import glob

path = "c:\\’

extension = ’csv’

csvfiles = glob.glob(’+.{} .format(extension))

import numpy as np;import pandas as pd

import torch;import torch.nn as nn;torch.manual_seed (1)
from sklearn.metrics import accuracy_score

AccOfT =]]

num_inputfiles=0

for x in csvfiles:
feature_response=pd.read_csv(x, header=None)

feature=torch.tensor (feature_response.values|[:, :—1],
dtype=torch . float32)

#unique_data , index_data = np.unique(feature_response.
values , axis=0, return_index=True)

response=torch.tensor (feature_response.values|[:, —1],

dtype=torch . float32)
r=feature .shape [0]
responsel=response.view(r,1)
dim=feature.shape[1]
dim=feature.shape[1]

net=nn.Sequential (nn. Linear (dim,10) ,nn.Tanh() ,nn. Linear

(10,8) ,nn.LeakyReLU() ,nn. Linear (8,1))
params=list (net.parameters())
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)
loss_ftn=nn.BCEWithLogitsLoss ()
print (" loss™)
losses = []
for iter in range(1,50000):
batch_loss = 0.0
optimizer.zero_grad ()
loss=loss_ftn (net(feature) ,responsel)
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44

45
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47

48

49

loss . backward ()
optimizer.step ()
batch_loss += loss.item ()
losses .append(batch_loss)
output=(net (feature) >0.0).type(torch.uint8)
acc=accuracy._score (responsel , output)
AccOfT4+= [acc ]
print (acc)
print (AccOfT)
#finding WTheta_star
learned _params=net.state_dict ()
W _star=params|[—1].data .numpy ()
#Theta_star=params|—1].data .numpy ()
#sellect xi
output=(net (feature) >0.0).type(torch.uint8)
responsel=response.view(r,1)
[L=output==responsel
xi_index=[i for i, x in enumerate(L) if x]
xi=feature [xi_index |
#Extract X i
netl=nn. Sequential (nn. Linear (dim,10) ,nn.Tanh() ,nn.
Linear (10,8) ,nn. LeakyReLU())
netl.load_state_dict (learned_params, strict=False)
Xi=netl(xi).data.numpy ()#num Xi=r
paramss=list (netl.parameters())
#save Wx and X"i
import pandas as pd
pd.DataFrame (Xi).to_csv (r 'C:\ Users\Uou\Desktop\ thesis\
train_data\input_N_r_target_ params\input.csv '4x,
index=False , header=False)
pd.DataFrame (W _star).to_csv (r”C:\ Users\Uou\ Desktop\
thesis\train_data\input_N_r_target_ params)\params.
csv’4x,index=False , header=False)
print (num_inputfiles)
pd.DataFrame( csvfiles).to_csv (r 'C:\ Users\Uou\Desktop\ thesis
\train_data\input_N_r_target_ params\csvfiles.csv’, index
=False, header=False)
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Matlab function code for teacher
function q = Teacher_Thml (W, x)
if dot(W,x) > 0
q=1;
else
q=0;

end

Matlab function code for student

function p = Student_-Thml (W, x)
if dot(W,x)> 0

p=1;
elseif dot(W,x)< 0
p=0;
else
p= randi ([0,1]);
end

end
Matlab sorting code

clear all; close all; clc;
%csvfiles=readtable (’csvfiles.csv’)

[totalData ,str ,raw] =xlsread(’.\input_ N _r target_  params\

csvfiles.csv’);
allr =[];
Alln =[];
for q=1:50
tic

params=xlsread (”.\input_N_r_target_ params)\params.csv’+

str(q));%read (wk; thetax) of Teacher
W _star=params (1 ,:);%read w s of Teacher

X=xlsread (”.\input_N_r_target_ params\input.csv’+str(q)
);%read inputs Xi=(T20T1)(xi) in R"N(l<=i<=r, r=984,

N=8)
r=size (X,1);
N=size (X,2); %dimension of Xi
WIS threshold
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for i=I:r

templ(i)=dot (W_star ,X(i,:));
end
find_idx=find (abs(templ)>=0.01);
X_del=X(find_idx ,:) ;
X=[]; X=X _del ;
templ =[];
r=size (X,1); %mumber of Xi_del
N=size (X,2); %dimension of Xi

Weis7 7 Initial W, Theta  SSTTTTTTISSSIISSo
W = zeros(1,N); %Theta = 0;
WO=W; %Theta0O=Theta;
YITTTSSSSSSITT ST H sorting X i
XW={];
for z=1:r
XW=[XW, abs ( dot (W_star ,X(z,:) )/norm(W _star)) |;
end
[XW_sort,I] = sort (XW, "descend ") ;%sort as descending
order
X=X(1,:);
YSITTTSTITISS read all inputs with targets
allinput=xlsread (”.\input_N_r_target_ params\allinput .
csv’+str(q));
num_inputs=size (allinput ,1) ;
allr=[allr ,num_inputs |;
YW/ SJ T Teacher
for k=1:r
Teacher (k)=Teacher_ Thml (W _star ,X(k,:));
end
WSSTTTTTISSSTT o
W _k=W0;
Ir=1.0; n=0;accS=[];all. W=[];
while true
n=n+1 ;
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7

for idx=1:r

ST=Student_-Thm1 (W,X(idx ,:) ) Teacher(idx) ;

switch ST
case 1 % Student (i)
W =W — X(idx ,:
break
case —1 % Student (i)=0
W =W + X(idx ,:) ;
break
end
end
if idx==r
break
end
end
disp (q)
Alln=[Alln ,n];
toc
TOC(q)=toc;
end
allN =readtable( .\ input N_r_
allN=table2array (allN (:,2));
allr=allr 7;
Alln=Alln ’;
TOC=TOC ;
tabelwewant=[ allN jallr ; Alln ,TOC];
header = {'N’ [ 'r’ 'n’ "toc’ };
output = [header; num2cell (tabelwewant) |;

Teacher(i)=0

Teacher(i)=1

target_ params\csvfiles.csv’);

%xlswrite (’with sorting and threshold.xls’ output);
xlswrite ("with threshold and no sorting.xls’  output)
%xlswrite ("sorting with no threshold.xls’ output)
%xlswrite (’No sorting with no threshold.xls’, output)

4
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Abstract

Artificial neural networks have been used in diverse area and played an im-
portant role. However there are a few results on mathematical analysis of neural
networks. Especially, as far as we know, there is no theoretical approach to con-
struct the order of training data for accelerating the convergence speed of neural
network algorithms.

For the construction, we consider the single layer perceptron convergence al-
gorithm and make new convergence algorithms for different structures of the per-
ceptron as well as their convergence proofs.

We present the order of training data for the acceleration of convergence speed
based on the convergence proof. Finally, we provide numerical examples of our
extended convergence theorems and the order of training data.
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