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Abstract 

Medical image segmentation plays a critical role in computer-aided diagnosis, image 

quantification, and surgical planning, which identifies the pixels of homogenous regions 

including in organs and lesions and provides important information about the shapes and 

volumes of the organs and lesions. However, it could be one of the most difficult and 

tedious tasks to be performed by humans consistently. Therefore, there has been a good 

amount of research to propose various semi- or automatic segmentation methods, which 

depend mainly on conventional image processing and machine learning methods. 

However, these methods may be vulnerable to variations in image acquisition, anatomy, 

and disease. Due to the above problems faced in conventional image segmentation 

methods, many scholars continue to seek more robust medical image segmentation 

methods. 

In recent years, the deep learning model has been widely applied and popularized in 

computer vision. This success has been rapidly applied in the area of medical imaging. In

particular, deep learning has achieved a leap in precision and robustness with regard to 

variations of anatomy and disease. Several deep convolutional neural network (CNN) 

models have been proposed such as Residual Net, Visual Geometry Group (VGG), fully 

convolutional network (FCN) and U-Net. These models provide not only state-of-the-art 

performance for image classification, segmentation, object detection and tracking tasks 

but also a new perspective on image processing. Therefore, at present, deep learning can 

assist radiologists and surgeons to segment various anatomic structures as a reference and 

multiple abnormalities in computed tomography (CT) or magnetic resonance imaging 

(MRI) images. 

In this research, we conducted various experiments to find and evaluated adequate 

deep learning based semantic segmentation models in medical images from the viewpoint 
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of their accuracy in the clinical context. The aim of this study was two-fold as follows: 1) 

identifying and/or developing a deep learning based semantic segmentation model and the 

properties of an imaging modality that are adequate for the clinical context. 2) Solving 

specific tasks including smart labeling with humans in the loop, fine-tuning the models 

with different label levels in imbalanced datasets, and comparing deep learning and human 

segmentation where these models are developed and applied. For achieving these tasks or 

meeting these objectives, we proposed a fully automatic segmentation network with 

various kinds of CNN models considering organ-, image modality-, and image 

reconstruction-specific variations. Toward this, segmentation of a glioblastoma and acute 

stroke infarct in brain MRI, mandible and maxillary sinus in cone-beam computed 

tomography (CBCT), breast and other tissues in MRI, and pancreas cancer in contrast-

enhanced CT were all performed in actual clinical settings. Basically, in case of slices with 

more thickness, 2D semantic segmentation shows better performances. Additionally, pre-

processing is sensitive to developing robust segmentation that needs image normalization 

and various augmentations. However, because the modern graphics processing unit (GPU) 

lacks memory for 3D semantic segmentation, cascaded semantic segmentation or patch-

based semantic segmentation gives better results. An anatomic variation could be easily 

trained by semantic segmentation, but disease variation of cancer is hard to be trained. 

Further, size-invariant semantic segmentation could be one of the important issues in 

medical image segmentation. Variation of contrast agent uptake may be vulnerable to the 

overall performance of semantic segmentation. For multi-center evaluation, subtle 

variation including variations in vendors’ image protocols and high noise levels at different 

centers may cause problems to train robust semantic segmentation. Furthermore, as 

labeling of semantic segmentation is very tedious and time-consuming, deep learning

based smart labeling is needed.

Based on theses issues, we have developed and evaluated various applications with
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semantic segmentation in medical images including smart labeling, robust radiomics 

analysis and disease pattern segmentation, and automated segmentation.

We concluded that adequate semantic segmentation with deep learning in medical 

images can improve the segmentation quality, which can be helpful in computer-aided 

diagnosis (CAD), image quantification, and surgical planning in actual clinical settings. 

Medical image segmentation and its application may be sufficient to provide practical 

utility to many physicians and patients who do not need to learn sectional anatomy.

Key words: Smart labeling, Cascaded CNN, CNN, Deep learning, MRI, CT, Semantic 

segmentation.
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1 Introduction

Generally speaking, image segmentation is one of the most interesting and challenging 

problems in computer vision. Image segmentation an image area or volume into 

nonoverlapping, connected regions, being homogeneous characteristics with respect to signal 

and semantics [1-3]. In medical imaging, these regions often correspond to different tissue 

classes, organs, pathologies, or other biologically relevant structures [4]. Consequently, 

medical image segmentation is of substantial importance in providing non-invasive 

information about human body structures that helps radiologists and physicians to visualize 

and study the anatomy of the structures, simulate biological processes, localize pathologies, 

track the progress of diseases, and evaluate the need for radiotherapy or surgeries [4, 5]. For 

these reasons, segmentation is an essential part of any CAD system, and the system’s 

functionality depends heavily on segmentation accuracy [6-8]. 

However, low contrast, noise and other imaging ambiguities make medical image 

segmentation difficult [9]. There are many computer vision techniques for image segmentation, 

but some have been specifically applied to medical image computing [10]. Historically there 

have been many kinds of conventional segmentation studies in medical image depending on 

the expertise of the clinician. Basically, manual segmentation, which explicitly defines the 

tissue grade of each pixel with a tool such as a paint brush, remains the standard for many 

imaging applications [11]. In recent years, the principle of feedback control theory has been 

incorporated into the segmentation, providing users with much greater flexibility and allowing 

errors to be corrected (semi-)automatically. This interactive method is useful when the 

clinician can provide some information, such as a rough outline of the area to be segmented or 

the seed area. The algorithm can then iteratively improve these subdivisions with or without 

the guidance of the clinician concerned. 

The image-based segmentation method starts a template and adjusts its shape according to 
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the image data while minimizing the measurement of integration errors such as the active 

contour model and its deformation [12, 13]. Often, many methods parameterize the shape of 

the template for a given structure and often rely on control points along the boundary. Then 

the whole shape is transformed to match the new image. These are the subdivisions based on 

shape. Two of the most common shape-based techniques are active shape models and active 

appearance models. The subjective surface segmentation method is based on the evolutionary 

idea of segmentation functions controlled by advection-diffusion models [14, 15]. To segment 

an object, you need a segmentation seed (i.e. a starting point that determines the approximate 

position of the object in the image). As a result, the initial segmentation function is configured. 

The idea of the subjective surface method is that the position of the seed is the main factor that 

determines the shape of this segmentation function. 

In many applications, clinical experts can manually label multiple images. Segmenting the 

invisible image is a matter of extrapolating from the manually labeled training image. This 

style of method is commonly referred to as the atlas-based segmentation method [16-18]. 

Parametric atlas methods typically combine these training images into a single atlas image, 

and nonparametric atlas methods generally use all training images individually. Atlas-based 

methods generally require the use of image registration to align an atlas image or image to a 

new, invisible image. However, accurate segmentation of medical images faces many 

challenges in this method [19]. First of all, many anatomical structures are inhomogeneous 

with respect to spatial repetitiveness of individual pixel/voxel intensities or their grouped co-

occurrences. Many medical images are difficult to separate because of similar visual 

appearances of vessels and tissues as well as overlapping organs and background appearances, 

respectively [20]. Low-contrast medical images present additional challenges as do 3D and 

4D (spatial-temporal) images. These challenges include inter- and intrasubject variability of 

shapes and textures of an object-of-interest in images collected over some time for the same 

subject or a group of different subjects. Consequently, a particular segmentation technique 
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using conventional methods may work well for one subject and not for another, or work only 

for certain images of a particular subject. In particular, contour-, region-, and pixel-/voxel-

based techniques aim at getting boundaries of goal objects, forming connected regions 

occupied by these objects, or performing just pixel-/voxel-wise classification, respectively.

In recent years, the deep learning model has been widely applied and popularized in 

computer vision. The amazing success of this model when compared with conventional 

segmentation and traditional machine learning models is the advancements in neural networks. 

This model learns high-level features from data in an incremental manner, which eliminates 

the need for domain expertise and handcrafted feature extraction [21-24]. This success has 

been quickly applied to the medical image area. In particular, deep learning has taken a leap 

forward with regard to the accuracy and robustness of medical image segmentation for various 

anatomies and diseases [4, 25, 26]. Additionally, it solves the problem in an end-to-end manner. 

Therefore, deep learning could improve medical image segmentation.

1.1 Motivations

There has been a rapid growth in the use of deep learning based medical image segmentation 

with various kinds of deep CNN models such as Residual Neural Net (ResNet), VGG, FCN, 

and U-Net [27]. Not only do these models provide a state-of-the-art presentation for image 

classification, segmentation, object detection, and tracking tasks, but they also afford a new 

perspective on image processing [20, 28, 29]. Right now, a deep learning based method could 

be used to help radiologists and surgeons to segment numerous anatomic structures of a 

reference and multiple abnormalities in CT or MRI images. In this paper, we have evaluated 

the feasibility and applicability of deep learning based medical image segmentation methods 

in various experiments and have attempted to find an appropriate deep learning based semantic 

segmentation model in medical images in terms of accuracy and its use in clinical contexts. In 
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addition, we have raised several issues including efficiency, robustness, and clinical meaning 

of deep learning based semantic segmentation models from the viewpoint of their application 

to actual clinical settings. The purpose of this study is two-fold as follows: 1) Finding and 

developing various kinds of semantic segmentation models based on deep learning that is 

appropriate for the properties of medical images and to the medical context. 2) Solving specific 

issues concerning efficiency, clinical meaning, and robustness of these segmentation methods 

including smart labeling with a human in the loop, fine-tuning them with different levels of 

data in imbalanced datasets, and their application to image segmentation in radiomics analysis.



5

1.2 Contributions

The several contributions to medical image segmentation in this paper include the 

following:

1) Finding and developing various kinds of semantic segmentation models based on deep 

learning that is appropriate for the properties of medical images and medical contexts.

2) Solving specific issues on efficiency, robustness, and clinical meaning of these 

segmentation methods. 

- Developing efficient and robust semantic segmentation on renal cell carcinoma in kidney 

CT by using smart labeling. 

- Evaluating and fine-tuning with different level data in imbalanced diffuse infiltrative lung 

disease progression dataset using semantic segmentation.

- Developing robust semantic segmentation for glioblastoma radiomics analysis in brain

MRI. 
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2 Background

2.1 CNN

A CNN is a type of artificial neural network that is used for image recognition and 

processing and is specifically designed to process pixel data designed for image analysis as 

shown in Figure 2.1 [27]. CNN uses deep learning with powerful image processing and 

artificial intelligence (AI) to both create and describe tasks often with the help of 

recommendation systems and natural language processing to perform image and video 

recognition, image classification, medical image analysis, and more [28, 29]. 

A CNN is a branch of neural networks and consists of a stack of layers each performing a 

specific operation, e.g., convolution, pooling, loss calculation, etc. Each intermediate layer 

receives the output of the previous layer as its input. The beginning layer is an input layer, 

which is directly connected to an input image with the number of pixels in the input image 

being equal to the number of neurons. The next set of layers are convolutional layers that 

present the results of convolving a certain number of filters with the input data and perform as 

a feature extractor [30-33]. The filters, commonly known as kernels, are of arbitrary sizes and 

defined by designers depending on the kernel size. Each neuron responds only to a specific 

area of the previous layer called the receptive field. The output of each convolution layer is 

considered as an activation map, which highlights the effect of applying a specific filter on the 

input. Convolutional layers are usually followed by activation layers to apply non-linearity to 

the activation maps. The next layer can be a pooling layer depending on the design, and it 

helps to reduce the dimensionality of the convolution’s output. To perform the pooling, a few 

strategies exist such as max pooling and average pooling. Finally, high-level abstractions are 

extracted by fully-connected layers. The weights of neural connections and the kernels are 

continuously optimized during the procedure of backpropagation in the training phase. 
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Figure 2.1  An illustration of the architecture of our CNN.

2.2 General segmentation architectures

2.2.1 FCN

FCN is a modified CNN-based model that has previously shown excellent performance in 

image classification for the semantic segmentation model. FCN transforms image pixels to 

pixel categories using a CNN. FCN transforms the height and width of the middle layer feature 

map back to the size of the input image via a transposed convolution layer. Consequently, the 

prediction has a one-to-one correspondence with the input image in a spatial dimension with 

height and width. In the FCN so developed, the last fully connected layer was replaced with a 

fully convolutional layer [34]. As shown in Figure 2.2, to get the output of the segmentation 

map, FCN usually consists of two parts. The downsampling path captures semantic or context 

information, and the upsampling path recovers spatial information. Down-sampling paths are 

used to extract and interpret context, while upsampling paths are used to enable precise 

localization. Upsampling also completely recovers spatial information that was lost in pooling 

or downsampling. 

This major improvement allows the network to have a dense pixel-wise prediction. To 

achieve better localization performance, high-resolution activation maps are combined with 

upsampled outputs and passed to the convolution layers to assemble more accurate outputs. 
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Figure 2.2 FCN architectures.

2.2.2 U-Net

The typical use of convolutional networks is on classification tasks, where the output to an 

image is a single class label. However, in many visual tasks, especially in biomedical image 

processing, the desired output should include localization, i.e., a class label is supposed to be 

assigned to each pixel. Moreover, thousands of training images are usually beyond reach in 

biomedical tasks. The U-Net [35-37], illustrated in Figure 2.3 which was designed for medical 

images, concatenates downsample layers and its counterpart of upsampling layers. These 

networks, mentioned above, emphasize interconnections between downsample layers and 

upsample layers. It consists of a reducing path (left side) and an extending path (right side). 

The reducing path follows the typical architecture of a convolutional network. To explain in a 

2D network, it consists of the repeated application of two 3 x 3 convolutions (unpadded 

convolutions) each followed by a rectified linear unit (ReLU) and a 2 x 2 max-pooling 

operation with stride 2 for downsampling. At each downsampling step, we doubled the number 

of feature channels. Every step in the extending path consists of an upsampling of the feature 

map followed by a 2 x 2 convolution (“upconvolution”) that halves the number of feature 

channels, a concatenation with the correspondingly cropped feature map from the contracting 

path and two 3 x 3 convolutions, each followed by a ReLU. The cropping is necessary due to 
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the loss of border pixels in every convolution. At the final layer, a 1 x 1 convolution is used to 

map each 64-component feature vector to the desired number of classes. In total, the network 

has 23 convolutional layers. To allow a seamless tiling of the output segmentation map. It is 

important to select the input tile size such that all 2 x 2 max-pooling operations are applied to 

a layer with an even x- and y-size. 

Figure 2.3 U-Net architecture.

2.2.3 Cascaded U-Net

Cascaded U-Net is a method of segmentation an image by devising two stages. The first 

step was used to train the model with an initial prediction of segmentation labels, and the 

second step was implemented to further fine-tune labels for the results of the first step. In the 

first step, the model roughly predicted large and coarse displacements using 3D U-Net. At this 

time, since the whole size of the image was reduced, the image resolution is quite poor but the 

computation cost is low. After all, the first step is to determine the approximate location and 

shape of the whole image. In order to get a more accurate boundary of the region(s) of interest 
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(ROI), when the approximate location was obtained as a result of the segmentation in the first 

step, the original image was cropped by a specific size based on the ROI result from the first 

learning model [38-40]. In this stage, it can provide more accurate segmentation. In fact, this 

step narrows and simplifies the search space for the network to determine which voxels belong 

to the background or foreground class. This strategy has been successful in many computer 

vision problems [41]. This architecture is illustrated in a training example in Figure 2.4.

Figure 2.4 Cascaded U-Net methods: (a) Step 1 of cascaded U-Net: The first U-Net learns 

to segment location pancreas from whole CT images, (b) Step 2 of cascaded U-Net: The second 

U-Net learns to fine-segment pancreas lesions from step 1 of the cascade. 

2.2.4 No-new-U-Net

Medical images commonly encompass a third dimension, which is why we consider a pool 

of basic U-Net architectures consisting of a 2D U-Net, a 3D U-Net, and a U-Net cascade. 

While the 2D and 3D U-Nets generate segmentations at full resolution, the cascade first 

generates low-resolution segmentations and subsequently refines them. Our architectural 

modifications, as compared to the U-Net’s original formulation, are close to negligible. and 
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instead, we focus our efforts on designing an automatic training pipeline for these models. The 

U-Net is a successful encoder-decoder network that has received a lot of attention in recent 

years. Its encoder part works similarly to a traditional classification CNN in that it successively 

aggregates semantic information at the expense of reduced spatial information. Since in 

segmentation, both semantic as well as spatial information are crucial for the success of a 

network, the missing spatial information must somehow be recovered. The U-Net does this 

through the decoder that receives semantic information from the bottom of the ’U’ and 

recombines it with higher-resolution feature maps obtained directly from the encoder through 

skip connections. Unlike other segmentation networks, such as FCN and previous iterations 

of DeepLab this allows the U-Net to segment fine structures particularly well. Just like the 

original U-Net, we use two plain convolutional layers between poolings in the encoder and 

transposed convolution operations in the decoder. We deviate from the original architecture in 

that we replace the ReLU activation functions with leaky ReLUs and use instance 

normalization instead of the more popular batch normalization. 
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Figure 2.5 nnU-Net architecture

2.3 Evaluation metrics

Evaluation metrics play an important role in achieving optimal classifier during 

classification training. Therefore, the selection of the appropriate evaluation metric is the key 

to identifying and obtaining the optimal classifier. 

To accurately evaluate our various segmentation method’s performance, we compared the 

conventional and deep learning based methods with the gold standard results using four 

metrics: Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), Harsdorf 

distance (HSD) [42] , and mean absolute surface distance (MSD). Manual segmentation masks 
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were considered as the ground truth (GT), and the resultant deep learning masks were 

considered test mask (TM). The DSC is defined as a measure of the spatial overlap between 

GT and TM.

DSC(GT, TM) =
�×|��∩��|

|��|�|��|�
                                (1)

JSC: similarity index between two masks, which is related to the DSC: 

JSC(GT, TM) =
|��∩��|

|��∪��|
                                 (2)

MSD: the mean of the sum of the Euclidean distance (for each voxel) between mask 

contours, their average gives the MSD as follows:

MSD(GT,PM) =
�

�������
�∑ d���(GT, TM)�∈��� + ∑ d���(TM,GT)�∈���

� (3)

where N_GT and N_TM are the total number of voxels in the contour for GT and TM 

respectively. The distance values are obtained through the use of a 3D Euclidean distance 

transform. HD measures the maximal contour distance between the two segmentations:

d(X,Y) = max[d�(X, Y), i = 1 . . N� ]

HD(GT, TM) = max[d���(GT,TM), d���(TM,GT)]           (4)

where d is the Euclidean distance between voxels x and y. All statistical tests were carried 

out using SciPy in Python. 

3 Organ specific segmentation

3.1 Glioblastoma in brain MRI

Though less common but really fatal, the brain tumor is one of the most infamous medical 

threats to human beings [43]. Patients with the most aggressive tumors have a life expectancy 

of fewer than two years [44]. Brain tumors can be divided into primary tumors or metastatic 

tumors based on their origin. Glioblastoma malformation (GBM), as one of the most frequent 
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chief tumors, is one of the main objects studied in the field of brain tumor segmentation. GBM 

has been graded into 4 levels by the World Health Organization (WHO). In particular, the 

Gliomas of grade III and IV are named as High-Grade Gliomas (HGG). They comprise 

malignant gliomas and mostly cause death [44-46]. GBM is also divided into several classes 

such as the entire tumor, enhancing tumor, tumor core (see Figure 3.1). The tumor core is the 

necrotic part, and the tumor enhancement is an area where the tumor progresses vigorously. 

Registration tracks the spatial mapping that aligns the moving images with the fixed images 

Figure 3.1 Sub-regions of GBM [47]. (a) Tumor core visible in T2, (b) Enhancing tumor 

structures visible in t1c (blue) surrounding the cystic/necrotic components of the core (green), 

(c) Segmentations are combined to generate the final labels of the tumor structures, (d) Edema 

(yellow), non-enhancing solid core (red), necrotic/cystic core (green), and enhancing core

(blue).

GBM segmentation plays an important role during treatment planning and follow-up 

evaluation. But it is time-consuming and prone to inter- and intra-rater variability. Therefore, 

automatic and reliable methods are desirable. Traditional image process algorithms and 

machine learning algorithms have been applied to brain tumor segmentation since a long time. 

Havaei et al. [46] proposed a semi-automatic classification method using the support vector 

machine (SVM). D Kwon et al. [44] proposed a generative model which generate tumors and 
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edemas from several seed points by giving priority to the tumor shape. They achieved top 

raking in BRATS 2013 challenge. D Zikic et al. [48] differentiate brain tumor and its sub 

regions with a discriminative approach based on decision forests. Recently, GBM 

segmentation has been achieved using CNN. However, brain tumor segmentation is a 

challenging task, due to their irregular shape, appearance, and location [46, 49].

In this work, we proposed a two-phase, fully-automated GBM (tumor enhancement, tumor 

core) segmentation method using 3D U-Net architecture. We then performed extra-validation 

for stability using the BRATS data.

On the whole, the overall procedure consisted of three main steps as shown in Figure 3.2.

The first step was the pre-processing step, in which the data was intensity normalized using 

white stipe package in r and removed of air region. The second step involved the U-Net 

training in a supervised mode. We divided this step further into two phases. First, the initial 

segmentation of the brain tumor was performed using a conventional image processing method 

in a scratch manner. To find the tumor, we divided 8 subvolumes. In the second phase, the 

model was trained by the initial segmentation model by fine-tuning. We call this transfer 

learning. Moreover, by choosing a well-trained model, the segmentation of the GBM region 

was extracted and evaluated by DSC, JSC, MSD and HD with metrics.
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Figure 3.2 Overall flow of GBM segmentation study.

Dataset

All the MR imaging data obtained from Asan Medical Center (AMC). The MRI scanning 

sequence is used in T1-weighted contrast-enhanced (T1ce) imaging. We defined the GBM and 

generated a gold standard mask based on the following criteria. We searched the electronic 

database of the Department of Radiology at our institution, retrospectively reviewed records 

for patients between March 2011 and March 2017, and identified 208 patients pathologically 

confirmed to have de novo glioblastoma. T1ce image was obtained for the patients (n = 200). 

Patients were excluded if no histopathological specimen was available (n = 96), or the image 

was unreadable (because of an artifact) (n = 1). These steps yielded 103 consecutive patients 

(mean age: 62.4 years; male–female ratio: 61:42). The number of data is 103 patients included 

only Glioblastoma disease. These data consist of brain and mask. GT data was created by 

experts through manual drawing. We divided the dataset as follows: The training set contains 
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75 subjects. Each of the validation and testing set contains 14 subjects. Every patient has 2 

classes-tumor regions, viz. enhance tumor, tumor core. 

MR protocol

In the brain image study, MRI is an important diagnostic tool for the precise detection of 

various clinical symptoms. MRI images can extract visual information using multiple 

sequences such as T1-weighted (T1), T1ce, T2-weighted (T2) and T2-weighted fluid-

attenuated inversion recovery (FLAIR). In particular, the T1ce image contrast permits the 

visualization of the enhancing part of the tumor as well as the necrotic part. The T1ce image 

was obtained with a high-resolution three-dimensional (3D) volume, using a gradient-echo 

T1-weighted sequence with the following parameters: repetition time (TR)/echo time (TE): 

9.8/4.6 ms; flip angle: 10°; field of view (FOV): 256 mm; matrix: 512 x 512; and slice 

thickness: 1 mm with no gap. T1ce were obtained using a gradient-echo T1-weighted sequence 

– TR/TE: 7.6/3.7 ms; flip angle: 10°; FOV: 24 mm; matrix: 512 x 512; and slice thickness: 1.2 

mm with no gap

Initial and Fine Segmentation

The size of GBM relative to the entire brain was too small. We needed to know where the

GBM is located. So, we split the data into 8 sections considering the capacity of the network. 

Also, if the data were resized, it would have affected the raw image quality. So, we simply 

cropped the data into 8 sections. First, the images were cropped into exclusive 8 subvolumes 

to cover the entire brain to detect GBM regions. This step was called the initial segmentation 

phase. The datasets were divided into 600, 112, and 112 for training, validation, and test, 

respectively. We used the 3D U-Net, one of the most widely used CNN architectures, for image 

segmentation. These datasets were cropped (352 x 416 x 192) and resized (176 x 208 x 96) for 
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inputting into the network. Thereafter, data augmentation by random cropping on the mask 

was performed. This phase was called fine segmentation. For training, we used the pre-trained 

model from the initial segmentation. During training, we used the cross-entropy loss, the Adam 

optimizer with a learning rate of 5 x 10−5, weight decay of 1 x 10−6, and spatial dropout 

probability of 0.05. These methods with transfer learning have been developed. The number 

of random cropping was expanded to 32 on a log scale. All of the network’s input size (176 x 

208 x 96) was resized from the original image (512 x 512 x 256). As the number of random 

cropping increased, the time required per epoch also increased. However, the total number of 

epochs decreased.

Figure 3.3 Example of brain tumor and mask image. (a) Original brain tumor image, (b) 

Overlay GBM mask, (c) Enhance tumor, and (d) Tumor core.

Results

The result consisted of three stages including detection and segmentation accuracies of 

initial segmentation, segmentation accuracy of fine segmentation, and extra-validation. For 

the detection of the initial tumor region, we cropped the data per subject in 8 cubes. The dataset 

consisted of 3D image patches. The number of patches for the training stage is 600 and for the 

validation and test stages is 112 each. Table 1 shows the accuracy of how well the tumor region 

is found in cube units. In practice, we mainly use 3 metrics. They are precision, recall, and 

DSC. In the initial segmentation stage, we obtained detection accuracy scores of more than 
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90% for enhancing tumor and tumor core. 

In the fine segmentation step, we performed data augmentation by random cropping. This 

data training takes the trained model from the initial tumor detection stage. Each random-

cropped group increased the number of data on the log scale. As can be seen from the results 

in Table 1, the bigger number of data, the higher the dice score is. Also, in this step, we mainly 

used 4 metrics, i.e., DSC, JSC, MSD, and HSD. When the number of random cropped data 

was 16, the dice score was saturated. The mean and SD of DSC, JSC, MSD, and HSD of 

enhanced and necrosis regions at 16-random cropping with converged evaluation metrics were 

84.40±0.09%, 72.50±0.12%, 1.16±0.81 mm, and 25.38±22.86 mm, and 84.80±0.14%, 

75.90±0.20%, 1.63±1.19 mm, and 15.87±5.10 mm, respectively. 

Table 3.1 Evaluation results of fine segmentation. (up: enhance tumor, down: tumor core)

Number 

of random 

cropping

DSC JSC MSD HD

1 0.648±0.213 0.511±0.226 2.592±2.176 19.812±12.224

2 0.707±0.158 0.567±0.181 1.942±1.325 27.700±18.736

4 0.771±0.126 0.642±0.158 1.577±1.227 15.817±6.135

8 0.823±0.104 0.711±0.140 1.105±0.787 15.802±10.010

16 0.844±0.092 0.725±0.127 1.167±0.810 25.383±22.862

32 0.804±0.095 0.675±0.194 1.181±0.912 22.473±17.766

Number 

of random

cropping

DSC JSC MSD HD

1 0.445±0.282 0.324±0.231 4.446±4.172 22.538±8.971

2 0.641±0.262 0.517 0.258 2.517±2.236 17.402±4.541

4 0.717±0.202 0.594±0.242 1.608±1.246 16.019±4.130

8 0.778±0.150 0.658±0.198 1.363±0.927 15.933±4.155

16 0.848±0.147 0.759±0.202 1.639±1.199 15.870±5.105

32 0.811±0.147 0.707±0.231 1.884±1.207 15.991±4.753
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3.2 Infarct in Brain MRI

Stroke is a leading cause of death and incapacity worldwide. Acute ischemic strokes due to 

arterial obstruction account for 80% of all strokes [50, 51]. However, obstruction of an artery 

by blood clotting does not lead to instant necrosis of the brain area that is supplied blood by 

the blocked artery as the collateral vascular connection can partially reimburse for the blocked 

blood flow in the main artery. In general, it is assumed that if the blood clot does not dissolve, 

the infarct core will gradually expand into this hypoperfusion brain region over time. This area 

is commonly referred to as semi-shaded or at-risk tissue and represents the target of ischemic 

stroke treatment. Recent prospective randomized trials have shown the success of mechanical 

thrombectomy to be overwhelming [52]. Of late, more and more devices for mechanical 

thrombectomy have been developed as more and more research focuses on the development 

and evaluation of novel treatment approaches such as the use of neuroprotective drugs. In any 

case, clinical studies are required to show the efficacy of these new devices or treatment 

options. Although the clinical outcome (e.g., modified Rankin scale at 90 days post-stroke) is 

typically used as the primary endpoint for such studies, of late the follow-up stroke lesion 

volume is becoming more important as the alternative primary or secondary study endpoint. 

This is so not only because the continuous lesion volume has a higher statistical power 

compared to categorical outcome measures but also because it can be measured at an earlier 

time point. MRI is one of the most used techniques for subsequent brain lesion evaluation. 

However, quantitative measurement of lesion volume in subsequent imaging data requires 

precise segmentation, which is a tedious and complex task if done manually. This is so because 

the shape, size, and location of the brain differ considerably. Diffusion-weighted imaging 

(DWI) of patients with ischemic stroke during the acute or super acute stage presents a 

replacement for the infarct lesion to the infarct core. Infarct lesions in DWI are associated with 

infarct volume. Ischemic infarction can occur anywhere in the brain in various forms. 
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Therefore, segmentation of infarct lesions is important for quantifying infarct volume and 

determining treatment options for patients who have suffered an ischemic stroke.

Because ischemic infarctions of various shapes and sizes can occur anywhere in the brain, 

infarct segmentation must capture local information along with a global context dictionary. 

The lesions in the image constitute a high signal intensity at b1000, and low signal intensity at 

the apparent diffusion coefficient map (ADC) is a well-known image representing acute 

infarction. Acute ischemic infarct segmentation can help monitor infarct lesions, determine 

treatment options, and predict response to treatment in stroke patients.

Due to the importance of tracking lesion segmentation, several methods have been presented 

for semi-automatic or automatic stroke lesion segmentation in the past. For example, 

unsupervised k-means clustering (9), an active learning approach (10), etc. Advanced 

additional tree forests (11), Markov random field (MRF) models (12) and convolutional neural 

networks (13). Almost all recently proposed lesion segmentation techniques utilize local 

features and contexts that can be affected by signal noise, geometric distortion, magnetization 

non-uniformities, and anatomical changes. In addition, the previously described methods often 

suffer from normalization problems inherent in non-quantitative imaging methods, which is 

particularly important in the case of multicenter datasets that are usually collected using 

various imaging parameters. 

Despite the widespread use of U-Net, nnU-Net, and Dense U-Net to enhance functionality by 

introducing skip-connected bridges between the encoding layer and the decoding layer, these 

methods were insufficient to capture the small and uncertain boundary regions’ segmentation. 

These small and uncertain boundary regions were difficult to fine-segment. To solve this 

problem, we proposed an inexpensive but effective method of integrating into a recent 

semantic segmentation network using a two-mode image b1000 and ADC, including various 

lossy features such as focal and boundary loss.
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  Figure 3.4 Examples of the results of infarct core segmentation on DWI: (a) ADC maps, 

B) b1000 image, (c) Initial segmentation result, (d) Final segmentation result, and (e) Gold 

standard [53].

Dataset

In this study, a dataset of 429 patients with acute ischemic stroke was used for acute infarct

segmentation. Patients visited the AMC emergency room from September 2005 to August 

2015 with symptoms of acute ischemic stroke and had DWI (including both b0 and b1000 

images) to confirm acute infarction. The demographic and clinical characteristics of all 429 

patients are as follows: 269 male, 160 females; mean age: 72 years; age range: 24–98 years. 

This study was approved by the institutional review board (IRB), which gave up the 

requirement for informed consent.
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MRI protocol

The MRI scans were obtained using various machines including 1.5T (Magnetom Avanto, 

Siemens Healthcare, Erlangen, Germany; Genesis Signa, GE Healthcare, Milwaukee, WI, 

USA; Intera, Philips Healthcare, Best, Netherlands) and 3.0T (Ingenia CX, Philips Healthcare; 

Achieva, Philips Healthcare) with the following parameters: TR: 400–8000 ms; echo time (TE): 

16.1 to 103 ms; flip angle: 18°–90°; matrix: 256 ×  256 to 512 ×  512; FOV: 220 ×  220 to 

250 × 250 mm; number of excitations: 1–6; number of slices: 20–45; and slice thickness: 3-5 

mm. From DWI scan, ADC map was automatically created built-in software. The GT for acute 

infarct lesions in DWI was described by two expert neuroradiologists with 6 and 9 years of 

experience, in consensus. In detail, the radiologists described the maximum visual range of 

high signal intensity in the b1000 image with infarct lesion. They were also instructed to 

exclude areas of T2 shine-through artifact with the corresponding ADC images. These ROIs 

were labeled using in-house software (modified ImageJ).

Preprocessing

In this study, the MRI images were obtained from different scanners according to different 

protocols. So, several pre-processing steps were performed before the experiments. Since MRI 

intensities do not have tissue-specific values (i.e.m they have a wide range of intensities even

within the same tissue, the same protocol, target, and scanner), intensity normalization is an 

important pre-processing step for MRI image analysis. For each image, we applied a linear 

transformation to a certain percentile (i.e., 0.005–0.995) of the intensity histogram within the 

brain regions. The brain regions were automatically determined based on tissue probability 

maps calculated using the Segment module of Statistical Parametric Mapping (SPM12). 

Subsequently, homogeneous linear resampling was performed in 3D volume. All images were 

resampled to a uniform matrix size of 384 x 384 in the axial slice. 
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Cascaded method

Our proposed infarct segmentation consisted of the following two phases: initial localization 

and fine segmentation. 

Phase 1: Initial localization - Instance segmentation using Mask R-CNN(Regions with CNN 

features)

  Instance segmentation identifies each object instance for every known object in the image 

and assigns a label to each pixel in the image. The representative network of instance 

segmentation is Mask R-CNN. This network extends Fast R-CNN by adding branches to 

predict object masks in parallel with existing branches for bounding box recognition. In the 

ROI pooling extracts fixed-size windows from the feature map and uses these features to get 

the final class label and bounding box.

Phase 2: Fine segmentation - Semantic segmentation using U-Net with SE block

The SE block is provided with inputs such as the convolution block and the number of 

channels currently held. Using average pooling, each channel was compressed into a single 

numeric value. A fully connected layer followed by the ReLU feature added the necessary 

nonlinearity. Output channel complexity is reduced by a certain ratio. A fully connected second 

layer and S-shaped activation provide smooth gating on each channel. Finally, we weighted 

each functional map of the convolutional block-based on the results of the lateral network. 

Results

In the second stage, we have applied the variant network and losses. Table 3 shows the DSC 

results of applying various networks and losses in the second step. Overall, the DSC results of 

infarct segmetnation showed more than 80%, and the combined result of DSC and focal loss 
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was the highest at 86.6%. The U-Net with SE block achieved better segmentation than the 

corresponding network without SE block. In addition, the infarct segmentation result was 

higher when adc and b1000 were combined and trained than when adc and b1000 were trained 

respectively. Figure 3.5 shows an example of an acute ischemic stroke lesion segmentation 

learned using DSC and focal loss in the second stage. 

         

Figure 3.5 Examples of the results of infarct segmentation. (a) Original image, (b) Ground 

truth, (c) Results of the application of DSC+Focal loss network in the second stage.
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Table 3.2 The DSC results of the application of various networks and losses in the second 

stage.

ADC + B1000 ADC B1000

U-Net (2D) 0.821±0.045 0.801±0.081 0.811±0.082

U-Net with SE (2D) 0.833±0.027 0.823±0.063 0.821±0.071

DSC + Boundary loss 0.858± 0.070 0.844± 0.071 0.837± 0.069

DSC + Focal loss 0.860±0.077 0.845±0.068 0.848±0.062

3.3 Supine-prone tissues in Breast MRI

Breast cancer is one of the most common cancers among women worldwide [54-56]. Early 

diagnosis and treatment have been proven to reduce the mortality rate [57]. In general, 

compared to mammography and ultrasonography (USG), MRI has been shown to have high 

sensitivity and high resolution for detecting primary lesions in the body [58, 59]. MRI is a 

non-invasive method and is preferred because it allows evaluation of preoperative staging and 

high-risk screening [60, 61].

Automatic segmentation of breast and surrounding tissue in MRI is a key step in the 

automated analysis for clinically relevant applications including CAD and registration 

considering material properties between prone and supine MRI for surgery. Manual

segmentation of the MRI, however, is time-consuming and error-prone. MRI provides a high 

contrast among breast and surrounding tissues including lungs and heart, muscles and bones, 

parenchyma with cancer, and skin and fat all of which could have different material properties 

and deformations in supine and prone poses. Besides, the intensity non-uniformity of MRIs 

leads to major difficulties in this segmentation. Therefore, several specific systems have been 

developed to help radiologists or surgeons detect and segment breast lesions in supine MRIs 

from prone MRIs, greatly improving the clinician efficiency. 
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Figure 3.6 Overall procedure of semantic segmentation in supine and prone breast MRI.

Figure 3.7 Example multi-region labels. (a) Prone MRI, (b) Supine MRI.
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Figure 3.8 Example multi-planner reformatted views. (a) Prone MRI, (b) Supine MRI.

There have been several studies investigating breast segmentation in MRI. Niukkanen et al. 

[62] used k-means clustering for breast and fibro glandular tissue (FGT) segmentation based 

on MRI images. Nguyen et al. and Nie et al. [63, 64] developed an algorithm for semi-

automatic segmentation using fuzzy c-means (FCM) clustering to identify breast FGT with 

breast cancer risk. To correct for the field inhomogeneity, they applied the bias field correction 

algorithm. Lin et al.  [65] suggested a fully automatic segmentation using patient-specific chest 

template model mapping, which showed segmentation accuracy similar to that achieved by 

experts. Milenkovich et al. [66] reported a fully automatic method using edge maps obtained 

by applying a tunable Gabor filter, and they obtained 0.96 for the average DSC. These methods, 

however, are usually limited by the characteristics of the MR images used in the study datasets. 

Breast MRI varies for different contrast injection methods, MRI scan protocols, and MR 

conditions [67]. Even in a single hospital, this variability would be expected in MRI data across 

years, as protocols are changed from time to time due to the improvements in acquisition or 

MRI units. In addition to the variability of the MRI protocol, there are additional variabilities 

in terms of breast shapes, sizes, density, and chest muscle shape all of which could cause 

various deformations between prone and supine poses and MRI artifacts such as 
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inhomogeneous intensity, or alias effect and so on. 

In recent years, it is to overcome these variabilities that deep CNNs have enabled a 

significant improvement in computer vision tasks such as image classification, object detection, 

and segmentation. Dalmis et al. [67] used deep learning segmentation methods of 2D and 3D 

U-Net architectures in three regions including non-breast, fat inside the breast, and intra-breast 

FGT. Their average DSC values were 0.933, 0.944, 0.863, and 0.848 for 3D U-Net, 2D U-

Nets, atlas-based, and sheetness-based methods, respectively. X Zheng et al. [68] developed 

a coordinate-guided U-Net to identify breast boundaries on MRI by obtaining breast location 

information for segmentation. However, this study only focused on prone MRI because MRI 

scans in the supine position are quite difficult to be performed due to the low accuracy of tumor 

diagnosis and low contrast among surrounding tissues. Therefore, in an actual clinical setting, 

scans are usually performed in a prone position using a specialized breast coil and contrast 

injection protocol to increase the diagnostic accuracy of MRI. However, a surgical pose is 

supine, which may differ significantly from the prone position. Wang et al. [69] have shown 

how to move breast tumors three-dimensionally from the prone to a supine position in the 

operating room (OR). Further, given that prone MRI has a strong signal to noise ratio (SNR) 

of cancer tissues with adequate contrast agent protocol, and supine MRI has weak SNR, 

deformable registration between prone and supine MRIs has been required. However, because 

cancer and surrounding tissues of the breast are significantly changed between supine and 

prone position, the ordinary registration algorithm does not work. Therefore, fine registration 

based on the material properties of various breast tissues is needed to overcome the difficulty 

of registration between supine and prone MRIs. Therefore, in this study, we proposed a 

semantic segmentation to differentiate four regions with different material properties including 

lungs and heart, muscle and bone, parenchyma with cancer, and skin and fat in prone and 

supine breast MRIs with deep learning. This study aims to employ and compare various kinds 



30

of networks and strategies with supine, prone, transferred from prone to supine and pooled 

supine and prone MRIs.

Dataset

This study was approved by the IRB of the AMC (IRB No. 2017–1341) and was performed 

following the principles of the Declaration of Helsinki. The requirement for patients’ informed 

consent was waived by the IRB. The imaging data were anonymized in accordance with the 

Health Insurance Portability and Accountability Act’s privacy rules. The study was conducted 

using a total of the following two types of MRI scans for 29 patients: (1) Pre-prone MRI, prone 

position before neoadjuvant systemic therapy (NST) and (2) Pre-supine MRI, supine position 

before NST. The patient age range was 36–65 years, and the mean age was 47.2 years

MR Protocol

Breast imaging was performed with a 3.0 T MRI system (Ingrain; Philips Healthcare, 

Netherlands) with a bilateral dedicated four-element breast coil. Patients underwent a routine 

standard MRI protocol performed in the prone position and then were repositioned in the 

supine position. A dynamic perfusion study with an intravenous injection of 0.1 mmol/kg of 

gadopentetate dimeglumine (MultiHance, Gd-BOPTA; Bracco Imaging SpA, Milan, Italy) 

was followed by a flush of 20 ml of saline solution at 2 ml/s. The dynamic study involved one 

pre-contrast acquisition followed by five post-contrast acquisitions of T1-weighted high-

resolution volume examinations (THRIVE); TR = 4.1 ms; TE = 1.8 ms; slice thickness = 0.9 

mm; pixel size = 0.9 x 0.9 mm). Immediately after the acquisition of the last dynamic series, 

the patient was extracted from the magnet, the breast coil was removed, and the patient was 

invited to assume the supine position. Thereafter, a thoracic four-channel surface coil was 

positioned over the breast surface. A multi-point Dixon (mDixon) sequence was used for 
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acquiring MRI in the supine position with the following technical parameters: TR/TE = 4.9/0.0 

ms; fractional anisotropy (FA) = 10°; voxel size = 0.742 x 0.742 x 1.0 mm; and matrix = 512 

x 512.

Gold standards

All breasts (N = 116) in prone and supine MRIs were flipped into the right breast. The 4-

class tissues including lungs and heart, muscles and bones, parenchyma with cancer, and skin 

and fat of prone and supine MRIs were manually delineated by a breast MRI specialist and 

confirmed by a surgeon. All labels were drawn using Mimics Medical 17 (Materialise Inc, 

Belgium), which is software for manual imaging segmentation. At first, we used thresholding 

and region growing with a cropped mask. The expert then modified it manually

Preprocessing

The objective of preprocessing is to improve the quality of the image and make it ready for 

further processing by removing the irrelevant noise and unwanted portions from the 

background of the MRI. Even though breast images were acquired with an MRI scanner, image 

normalization was required to correct the intensity of the image. Then, we did the 

normalization by subtracting the average image intensity from every pixel in the image and 

dividing the pixel by the standard deviation (SD) of the intensities. Further, we used to 

vertically flip in the prone direction images to align them with the supine direction. Since the 

patient's two breasts are often symmetrical, we made it a single breast by cutting in half around 

the x-axis to create two images per patient to make the dividing problem easier and to have 

the effect of increasing the size of the training dataset. Additionally, after this division, the left 

breast was mirrored so that it was in the same direction as the right breast. Therefore, the width 

and height sizes of the input images were converted from 512 x 512 to 256 x 512. As another 
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way to increase the size of the training dataset, we used the data generator functions in Keras 

to randomly crop, flip, rotate, scale, zoom, add gaussian noise, and more on the training data.

Semantic Segmentation Network with CNN - U-Net and nnU-Net

U-Net architecture is a defined expression segmentation learning method with multiple 

levels of expression obtained by constructing simple but nonlinear modules that convert 

expressions from one to another. The name "U-Net" indicates the "U" shape of the network as 

shown in Figure 2.5. This is a fully convolutional network consisting of convolution and 

maximum pooling layers in descending order or, in other words, in the initial part of U. This 

part can be seen as a downsampling step because the input image size is divided into the 

maximum pull kernel size in each maximum pull layer. Upsampling is performed at the latter 

part of the network or at the rising part of U, which is implemented by a convolution where 

the kernel weights are learned during training. An arrow between the two parts of the “U” 

shows that the information available in the downsampling step is integrated into upsampling 

operations performed in the rising part of the network. Accordingly, the finely detailed 

information that is captured in the lowering part of the network is used in ascending and 

descending parts. The nnU-Net framework, which automatically adjusts the architecture to the 

given image shape, has been modified based on the U-Net architecture. The nnU-Net 

framework automatically defines several steps such as preprocessing, resampling, and 

normalization by setting loss optimization during training and post-processing operations. In 

this study, the U-Net and nnU-Net architectures were applied to both 2D and 3D data for 

segmentation involving breast and other tissues, and 4 labels including the background were 

learned simultaneously.
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Statistical evaluation

We performed a Willcoxon rank-sum test to compare the model results for prone, supine, 

and combined positions. To compare the performances of different segmentation models, we 

applied a paired t-test to the DSC, JSC, and HD values obtained for each MRI with a p-value 

less than 0.05 considered as significant. 

Results 

The DSC, JSC, and HD of the segmentation results of breast and surrounding tissues for 

each method segmentations are given in Table 1 and its supplementary respectively. 

Comparing the overall results, it was found that 2D U-Net with prone MRI showed the best 

performance in lungs and heart, muscles and bones, parenchyma with cancer, and skin and fat 

(mean ± SD of DSC: 0.987±0.003, 0.966±0.011, 0.870±0.085, and 0.956±0.016, respectively). 

Comparing the overall results of different U-Net methods, 2D segmentation showed 1.1% 

results better compared to 3D segmentation. The parenchyma with the cancer label showed 

significant differences for each model. Additionally, the base U-Net architectures showed 

better performance than the nnU-Net architectures. The results of training with the data of the 

prone and supine postures combined showed lower results compared to the training results for 

each posture. Regarding the 4 class labels, the least segmentation performance was observed 

in parenchyma with cancer with an average DSC value of around 0.80. 

3.4 Kidney substructures with Renal Cell Carcinoma (RCC) in kidney CT

It is a prerequisite for CAD and provides quantitative information for treatment, surgical 

planning, and 3D printing in medicine. Recent advances in deep learning such as the 

emergence of FCNs have enabled the training of models for semantic segmentation tasks. In 
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particular, the 3D U-Net, which has a contracting path and a symmetric expanding path, has 

been proven to be effective for 3D medical image segmentation. Some authors have proposed 

novel cascaded architectures such as segmentation-by-detection networks and cascaded 3D 

FCN to improve segmentation performance using region proposal network before 

segmentation.

RCC is the most common of renal malignancies, and it is the eighth most common cancer 

overall with over 60,000 new cases and nearly 15,000 deaths in the United States each year. 

Most RCCs are asymptomatic and are accidentally detected when CT scans are performed for 

other indications. Kidney tumors vary widely in size, location, and depth. There has been much 

interest recently to study the outcome of partial or radical nephrectomy concerning the tumor 

morphology. To this end, accurate segmentation of kidney tumors in the imaging data is 

paramount for reliable disease classification and treatment planning. However, manual 

annotation processing is a difficult and time-consuming process and is sensitive to errors and 

inaccuracies. The most popular and promising method for general medical imaging computer 

vision in the past few years has been CNN. 

Figure 3.9 Kidney and RCC label image example.

CNNs are often learned manually from previously partitioned data. They have achieved 

state-of-the-art performance in organ and lesion detection, localization, segmentation and 
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classification. However, the specific work of renal and renal tumor segmentation, as previously 

mentioned, has addressed a high degree of variability in tumor location and morphology.

Dataset

A total of 50 kidneys from 36 patients in abdominal computer tomography (CT)-scans 

(Sensation 16, Siemens Healthcare) were utilized—30 of them had RCC and 20 were normal 

kidneys, with each having a slice thickness of 1–1.25 mm. There were four phases in the CT 

scans—the non-contrast, renal cortical, renal parenchymal, and renal excretory phases. We 

used the renal cortical phase, which enhanced the arteries, and classified kidneys into five 

subclasses of an artery, vein, ureter, parenchyma with the medulla, and RCC for kidneys with 

RCC. We excluded those kidneys with cysts or stones. The IRB for human investigations at 

AMC approved the retrospective study and waived the need to acquire informed consent. The 

imaging data were de-identified in accordance with the privacy rule of the Health Insurance 

Portability and Accountability Act.

Experiment

First, we trained the model using a cascaded 3D U-Net with exceedingly small amounts of 

training data, and corresponding GTs were generated through manual labeling at the initial 

stage. The cascaded architecture was designed to improve segmentation performance using 

RPN before segmentation within the available memory of the GPU. Second, the results of the 

additional data through the trained network were manually corrected instead of creating new 

GTs from scratch. This step is known as convolutional neural network-corrected segmentation. 

Third, all of the initially used and newly added data were used again for subsequent training. 
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Cascaded 3D U-Net.

We used a cascaded 3D U-Net architecture that replaced the first RPN in the study by Tang 

et al. into 3D U-Net.7 This shows superior accuracy in the detection of the ROI in the kidney 

through the abdominal CT scans. The 3D U-Net technique can be divided into two main 

sections: the left side, which reduces the number of dimensions, and the right side, which 

extends to the original number of dimensions. The two sides consist of convolution and 

upsampling or downsampling layers. The downsampling layer was implemented through max-

pooling (3 x 3 x 3). The prominent feature of 3D U-Net is its concatenation function to the left

and the right. The concatenation results lead to an improved segmentation through the 

prevention of the loss of information.

Cascaded 3D U-Net was separately trained in an end-to-end manner. The ROI was marked 

as a cuboidal-bounding box around the kidney after the first U-Net module. Subsequently, the 

second U-Net module for final segmentation was trained to make masks for five subclasses of 

the kidney. Gaussian noise was added to each input image. Moreover, the errors were 

calculated using the DSC, like in equation (1). The loss function, which is denoted by dice loss 

(DL), was defined as equation (2) in each 3D U-Net. VGT and VCNN were defined as the volume 

of GT and CNN segmentation, respectively.

Experimental settings.

The model was executed in Keras 2.2.4 with the backend of Tensorflow 1.14.0 and trained 

with a GPU of NVIDIA GTX 1080 Ti. Usually, in both the steps of our cascade method, a 

large number of epochs are required. In the first stage, the training was saturated at about 150 

epochs due to the small number of datasets (N = 20). The second and third stages required 300 

epochs due to the increased numbers of datasets (N = 40 and N = 50). In addition, Adam 

optimizer with a learning rate of 10−5, a weight decay of 0.0005, a momentum of 0.9, the 
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training loss as the average dice coefficient loss, and a batch size of 1 was used. For testing 

the overfitting of the model, the difference of the overall DSC accuracies between the 

validation and test datasets of the final model was 6.17, which demonstrates that this model is 

not overfitting.

3.5 Pancreatic cancer in Pancreas CT

Pancreatic cancer is one of the common malignancies whose incidence is increasing 

worldwide every year. According to the most recent statistics, in 2017, the estimated number 

of pancreatic cancer deaths in the United States was 43,090, with malignant tumor mortality 

in the fourth position. In the ‘China Cancer Registry Annual Report’, in China, pancreatic 

cancer was ranked sixth in the mortality rate of malignant tumor patients in the same year. 

With the current growth in the incidence of pancreatic cancer worldwide, the need to lower 

the mortality rate and improve the survival rate of pancreatic cancer patients has also increased, 

along with enhancements of diagnostic capabilities and treatment techniques. The 

segmentation of the pancreas can be used meaningfully to support doctors’ diagnosis, 

treatment, and surgery. Automatic and reliable segmentation of the pancreas is an important 

but challenging task for numerous clinical applications, such as pancreatic cancer radiation 

therapy and computer-aided diagnostics (CAD). The main challenge with accurate CT 

pancreas segmentation lies in the following two aspects: (1) Large shape change of the 

pancreas in various patients and (2) low contrast and blur around the pancreatic border. In this

paper, we have proposed using deep learning to automatically segment the pancreas and 

compare its performance.
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Figure 3.10 Pancreas and focal legions image example.

Dataset

For this study, we obtained a dataset of CT images of 862 patients, 360 with solid lesions 

like cancer and 142 with cystic lesions. The diagnostic decisions made for these data, based 

on a combination of clinico-radiologico-pathological discussions and consensus opinions, 

were regarded as gold standards by experts.

CT protocol

CT imaging was performed using a Somatom 64 scanner (Siemens AG, Healthcare Division, 

Erlangen, Germany) with a consideration of the following parameters: craniocaudal abdominal 

scan – 120 kV, pitch – 0.9, collimation – 0.6 mm, inter-slice spacing – 5 mm, and soft recon 

kernel. CT images were acquired at the portal venous contrast agent phase (with an intravenous 

application of weight-adopted and warm Imeron® 400 (Bracco Imaging, Konstanz, Germany), 

followed by a saline flush with a flow rate of 3 ml/s through a 20-gauge catheter inside an 

antecubital vein.
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Manual Segmentation

The radiologist (a board-certified radiologist with 10 years of experience (H.J.K)) collected 

the CT data and manually segmented the pancreas using the CT images in consensus. These 

delineations were taken as the standard in all tests.

Method

We presented a completely 3D- and 2D-cascaded frameworks for pancreas segmentation in 

the 3D CT images. We developed a 3D detection network (U-Net with squeeze and excitation 

blocks) to regress the locations of the pancreas regions; in the second step, we implemented a 

fine segmentation using a 2D segmentation network to fragment the pancreas in a cascaded 

manner based on the detection results. 

Result

In general, applying 2D-based methods to 3D data can give rise to various problems. If the 

model cannot be generalized to the implemented for slices that are severely disconnected along 

the z-axis, the focal lesions of the pancreas volume boundary in that direction will most likely 

be inaccurate, resulting in critical errors. To test our model’s generalizability, we created an

independent set of volumetric CT images. Figure 3.11 shows the segmentation result of 

parenchyma and focal lesion like cancer and cyst in pancreas. We calculated the accuracies of 

the result of the pancreas segmentation and focal lesions for abdominal CT. The DSC of 

pancreas segmentation results was over 90%. However, the focal lesions of the pancreas were 

low DSC at around 60%. 
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Figure 3.11  Examples of parenchyma and focal lesions segmentation. (a) Original image, 

(b) Ground truth (c) Segmentation results

3.6 Multi-structures in dental CBCT

Cone-beam computed tomography (CBCT) has been adopted over the past decades at a 

rapid pace and is widely used in dent maxillofacial imaging and orthodontic practice. Most 

importantly, the current effective dose of CBCT for head scans (from tens to hundreds of μSv) 

is much lower than that of CT for head scans (from hundreds to thousands of μSv). 

Additionally, the reported spatial resolution (voxel resolution) varies from 0.076 mm to 0.4 

mm. In CT, the spatial resolution of the slice can be as small as 0.4 mm, with the thinnest axial 

thickness being 0.625 mm. On the other hand, CBCT offers special access to most medical 
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devices since it is less expensive than CT. Commercially available CBCT requires patients to 

sit or stand vertically during the scan. A natural head position can be acquired directly for 3D 

head measurement. These advantages make it possible for CBCT to replace CT for 3D imaging 

and CASS modeling. Segmentation of multi-facial structures is essential for dental 

implantations and orthognathic surgeries to draw safety margins around the facial nerves and 

surgical lines in the facial bones. However, the segmentation of multi-facial structures is 

extremely challenging due to the structural irregularities, complex forms, and heterogeneity of 

imaging contrast in the voxel-by-voxel approach, especially CBCT.

Method

We obtained 100 datasets of i-Cat CBCT scans (Imaging Science International, Hatfield, 

PA, USA). In addition, the training and validation datasets of hard tissues, maxillary sinus, and 

mandible include 7 and 4 cases, 20 and 4 cases, and 20 and 4 cases, respectively. The training 

and validation datasets of mandibular canals consist of 40 and 15 cases, respectively. Each test

dataset was used for all seven patients. Depending on the structures, the segmentation result 

was made as per the gold standard differently. The hard tissues and mandibular canals were 

manually drawn by an expert and confirmed by an expert dentist. The initial mandible and 

maxillary sinus masks were created by in-house software with conventional image-processing 

techniques, including 3D sculpting and thresholding. These masks were filled per slice and 

manually corrected by experts. Before commencing with the training, we pre-processed the 

CT images to change their brightness levels (window level = 450) and contrast settings 

(window width = 5000). Furthermore, the number of each dataset was augmented by flip and 

rotation. We used 3D U-Net, one of the most widely used CNN architectures, for image 

segmentation. 
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Result

For the evaluation metrics, the DSC, JSC, MSD, and HD were 82.60 ± 0.04%, 70.47 ± 0.06% 

in hard tissues, 86.60 ± 0.01% and 92.80 ± 0.01%, and 82.00 ± 0.07%, 0.35 ± 0.29mm, 0.49 

± 0.09mm in maxillary sinus, 90.00 ± 0.04%, 0.89 ± 0.66 %, 11.29 ± 10.21mm, 3.21 ± 2.56mm 

and 18.42 ± 19.72mm in mandible, respectively. In the mandibular canals, mean error 

distances were 0.89 ± 0.40mm.
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Figure 3.12 Multi-structures segmentation examples

4 Advanced issues in medical image segmentation

4.1 Strategy for medical image segmentation

We applied various kinds of deep learning based segmentation, including U-Net, U-Net with 

SE, nnU-Net, cascaded U-NET to various lesions, and organs, including glioblastoma, infarct, 

breast, kidney, pancreas, and dental multi-structures with/without contrast agent depending on 

the clinical context. These are summarized in Table 3.3. These automated segmentation 

methods were taught taking into account all the characteristics of each lesion, organ, and the 

clinical context in cross-sectional imaging modalities such as CT and MRI. 

Since there are various kinds of configurations for training a deep learning based model, 
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several types of pre-processing techniques were applied depending on the characteristics of 

each lesion, organ, and the clinical context. Especially, in brain MRIs, specialized pre-

processing methods implement a bias-field correction caused by inhomogeneity of MRI B0 

field, brain extraction to segment brain regions, and intensity normalization to reduce intra-

and inter-image intensity variability. Otherwise, in CT images, only intensity normalization 

was performed as a pre-processing method since CT density is already calibrated in general. 

In addition, deep learning based models suffer from small amounts of datasets. Therefore, 

various augmentation methods, including random rotation, flipping, resizing, and others were 

performed to make variations in the dataset in order to train more robust deep learning based 

models. The details of augmentation methods were chosen and controlled depending on the 

characteristics of each lesion, organ, and the clinical context.

The number of subjects depends on the difficulty of labeling and the possibility of disease 

incidence. Therefore, the number of scans with thin-sectional thickness with multi-labels 

needed in kidney and breast cases is very small. Slice thickness was varied depending on the 

variations of clinical protocols. Due to variation in its size, shape, location, image 

reconstruction protocol, and modality, medical-image segmentation is considered to be one of 

the most difficult tasks.

Considering all these factors, the deep learning based automated segmentation (DLAS) 

model should be chosen, trained, and evaluated. Heterogeneous and ambiguous images, such 

as those of glioblastoma from heterogeneous tumor regions, were trained through a patch-level 

approach. In addition, for small datasets with a tube-like or line shape, it may be a good idea 

to perform segmentation using a 2D-based method because it is better to train models with 

balanced datasets. When the slice thickness is dense, the learning method with 2D-based 

methods would have higher accuracies compared to 3D-based methods as a result of less 

anatomical integrity between the slices and a relatively larger number of training datasets. If
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the boundary of the lesion is ambiguous or its size is small, the focal loss could improve the 

learning accuracy. In most cases, SE blocks could increase segmentation accuracy since it can 

preserve important information across channels. In the case of large size images and small 

target objects, the cascade method is recommended for increasing the accuracy due to the fine 

structure, with a high resolution, of the candidate area acquired at the first segmentation stage. 

These insights have been summarized in Figure ??.

Based on the results and the raised issues, these studies were extended to more advanced 

studies such as studies focusing on more balanced segmentation with different level labels, 

robust feature extraction of radiomics, smart labeling with a human in the loop, etc.   

Figure 4.1 Flowchart for strategy in medical image segmentation.
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Table 4.1 Summary of organ specific segmentation.

Glioblastoma Infarct Breast Kidney Pancreas Dental multi-structures

Subjects (Scan) 103 (103) 424 29 (58) 50 862 50

Modality MRI(T1CE,FLAIR) MRI(ADC,DWI)
MRI

(Supine& prone, T1CE)
CT(Arterial phase) CT(portal phase) CBCT

Contrast agent Enhanced Non-enhanced Enhanced Enhanced Enhanced Non-enhanced

Pre-processing
Biasfield correction

Normalization*

Brain extraction

Bias field correction

Normalization*

Brain extraction

Normalization*

Align to the supine 

direction

Normalization* Normalization* Normalization*

Augmentation
Random rotation,

flipping, resizing, etc.

Random rotation, flipping, 

resizing, etc.

Random rotation,

flipping**, resizing, etc.

Random rotation,

flipping**, resizing, etc.

Random rotation, flipping, 

resizing, etc.

Random rotation,

flipping***, resizing, etc.

Slice thickness 0.5–1mm 3–7mm 0.9mm 1–1.25mm 3–6mm 0.3–1mm

CNN 3D U-Net with SE 2D U-Net SE vs etc.
2D/3D U-Net

nnU-Net
Cascaded 3D U-Net Cascaded 2D/3D U-Net

3D U-Net, 

Cascaded 3D U-Net

Loss DSC DSC, boundary DSC, focal DSC DSC DSC, focal DSC

External dataset BraTS 2017 KHUH

DSC(internal) 0.81±0.11 0.86±0.19 0.95±0.08 0.71±0.21 0.76±0.13 0.91±0.07

DSC(external) 0.79±0.18 0.71±0.21

Issues
Domain adaptation, 

ambiguous boundary

Thickness,

scale-invariant due to 

disease progression, 

ambiguous boundary

Small dataset, 

variability of contrast 

agent uptake

Memory,

high-cost labeling, 

small dataset

Thickness, 

domain adaptation, 

different pathologic lesions

Memory,

high-cost labeling, 

small dataset

Advanced study
Robust feature extraction 

of radiomics

More balanced 

segmentation with 

different level labels

Domain adaptation
Smart labeling with a 

human in the loop

Domain adaptation, 

computer-aided diagnosis

Smart labeling with a 

human in the loop

Note: *mean and standard deviation normalization, **(breast and kidney) flip to the right side, ***(mandible and mandibular canals) flip to the right side; DSC, 

Dice similarity coefficient; SE, Squeeze and excitation; BraTS, Brain tumor segmentation; KHUH, Kyung-Hee University Hospital
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4.2 Smart labeling with human in the loop

In stage I, five subclasses of 20 kidneys, including artery, vein, ureter, parenchyma, and 

RCC were manually delineated as GTs for initial training. After this stage, the GTs of the new 

data for the next stage was prepared by executing manual correction of the results from the 

CNN segmentation, which is referred to as CNN-corrected segmentation. In stage II, 16 

kidneys from the previous stage were reused for training, along with new data pertaining to 

eight kidneys with RCC and eight normal kidneys. After stage II, the results of CNN 

segmentation for the new data were manually amended for the next stage, as was done in stage 

I. Finally, in stage III, 40 kidneys were used for training, while 10 kidneys were used for testing. 

The results of all the aforementioned stages were used to evaluate for accuracy. The manual 

and CNN-corrected segmentations were conducted using Mimics software (Mimics; 

Materialise, Leuven, Belgium).

To determine whether the performance of the network gets improved or not through active 

learning, we investigated the DSC at each stage and compared them with one another using 

the paired t-tests between stages 1 and 3 and stages 2 and 3 using the SPSS software (version 

25.00; IBM). In addition, to evaluate the effect of the proposed method, we compared it with 

that of a more recent network—no-new-U-Net (nnU-Net) introduced by Isensee et al. This 

network won first place in the Kidney Tumor Segmentation Challenge (KiTS19) on Medical 

Image Computing and Computer-Assisted Intervention Society (MICCAI) 2019. We also 

validated the CNN-corrected segmentation for accuracy and total consumption time to 

evaluate labeling efficiency. Moreover, we converted the results of manual, CNN, and CNN-

corrected segmentation to 3D models to compare their accuracies. The comparison was 

performed based on the points in the surface using quantitative root-mean-square (RMS) 

values in the 3-matic software (3-matic; Materialise, Leuven, Belgium). A total of 17,650 

points were used to compare 3D models among manual and CNN segmentation and manual 
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and CNN-corrected segmentations. For comparison of CNN segmentation with CNN-

corrected segmentation, 26,471 points were calculated. The calculation for RMS is the same 

as that in equation (3), where x is the difference between corresponding points in the two 

models, and n is the total number of points.

The results of the comparison of segmentation time for the five substructures between 

manual and CNN-corrected segmentation have been listed in Table 3. CNN-corrected 

segmentation decreased the time of artery segmentation by 19 minutes 8 seconds and that of 

the vein, ureter, parenchyma, and RCC by 12 minutes 1 second, 19 minutes 23 seconds, 8 

minutes 20 seconds, and 17 minutes 8 seconds, respectively, with an overall segmentation time 

reduction of 76 minutes, which is more than half of the time required in manual segmentation. 

Apart from the time taken for the initial loading of the package, the CNN segmentation took 

less than 1 second per case. The results of CNN-corrected segmentation are observed to highly 

correspond with those of manual segmentation, while they do not with those of CNN 

segmentation.

Evaluation and statistical analysis

The average values of DSC for the five subclasses became increased with each stage’s 

completion. Among the aforementioned subclasses, parenchyma segmentation has the highest 

DSC and the lowest SD values, while for RCC, the DSC value was the lowest, while the SD 

value was the highest. In addition, the final segmentation results at the last stage were found 

to be superior to those of the nnU-Net using our dataset. 

4.3 Fine-tuning with different level labels in imbalanced datasets

Deep learning based automatic segmentation (DLAS) supports the reproducibility of 

radioactive functions, but its effect on radioactivity modeling is unknown, so DLAS extracted 

powerful anatomical and physiological MRI functions to evaluate whether it can accurately 
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assess the treatment response of glioblastoma patients. 

Dataset

The IRB of AMC for human investigations approved the study protocol, removed all patient 

identifiers, and waived informed consent requirements due to the retrospective design of this 

study. At AMC, patients with various types of DILD, including cryptogenic organizing 

pneumonia (COP, 218), usual inte rstitial pneumonia (UIP, 196), and nonspecific interstitial 

pneumonia (NSIP, 498), were retrospectively enrolled and scanned with the Siemens CT 

scanner (Sensation 16, Siemens Medical Solutions, Forchheim, Germany) for the HRCT and 

volumetric CT. All the CT images were obtained using typical HRCT protocol parameters, 

such as slice thicknesses of 1–2 mm, intervals of 5–10 mm, 220 mAs, and 120–140 kVp, with 

an enhanced reconstruction kernel (B70f in the Siemens scanner and a sharp kernel in the GE 

scanner), and a considering of volumetric CT protocol parameters, including a sub-millimeter 

thickness without intervals. The radiographer had instructed the patients to hold their breaths 

while conducting the CT.

Figure 4.2 Typical ROIs in six image patterns of diffuse interstitial lung disease. ((a) 

Normal parenchyma, (b) Ground-glass opacity, (c) Reticular opacity, (d) Honeycombing, (e) 
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Emphysema, and (f) Consolidation.)

The gold standard of patch-level for six diseased image patterns and image-level manual 

drawings in HRCT

The following six types of image characteristics were evaluated: normal parenchyma (NL) 

(Figure 4.2.a), ground-glass opacity (GGO) (Figure 4.2.b), reticular opacity (RO) (Figure

4.2.c), honeycombing (HC) (Figure 4.2.d), emphysema (EMPH) (Figure 4.2.e), and 

consolidation (CONS) (Figure 4.2..f). Ground-glass opacity is characterized by an abnormally 

hazy focus on the lungs that is not associated with obscured underlying vessels. A similar 

observation associated with obscured underlying vessels is termed as consolidation. Increased 

reticular lung opacity is the product of a thickened interstitial fiber network of the lung that 

results from fluid, fibrous tissue, or cellular infiltration. In emphysema, there are focal areas 

of very low attenuation that can be conveniently contrasted with the surrounding normal 

parenchyma of higher attenuation. Emphysema can typically be distinguished from 

honeycombing by the fact that while the former has areas of emphysematous destruction that 

lack a visible wall, in the latter, honeycombing cysts have thick walls of fibrous tissue. 

Honeycombing is also characterized by extensive fibrosis with lung destruction that results in 

a cystic reticular appearance. However, there is still a problematic middle area where more 

than two regional characteristics are displayed simultaneously or when a regional 

characteristic is too ambiguous for radiologists to arrive at an agreement. One hundred patches 

with 30 × 30 pixels of a typical image pattern were marked independently at AMC and NJHC. 

A total of 1200 ROIs were labeled by patch levels. A patch-level conventional classifier using 

an SVM was developed [70-72] and evaluated to classify each disease according to its subtype. 

These patch-level image patterns were used to train a conventional classifier using an SVM,

a conventional machine-learning technique with human-engineered features, including texture 

and shape features [70]. This classifier was used to categorize pixel-by-pixel DILD image 

patterns in the 1200 DILD scans of the whole lung area in an automated manner. Figure 4.3
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presents examples of HRCT images and their corresponding classification results on six 

typical image patterns of DILD as per the gold standard. 

In addition, to evaluate for image-label accuracy, 92 independent HRCT images were 

selected randomly from the HRCT scans of DILD patients. These were manually delineated 

by two expert thoracic radiologists with over 10 and 20 years of experience. Fig. 4.2 provides 

examples of HRCT images and their corresponding manual drawing results of six image 

regions by the two radiologists included in this study. Evidently, there are significant 

differences in the manual drawing results for the two expert radiologists.

Figure 4.3 Examples of HRCT images (upper row) and their corresponding classification 

results on typical six image patterns of DILD by the gold standard (lower row). (Normal, green; 

ground-glass opacity, yellow; reticular opacity, red; honeycombing, light blue; emphysema, 

dark blue; consolidation, pink)

    Pre-processing

As there are different therapies and prognoses for DILDs depending on their type, it is 

important to distinguish these types. Segmenting a diseased organ is critical while analyzing 

the images of the organ using a CAD model. This step generally precedes the main image 

analysis [70, 73]. An incorrect setting of the organ’s borders due to segmentation errors is 

highly likely to affect the subsequent analysis. The automation of organ segmentation is a 

challenging task as it might be difficult to identify the lung borders of patients with pulmonary 

diseases as these diseases further reduce the distinction between the lung tissue and the 
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surrounding structures. We have developed an accurate and robust U-Net-based DILD lung 

segmentation method in this study, which was used to segment the lung region of additional 

1200 DILD slices with different clinical protocols, including HRCT and volumetric CT.

Although chest CT images consist of distinct 3D spatial data, 3D approaches such as 3D U-

Net or V-Net may be inappropriate as HRCT images have variable intervals and weak 

connectivity. Therefore, we extracted randomly selected axial images from the training dataset 

and evaluated the test data by stacking adjacent 2D results. To ensure a fair and accurate 

evaluation, the data were divided into training, validation, and test sets on a per-patient basis, 

and the comparisons were performed using a test set that was not used during the training 

process. Of the total 1200 HRCT scans, 80%, 10%, and 10% scans were used for training, 

validation, and test, respectively. The training data consisted of 17,857 axial images, which 

were randomly shuffled for each epoch. 

During the training, each input image was transformed by adding Gaussian noise with an 

SD of 0.1 and rotating it randomly by -10° to +10°, zooming it by 0–20%, and flipping it 

horizontally for regularization. The model was implemented using Keras (2.0.4) with Theano 

(0.9.0) backend in Python 2.7. Adam optimizer19 was used for stochastic gradient descent 

with learning rates of 10−5. The DSC was used as a loss function and was calculated in mini-

batch units with at least one sample containing lungs. This is because the DSC may display 

different behaviors for positive samples with lung and negative samples without lungs.

  Fine-tuned model

The image patterns of the classification results generated by the SVM classifier are severely 

imbalanced because the ratios of image patterns generally depend on the severity and progress 

of the DILD. Therefore, the semantic segmentation network that was trained with these image 

pattern maps could display an imbalance of image patterns, a bias of the SVM classifier, the 

progress of DILD, and others. Therefore, we fine-tuned the U-Net-based semantic 
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segmentation network with the image-level labels of 92 HRCT images by two radiologists 

(total 184 images). These datasets were split equally and randomly between the training set 

and test set. Images from the same patient were not used in both the training set and test set 

simultaneously.

   Figure 4.4 Examples of HRCT images with manual drawings of reader 1 and reader 2 and 

the results of semantic segmentation before fine-tuning and after fine-tuning in the same. Gold 

standard masks are drawn by (a) Reader 1 and (b) Reader 2 and semantic segmentation results 

(c) without fine-tuning and (d) with fine-tuning. (Normal, green; ground-glass opacity, yellow; 

reticular opacity, red; honeycombing, light blue; emphysema, dark blue; consolidation, pink)

  Results

 Semantic segmentation of six image patterns

The agreement between the two radiologists regarding the test set of image-level labels was 
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0.71 in terms of the DSC. The agreements between the SVM classifier and the two radiologists 

were 0.59 and 0.62, respectively, which were lower than those between the two radiologists. 

This could have been caused by the limitation of the patch-level labels and the imbalance of 

the sub-classes. The U-Net-based semantic segmentation was trained based on the 

classification results of the SVM classifier. The agreements between the U-Net-based semantic 

segmentation and the two radiologists were 0.57 and 0.54, respectively, which were lower than 

those between the two radiologists and the SVM classifier. This could have been also caused 

by the limitation of the image-level imbalance of the sub-classes.

Fine-tuning the semantic segmentation with image-level gold standards

The U-Net-based semantic segmentation was fine-tuned using image-level labels from 46 

HRCT images of the training set. The agreements between the fine-tuned semantic 

segmentation and the radiologists were 0.66 and 0.72, respectively. These agreements were 

significantly higher than those of the SVM classifier and the non-fine-tuned U-Net-based 

semantic segmentation. In addition, these agreements are similar to those between the two 

radiologists. Fig. 4.3 presents typical examples of HRCT images, manual drawing of reader 1 

and reader 2, and the results of semantic segmentation before fine-tuning and after fine-tuning 

of the same HRCT images.

Statistical analysis 

Table 4.1 presents the ratio of the six classes evaluated by the two radiologists. The 

difference between the two readers’ RO patterns was the largest, with reader 1 being 0.061 and 

reader 2 0.235. We performed the non-parametric Wilcoxon signed-rank test to determine the 

evaluation statistical significance between the models. 
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Table 4.2 Ratios of six image patterns

Pattern NL GGO RO EMPH CONS HC

Reader 1 0.647 0.034 0.061 0.042 0.188 0.028

Reader 2 0.453 0.048 0.235 0.057 0.187 0.020

In Table 4.2 the performance of the fine-tuned model in terms of six pattern classification is 

significantly higher than that of the before-fine-tuned model. As presented in this table, the 

fine-tuned model achieved the highest value of DSC 0.72.

Table 4.3 Agreement among radiologists, SVM, and deep learning with and/or without fine-

tuning

Agreement of 

two readers
SVM DL1 DL2

Reader 1
0.71

0.523 ± 0.146 0.531 ± 0.211* 0.643 ± 0.105***

Reader 2 0.540 ± 0.144 0.664± 0.185* 0.721 ± 0.124***

Time(min) 10~20 1.431± 1.432 0.055 ± 0.005 0.051 ± 0.004

Table 4.3 presents the ratios of each image pattern determined with the help of the fully 

automated fine-tuned semantic segmentation model in three typical types of DILD: COP, UIP, 

and NSIP, having different clinical characteristics, treatment strategies, and survivals. In the 

HRCT images of COP patients, the consolidation ratio is seen to be dominant. In the case of 

UIP, honeycombing covers the significant regions of the HRCT of the lung.

Table 4.4 Ratios of each image patterns by the fine-tuning model in three typical DILDs

NL GGO RO EMPH CONS HC
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COP 0.506 (0.118) 0.053 (0.045 0.070 (0.058) 0.071 (0.044) 0.278 (0.055) 0.022 (0.006)

UIP 0.507 (0.130) 0.059 (0.076) 0.071 (0.045) 0.066 (0.029) 0.269 (0.042) 0.029 (0.016)

NSIP 0.502 (0.109) 0.073 (0.066) 0.070 (0.041) 0.063 (0.024) 0.268 (0.042) 0.024 (0.006)

Figure 4.5 Further examples of HRCT images (middle row) and the results of semantic 

segmentation before fine-tuning and after fine-tuning in the same HRCT: (a) Original images, 

(b) without fine-tuning, and (c) with fine-tuning.

4.4 Comparison between deep learning based and human segmentations 

in radiomics

Deep learning based automatic segmentation (DLAS) supports the reproducibility of 
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radioactive functions, but its effect on radioactivity modeling is still unknown; therefore, 

DLAS facilitated powerful anatomical and physiological MRI functions to evaluate whether 

it can accurately assess the treatment response of glioblastoma patients. 

Dataset

The training dataset consisted of a population of adult patients who presented with 

histologically proven glioblastoma at Seoul National University Hospital (SNUH) from March 

2014 to August 2018. It contained 238 preoperative MRI acquisitions from initial diagnoses. 

The validation set was comprised of two groups: The first is an internal validation set, which 

included 40 pre-treatment glioblastoma patients and 53 post-treatment glioblastoma patients. 

The second is an external validation set with 91 patients from SNUH, which was included to 

test the generalizability and the true performance of the algorithm. This set included 58 pre-

treatment glioblastoma patients and 33 post-treatment glioblastoma patients. In this study, we 

reported reproducibility and accuracy in the radioactive features acquired from DLAS and 

focused on CE-T1w imaging.

Image pre-processing and reference segmentation

MRI examinations included the following sequences: unenhanced T1- and T2-weighted 

imaging, FLAIR, contrast-enhanced T1-weighted imaging, diffusion-weighted imaging, and 

dynamic susceptibility contrast imaging. The pre-processing of the MRI examinations, which 

include resampling to 1 × 1 × 1 mm and co-registration was performed. Bias field correction 

and intensity normalization were applied to the CE-T1w images using ANTsR and WhiteStripe 

packages [74, 75] in the R software package (R Foundation for Statistical Computing, Vienna, 

Austria, http://www.R-project.org, 2016). Calculated ADC and CBV maps were then co-

registered to the CE-T1w images using the SPM software (www.fil.ion.ucl.ac.uk/spm/). The 

co-registration process includes the generation of a brain mask from a CE-T1w and 
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transformation to ADC and CBV maps for each patient. Images were registered on the brain-

extracted CE-T1w volume using rigid transformation with 6 degrees of freedom.

For generating a reference mask, segmentation was performed in the enhancing tumor 

region by a neuroradiologist (with four years of experience in neuro-oncological imaging), 

who semi-automatically defined the 3D CE-T1w using a segmentation threshold and region-

growing segmentation algorithm that was implemented using a software (MITK, 

www.mitk.org German Cancer Research Center, Heidelberg, Germany) [76]. All segmented 

images were validated by a neuroradiologist (with 18 years of experience in neuro-oncologic 

imaging).

Segmentation network architecture

For the training of the glioblastoma dataset, we used the deep learning method in 3D U-Net 

with SE building blocks. 

Feature extraction

Radiomics features from CE-T1w—our radiomics feature groups—were extracted using 

Matlab R2016a (The Mathworks, Natick, MA): volume and shape features, first-order features, 

texture features, and wavelet-transformed features, in accordance with a previously described 

automated process [77]. The radiomic features used here adhered to the standards set by the 

Imaging Biomarker Standardization Initiative (IBSI) [78]. For each segmented mask, there 

were seven volumes and shape features, 17 first-order features, 162 texture features, and 1432 

([17 + 162] × 8) wavelet features, which resulted in 1618 radiomics features for each imaging 

sequence. Radiomics features were obtained from the CE-T1w images. The DLAS accuracy 

was assessed using DSC. 

Feature reproducibility

The reproducibility of the radiomics features was assessed by calculating concordance 
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correlation coefficients (CCCs). The CCC cutoff of 0.80 was applied, and those features with 

a CCC above the cutoff were considered to be reproducible and comparable. The 

reproducibility of the ADC and nCBV histogram parameters was calculated using intraclass 

correlation coefficients (ICC) and a two-way mixed effect model. Reproducibility was found 

to be excellent for ADC and CBV features (ICC, 0.82–0.99) and the first-order features (pre-

and post-treatment, 100% and 94.1% remained, respectively), but lower for texture (pre- and 

post-treatment, 79.0% and 69.1% remained, respectively) and wavelet-transformed (pre- and 

post-treatment, 81.8% and 74.9% remained, respectively) features of CE-T1w. DLAS-based 

radiomics showed to have a performance level similar to that in human-performed 

segmentations in internal validation (AUC, 0.81 (95% CI, 0.64–0.99) vs. AUC, 0.81 (0.60–

1.00), P = .80) but slightly lower performance in external validation (AUC, 0.78 (0.61–0.95) 

vs. AUC, 0.65 (0.46–0.84), P = .23). 
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5 Discussion

The medical image segmentation with deep learning clearly delineated the boundaries of 

the organs or tumors in diagnostic medical images, such as CT or MRI images, acquired using 

various types of medical imaging equipment. Segmentation through deep learning can 

hierarchically extract from simple features to structural and complex features, and it has been 

found to perform at a high level compared to the traditional methods. In addition, deep learning 

accelerates segment processing by automating complex medical image segmentation. 

In this study, we attempted several ways to further improve the segmentation performance. 

First, several experiments for automatic segmentation were conducted using the data 

consisting of MRI images of the brain and breast, abdominal CT, and dental CBCT. The 

detection and segmentation of GBM from brain MRI in a fast, accurate, and reproducible 

manner is a challenging task. Many segmentation techniques were applied in accordance with 

the characteristics that help distinguish tumors from normal tissues. In case tumors can be 

distinguished using MRI, 3D U-Net techniques were employed. Therefore, we designed 

refined and fully convolutional neural networks with a hierarchical DL to segment sub-regions 

of GBM. Therefore, we provided various cascaded segmentation methods based on deep 

learning, for instance, initial segmentation to localize the brain tumor and fine segmentation 

to segment the GBM region precisely. For better and robust segmentation, transfer learning, 

and random cropping for data augmentation were used to reduce learning time and improve 

learning efficiency in relation to the models. Random cropping makes effective use of a limited 

number of data. Moreover, we found that the optimal cut-off value for data cropping was 16. 

The extra-validation experiment on BraTS 2017 data proved that our learning model is robust. 

With their reported high performances, deep learning methods can be considered the current 

state-of-the-art for GBM segmentation. In the traditional automatic GBM segmentation 

methods, translating former knowledge into probabilistic maps or selecting substantially 

representative features for classifiers is a challenging task. However, semantic segmentation 
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of CNN has the advantage of automatically enabling learning of representative complicated 

features for both healthy brain tissues and tumor tissues directly from the multi-modal MRI

images. Future improvements and modifications to CNN architectures and the addition of 

complementary information from other imaging modalities, such as positron emission 

tomography (PET), magnetic resonance spectroscopy (MRS) and diffusion tensor imaging 

(DTI) may improve the current methods, which would eventually lead to the development of 

clinically acceptable automatic glioma segmentation methods for better diagnosis. 

In infarct segmentation on DWI images, we evaluated for the performance enhancement of 

a semantic segmentation model in DWI images. Our method possesses the advantage of 

enhancing channel-wise information with feature maps in each semantic segmentation model. 

We compared encoder-decoder, basic U-Net, and nnU-Net, Dense U-Net with and without SE 

blocks. In addition, various loss functions, such as focal and DSC loss, were applied to 2D 

images. Every network with SE blocks and focal loss showed significantly better performance 

than those without SE blocks and DSC loss of conventional image-processing algorithms. 

Therefore, applying SE blocks and focal loss to segmentation networks improved the 

performance level of several brain segmentations. Moreover, this method is more robust in 

segmenting small infarct lesions, which is very important for clinical applications.

Through breast and other tissue segmentation of breast MRI images, we investigated the 

use of U-Net-based deep learning methods in two datasets and ways, prone, and supine with 

2D U-Net and 3D U-Net. According to the DSC, JCS, and HD values obtained in this study, 

the U-Net-based segmentation method surpassed the existing methods that incorporate a 

traditional approach. It has also been shown that the U-Net-based segmentation method is 

relatively more stable than the conventional method for breast MRI images. In MRI with a 

dynamic range, the CNN-based segmentation model works well with small datasets and can 

greatly reduce time consumption. Since the contrast enhancement pattern was different from 

the prone and supine postures images, there were no significant benefits even by combining 
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the datasets to training. In addition, the parenchyma with a cancer region was mainly 

influenced by the training models. The pre-processing method of nnU-Net instead lowered the 

learning efficiency. It was possible to facilitate enough training in the basic U-Net architecture. 

From the results of comparing 2D U-Net- and 3D U-Net-based methods, it was found that the 

former performed better in breast and other tissue segmentation. The accuracy of this type of 

segmentation was high enough to facilitate the registration of prone and supine. 

There are several limitations to this study. First, we studied only a small number of breast 

cancer patients (29 patients had 116 breast cancer tumors). Thus, there is a need for further 

studies, which would include a larger patient population. Second, although we used MRI scans 

with different MRI protocols, we made use of only one MRI unit of the same hospital. In future 

research works, we aim to apply and evaluate datasets from multiple centers. 

For the segmentation of CT images of the kidney and sub-structures with RCC, we used a 

cascaded 3D U-Net with a smart labeling framework for semantic segmentation of RCC and 

the fine sub-structures of the kidney. The segmentation accuracy increased with the progress 

of each stage, and the overall performance was found to be reasonable compared with other 

state-of-the-art segmentation networks. Furthermore, it was successfully reduced the effort 

required to create new GTs from scratch. Only the modifications from the CNN segmentation 

were more efficient and timesaving, as well as less variable, compared to manual annotation. 

In this study, the authors used cascaded 3D U-Net architecture for coarse region detection, 

followed by fine region segmentation, and trained this architecture with smart labeling. This 

cascaded network showed superior performance compared to a single 3D U-Net. To validate 

the performance of the proposed method, we compared it with the recent competitive 

network—nnU-Net. This network had achieved excellent performance in the KiTS19 

challenge with the ability to dynamically adapt to the details of the datasets. However, the 

segmentation results of nnU-Net, when applied to our dataset, were to be inferior to ours. Some 

of the reasons might be explained by the inadequate pre-processing of a dataset and by the fact 
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that the fine-tuning process of training data for nnU-Net was far different in our dataset. 

In the pancreas segmentation, the automatic segmentation of the pancreas and its lesions is 

important and very useful in clinical practice, although it can be challenging due to the low 

contrast in boundary and variability in location, shape, and size. To improve the accuracy and 

efficiency of the pancreas and focal lesions segmentation, we implemented the cascaded U-

Net method. In the first step, we trained with 3D U-Net, but we, in the second step, applied 

2D U-Net models to each lesion. The pancreas segmentation was as high as an expert, and the 

pancreas area was a large voxel in the CT image, which resulted in a considerable amount of 

time to be consumed to draw the label manually; however, the deep learning segmentation 

method significantly reduced time consumption. In the CT image, the cystic lesion was seen 

to have relatively clear boundaries, and the segmentation accuracy was higher than that for the 

cancer lesions. However, in cancer lesions, the intensity level of the NET lesion was brighter 

than in the case of other cancers. Therefore, the cancer segmentation quality of NET lesion 

was significantly lower than that of other solid lesions. Nevertheless, the total segmentation 

accuracy was not affected as the number of the NET was small. However, the accuracy results 

of the external test set were not as good as the internal test results in Kyung-Hee Hospital was 

not the same as the image quality and scan machines in ours. This study’s limitation is that 

even though the total number of datasets obtained in this study is sufficient, the labels for each 

lesion are unbalanced. Therefore, in order to solve such data imbalance, we need to learn by 

training weights proportional to the number of imbalances for each label or apply an 

augmentation method. In addition, we have to learn small lesions at the patch level or apply

several different networks for another study of the common pancreas and focal lesions. 

In addition, we proposed an automatic 3D segmentation method, demonstrated very fast 

segmentation results for multi-facial structures in CBCT with reasonable accuracies; these 

structures include hard tissues, maxillary sinus, mandibular, and mandibular canals. 

Furthermore, since the mandibular canal was a fairly small area, the mandibular canal could 
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be learned more easily by the segmentation of the mandibular canal from the segmented 

mandible image. In dental CBCT, we showed that a fully convolutional, deep neural network 

model has a higher performance level than hard tissue, maxilla sinus, mandible, and 

mandibular canal segmentation. In fact, hard tissue, maxilla, and mandible canals are quite 

large at the voxel level; therefore, DSC is bound to be generated adequately. Consequently, we 

had to confirm the results related to the CBCT image and other evaluation metrics. As a result, 

it appears that the condyle segmentation performance was poor in the mandible area. In the 

future, we will obtain the data labeled around the condyle region. If this model is applied to 

the mandible test data, it is believed that the accuracy of the whole mandibular segmentation 

will improve. There are still some limitations to the findings of our study. First, our 

experiments can lead to overfitting. In general, the main reason for overfitting is that the 

training dataset is small in size and that it is only imported by some hospitals. Therefore, we 

plan to improve performance by evaluating the method using a wider range of training datasets, 

such as deeper networks and low contrast data. Ultimately, our objective is to be able to handle 

a wider range of medical data. Second, the segmentation network used is limited. In the future, 

we must plan to improve the performance of segmentation by applying wider and more diverse 

networks, including deep networks. To reduce the time required to apply deep learning 

algorithms in the clinical environment and increase accuracy, additional segmentation research 

is needed to be applied to various clinical environments. 

In advanced issues of medical image segmentation, smart labeling was used for the new 

GTs to be segmented before manual correction and the network to be iteratively trained with 

limited data, instead of suggesting the most effective annotation areas. Our model performed 

well in the later stages. With the completion of each step, the DSC value increased, which 

means that the network improved with iterative learning and the use of additional labels. CNN-

corrected segmentation has been shown to be more effective than manual segmentation as the 

former can be carried out much easier and faster than manual segmentation. Considering that 
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labeling is fundamental but extremely labor-intensive, which makes initiating deep learning 

difficult, this model can be considered a useful alternative in this regard. In addition, human 

labels are not always constant in the segmentation process due to intra-human and inter-human 

variabilities. Active learning with smart labeling frameworks can reduce this uncertainty by 

boosting accuracy by increasing collaboration with the help of deep learning algorithms. 

As a radiometric study, we researched whether deep learning based segmentation could 

ensure the robustness of anatomical and physiological MRI functions and make accurate 

assessments of the response to treatment of patients with glioblastoma. Then, deep learning

based segmentation showed high reproducibility in the primary features of anatomical and 

physiological MRI. We tested the effects of DLAS on the robustness of radiomics features and 

quantitative ADC and CBV parameters of tumor cellularity and vascularity across different 

centers and the diagnostic performance of the extracted features in the cases of post-treatment 

glioblastomas. Quantitative analysis based on DLAS has proven to be feasible, producing high 

segmentation accuracy and feature reproducibility in various medical centers, in particular 

with the first-order quantitative imaging parameters of ADC and CBV and first-order 

radiomics features extracted from CE-T1w. In our study, the deep learning segmentation 

method used was 3D U-Net, which developed more technically with the recent works on 

simultaneous volume segmentation through VNet and simultaneous image registration. The 

difference between our study and previous segmentation studies lies in our study’s objective 

of testing the reproducibility of DLAS-derived radiomics features from anatomical imaging 

and quantitative parameters from physiologic imaging, especially in an independent validation 

set. The automatization of image registration and segmentation will further enhance the 

reproducibility of imaging features, and future studies on testing reproducibility using the 

abovementioned methods are needed. This work provided a segmentation mask but did not 

account for the differences in radiomics features according to segmentation. Our study 

emphasizes the importance of DLAS as well as the possibility of considering the optimization 
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of DLAS for quantitative feature extraction. 

For the DILD pattern segmentation study, we fine-tuned deep learning with convolutional 

neural net architecture through manual drawing by two radiologists to enhance the automatic 

six image pattern segmentation of DILDs in HRCT through a conventional machine-learning 

method with a patch-based dataset. In detail, semantic segmentation with U-Net was trained 

based on the classification results of the previous SVM classifier. In addition, this semantic 

segmentation has been fined-tuned through 92 images manually drawn by the two radiologists. 

The whole lung quantification of CNN with the fine-tuned model exhibited a significantly 

higher accuracy than that of the SVM and deep learning before-fine-tuning models. In addition, 

the proposed fine-tuned model provides 10 times higher computational efficiency as well as 

the potential to overcome the inherent imbalance in the six image patterns. The final semantic 

segmentation displayed a similar accuracy to the agreement of the two radiologists. This study 

used previously developed semantic lung parenchyma segmentation on HRCT of patients with 

DILD [79] and patch-level conventional classifier using an SVM and fine-tuned post-

processing [72] in order to generate a large-scale whole lung classification result. This large-

scale dataset was used to train a more robust deep learning based semantic segmentation. 

However, training these large amounts of datasets could cause an extreme imbalance in the 

DILD image patterns. Therefore, we fine-tuned the semantic segmentation using image-level 

manual drawings created by the two radiologists to overcome these imbalances and enhance 

the semantic segmentation model. 

From a clinical perspective, the method could be used to develop an image biomarker in 

HRCT for treating novel anti-fibrotic agents in patients with DILD, which might be currently 

available. The accuracy of the U-Net-based fine-tuned model could be used as an imaging 

biomarker for making treatment decisions on novel anti-fibrotic agents. Making use of CNN 

with the fine-tuned method effectively improved the performance; however, this method 

displays several limitations. First, the HRCT data were acquired from only one center. 
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Therefore, in further studies, multi-center data would be required. Second, the agreements 

between the U-Net-based semantic segmentation and the two radiologists were found to be 

quite low. Although they are higher than those of the SVM results and semantic segmentation 

before fine-tuning, it is necessary to enhance the accuracy of semantic segmentation by label 

curation through approaches such as human-in-loop correction, etc. Third, there are 

excessively strong imbalances in the six image patterns in the dataset; to overcome these 

problems, we need more innovative augmentation methods such as Perlin noise and GAN-

augmentation. 

Overall, we evaluated and tried various kinds of experiments to find adequate deep learning

based semantic segmentation models with a medical image with high accuracy and relevance 

to the clinical context. Thus, we proposed a fully automatic segmentation network with various 

kinds of CNN models considering organ-specific, image modality-specific, and image 

reconstruction-specific variations. Basically, in the case of slices with dense thickness, 2D 

semantic segmentation has a better performance. In addition, pre-processing is sensitive to the 

development of robust segmentation, which needs image normalization and various types of 

augmentation. However, since modern GPUs lack memory for 3D semantic segmentation, 

cascaded semantics segmentation or patch-based semantic segmentation shows better results. 

An anatomic variation could be easily trained by semantic segmentation, but disease variations 

of cancer are hard to train. In addition, size-invariant semantic segmentation could be one of 

the important issues in medical image segmentation. Variations in contrast agent uptake could 

be vulnerable to the overall performance of semantic segmentation. For multi-center 

evaluation, subtle variations including variations of vendors, image protocols, and noise levels 

between centers could be problematic in training robust semantic segmentation. In addition, 

the labeling of semantic segmentation is too tedious and time-consuming. Therefore, deep 

learning based smart labeling would be needed. Given these issues, various applications with 

semantic segmentation in medical images, including active learning with smart labeling, 
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robust radiomics analysis, and disease pattern segmentation, automated segmentation were 

developed and evaluated. Semantic segmentation in medical images has been already shown 

to have great potential in detecting and analyzing tumors in clinical images, and this trend will 

undoubtedly continue in the future.
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6 Conclusion

In this paper, we have found that adequate semantic segmentation with deep learning in 

medical images can improve the segmentation quality. Such an improvement can be helpful in 

computer-aided diagnosis, image quantification, and surgical planning in actual clinical 

settings. In addition, we provided an overview of the main technologies, discussed technical 

details, the major challenges of deep learning based medical image segmentation, and its 

applications. Most importantly, we have found an effective solution to deal with the major 

challenges of medical image segmentation, including robust segmentation for smart labeling, 

radiomics analysis, and imaging biomarker development of the DILD progress. We believe 

that this paper can help present and future researchers choose the right network structure and 

handle major issues related to medical image segmentation. Finally, deep learning based 

medical image segmentation and its application may be sufficient to provide practical utility 

to many physicians and patients who do not need to learn sectional anatomy.
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Abstract (In Korean)

의료 영상 분할은 영상의 정량화, 자동 진단, 수술 계획 등 다양한 의료영상을

이용한 응용에 필수적인 역할을 하고, 장기 혹은 병변의 모양과 부피에 대한 중

요한 정보를 제공한다. 그러나, 사람이 수동으로 분할을 한다면 일관된 분할이

어렵고 시간도 많이 소요된다. 따라서, 고전적인 영상 처리 혹은 머신 러닝 방법

등을 이용하여 반자동 또는 자동으로 영역을 분할하는 다양한 연구가 진행되었

다. 그러나 기존의 영상처리 및 머신 러닝을 통한 분할 방법들은 영상의 해부학

적 모양 및 질병 상태 등에 따라 영상의 특징이 매우 다양하여, 최적의 분할 방

법을 찾기가 어렵다. 따라서, 많은 연구자들이 보다 안정되고 효율적인 의료 영

상 분할 방법을 모색하고 있는 중이다. 

최근 몇 년 동안 딥러닝 모델은 컴퓨터 비전 분야에 성공적으로 적용되어서 의

료 영상 분야에도 빠르게 적용되고 있다. 특히, 의료 영상 분할에서도 다양한 해

부학적 정보와 질병에 대해 정확하고 견고한 분할 결과를 보여주며, 비약적인 발

전을 이루었다. Residual Net, Fully Convolutional Network(FCN) 및 U-Net 과 같

은 몇 가지 심층 합성곱신경망(Deep Convolution Neural Net; CNN) 모델이 제안

되었다. 이러한 모델은 이미지 분류, 세분화, 물체 감지 및 추적 작업을 위한 최

첨단 성능을 제공할 뿐만 아니라, 이미지 처리에 대해 새로운 관점을 제공한다. 

따라서, 딥러닝은 영상의학 전문의와 외과의가 컴퓨터 단층 촬영(CT) 또는 자기

공명 영상(MRI) 이미지 등에서 다양한 해부학적 구조를 분할하는 데 도움을 줄

수 있다.

본 논문에서는 정확성과 임상적 관점에서 딥러닝을 기반으로 적절한 의료 영상

분할 모델을 찾고 적용하기 위해 다양한 실험을 평가하고 시도하였다. 이 연구의

목적은 두 가지이다. 1) 임상적 가치와 영상의 특성에 기반하여 딥러닝을 사용한
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분할 모델을 찾고 개발한다. 2) 스마트 레이블링을 통한 능동적 학습(Active 

Learning using smart labeling), 강건한 레디오믹스(Radiomics) 분석, 질병 패

턴 분할 등 의료영상 분할을 이용한 다양한 응용에 생기는 문제를 해결하는 분할

기법을 개발하고 적용한다. 이를 위해 장기의 위치 및 해부학적 특성, 이미지 모

달리티 등을 고려한 다양한 종류의 병변에 대해 완전 자동 분할이 가능한 네트워

크를 제안했다. 딥러닝 기반의 분할 네트워크 모델은 뇌 MRI 의 신경 교종, 급성

뇌졸중 경색, MRI 의 유방 및 기타 조직, 췌장암이 포함된 췌장 분할, CBCT 의 하

악골 및 상악동, 등과 같은 의료 영상 데이터를 가지고 수행되었다. 

일반적으로 두께가 두꺼운 슬라이스의 경우 2D 영상 분할이 더 나은 성능을 보

여주었다. 또한, 영상 특성에 맞는 전처리가 강인한 영상 분할 기법을 개발하는

데 민감하다. 이는 딥러닝의 특성상 이미지 표준화 중요하다는 것을 알수 있다. 

또한, 컴퓨터 그래픽 메모리는 3차원의 영상을 자동 분할을 하기에 메모리가 부

족하기 때문에, 계단식(Cascaded) 분할 또는 패치 기반 분할이 더 나은 결과를

보여주었다. 자연스런 해부학적 변이는 영상 분할(Semantic Segmentation)에 의

해 상대적으로 쉽게 훈련될 수 있지만, 암의 질병 변이는 쉽게 훈련되지 않는다. 

암 등 크기가 변하는 병변은 크기 불변(Scale invariant) 영상 분할이 중요한 문

제 중 하나이다. 또한, 조영제에 따른 영상의 변화는 영상 분할의 전반적인 성능

을 낮춘다. 멀티센터 평가의 경우 장비업체, 이미지 프로토콜 및 센터 간의 영상

수준 등의 변화에 따라 강인한 영상 분할을 학습하는데 문제가 된다. 또한 영상

분할의 레이블링은 시간이 상당히 많이 걸린다. 따라서 딥 러닝 기반으로 한 효

율적인 스마트 라벨링이 필요하다. 이러한 문제들을 바탕으로 능동적 학습, 강인

한 레디오믹스 분석, 영상 바이오마커 (imaging biomarker)를 위한 질병 패턴 분

할 등 의료 영상 분할을 통한 다양한 응용을 위한 연구를 하였다.
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결론적으로 우리는 의료 영상에서 딥러닝을 통한 최적의 영상 분할이 분할 품

질을 개선할 수 있다는 것을 발견했으며, 이는 실제 임상 환경에서 컴퓨터 지원

진단, 영상 정량화 및 수술 계획에 도움이 될 수 있게 되었다. 의료 영상 분할과

그 적용은 해부학을 배울 필요가 있는 많은 의사와 환자에게 실질적인 유용성을

제공하기에도 충분할 것이라 사료된다.
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