
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


MACHINE LEARNING-BASED RADIO RESOURCE

MANAGEMENT FOR COGNITIVE RADIO NETWORKS

———

DISSERTATION

for the Degree of

DOCTOR OF PHILOSOPHY

(Electrical, Electronic and Computer Engineering)

———

HOANG THI HUONG GIANG

MAY 2021

[UCI]I804:48009-200000500547[UCI]I804:48009-200000500547[UCI]I804:48009-200000500547



Machine Learning-based Radio Resource Management for

Cognitive Radio Networks

Supervisor: Professor In-Soo Koo

DISSERTATION

Submitted in Partial Fulfillment

of the Requirements for the

Degree of

DOCTOR OF PHILOSOPHY

(Electrical, Electronic and Computer Engineering)

at the

UNIVERSITY OF ULSAN

by

Hoang Thi Huong Giang

May 2021

Publication No.



©2021 - Hoang Thi Huong Giang

All rights reserved.





VITA

Hoang Thi Huong Giang was born in Nam Dinh City, Vietnam, in 1990. She

received her bachelor’s degree in Electronics and Telecommunications Engineering from Ton

Duc Thang University, Ho Chi Minh City, Vietnam, in 2013, and her master’s degree from

Graduate Institute of Digital Mechatronic Technology, College of Engineering, in Chinese

Culture University, Taiwan, in 2015. Since August 2015, she has been working as a lecturer at

the Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Vietnam.

Since September 2016, she has been pursuing her Ph.D. degree in Electrical,

Electronic and Computer Engineering at the University of Ulsan (UOU), South Korea,

under the supervision of Professor Insoo Koo. Her current research focuses on POMDP,

reinforcement learning, deep neural network and their applications to cognitive radio networks

under energy constraint.

iii



Dedicated to my dearest family and friends

for

their endless love, support and encouragement

iv



ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my dear parents for

giving me the strength and education to reach for the stars and chase my dreams. I am also

grateful to my little sister who has always been available to exchange confidences whenever I

need in spite of different time zone. In addition, I thank my love and also my colleague, Pham

Duy Thanh, who was always companion with me during my study and always encouraged

me, helped me when I was in tough time with my research.

I owe my deepest gratitude to my advisor, Professor Insoo Koo, for offering me the

opportunity to pursue my Ph.D. and be a part of his research group. His kindness, constant

support, encouragement, and persistent guidance are invaluable since it has helped me a lot

in doing research, especially when dealing with problems.

I would like to thank to the members of my Ph.D. supervisory committee for their

valuable and useful comments that help a lot to improve the quality of this dissertation.

I am grateful to all members of the multimedia communications system laboratory

(MCSL) for their friendship, enthusiastic help, and cheerfulness during my study in Korea.

Especially, I would like to thank Dr. Vu Van Hiep, Dr. Tran Nhut Khai Hoan for their

valuable discussion, collaboration, and useful guidance throughout my Ph.D. study. I am

grateful to my little friend, Linh, for her kind support, whenever I am in trouble to deal

with any problem related to Korean interpretation. I also thank Carla, Mario, Iqra, Thien,

Dung, and Toan for all that we spent together.

Last but not least, I gratefully appreciate the BK21 Plus for financial support

during my study in University of Ulsan.

Hoang Thi Huong Giang

Ulsan, South Korea, May - 2021.

v



ABSTRACT

Machine Learning-based Radio Resource Management for

Cognitive Radio Networks

by

Hoang Thi Huong Giang

Supervisor: Prof. In-Soo Koo

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Electrical, Electronic and Computer Engineering)

May 2021

Spectrum scarcity is one of the essential issues in fifth-generation (5G) and beyond

communication systems. Moreover, in the last few decades, the number of dramatically

increasing mobile applications led to surging demand for radio resources. In order to tackle

with spectrum inefficiency issue, the dynamic spectrum access techniques (i.e., cognitive radio

(CR)), ambient backscatter communication, and non-orthogonal multiple access (NOMA)

are studied. In cognitive radio networks (CRNs), cognitive users (CUs) are able to utilize

the licensed spectrum bands of the primary users (PUs) while either the interference caused

by the cognitive users is acceptable or the PUs are inactive at that time. On the other

hand, ambient backscatter communication is emerging technique for green communication,

where its key idea is to transmit data from a transmitter to its corresponding receiver

by backscattering the signals via an ambient radio frequency (RF) source. In addition,

NOMA allows multiple users to use the same frequency and time resources for their data

transmissions. The integration of these techniques is capable of further advancing the

spectrum efficiency in wireless communication systems.

Along with rapid developments of mobile devices, energy management also becomes

a crucial issue since most of the smart mobile devices require long-term operation to meet

their high energy consumption applications, but the battery capacity is still limited. In

recent works, wireless communications powered by external harvested energy have become

a promising technique to solve the energy-constrained problem. Radio frequency (RF)-

harvested energy in a CRN is one of the potential solutions for energy-constrained issue in
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Abstract vii

wireless networking, where the wireless devices can harvest energy from ambient RF signals.

In addition, the wireless devices can also harvest ambient energy for their rechargeable

batteries from perpetual non-RF sources (i.e., solar, wind. . . ).

Nowadays, dynamic resource allocation algorithms for the energy harvesting CRNs

are carefully being investigated due to the crucial effect of resource management on long-term

system performance. Motivated by the aforementioned survey, this dissertation will focus on

these remaining issues for CRNs as follows:

Firstly, we investigated jamming attacks in the physical layer against cooperative

communications networks, where a jammer tries to block the data communication between

the source and destination. An energy-constrained relay is able to assist the source to

forward the data to the destination even when the jammer tries to block the direct link. Due

to a limited capacity battery of the relay, a non-radio frequency energy harvester equipped in

the relay helps to prolong its operation. We propose a scheme based on a partially observable

Markov decision process (POMDP) to find the optimal action for the source such that we

can maximize the achievable throughput of cooperative communications networks. Under

this scheme, the source dynamically selects the appropriate action mode for its transmission

in order to obtain maximum throughput under the jamming attack. Simulation results verify

that the proposed scheme is superior to the myopic scheme where only current throughput

is taken into account for making decisions.

Secondly, wireless energy harvesting enables wireless-powered communications to

accommodate data services in a self-sustainable manner over a long operational time. Along

with energy harvesting, an ambient backscatter technique helps a secondary transmitter

reflect existing RF signal sources to communicate with a secondary receiver when the primary

channel (PC) is utilized. However, secondary system performance is significantly affected

by factors such as the availability of the primary channel, imperfect spectrum sensing,

and energy-constrained problems. Therefore, we propose a novel approach for wireless-

powered CRNs to improve the transmission performance of secondary systems. To reduce

the dependence of the secondary system on RF sources, in the paper, we provide a new

paradigm by integrating ambient backscattering with both RF and non-RF wireless-powered

communications to facilitate secondary communications. Based on the sensing result in

a time slot, the secondary transmitter can dynamically select the operational action: 1)

backscattering, 2) harvesting or 3) transmitting to maximize the long-term achievable data

transmission rate at the secondary receiver. In addition, the optimal action set for cognitive
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radio networks with wireless-powered ambient backscatter is selected by the POMDP, which

maximizes an expected transmission rate calculated over a number of subsequent time

slots. The proposed scheme aims to improve long-term transmission rate of CRNs with

wireless-powered ambient backscatter in comparison with conventional schemes where an

action is taken only to maximize the immediate reward in every single time slot.

Thirdly, we consider an uplink NOMA cognitive system, where the SUs can

jointly transmit data to the cognitive base station (CBS) over the same spectrum resources.

Thereafter, successive interference cancellation (SIC) is applied at the CBS to retrieve signals

transmitted by the SUs. In addition, the energy-constrained problem in wireless networks is

taken into account. Therefore, we assume that the SUs are powered by a wireless energy

harvester to prolong their operations; meanwhile, the CBS is equipped with a traditional

electrical supply. Herein, we propose an actor–critic reinforcement learning approach to

maximize the long-term throughput of the cognitive network. In particular, by interacting

and learning directly from the environment over several time slots, the CBS can optimally

assign the amount of transmission energy for each SU according to the remaining energy

of the SUs and the availability of the primary channel. As a consequence, the simulation

results verify that the proposed scheme outperforms other conventional approaches (such as

Myopic NOMA and OMA), so the system reward is always maximized in the current time

slot, in terms of overall throughput and energy efficiency.

Then, a hybrid NOMA/OMA scheme is considered for uplink wireless transmission

systems where multiple cognitive users (CUs) can simultaneously transmit their data to

a cognitive base station (CBS). We adopt a user-pairing algorithm in which the CUs are

grouped into multiple pairs, and each group is assigned to an orthogonal sub-channel such

that each user in a pair applies NOMA to transmit data to the CBS without causing

interference with other groups. Subsequently, the signal transmitted by the CUs of each

NOMA group can be independently retrieved by using successive interference cancellation

(SIC). The CUs are assumed to harvest solar energy to maintain operations. Moreover, joint

power and bandwidth allocation is taken into account at the CBS to optimize energy and

spectrum efficiency in order to obtain the maximum long-term data rate for the system.

To this end, we propose a deep actor-critic reinforcement learning (DACRL) algorithm to

respectively model the policy function and value function for the actor and critic of the

agent (i.e., the CBS), in which the actor can learn about system dynamics by interacting

with the environment. Meanwhile, the critic can evaluate the action taken such that the
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CBS can optimally assign power and bandwidth to the CUs when the training phase finishes.

Numerical results validate the superior performance of the proposed scheme, compared with

other conventional schemes.

Next, we consider an uplink solar-powered cognitive radio networks (CRNs) where

multiple secondary users (SUs) transmit data to a secondary base station (SBS) by sharing

a licensed channel of a primary system. A deep Q-learning (DQL) algorithm, which

combines non-orthogonal multiple access (NOMA) and time division multiple access (TDMA)

techniques, is proposed to maximize the long-term throughput of the system. By using our

scheme, the agent (i.e. the SBS) can obtain the optimal decision by interacting with the

environment to learn about system dynamics. Simulation results validate the superiority of

the performance under the proposed scheme, compared with traditional schemes.

Consequently, we end up this dissertation by summarizing its main contributions

and opening a new door for deep reinforcement learning and its applications in future wireless

networks.



Contents

Supervisory Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cognitive Radio Network . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 POMDP-Based Throughput Maximization for Cooperative Communi-
cations Networks with Energy-Constrained Relay under Attack in the
Physical Layer 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Optimal Mode Decision Policy Based on POMDP . . . . . . . . . . . . . . 17

2.3.1 Relay-assisted Transmission Mode . . . . . . . . . . . . . . . . . . . 18

2.3.2 Direct Transmission Mode . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A POMDP-based Long-Term Transmission Rate Maximization for Cogni-
tive Radio Networks with Wireless-Powered Ambient Backscatter 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Non-RF Energy Harvesting Model . . . . . . . . . . . . . . . . . . . 35

3.2.3 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



Contents xi

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Proposed Scheme Description and Observations . . . . . . . . . . . . 37

3.4.1.1 Backscattering . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1.2 Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1.3 Transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Overall Expected Reward . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Optimal Mode Decision Policy . . . . . . . . . . . . . . . . . . . . . 45

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Uplink NOMA-based Long-Term Throughput Maximization Scheme for
Cognitive Radio Networks: An Actor-Critic Reinforcement Learning
Approach 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Energy Harvesting and Primary User Models . . . . . . . . . . . . . 59

4.2.3 Imperfect Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Actor–Critic Reinforcement Learning–Based Algorithm for Uplink NOMA in
Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Actor–Critic Reinforcement Learning Algorithm . . . . . . . . . . . 63

4.4.2.1 Silent Mode (Ω1) . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2.2 Transmission Mode . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Hybrid NOMA/OMA-Based Dynamic Power Allocation Scheme Using
Deep Reinforcement Learning in 5G Networks 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Energy Arrival and Primary User Models . . . . . . . . . . . . . . . 85

5.3 Long-Term Transmission Rate Maximization Problem Formulation . . . . . 86

5.4 Deep Reinforcement Learning-Based Resource Allocation Policy . . . . . . . 87

5.4.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1.1 Silent Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1.2 Transmission Mode . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Deep Actor-Critic Reinforcement Learning Algorithm . . . . . . . . 92

5.4.2.1 The Critic with a DNN . . . . . . . . . . . . . . . . . . . . 93

5.4.2.2 The Actor with a DNN . . . . . . . . . . . . . . . . . . . . 93

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



xii Contents

6 Deep Q-learning-based Resource Allocation for Solar-powered Users in
Cognitive Radio Networks 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 Energy Arrival and Primary Channel Models . . . . . . . . . . . . . 110

6.3 Long-term Throughput Maximization Problem Formulation . . . . . . . . . 111
6.4 Deep Q-Learning–Based Resource Allocation Policy . . . . . . . . . . . . . 112

6.4.1 Decision-making process . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2.1 Silent Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.2.2 Transmission Mode . . . . . . . . . . . . . . . . . . . . . . 114

6.4.3 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Summary of Contributions and Future Works 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Publications 129

Bibliography 131



List of Figures

2.1 The system model of the proposed scheme. . . . . . . . . . . . . . . . . . . 11

2.2 Frame structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 A Markov chain model of the jammer. . . . . . . . . . . . . . . . . . . . . . 16

2.4 Flowchart of the proposed scheme. . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Average throughput versus required transmitted energy. . . . . . . . . . . . 23

2.6 Average throughput versus capacity of battery. . . . . . . . . . . . . . . . . 24

2.7 Average throughput versus capacity of the battery when detection probability
Pd = 0.4, 0.6, and 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Average throughput versus detection probability Pd when transmission energy
Etr = 4, 6, and 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 System model of the considered network. . . . . . . . . . . . . . . . . . . . . 32

3.2 Schematic structure of secondary transmitter. . . . . . . . . . . . . . . . . . 33

3.3 The time frame structure of the secondary user. . . . . . . . . . . . . . . . . 33

3.4 Markov chain model of the PU. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 The flowchart of the proposed scheme. . . . . . . . . . . . . . . . . . . . . . 38

3.6 The long-term transmission rate of the secondary system under various values
for harvested non-RF energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 The energy efficiency of the secondary system under various values of harvested
non-RF energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 The selected action statistics of the secondary system under various values of
harvested non-RF energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 The long-term transmission rate of the secondary system according to different
communications ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 The energy efficiency of the secondary system according to different commu-
nications ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 The selected action statistics of the secondary system according to different
communications ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 System model of the proposed scheme. . . . . . . . . . . . . . . . . . . . . . 57

4.2 Time frame of the three phases in the secondary users’s operations. . . . . . 57

4.3 Illustration of SIC detection of the signals at the CBS. . . . . . . . . . . . . 59

4.4 Markov chain model of the primary user. . . . . . . . . . . . . . . . . . . . 60

xiii



xiv List of Figures

4.5 The flowchart of the proposed scheme. . . . . . . . . . . . . . . . . . . . . . 64
4.6 The actor–critic learning process. . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 The convergence process of the actor–critic according to different values of

learning step-size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Average throughput of the secondary system under various values of harvested

energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9 Energy efficiency of the secondary system for various values of harvested energy. 72
4.10 The selected action statistics of each secondary user using the actor–critic

NOMA approach for various values of harvested energy. . . . . . . . . . . . 73
4.11 The selected action statistics of each secondary user using the Myopic NOMA

approach for various values of harvested energy. . . . . . . . . . . . . . . . . 73
4.12 Average throughput for different values of h1 and h2. . . . . . . . . . . . . . 74
4.13 Energy efficiency according to the channel gain between the CBS and SU1. 75
4.14 Average throughput according to the noise variance. . . . . . . . . . . . . . 75
4.15 Energy efficiency according to the noise variance. . . . . . . . . . . . . . . . 76

5.1 System model of the proposed scheme. . . . . . . . . . . . . . . . . . . . . . 82
5.2 Time frame of the cognitive users’ operations. . . . . . . . . . . . . . . . . . 84
5.3 Markov chain model of the primary channel. . . . . . . . . . . . . . . . . . . 86
5.4 The agent–environment interaction process. . . . . . . . . . . . . . . . . . . 88
5.5 The structure of deep actor-critic reinforcement learning. . . . . . . . . . . 91
5.6 The deep neural network in the critic. . . . . . . . . . . . . . . . . . . . . . 92
5.7 The deep neural network in the actor. . . . . . . . . . . . . . . . . . . . . . 94
5.8 The convergence rate of the proposed actor-critic deep reinforcement learning

with different training steps in each episode. . . . . . . . . . . . . . . . . . . 98
5.9 The convergence rate of the proposed actor-critic deep reinforcement learning

according to different learning rate values. . . . . . . . . . . . . . . . . . . . 99
5.10 Average transmission rate according to different values for mean harvested en-

ergy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.11 Energy efficiency according to different values of harvested mean energy. . . 100
5.12 Average transmission rate according to noise variance. . . . . . . . . . . . . 101
5.13 Energy efficiency according to noise variance. . . . . . . . . . . . . . . . . . 101

6.1 The considered network model. . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Time frame structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Two-state Markov discrete-time model for states of the primary channel. . . 110
6.4 Overall structure of the proposed DQL-based power allocation scheme. . . . 113
6.5 Structure of the neural network used for DQL. . . . . . . . . . . . . . . . . 116
6.6 The convergence behavior of the proposed scheme. . . . . . . . . . . . . . . 121
6.7 The average long-term throughput according to various values for mean

harvested energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.8 Energy efficiency according to various values for mean harvested energy. . . 122
6.9 Average throughput according to various values for noise variance. . . . . . 123
6.10 Energy efficiency according to various values for noise variance. . . . . . . . 123



Nomenclature

Notation Description

AWGN Additive White Gaussian Noise

CBS Cognitive Base Station

CRN Cognitive Radio Network

CU Cognitive User

CSI Channel State Information

CSS Cooperative Spectrum Sensing

DNN Deep Neural Network

DRL Deep Reinforcement Learning

DSA Dynamic Spectrum Access

IoT Internet of Thing

MDP Markov Decision Process

ML Machine Learning

NOMA Non Orthogonal Multiple Access

PBS Primary Base Station

POMDP Partially Observable Markov Decision Process

PU Primary User

RF Radio Frequency

RL Reinforcement Learning

SBS Secondary Base Station

SNR Signal-to-Noise Ratio

SIC Successive Interference Cancellation

SR Secrecy Rate

SU Secondary User

TDMA Time Division Multiple Access

xv



Chapter 1

Introduction

1.1 Background

1.1.1 Cognitive Radio Network

Over the last 2 decades, we have been witnesses for the enormous number of

successes of wireless communications technology and an impressive increase of the data

traffic. Consequently, the limited spectrum resource conflicts with growing demands due to

tremendous increase of mobile devices. According to the report of Federal Communications

Commission, spectrum scarcity currently becomes largely because of the physical shortage

of the spectrum [1]. In recent years, cognitive radio (CR) has emerged as the most expected

candidate to deal with the spectrum scarcity and enhance the spectrum utilization, which

is also known as dynamic spectrum access (DSA). In a cognitive radio network (CRN),

the main components are the primary network and the secondary network. The primary

network is the initial licensed network that possesses the spectrum. The secondary network

is the unlicensed network, which intends to access the spectrum. In order to access the

licensed spectrum, the secondary users (SUs) need to perform the spectrum sensing (SS) to

identify the available spectrum bands, where temporally no primary users (PUs) are active.

Regarding several works [2, 3], the network performance would be reasonably weakened due

to the imperfect SS. For this reason, the SUs should perform cooperative spectrum sensing

(CSS) techniques to improve the accuracy of decisions such as the detection probability is

higher and the false alarm probability is smaller. In CSS, a number of SUs individually

sense the licensed spectrum band and send their local sensing result to a fusion center where

1
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the local sensing information is collected using specific rules to determine a final decision

about the state of the primary channel. Thereafter, the fusion center broadcasts the final

decision to the SUs in CRNs.

1.1.2 Machine Learning

Machine learning (ML) is a part of computer science, it is a process that trains

a computer to learn from its past experiences to tackle a given problem. Nowadays, ML

has been significantly attracted interest thanks to the concept that ML is able to solve

problems faster than human. Moreover, it is possible to process and analyze a numerous

amount of data to explore insights among the data that the people are not enable to observe

obviously. The intelligent decision of the machine is based on different algorithms, which

enables the machine to learn from its experiences in order to produce good judgments.

ML can be classified into 4 main categories according to their purpose, such as supervised

learning, unsupervised learning, semi-supervised learning and reinforcement learning. In

this dissertation, we focus on reinforcement learning (RL).

RL is a prominent solution to deal with Markov decision processes (MDPs), which

allows an agent to learn the optimal decision policy when the agent has no information

about the surrounding environment. In RL, the agent periodically selects actions, observe

the results, and then automatically adjust its strategy to obtain the optimal policy. However,

the learning process of RL takes a lot of time to converge because it needs time to explore

and gain knowledge from the environment. Thus, this makes it inefficient and inapplicable

into large-scale networks. Recently, deep reinforcement learning (DRL) has emerged as

an advanced version of RL, which is combined of RL and deep neural network (DNN).

Consequently, DRL can overcome the limitations of RL, and thus provides better solutions

to large-scale and sophisticated problems.

1.2 Thesis Motivation and Objective

In the past few decades, with the explosive development of mobile communications

and multimedia services, the traffic demand has been increasing dramatically. Consequently,

more and more radio spectrum resources are needed to satisfy these demands. Nevertheless,

most of allocated spectrum are not efficiently utilized. From this perspective, CRN has been
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proposed as a promising solution that allows SUs to opportunistically access the licensed

spectrum when it is temporally unoccupied by PUs [4].

Moreover, the SUs has limited capacity and are often powered by energy havester

modules, which are enable to gather energy from ambient sources, such as wind power,

solar power, and RF energy. The devices with finite capacity always harvest and store the

energy in their rechargeable batteries to carry out the operations of the network. Hence, it is

essential to allocate the energy resource based on machine learning to improve the network

lifetime and long-term network performance.

In general, the SUs are only enabled to utilize the licensed spectrum when they do

not make any interference to the primary network. Therefore, SS plays a crucial role in the

PUs’ activities detection procedure. Inherently, SS is the signal detection, and it can be

applied to identify the presence of the PUs. However, the performance of single detector may

be reduced in the practical environment due to shadowing, fading, and hidden nodes issues.

In order to deal with these issues, CSS is proposed to improve the detection performance

and identify the state of PUs more sensitively.

The main objective of this dissertation is to solve the aforementioned issues by

using machine learning-based methods, such as value iteration-based dynamic program-

ming, reinforcement learning, and deep learning. The contributions of this dissertation are

summarized as follows:

(i) First, we investigate jamming attacks in the physical layer against cooperative commu-

nications networks to maximize the achievable throughput of the networks under the

jamming attack.

(ii) Second, we adopts the ambient backscatter for the secondary transceiver communication

in wireless-powered CRN, in which SUs are powered by both non-radio frequency (RF)

and RF energy harvesters to deal with energy-constrained problem.

(iii) Third, we propose the uplink NOMA technique, where the SUs can simultaneously

transmit data on the same channel and in the same time slot, with the objective being

spectral efficiency.

(iv) Next, we study joint power and bandwidth allocation to optimize energy and spectrum

efficiency in order to obtain the maximum long-term data rate for the system.
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(v) Finally, we propose deep reinforcement learning for resource allocation, which aims to

maximize the long-term throughput of the system under energy constraints of the SUs.

1.3 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 presents a cooperative

communication scheme with energy-constrained relay under jamming attack. Chapter 3

introduces the ambient backscatter for the secondary transceiver communication in wireless-

powered CRN with both non-RF and RF energy harvesting. Chapter 4 studies the uplink

NOMA for CRNs. Chapter 5 describes a model of a hybrid NOMA/OMA uplink CRN

adopting energy harvesting at the CUs. Chapter 6 considers a resource allocation for

solar-powered users in CRNs. Chapter 7 discusses about the future directions of research. A

brief description of each chapter is given below.

Chapter 2 considers the average throughput maximization of cooperative commu-

nications networks under a jamming attack. Moreover, the energy-constraint problem of a

relay is also considered. In this network, the source and cooperate with a relay to enhance

the achievable throughput under the presence of jamming. The network is assumed to follow

a synchronous in a time-slotted manner. At the beginning of each time slot, the source

performs SS to detect the state of jammer. After that, the source can decide whether to

cooperate with a relay or not based on the sensing result and state of network. The problem

is formulated and solved by the partially observable Markov decision process (POMDP).

Chapter 3 studies an optimal transmit power decision policy for maximizing the

long-term transmission rate of wireless-powered CRNs utilizing ambient backscatter. In

this network, the self-sustainable communication scheme for secondary users is investigated

by combining ambient backscatter technology and wireless energy harvesting technology

in CRNs. In order to share the spectrum resource with PUs, the SUs first performs SS to

identify if the primary channel is free ornot. Subsequently, based on the sensing result, the

secondary transmitter will select appropriate mode whether it is backscattering, RF energy

harvesting, or data transmitting. Then, the problem can be solved by using a value-iterations

method.

Chapter 4 proposes an uplink NOMA-based transmission power allocation scheme

for CRNs. Herein, the SUs employed the NOMA technique are able to simultaneously

transmit their data to the cognitive base station (CBS). We formulate the problem of
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throughput maximization based on a MDP. Afterward, the actor-critic reinforcement learning

approach is adopted to tackle the problem, where the CBS can interact with the environment

and allocate the optimal amount of energy for each user in order to maximize the long-term

performance of the network.

Chapter 5 studies efficient joint power and bandwidth allocation by adopting hybrid

NOMA/OMA in uplink CRNs. In particular, solar energy-powered CUs are assigned the

proper transmission power and bandwidth to transmit data to a CBS in every time slot

in order to maximize the long-term data transmission rate of the system. We propose a

deep actor-critic reinforcement learning framework, which is a combination of DNN and

reinforcement learning, to allocate the appropriate transmission power and bandwidth to

the CUs by directly interacting with the environment.

Chapter 6 employs a deep Q-learning algorithm in order to optimal policy for the

system from trial-and-error interactions with the environment after training. We investigate

a NOMA/TDMA-based deep Q-learning approach to maximize the long-term throughput of

a secondary system. Throughout the training phase, the proposed scheme does not have

prior knowledge of the harvested energy distribution of SUs. However, that information can

be learned, and then an optimal decision policy is achieved.

Chapter 7 concludes this dissertation and gives a discussion on future research

directions.



Chapter 2

POMDP-Based Throughput

Maximization for Cooperative

Communications Networks with

Energy-Constrained Relay under

Attack in the Physical Layer

2.1 Introduction

Cooperative communications are used to effectively improve the quality of a wireless

network. The reliability and capacity of wireless communications are substantially increased

by deploying the cooperative communication technique. In a cooperative communication

system, each user can directly transmit data and collaborate with other users (i.e. relays)

to transmit its data to a destination for enhancing the quality of transmissions [5]. In this

case, an intermediate relay is used to support the transmissions between the source and

the destination. Cooperative communications can offer remarkable advantages for wireless

networks such as high energy efficiency and extended network lifetime [6,7]. Recently, several

studies have showed that cooperative communications can help to enhance the capacity and

reliability of the wireless networks [8–10].

The physical layer is the lowest layer in the Open Systems Interconnection (OSI)

6
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model. It can be used to verify the physical properties of a transmission in the network.

However, the broadcast nature of wireless communications leaves the physical layer vulnerable

to threats, e.g. eavesdropping, node tampering, hardware hacking, and jamming attacks [11].

In an eavesdropping attack, the eavesdropper can overhear the confidential information

of legitimate users and occupy the data in the transmission area of a node. In node

tampering, the attacker can replace the entire physical node or part of the node. Hardware

hacking can damage nodes via malicious entities such that the nodes can lose their expected

functionality, leaving them vulnerable to other risks. In jamming attacks, a jammer attempts

to prevent users from accessing wireless network resources and reduces network availability

by generating interference signals on the channels. This exhausts the energy of the nodes in

the network [12,13].

A cooperative communications network is particularly vulnerable to malicious

attacks in the physical layer. Moreover, jamming is one of the more serious attacks that

greatly degrade network performance. In order to tackle the jamming attacks, frequency

hopping spread spectrum and direct sequence spread spectrum are widely utilized [14].

However, the same sequence can be used by the jammer to attack its target if the hopping

sequence is exposed. Thus, the random rendezvous [15] and the uncoordinated frequency

hopping [16] are used to safely share the hopping sequence. Nevertheless, these techniques

result in the time wastes for the communications. Therefore, other secret sharing protocols

are proposed such as public key cryptography, certificate and authentication protocol

but they cause the large overheads and computational [17]. Desmedt [18] proposed an

efficient coding method that provides protection against malicious users. Popper et al. [19]

applied the uncoordinated spread spectrum (USS) techniques to prevent jamming of the

communications between transmitter and receiver. USS achieved effective anti-jamming by

discarding the require secrets before sharing, at the expense of a decreased communications

throughput. However, USS techniques require the complex frequency synthesizers. Chorti

derived optimal power allocation policies for transmitter and receiver pairs, where the active

jammer is formulated as a one-shot zero-sum game for anti-jamming in secret key-generation

systems [20]. Almost all the previous works on anti-jamming focus on how to design physical

layer technologies (e.g. spread spectrum) [14, 16, 19, 21–23]. If the signals are widely spread,

it will become harder for the jammer to interrupt the transmission link; meanwhile, the

complexity in spread spectrum technique may be enlarged and thus it is not easy to deploy

in the reality.
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Recently, various jammer localization schemes have been proposed in wireless

communications [24, 25]. The authors in [24] use spatial information as the basis for

detecting the attacks to verify the number of attackers and localize the ambient adversaries.

In [25], the authors consider the multiple jammers scenario in which multiple jammers can

attack the network at the same time to achieve a better jamming effect. They propose

the jamming detection scheme by developing x-rayed jammed-area localization algorithm.

However, measurement data collection and position information sharing will bring more

challenges. In [26], the authors investigate the multi-hop multi-channel cognitive radio

network in the presence of multiple jammers. To deal with the energy-constrained problem,

two novel algorithms are proposed to maximize the energy efficiency of data transmission

from the source to the destination under the jamming attacks. Although the simulation

results can verify the effectiveness of the proposed scheme, the applicable metrics may be

limited due to the high overheads and algorithm complexity when the number of intermediate

relays in the network is large. The digital feedback scheme is proposed to improve the speed

of transceivers and it is also proved to be robust to noise in the feedback channel [27]. In

order to deal with the energy-constrained issue and resource scarcity, the authors developed

the joint controller and the related supporting access protocol to maximize both the energy

and bandwidth efficiency of the vehicular access network, which is guaranteed to be reliable

and safe in the wireless communication [28].

Recently, energy harvesting has become one of the appealing techniques for solving

the energy-constraint problem in wireless networks. Practically, user equipment units (UEs)

often are equipped with a limited-capacity battery. That results in degradation of network

performance due to limited energy for the operation. Thus, energy harvesting technique can

provide permanent energy for the battery without any physical replacements. Fortunately,

UEs can harvest energy from non-radio frequency (RF) signals (e.g. solar, wind, heat,

etc.) [29] or from RF signals [30,31], which are available in ambient environments.

In this chapter, we consider the jamming attack scenario in cooperative commu-

nication system that consists of a source, a destination, a relay, and a jammer where the

jammer intends to inject interference signals to block the transmission link (from the source

to destination). The jammer in this chapter is assumed to always broadcast enough the

interference (power) to block the communication in its communication range when it is

actived. We define the jammer as “absolute jammer”. The behavior of the jammer is

assumed to follow the Markov chain model.
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In order to deal with the challenge of the jammer, we propose to use a relay to

help the source to forward the data to the destination. However, the relay is assumed to be

a small and movable device (for easy set up). Subsequently, the relay has a small battery

that can allow the device to work in a limited time. The energy harvesting technique is

applied to deal with energy-constrained problem at the relay; however, the limited energy

arrival rate is also taken into account where the relay can harvest non-RF energy from the

ambient environment with a limited amount of energy in each time slot [26,29]. Moreover,

the imperfection of the spectrum sensing mechanism [24,25,32] on the jamming detection at

the source is also considered.

This chapter aims to maximize the long-term achievable throughput of the cooper-

ative communication system in which the source will make the optimal decision on whether

or not the source should cooperate with the relay to transmit the data to the destination

securely with the purpose of degrading the jamming effect. We formulate the problem based

on the POMDP framework [32] and propose a novel scheme to obtain the optimal policy such

that the source can select the best action in every single time slot by considering long-term

throughput maximization. The main contributions of this chapter are summarized as follows

• We investigate the throughput maximization of the cooperative communication system

under the jamming attack, where an intermediate relay equipped with a limited-

capacity battery is deployed to securely facilitate the transmission from the source to

the destination. Meanwhile, due to the limited energy of the jammer, the jamming

attack operation is assumed to follow the Markov chain model.

• We consider the imperfection of the spectrum sensing as well as the non-RF energy

harvesting model at the relay for long-term operation, which greatly affects the network

performance in practice.

• We propose a POMDP-based scheme at the source node to determine the optimal

policy in the cooperation with the relay to improve the long-term achievable throughput

of the network in the presence of the jamming attack. As a result, according to the

optimal policy, the optimal action in every single time slot operation can be obtained

using the proposed scheme.

• We evaluate the performance of the proposed scheme in comparison with traditional

schemes such as Myopic and Direct Link Only schemes via Matlab simulation under
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various network conditions. The numerical results are given to show the superior of the

proposed scheme as compared with others according to the various network parameters

of the cooperative communication network.

The remainder of the chapter is organized as follows. In Section 2.2, we introduce

the system model and the Markov chain model of the jammer. In Section 2.3, we describe

the optimal policy for direct-transmission and relay-assisted transmission modes. Section

2.4 evaluates our proposed scheme via simulation results. Finally, we conclude this paper in

Section 2.5.

Table 2.1: The notation list

Symbol Description

hSD, hSR, hRD Channel coefficients between S and D, S and R, and R and D

Eca Total capacity of the battery

Etr Transmission energy

Eh(t) Harvested energy at the relay in the timeslot tth

ehmean Mean value of the harvested energy

PEh(t) The probability of the harvested energy in time slot tth

T Total time frame

τs The sensing time

τSD, τSR, τRD Transmission time between S and D, S and R, and R and D, respectively

PS , PR Transmission power at the source and the receiver

xs The signal transmitted from the source

βr Amplify scale factor

γ SNR of the channel between the source and the jammer

α Discount factor

Pd, Pf Probability of detection and false alarm
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Figure 2.1: The system model of the proposed scheme.

2.2 System Model

As shown in Fig. 2.1, we consider a cooperative communication network consisting

of a source, S, a destination, D, a relay, R, and a jammer, J . The source, destination,

and jammer are assumed to have a fixed power supply such that they always have enough

energy for transmission, reception, and jamming. By using the cooperative technique, S

can cooperate with R to maximize the achievable throughput in the presence of the attack

performed by J . The network is assumed to follow a synchronous, time-slotted model with

time slot duration T . The channel coefficients between S and D, S and R, and R and D

are denoted by hSD, hSR and hRD , respectively.

In this chapter, we consider the “absolute jammer” who always has enough energy

to transmit the interference signals to destroy the channel in target transmission link in

a whole time slot duration. Therefore, when the jammer attacks the channel, the direct

transmission link from the source to the destination will be blocked; and thus, D can not

receive the data transmitted from S. Fortunately, R can help the source to forward its data

to the destination in this case. However, the relay is assumed to have a limited-capacity

battery without any fix powered supplies. Hence, the relay needs to harvest non-RF energy

to maintain its long- term operation. The relay is assumed to scavenge energy during a

whole time slot T and the harvested energy is stored in a battery with a finite capacity, Eca

. Therefore, at time slot tth , the amount of energy Eh(t) (energy units) that is harvested

by the relay can be expressed as Eh (t) ∈
{
eh1 , e

h
2 , e

h
3 , ..., e

h
ν

}
, where eh1 , e

h
2 , e

h
3 , ..., e

h
ν are

harvested energy levels, and 0 < eh1 < eh2 < eh3 < ... < ehν < Eca.
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The probability mass function (PMF) of the harvested energy is given as:

PEh (k) = Pr
[
Eh (t) = ehk

]
, k = 1, 2, 3, ..., ν. (2.1)

where PEh(t) is the probability of the harvested energy in time slot tth . In this chapter, we

assume that the harvested energy of the relay follows a Poisson distribution where Eh(t) is

a Poisson random variable with mean value ehmean , and the PMF in (1) can be rewritten as

follows:

PEh (k) ≈
e−e

h
mean

(
ehmean

)k
k!

, k = 1, 2, ..., ν. (2.2)

In order to deal with the jamming attack problem, at the beginning of each time

slot, the source needs to determine whether it should use the direct transmission mode or

relay-assisted transmission mode to transmit its data to the destination.

Fig. 2.2a depicts the time frame structure of the direct transmission mode. For

this mode, the frame is divided into two phases: sensing and data transmission. In the

sensing phase, the source performs spectrum sensing to detect jamming signals infected by

the jammer. In the data transmission phase, the source transmits the data to the destination

without any help from the relay.

s
 

SR
 

RD
 

s
 

SD
 

(a) Direct Transmission

(b) Relay-assisted Transmission

Figure 2.2: Frame structure.

Fig. 2.2b illustrates the time frame structure of the relay-assisted transmission

mode. For this mode, the frame is divided into three phases: sensing, data transmission from

the source to the destination (S −R), and data forwarding from the relay to the destination

(R−D). Unlike direct transmission, after the sensing phase, the source will transmit the
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data to the relay and then, the relay will forward the data to the destination. τs represents

the sensing time of the source. τSD, τSR, and τRD represent the data transmission times of

the links: S to D, S to R, and R to D, respectively. Note that the duration of sensing phase

in relay-assisted transmission mode is the same as direct transmission mode meanwhile the

duration τSR = τRD = 1
2τSD . For the direct transmission mode, the received signal of the

destination at the end of a time slot can be expressed as follows

yD =
√
PShSDxs + nD. (2.3)

where PS is the transmission power at the source; xs represents the signal transmitted from

the source, hSD represents the channel coefficient between S and D, nD is white Gaussian

noise (AWGN) with zero- mean and variance σ2 at the destination. For the relay-assisted

transmission mode, the received signals of the relay after the S-R phase can be expressed as

follows

yR =
√
PShSRxs + nR. (2.4)

where hSR denotes the channel coefficient between S and R, nR denotes the white Gaussian

noise with zero- mean and variance σ2 at the relay. This chapter adopts an amplify-and-

forward (AF) relaying protocol to forward data to the destination. Hence, the relay amplifies

the signal by using a scale factor, βr , which can be calculated as follows:

βr =

√
PR√

PS |hSR|2 + σ2 + σ2
J

. (2.5)

where PR represents the transmission power at the relay, σ2
J is the noise variance that is

created by the jammer.

In phase 2, the received signal at the destination is given by

yD = βrhRDyR + nD

= βrhRD
(√
PShSRxs + nR + nJ

)
+ nD

= βrhRD
√
PShSRxs + βrhRD (nR + nJ) + nD.

(2.6)
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where nJ denotes jamming noise with zero-mean and variance σ2
J . Note that in the case that

the jammer does not attack, the nJ will be zero. As a result, the signal-to-interference-plus-

noise ratio (SINR) at D is denoted as ϕ0, ϕ1 , and ϕ2 for the direct transmission without

jamming, relay-assisted transmission with jamming and relay-assisted transmission without

jamming, respectively, obtained as follows:

ϕ0 =
PS |hSD|2

σ2
, (2.7)

ϕ1 = PSPR|hSR|2|hRD|2

(PS |hSR|2+σ2+σ2
J)

(
PR|hRD|2(σ2+σ2J)
PS |hSR|2+σ2+σ2J

+σ2

)
= PSPR|hSR|2|hRD|2

PR|hRD|2(σ2+σ2
J)+(PS |hSR|2+σ2+σ2

J)σ2

, (2.8)

ϕ2 = PSPR|hSR|2|hRD|2

(PS |hSR|2+σ2)
(
PR|hRD|2σ2
PS |hSR|2+σ2

+σ2

)
= PSPR|hSR|2|hRD|2

(PR|hRD|2+PS |hSR|2+σ2)σ2

. (2.9)

According to the transmission mode, the average throughput can be calculated as

R =


T−τs
T C0 (1− Pf ) Pr

(
J̄
)

(2.10a)

T−τs−τSR
T C1Pd Pr (J) (2.10b)

T−τs−τSR
T C2Pf Pr

(
J̄
)

(2.10c)

, (2.10)

where

C0 = log2 (1 + ϕ0) , (2.11)

C1 = log2 (1 + ϕ1) , (2.12)

C2 = log2 (1 + ϕ2) . (2.13)

Pf and Pd are the probability of false alarm and the probability of detection of the sensing

mechanism, respectively, according to sensing time duration τs. Pr
(
J̄
)

and Pr (J) denote
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the probability of no jamming and the probability of jamming in the network, respectively.

C0 , C1 , and C2 represent achievable throughput at the destination under the different

cases in (2.10), i.e. direct transmission without jamming (2.10a), relay-assisted transmission

with jamming (2.10b), and relay-assisted transmission without jamming (2.10c).

The probability of detection and false alarm can be estimated as follows [32]:

Pd = Q

(
ϑ−M × (γ + 1)√

2M × (2γ + 1)

)
, (2.14)

and

Pf = Q

(
ϑ−M√

2M

)
, (2.15)

where ϑ denotes energy threshold, M represents for number of sensing samples and can be

calculated as M = 2τsfs ( fs is sensing bandwidth), γ is signal-to-noise ratio (SNR) of the

sensing channel (i.e., the channel between source and jammer). There are some available

researches that propose methods to estimate the SNR value. Therefore, in this chapter we

assume that the value is available at the source. The probability of false alarm also can be

achieved by

Pf = Q
(√

2γ + 1Q−1 (Pd) +
√
τsfsγ

)
. (2.16)

In this chapter, we assume that the states of the jammer follow a Markov chain

model. The states of the jammer changes between the two states, presence (J) and absence

(J), shown in Fig. 2.3. The transition probabilities of the jammer from state J to state J

and from state J to itself are denoted as PJJ̄ and PJJ , respectively [33].

We assume that the source always has a data packet to transmit to the destination.

At the beginning of a time slot, the information about remaining energy of the relay ( ere,

0 ≤ ere ≤ Eca) is assumed to be available at the source.

Fig. 2.4 shows the operation process of the system. First of all, the source performs

sensing to identify the states ( “presence” or “absence”) of the jammer. If the sensing

engine provides the result “absence”, i.e. there is no jamming signal in the current time

slot (not always true due to the imperfect sensing), the source will trust the result and then
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Figure 2.3: A Markov chain model of the jammer.
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Figure 2.4: Flowchart of the proposed scheme.

transmits its data directly to the destination. If the source receives an acknowledge (ACK)

message after the transmission phase, then the reward is calculated as

R =
T − τs
T

C0. (2.17)

The belief probability pbt+1 , which represents the probability of the jammer being

present in the next time slot, will be updated as

pbt+1 = PJ̄J . (2.18)

The remaining energy in the battery of the relay can be updated as
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eret+1 = min{eret + Eh (t) , Eca}. (2.19)

where Eh (t) is the amount of harvested energy of the relay in time slot tth.

If the source does not receive an ACK (or receive NACK) after the transmission

phase, the reward will be zero (i.e. R = 0). Besides that, the updated belief in the next

time slot, pbt+1 , can be calculated as

pbt+1 = PJJ . (2.20)

The transition probability is given as

Pr
(
eret → eret+1

)
= Pr

[
Eh (t) = ehk

]
. (2.21)

If the result obtained from the sensing engine is “presence”, then the proposed

scheme, based on a partially observable Markov decision process (POMDP), will be applied to

select the optimal action (i.e. either performs the direct transmission mode or relay-assisted

transmission mode). The proposed scheme will be presented in more detail in the next

section.

2.3 Optimal Mode Decision Policy Based on POMDP

In this scheme, we apply POMDP to obtain an optimal mode decision policy

to maximize the throughput in a cooperative communications network in the presence of

the jamming attack. In this system, there are two operation modes for the source: direct

transmission (DT ) and relay-assisted transmission (RT ), at = {RT,DT}.
In direct transmission mode, the relay will not assist the source to forward the

data to the destination (i.e. the relay is inactive for this case). That means the destination

will receive the data transmitted directly from the source. In the relay-assisted transmission

mode, the relay will help the source to forward the data to the destination (i.e. the relay

is active for this case). Due to the energy constrained problem in the relay as well as the

imperfect spectrum sensing, the source will consider the long-term reward to efficiently

cooperate with the relay to optimize the network performance.
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In order to formulate the framework of POMDP, we define the state space of the

system as s =
{
eret , p

b
t

}
where eret and pbt are the remaining energy of the relay and the

probability of the presence of the jammer in time slot tth, respectively. Value function

V(ere,pb) represents the maximum total discounted throughput of the system, which is given

by

V(ere,pb) = max
ak

( ∞∑
t=k

αt−kR
(
eret , p

b
t , at

) ∣∣∣erek = ere, pbk = pb

)
. (2.22)

where 0 < α < 1 denotes the discount factor and it is chosen to adjust the impact of future

action to current action. More specifically, if the value of alpha is large, the reward of the

future action will more affect to the reward of the current action and vice versa, R
(
eret , p

b
t , at

)
is the achieved throughput of system in time slot tth when action at is performed at the

state s =
{
eret , p

b
t

}
.

2.3.1 Relay-assisted Transmission Mode

In the relay-assisted transmission mode, the relay will help the source forward data

to the destination. In this mode, the destination can always receive data packet, so it will be

difficult to distinguish the presence of jamming. From the received signals at the destination,

we can realize whether the jammer actually attacks the channel or not. That is because the

signal strength from received data packet when the jammer attacks will become stronger

than a normal received data packet (i.e. without jamming). Therefore, the destination can

recognize whether the original signal contains the jamming signal or not, in terms of the

predefined jamming threshold χjam such as

J =

 Presence, if PD ≥ χjam;

Absence, otherwise.
(2.23)

where PD is the received signal energy at the destination.

Observation 1 (Φ1): The sensing result indicates the presence of the jammer, the

source transmits data packet via the relay and the jammer actually attacks the channel. In

this case, jammer attack is well detected, and corresponding achieved throughput is given by

R
(
eret , p

b
t |Φ1

)
=
T − τs − τSR

T
C1. (2.24)
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The probability that case Φ1 happens can be calculated as

Pr (Φ1) =
pbtPd

pbtPd + (1− pbt)Pf
. (2.25)

The updated belief for the next time slot is computed as

pbt+1 = PJJ . (2.26)

The updated remaining energy for the next time slot is

eret+1 = min{eret + Eh (t)− Etr, Eca}. (2.27)

where Etr is the required energy for transmission from the relay to the destination.

The transition probability can be calculated as

Pr
(
eret → eret+1 |Φ1

)
= Pr

[
Eh (t) = ehk

]
Pr (Φ1) . (2.28)

Observation 2 (Φ2): In this case, the sensing result indicates the presence of the

jammer, the source transmits data via the relay, and the jammer actually does not attack the

channel. Hence, we recognize the false alarm happens in this case. The achieved throughput

is given as

R
(
eret , p

b
t |Φ2

)
=
T − τs − τSR

T
C2. (2.29)

The updated belief for the next time slot is given as

pbt+1 = PJ̄J . (2.30)

The remaining energy for the next time slot can be updated as

eret+1 = min{eret + Eh (t)− Etr, Eca}. (2.31)
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The probability that case Φ2 happens is

Pr (Φ2) =
(1− pbt)Pf

pbtPd + (1− pbt)Pf
. (2.32)

The transition probability if the case Φ2 happens is

Pr
(
eret → eret+1 |Φ2

)
= Pr

[
Eh (t) = ehk

]
Pr (Φ2) . (2.33)

2.3.2 Direct Transmission Mode

In direct transmission mode, the source directly transmits the data to the destination

(without a help from the relay). According to whether the source receives ACK from

destination, the following two observations can be described as follows.

Observation 3 (Φ3): The source transmits the data directly to the destination and

receives an ACK. The achieved throughput is given by

R
(
eret , p

b
t |Φ3

)
=
T − τs
T

C0. (2.34)

The probability that the case Φ3 occurs is computed as

Pr (Φ3) =

(
1− pbt

)
Pf

pbtPd +
(
1− pbt

)
Pf
. (2.35)

The belief that the jammer will be present in the next time slot can be updated as

pbt+1 = PJ̄J . (2.36)

In this case, although the relay does not receive and forward data to the destination,

it still harvests energy for future use. The updated remaining energy of the relay for the

next time slot is

eret+1 = min (eret + Eh (t) , Eca) . (2.37)
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The transition probability that the case Φ3 happens is computed as

Pr
(
eret → eret+1 |Φ3

)
= Pr

[
Eh (t) = ehk

]
Pr (Φ3) , (2.38)

Observation 4 (Φ4): The source transmits data directly to the destination, but it

does not receive an ACK. In this case, there is no achieved throughput such that we have

R
(
eret , p

b
t |Φ4

)
= 0 . The probability that case Φ4 happens can be calculated as follows:

Pr (Φ4) =
pbtPd

pbtPd +
(
1− pbt

)
Pf
. (2.39)

The updated belief for the next time slot can be given as

pbt+1 = PJJ . (2.40)

The remaining energy in the relay is updated in the same way as Eq. (2.37) under

Φ3. The transition probability that case Φ4 occurs is given by

Pr
(
eret → eret+1 |Φ4

)
= Pr

[
Eh (t) = ehk

]
Pr (Φ4) , (2.41)

for k = 1, 2, 3...ν.

Based on these observations, we can calculate the expected value function, and

further we can find the optimal operation mode, ak . Therefore, the value function in (22)

can be rewritten as follows

V(ere,pb) = max
ak



∞∑
t=k

αt−k
∑

Φi∈at
Pr (Φi)∑

et+1

Pr
(
eret → eret+1 |Φi

)
R
(
eret , p

b
t , at |Φi

) ∣∣erek = ere, pbk = pb


(2.42)

In order to solve problem in Eq. (2.42), a numerical method is used [34]. The

solution to the problem provides the optimal policy of the system. The complexity of

algorithm can be analyzed based on the amount of computation space such as number of

states, actions, transition probabilities and observations. Based on the Bellman’s equation,
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Table 2.2: Simulation Parameters

Symbol Description Value

γ
SNR of the channel between the source and the

jammer
-10 dB

T Total time frame 0.02 s

fs Sensing bandwidth
0.2× 106

Hz

Pd Probability of detection 0.8

PH1 Initial belief that the jammer is present 0.7

PJJ Transition probability from state J to itself 0.6

PJJ Transition probability from state J to state J 0.8

Eca Total capacity of the battery 10

ehmean Mean value of the harvested energy 2

Etr Transmission energy 6

α Discount factor 0.9

the optimal policy is chosen by solving the value function using iteration-based dynamic

programming. Let us denote Z , S be the action set and the possible state set at the

beginning of each time slot, respectively. The algorithm complexity can be defined according

to the action and state space of the system. In the POMDP, the agent has to control

the process at each time step to maximize the long-term reward. Therefore, the number

of O
(
|Z| |S|2

)
operations is required in each iteration to calculate total number of the

transition probabilities from one state s (t) to other state s′ (t) after performing an action

a (t).

2.4 Simulation Results

In order to evaluate the effectiveness of the proposed scheme, we implemented a

simulation using MATLAB. In this section, we present the performance comparisons among

the proposed scheme, the Myopic scheme and the Direct Link Only scheme. In the Myopic

scheme, we only considered the throughput for the current time slot to select optimal action.

In the Direct Link Only scheme, the source always uses the direct link to transmit data
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packet to the destination. The parameters used for our simulation are shown in Table 2.2.
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Figure 2.5: Average throughput versus required transmitted energy.

In Fig. 2.5 shows the average throughput of the system according to the required

transmission energy of relay node. According to the Fig. 2.5, the throughput of the system

decreases as the required transmission energy increases. The reason is as following: For a

large amount of the required transmission energy, the source will have fewer opportunities to

transmit the data packet via relay when the jammer appears since the relay lacks energy for

the forwarding process. It is obvious that the increase in the required transmission energy

does not affect the average throughput of the Direct Link Only scheme. The figure verifies

that the proposed scheme outperforms the Myopic scheme and the Direct Link Only scheme.

Fig. 2.6 shows the relation between average throughput and battery capacity in the

relay. We can see that the average throughput of the system increases as the battery capacity

of the relay increases. The reason is why the relay has more energy to assist communication

between the source and destination. On the other hand, the battery capacity of the relay

does not affect the Direct Link Only scheme, and corresponding throughput is not changed.

The figure shows that the proposed scheme can provide higher throughput than the Myopic

and the Direct Link Only schemes.

Fig. 2.7 shows average throughput of the proposed scheme according to the battery

capacity of relay node for different values of detection probability Pd . It is observed that

average throughput of the proposed scheme increased as the battery capacity of relay node

increases for a fixed value of Pd. However, the average throughput of the proposed scheme
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Figure 2.6: Average throughput versus capacity of battery.
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Figure 2.7: Average throughput versus capacity of the battery when detection probability

Pd = 0.4, 0.6, and 0.9.

goes into a saturation mode for a certain value of the battery capacity. That is, as the

battery capacity reaches a certain value, the average throughput of the proposed scheme

cannot be enhanced. Fig. 2.7 also shows that more detection probability of jammer, the

more the average throughput. To do this, however, we need more accurate sensing scheme

at the source node.

Finally, Fig. 2.8 shows the average throughput of the proposed scheme according
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Figure 2.8: Average throughput versus detection probability Pd when transmission energy

Etr = 4, 6, and 8.

to the detection probability of jammer for different values of the required transmission

energy of the relay node. As like the previous observation, the more required transmission

energy of the relay node, the less the average throughput. For a fixed value of the required

transmission energy of the relay node, the average throughput of the proposed scheme is

improved as the detection probability of jammer increases.

2.5 Conclusion

In this chapter, we investigated the average throughput maximization of cooperative

communications networks when under a jamming attack. In addition, the energy-constraint

problem was taken into account. We proposed a POMDP-based scheme to achieve the

optimal mode decision policy to maximize the long-term throughput by taking into account

future reward. Simulation results confirmed that the proposed scheme can improve the

overall throughput in cooperative communications networks and outperforms a Myopic

scheme and Direct Link Only scheme under the jamming attack. In the future, we would like

to investigate the joint relay and channel selection scheme in multiple relays and multiple

channels to enhance the overall throughput of the network. Moreover, multiple jammers

should be considered and an actor-critic-based scheme should be studied to determine the

optimal policy in the cooperation communications networks with energy-constrained relay
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under multiple jammers. Therefore, it is the key challenge in the future to find the optimal

solution for the source to select the best relay and channel in the multiple channels, relays

and jammers.



Chapter 3

A POMDP-based Long-Term

Transmission Rate Maximization

for Cognitive Radio Networks with

Wireless-Powered Ambient

Backscatter

3.1 Introduction

Cognitive radio networks (CRNs) are intelligent radio networks where a secondary

user (SU) shares the available spectrum of the primary user (PU) because of the spectrum

scarcity and the increasing growth in wireless communications demand [35–39]. In recent

work, wireless communications powered by external harvested energy has become a promising

technique to deal with the energy-constrained problem. In addition, radio frequency energy-

harvesting systems developed along with a new network generation have been introduced,

which are radio frequency powered CRNs [40–43].

RF-harvested energy in a CRN is a key solution for energy-constrained issues in

wireless networking [44–46]. In an RF-powered CRN, wireless devices can harvest energy

from ambient RF signals and use it for their operations. The harvested energy is stored

in the battery of the SU without manually changing or recharging the battery. Recently,

27
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rectifying antenna design has become highly efficient, and will become more efficient at

harvesting energy from RF signals in the future [47,48]. Thus, more and more researchers

are concerned with investigating wireless-powered communications networks [49–51]. Along

with RF energy harvesting, non-RF energy sources (solar, wind, etc.) can provide perpetual

energy for rechargeable batteries of wireless users [29,52].

In an underlay RF-powered CRN, the secondary transmitter (ST) opportunistically

harvests energy from ambient primary signals to replenish its battery, and then transmits

information to the secondary receiver (SR) such that interference does not signicantly affect

the primary user when the channel is busy [53]. Unlike the underlay RF-powered CRN, for

the overlay RF-powered CRN protocol, the ST can harvest RF energy when the primary

channel is busy, and transmits data only when the channel is free in the next frame time [54].

Nevertheless, secondary network performance depends on the activity of the PU on the

primary channel and the total amount of harvested energy, which can degrade the achievable

data transmission rate of secondary systems. For example, the issue occurs in the case of

imperfect characteristics in the spectrum sensing mechanism, from poor quality of the energy

harvesting circuit, or if the channel’s idle period in the overlay CRN is too short. This

leads to few transmitted bits at the secondary receiver due to the small amount of harvested

energy from ambient RF signals. Therefore, there is growing interest in finding alternative

solutions to overcome this limitation and to enhance secondary system performance [41, 55].

Stockman first introduced modulated backscatter technology [56], and it rapidly

became a promising technique for advanced low-power wireless communication systems. In

modulated backscatter systems, a backscatter transmitter is able to modulate and reflect the

received RF signals to transmit its own data instead of producing RF signals by itself [57–59].

Nowadays, several useful applications have been integrated with the backscattering technique

in practice such as radio-frequency identification (RFID), remote switches, tracking devices,

and low-cost sensor networks [58,60]. However, conventional backscatter communications

may not be easily carried out for data-intensive communications systems due to some

limitations [61]. For example, the distance between the backscatter transmitter and an

RF source is limited to a short range; thereby, it results in limitations on the coverage of

user communications. Thus, application of the conventional backscattering technique is still

restricted in practical wide-range communications scenarios.

Backscatter communications is categorized into three main classes: mono-static

backscatter communications systems (MBCSs), bistatic backscatter communications systems
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(BBCSs), and ambient backscatter communications systems (ABCSs) [62]. In mono-static

backscatter communication systems, a backscatter receiver that also acts as an RF source

will emit RF signals for backscatter communications to activate the backscatter transmitter

(e.g. an RFID tag). Because the RF source and backscatter receiver are placed in the same

device, this leads to the issue of round-trip path loss from the modulated signals [63, 64].

In order to avoid round-trip path loss, the carrier emitter and backscatter receiver are

separated in bi-static backscatter communications systems. As such, the performance of a

bi-static backscatter communications systems can be greatly improved by setting optimal

locations for the carrier emitters [62, 64]. Unlike bi-static backscatter communications

systems, the ambient backscatter communications systems utilize ambient radio frequency

sources, such as TV towers, cellular base stations, Wi-Fi access points, and so forth, instead

of using the normal dedicated carrier emitters used in bi-static backscatter communications

systems [65, 66]. Moreover, they do not require deploying the dedicated RF sources, and

thereby, cost and energy consumption can be significantly reduced.

Recently, ambient backscatter communications have attracted a lot of attention

from researchers [67–69]. The reason is that the ambient backscatter technique enables a

passive device to transmit its data to a receiver by using ambient RF signals without resorting

to an energy supply. Moreover, it does not require high-powered RF to the backscatter

device, compared with RFID systems. Consequently, ambient backscatter technology is

considered a promising solution for some existing issues, such as the energy-constrained

problem, inefficient spectrum usage, etc. Parks et al. [70] used multiple antennas to improve

data backscatter performance and the communications range. As a result, their experiments

demonstrated that the backscatter rate and the backscatter communications range can reach

up to 1 Mbps and 20 m, respectively. Pérez-Penichet et al. investigated a new coding

approach to maximize the data transmission rate of ambient backscatter communications [71],

wherein multiple bits are encoded in a single symbol. Suboptimal signal detection and

bit error rate analysis for ambient backscatter communications systems were studied [72].

Along with methods increasing data transmissison rates, a secure data backscatter protocol

against eavesdropping in the physical layer of ambient backscatter communication systems

was proposed [73].

Useful applications for ambient backscatter technology with RF-powered technology

have been investigated [55, 74, 75]. Hoang et al. proposed a solution to maximize the

performance of secondary systems in RF-powered CRNs with ambient backscatter by finding
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the optimal splitting time for harvesting and backscattering by the SU [55]. Kim et al.

adopted hybrid operational modes for ambient backscatter and bistatic scatter to increase the

transmission range, and proposed uniform rate distribution of RF-powered communications

networks [74]. Similar to the work in [55], Park et al. investigated the optimal allocated

time for energy harvesting, backscattering, and transmitting to maximize the secondary

data transmission rate in RF-powered CRNs [75]. In [76], the authors proposed a novel

hybrid harvest-then-transmit and backscatter communications scheme in a cognitive wireless

powered communication network for the Internet of Things applications. The closed-form

optimal solution for a single CU case and the optimal combination of working modes

are derived to maximize the throughput of secondary communication systems. In [77],

the optimal control policy for RF-Powered Backscatter communication is investigated to

maximize the throughput of the network. More specific, the optimal trade-off between the

sleep and active states and the optimal reflection coefficient are provided and demonstrated

with the superiority through the numerical results.

Motivated by the aforementioned literature, this chapter proposes an energy-efficient

transmission approach of a secondary transceiver in the PU activity proximity to improve

the long-term transmission performance of the secondary system in wireless-powered CRNs

using ambient backscatter communications. In this chapter, we consider both non-RF and

RF energy harvesting to overcome the energy-constrained issue of wireless secondary users.

Specifically, the secondary transmitter equipped with both non-RF and RF energy harvesters

can opportunistically scavenge the energy from the ambient non-RF source (e.g. solar,

wind, etc.) and RF source (primary transmitter power). The former (non-RF harvester)

performs energy harvesting in every processing time slots while the later (RF harvester) is

only implemented according to the presence of the primary transmitter. In other words,

this chapter considers a wireless-powered CRN that enables the ST not only harvest the

non-RF energy but also can perform an action 1) harvest the RF energy from RF sources

2) backscatter the data to the SR when the sensing results indicate the channel is busy;

or 3) transmit data to the SR when the sensing results indicate the channel is free. The

system performance is significantly affected by the factors such as the availability of the

PU, imperfect sensing, uncontrollability of the wireless sources (transition probability of

primary users, the distribution of non-RF sources, etc.). Therefore, this chapter investigates

the long-term secondary system rate maximization in wireless-powered CRN using ambient

backscatter technique, where the ST selects the optimal action following the infinite time
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horizon in every single time slots. The optimal policy is obtained by adopting the POMDP

framework, such that the ST can efficiently use energy to maximize the overall long-term

reward.

The main contributions of this chapter are summarized as follows:

• This chapter adopts the ambient backscatter for the secondary transceiver communica-

tion in wireless-powered CRN. Both non-RF and RF energy harvesting are considered

to deal with energy-constrained problem of the secondary transmitter.

• The novel self-sustainable communication scheme for secondary users investigated by

combining ambient backscatter technology and wireless energy harvesting technology

in CRNs. Particularly, powered by an RF and non-RF energy harvesting circuit, the

secondary transmitter can simultaneously harvest non-RF energy from the ambient

environment and perform backscattering/RF harvesting/transmitting for the secondary

receiver in the data communication phase via the Rayleigh fading channel.

• To maximize the accumulative discounted reward of the secondary system in the

infinite time horizon, the maximization problem formulation is presented according to

the framework of a partially observable Markov decision process (POMDP). Especially,

this chapter also takes the spectrum sensing imperfection of the secondary system into

account. Accordingly, we provide a POMDP-based scheme in a time-slotted fashion for

the secondary system to achieve the optimal policy such that the ST can dynamically

and efficiently use its remaining energy in each time slot to maximize the long-term

transmission rate.

• We assess the proposed scheme performance in comparison with those of other con-

ventional schemes under various network parameter variations via Matlab simulation.

The valuable insights into the effect of network parameter variation on the secondary

system performance are given throughout the numerical results.

The rest of this chapter is organized as follows. In Section 3.2, we describe system

model of the ambient backscattering-assisted wireless-powered CRN communications. In

Section 3.3, we present the problem formulation, and further describe the proposed scheme

to obtain the optimal-action policy in Section 3.4. The simulation results and discussion are

given in Section 3.5. Finally, in Section 3.6, we conclude this work.
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PT PR

SRST

Figure 3.1: System model of the considered network.

3.2 System Description

3.2.1 Network Model

In this chapter, we consider a CRN consisting of a pair of primary transmitter

(PT)-primary receiver (PR) and a pair of a secondary transmitter-secondary receiver. Fig.

3.1 shows the architecture of the ambient wireless-powered backscatter CRN where ST

can harvest energy or backscatter data via the signals emitted from the PT when the

PT transmits signals. Otherwise, the ST can transmit data using the energy stored in

ST’s battery when the PT does not perform its operations. As like Fig. 3.2, the ST is

equipped with a non-RF energy harvesting circuit, an RF energy harvesting circuit, a

backscattering circuit, and a controller. The controller decides the optimal operation mode

(i.e. backscattering, RF energy harvesting, or data transmitting). The RF harvester, non-RF

harvester, and ambient backscatter circuits can harvest RF and non-RF energy, and then

stores it in the battery, which will be used to transmit data when the PT is absent, and

backscatter the data to the SR, respectively. The primary channel is licensed for a pair of

primary users, i.e. the PT and the PR. Meanwhile, in order to share the spectrum resource

with primary users, the ST is assumed to opportunistically use the primary channel to send

its messages to the SR. In particular, at the beginning of a time slot, the ST performs

spectrum sensing to check if the primary channel is free or not (i.e. to check whether the

PT is using the primary channel to transmit data to the PR or not). Subsequently, based
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Figure 3.2: Schematic structure of secondary transmitter.

on the sensing results, the ST will choose whether it should backscatter the data to the

ST, harvest RF energy from the transmission power of the PT, or transmit data to the SR.

The operation of the secondary system is composed of three phases: the sensing phase, the

decision phase, and the data transmission phase, which includes three modes: backscattering,

RF energy harvesting, or data transmitting (as shown on Fig. 3.3).

s s D
T   ! !

Sensing 
Backscattering/RF energy 

 harvesting/Transmitting

D
 

Decision

Frame 1 Frame 2 Frame N...

Non-RF energy harvesting

Figure 3.3: The time frame structure of the secondary user.

The state of the primary user is denoted as P or A, which respectively represent

the presence or absence of the PU on the primary channel in a time slot. Fig. 3.4 shows a

state transition of the PU from the current time slot to the next time slot, which follows a

two-state discrete time Markov chain process, where Pij : i, j ∈ {P,A} denotes the transition

probability from state i to state j [52]. The action of the ST depends on the results of the



34
Chapter 3: A POMDP-based Long-Term Transmission Rate Maximization for Cognitive

Radio Networks with Wireless-Powered Ambient Backscatter

A AA
PPP

P P

1
PA PP
P P= -

1
AP AA
P P= -

Figure 3.4: Markov chain model of the PU.

sensing mechanism.

If the sensing result indicates the presence of the PT in a time slot, the ST will

trust the sensing mechanism and backscatter data to the SR or harvest energy from RF

power of the PT. When the ST performs RF energy harvesting in a time slot, the total

amount of harvested RF energy can be determined as follows [55]:

Eh = (T − τs − τD) δPPhPTST , (3.1)

where δ represents the energy harvesting efficiency; PP is the transmission power of the

PT, and T , τs, and τD are the whole frame time, the sensing time, and the decision time,

respectively; hPTST represents the channel gain from PT to ST, which is defined in a Friis

equation as follows:

hPTST =
GTGtλ

2

(4πdPTST )2 , (3.2)

where GT and Gt are the antenna gain of the PT and the ST, respectively; λ is the carrier

frequency wavelength, and dPTST is the distance between the PT and the ST. When the ST

performs backscattering in a time slot, the transmission rate of the ST is given by

RB =
T − τs − τD

T
Bb, (3.3)

where Bb is the achievable backscatter rate of the backscattering action.

If the sensing result indicates the absence of the PT in a time slot, the ST can

transmit data packets to the SR. The received signal, ySR, at the secondary receiver is given

by

ySR (t) =
√
PShSTSRx (t) + nSR, (3.4)
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where PS is the transmission power of ST, and hSTSR represents the channel gain between

the ST and the SR. In this chapter, we assume that channel gain hSTSR is a block-fading and

frequency non-selective parameter that is constant over each time slot and follows a Rayleigh

fading distribution; x (t) is the normalized information signal of the ST, i.e., E{|x(t)|2}= 1,

and nSR is additive white Gaussian noise at the SR. The transmission rate of the ST is

given as

RTr =
T − τs − τD

T
Wlog2

(
1 +

PS |hSTSR |
2

σ2

)
, (3.5)

where W is bandwidth of the primary channel, σ2 is noise power at the secondary receiver.

3.2.2 Non-RF Energy Harvesting Model

Herein, we assume that the ST always harvests non-RF energy over the whole time

slot from ambient sources (e.g., solar, wind, thermal...), which is shown in Fig. 3.3. As

such, the ST can automatically and separately harvest non-RF energy in each of the sensing,

decision, and implementation phases to replenish its battery in all of the time slots. The

non-RF energy is assumed to follow a stochastic Poisson process with mean value ehvmean.

The value of ehv in time slot t can be described as follows:

ehv(t) ∈
{
ehv1 , ehv2 , ..., ehvξ

}
. (3.6)

where 0 ≤ ehv1 < ehv2 < ... < ehvξ ≤ Eca, and Eca denotes the battery capacity of the

secondary transmitter. The probability mass function (PMF) of ehvmean can be computed as

phv (k) = Pr
(
ehv = ehvk

)
=
e−e

hv
mean

(
ehvmean

)k
k!

, k = 1, 2, ..., ξ. (3.7)

3.2.3 Spectrum Sensing

This chapter considers the imperfect spectrum sensing model. The probability of

detection in the sensing scheme is Pd, whereas the probability of false alarm is Pf . Pd is the

probability that the SU correctly detects the presence of the PU on the PC; meanwhile, Pf

is the probability that the SU detects a signal’s presence on the PC, but the PU is actually

absent from the PC. More specifically, in this chapter, the ST performs spectrum sensing

to identify any activity by the PT on the primary channel in every single time slot. The
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sensing performance of the ST can be evaluated based on the value of Pd and Pf , which are

given as follows [78]:

Pd = Q

(
χ−M (γ + 1)√

2M (2γ + 1)

)
, (3.8)

and

Pf = Q

(
χ−M√

2M

)
, (3.9)

where M = 2τsfs is the number of sensing samples, in which τs is the sensing time duration

and fs denotes the sampling frequency of the ST, χ is energy threshold, and γ denotes

average channel gain from the PT to the sensing device. The value for probability of

detection Pd is set according to the maximum allowable probability that the ST transmission

collides with the PT on the primary channel [52]. Hence, probability of false alarm Pf ,

according to sensing time τs, can be calculated as follows [78]:

Pf = Q
(√

2γ + 1Q−1 (Pd) +
√
τsfsγ

)
. (3.10)

3.3 Problem Formulation

In this chapter, we aim to improve the long-term performance of the secondary

system in a wireless-powered cognitive radio network by using backscatter technology. The

imperfection of the sensing mechanism and the energy-constrained problem are taken into

account. By applying POMDP, we propose an approach to maximize the overall reward

for secondary users. Based on the remaining energy of the ST and the belief regarding

the absence of the PT on the primary channel of a time slot, the ST will determine the

optimal action (e.g. backscattering, harvesting, or transmitting) to maximize its long-term

transmission rate. We define the set of actions as A = {BS,HV, TM} where BS, HV, and

TM represent backscattering, harvesting, and transmitting, respectively. Therefore, the

reward of the secondary system can be defined as follows:

R = arg max
aopt(t),eopttr (t)

∞∑
k=t

R (t)

s.t. 0 ≤ etr(t) ≤ emax
tr

(3.11)
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where

R(t) =


βRB, if aopt (t) = BS

(1− β)RTr, if aopt (t) = TM

0, if aopt (t) = HV

and

β =

 1, if PC is actually busy

0, otherwise

aopt(t) ∈ A represents the optimal action of the secondary transmitter in time slot t, and

eopttr (t) is the optimal amount of transmission energy to transmit data in time slot t if the

ST selects to transmit; otherwise, eopttr (t) = 0 if backscattering or harvesting is chosen. RB

and RTr are given by Eqs. (3.3) and (3.5), respectively. Note that although the reward will

be zero when the ST executes the harvesting action in time slot t, the battery of the ST has

a chance to be replenished by harvested RF energy from the PT’s transmission.

3.4 Proposed Scheme

Efficiently utilizing the limited energy of a wireless secondary user, such that the

secondary system can achieve a high long-term transmission rate, is quite challenging in

CRNs. In addition, spectrum sensing imperfection also affects overall network performance.

Therefore, we propose a novel scheme in order to obtain the optimal solution for the ST to

efficiently share the spectrum with the PT despite the energy-constrained problem.

3.4.1 Proposed Scheme Description and Observations

Let us define the belief that the PT is absent from the primary channel as p. When

the ST completes the processing time in time slot t, belief p will be updated according to

the possible observations. In other words, the ST will update its remaining energy and the

belief for time slot t + 1 after performing the selected action in time slot t. The state of

the ST in the tth time slot is denoted as s (t) = {ere (t) , p(t)}, where ere(t) is the amount of

remaining energy in the battery, and p(t) is the belief that the PT is absent from the channel

in that time slot. In this chapter, we assume the energy consumption for backscattering and

harvesting is small and negligible. We next present the possible observations based on the

set of actions A, as follows.
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Figure 3.5: The flowchart of the proposed scheme.

3.4.1.1 Backscattering

If the ST executes BS when sensing result is present, there are two observations,

Ω1 → Ω2, as follows.

Observation 1 (Ω1): If the ST backscatters data to the SR and receives an ac-

knowledgement (ACK). That implies the PU is really present in the current time slot, the

transmission rate is given by

R (ere (t) , p(t) |Ω1 ) = RB. (3.12)

The probability that event Ω1 happens is

Pr (Ω1) = (1− p(t))Pd. (3.13)

The belief for the next time slot can be updated as

p(t+ 1) = PPA. (3.14)
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The updated remaining energy for next time slot is calculated by

ere (t+ 1) = min
{

max
{
ere (t)− es + ehv (t) , 0

}
, Eca

}
. (3.15)

The energy transition probability is computed as

Pr {ere (t)→ ere (t+ 1) |Ω1 } = Pr
(
ehv (t) = ehvk

)
. (3.16)

Observation 2 (Ω2): If the ST backscatters data to the SR and does not receive an

ACK or receives a negative ACK (NACK). It means that the PU is absent in the current

time slot, there is no achieved data transmission at the SR, i.e. R (ere (t) , p(t) |Ω2 ) = 0.

The probability that Ω2 happens can be calculated as follows:

Pr (Ω2) = p(t)Pf . (3.17)

The updated belief that the PT will be absent in the next time slot is given as

p(t+ 1) = PAA. (3.18)

The updated remaining energy of the ST in the next time slot and the energy

transition probability are given in Eqs. (3.15) and (3.16), respectively.

3.4.1.2 Harvesting

There are two cases in which the ST executes HV, as follows.

Case 1

If the ST harvests RF energy when sensing result is present, there are two observa-

tions: Ω3 → Ω4.

Observation 3 (Ω3): The sensing result indicates the presence of the PT, so the

ST harvests RF energy from the PT and gets a certain amount. We realize that the PU is

actually present in the current time slot. Hence, the achieved data transfer in this case is

zero, i.e. R (ere (t) , p(t) |Ω3 ) = 0.

The probability that event Ω3 happens is

Pr (Ω3) = (1− p(t))Pd. (3.19)
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The belief for the next time slot can be updated as

p(t+ 1) = PPA. (3.20)

The updated remaining energy for the source node is

ere (t+ 1) = min
{

max
{
ere (t) + Eh + ehv (t)− es, 0

}
, Eca

}
. (3.21)

The energy transition probability is given in Eq. (3.16).

Observation 4 (Ω4): The sensing result indicates the presence of the PT, so the ST

harvests RF energy from the PT but does not get any. That means the PU is really absent

in the current time slot. There is no achieved data transfer, i.e. R (ere (t) , p(t) |Ω4 ) = 0.

The probability that Ω4 happens can be calculated as follows:

Pr (Ω4) = p(t)Pf . (3.22)

The updated belief that the PT will be absent in the next time slot is given as

p(t+ 1) = PAA. (3.23)

The updated remaining energy for the ST is given as

ere (t+ 1) = min
{

max
{
ere (t)− es + ehv (t) , 0

}
, Eca

}
. (3.24)

The energy transition probability is calculated with Eq. (3.16).

Case 2

If sensing result is absent but the ST does not have enough energy to transmit

data to the SR, the ST executes HV instead of TM. There are two observations Ω5 → Ω6

for this case.

Observation 5 (Ω5): The sensing result indicates the absence of the PT, but the ST

does not have enough energy to execute TM; then, the ST harvests RF energy from the PT

and gets a certain amount. This means the PU actually performs its operation in the current

time slot. Hence, the achieved data transfer in this case is zero, i.e. R (ere (t) , p(t) |Ω5 ) = 0.

The probability that the event occurs can be calculated as

Pr (Ω5) = (1− p(t)) (1− Pd) . (3.25)
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The belief, the remaining energy, and the energy transition probability for the next

time slot are updated using Eqs. (3.20), (3.21), and (3.16), respectively.

Observation 6 (Ω6): The sensing result indicates the absence of the PT, but the

ST does not have enough energy to execute TM; then, the ST harvests RF energy from the

PT but does not get any. That implies there is no appearance of PU in the current time

slot. Hence, the achieved data in this case transfer is zero, i.e. R (ere (t) , p(t) |Ω6 ) = 0.

The probability that Ω6 happens can be calculated as

Pr (Ω6) = p(t) (1− Pf ) . (3.26)

The belief, the remaining energy, and the energy transition probability for the next

time slot are updated with Eqs. (3.23), (3.24) and (3.16), respectively.

3.4.1.3 Transmitting

If the sensing result indicates the PT is absent, and the ST has enough energy to

transmit data to the SR, then the ST executes TM. There are two observations, Ω7 → Ω8,

in this case.

Observation 7 (Ω7): If the sensing result indicates the PT is absent, and the ST

currently has enough energy to transmit data to the SR, then the ST performs TM and

receives an ACK. We realize there is no operation of PU in the current time slot. The

transmission rate will be calculated as

R (ere (t) , p(t) |Ω7 ) = RTr. (3.27)

The probability that Ω7 happens is computed by

Pr (Ω7) = p(t) (1− Pf ) . (3.28)

The belief for the next time slot is updated as

p(t+ 1) = PAA. (3.29)

The remaining energy of the ST in the next time slot is given as

ere (t+ 1) = min
{

max
{
ere (t)− es − etr (t) + ehv (t) , 0

}
, Eca

}
. (3.30)

The energy transition probability is computed in a way similar to Eq. (3.16).
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Algorithm 3.1 Proposed Scheme to Find the Optimal Decision for the ST in Processing

Time Slots

1: Input: ere(t), p(t), A = {BS,HV,TM}
2: for ST performs spectrum sensing.

3: if The sensing result is absent.

4: if ere (t) < min
(
eitr
)

5: aopt (t) = Harvesting, eopttr (t) = 0; ST performs harvesting.

6: if The ST successfully harvests RF energy.

7: Update belief p and remaining energy ere with Eqs. (3.20) and (3.21).

8: else Update belief p and remaining energy ere with Eqs. (3.23) and (3.24).

9: end if

10: else Calculate the overall expected reward corresponding eitr ∈
{
e1
tr, e

2
tr, ..., e

max
tr

}
,

by using Eq. (3.37).

11: Define eopttr (t), with Eq. (3.38), then transmit with eopttr (t).

12: if The ST successfully transmits data to the SR.

13: Update belief p and remaining energy ere with Eq. (3.29) and Eq. (3.30).

14: else Update belief p and remaining energy ere with Eq. (3.32) and Eq. (3.30).

15: end if

16: end if

17: else Calculate the overall expected reward with Eq. (3.34) or Eq. (3.35) if the ST

executes BS or HV, respectively.

18: Find aopt (t) = {Backscattering,Harvesting} by using Eq. (3.36).

19: if aopt (t) = Backscattering. , then execute backscattering.

20: if The ST successfully backscatters data.

21: Update belief p and remaining energy ere with Eq. (3.14) and Eq. (3.15).

22: else Update belief p and remaining energy ere with Eq. (3.18) and Eq. (3.15).

23: end if

24: else aopt (t) = Harvesting; then go to step 5.

25: end if

26: end if

27: Continue until the ST does not have data to transmit to the SR.

28: end for

29: Output: aopt (t), eopttr (t).
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Observation 8 (Ω8): If the sensing result indicates the PT is absent, and the ST

currently has enough energy to transmit data to the SR, then the ST executes TM and does

not receive an ACK (or gets a NACK). That implies, in fact, the PU is present in the current

time slot. The achieved data transfer at the SR will be zero, i.e. R (ere (t) , p(t) |Ω8 ) = 0.

The probability that Ω8 happens is

Pr (Ω8) = (1− p(t)) (1− Pd) . (3.31)

The belief for the next time slot can be updated as

p(t+ 1) = PPA. (3.32)

The updated remaining energy and the energy transition probability are given as

Eqs. (3.30) and (3.16), respectively.

3.4.2 Overall Expected Reward

The final decision of the secondary transmitter depends on the maximum value

of the total discounted expected reward, called the value function, which is calculated by

following the POMDP framework. In this chapter, the ST utilizes the value function to

calculate the overall expected reward in order to decide the optimal action. Value function

V (ere (t) , p(t)), according to remaining energy ere (t) and belief p(t), starting from time slot

t is given as follows:

V (ere (t) , p(t)) =

arg max
a(t)∈A



∞∑
k=t

αk−t
∑

Ωi∈a(k)

Pr [Ωi]

×
∑

ere(k+1)

Pr (ere (k)→ ere (k + 1) |Ωi )

×R (ere (k) , p(k), a(k) |Ωi ) |ere (k) = e, p(k) = p


(3.33)

where k is the index of the time slot, t denotes the current time slot; α is the discount

factor, and Ωi denotes the possible observation of the action, a(k); R (ere (k) , p(k), a(k) |Ωi )

represents the estimated reward when the remaining energy is ere (k), the belief is p(k), and

the taken action is a(k) with corresponding observation Ωi.

Let Ea (ere (t) , p(t)) be the overall expected reward if the PT is present on the

primary channel. EaB (ere (t) , p(t)) and EaH (ere (t) , p(t)) denote the overall expected reward

when the PT is present and the ST performs backscattering and harvesting, respectively.
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The overall expected reward if the ST executes backscattering in time slot t can be computed

by

EaB (ere (t) , p (t)) =

PBACK ×
(
RaB (t) + VaB

(
eB,ACKre (t+ 1) , pB,ACK (t+ 1)

))
+ PBNACK × VaB

(
eB,NACKre (t+ 1) , pB,NACK (t+ 1)

) (3.34)

where PBACK and PBNACK represent the probability that backscattering is executed successfully

and unsuccessfully, respectively. RaB (t) is the expected immediate reward in time slot t if

the ST executes backscattering. VaB

(
eB,ACKre (t+ 1) , pB,ACK (t+ 1)

)
and

VaB
(
eB,NACKre (t+ 1) , pB,NACK (t+ 1)

)
represent the expected reward from time slot t+ 1 after executing backscattering in time slot

t successfully and unsuccessfully, respectively; eB,ACKre (t+ 1) and eB,NACKre (t+ 1) represent

the updated remaining energy for time slot t+ 1 at the ST after executing backscattering

successfully or unsuccessfully, respectively. In addition, pB,ACK (t+ 1) and pB,NACK (t+ 1)

represent the belief for the next time slot after executing backscattering successfully or

unsuccessfully, respectively. The overall expected reward if the ST harvests energy in time

slot t can be computed as

EaH (ere (t) , p (t)) =

PHACK × VaH
(
eH,ACKre (t+ 1) , pH,ACK (t+ 1)

)
+ PHNACK × VaH

(
eH,NACKre (t+ 1) , pH,NACK (t+ 1)

) (3.35)

where PHACK and PHNACK represent the probability that harvesting action is executed

successfully and unsuccessfully, respectively. VaH

(
eH,ACKre (t+ 1) , pH,ACK (t+ 1)

)
and

VaH

(
eH,NACKre (t+ 1) , pH,NACK (t+ 1)

)
represent the expected reward from time slot t+ 1

after harvesting energy in time slot t successfully and unsuccessfully, respectively, and

eH,ACKre (t+ 1) and eH,NACKre (t+ 1) are the updated remaining energy for time slot t + 1

at the ST after harvesting energy successfully or unsuccessfully, respectively. In addition,

pH,ACK (t+ 1) and pH,NACK (t+ 1) represent the updated belief for time slot t + 1 after

harvesting energy successfully or unsuccessfully, respectively.

The overall expected reward, Ea (ere (t) , p(t)), if the PT is present in time slot t

can be obtained as follows:

Ea (ere (t) , p(t)) = max (EaB (ere (t) , p(t)) , EaH (ere (t) , p(t))) (3.36)
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When the PT is absent in time slot t and the ST has enough energy to transmit

data, if the ST uses transmission energy eitr ∈
{
e1
tr, e

2
tr, ..., e

max
tr

}
to transmit data to the SR,

the overall expected reward in time slot t is given as follows:

Eeitr (ere (t) , p (t)) =

P TrACK ×
(
Reitr (t) + Veitr

(
eTr,ACKre (t+ 1) , pTr,ACK (t+ 1)

))
+P TrNACK × Veitr

(
eTr,NACKre (t+ 1) , pTr,NACK (t+ 1)

) (3.37)

where P TrACK and P TrNACK represent the probability that transmitting is performed success-

fully and unsuccessfully, respectively. Reitr (t) indicates the expected immediate reward in

time slot t if the ST uses an amount of energy, eitr, to transmit data to the SR success-

fully. Veitr

(
eTr,ACKre (t+ 1) , pTr,ACK (t+ 1)

)
and Veitr

(
eTr,NACKre (t+ 1) , pTr,NACK (t+ 1)

)
are the expected rewards from time slot t + 1 after transmitting data with transmis-

sion energy eitr in time slot t successfully and unsuccessfully, respectively; eTr,ACKre (t+ 1)

and eTr,NACKre (t+ 1) represent the updated remaining energy for time slot t + 1 at the

ST after transmitting successfully or unsuccessfully, respectively. pTr,ACK (t+ 1) and

pTr,NACK (t+ 1) are the updated beliefs for time slot t+ 1 after transmitting successfully or

unsuccessfully, respectively. Eeitr (ere (t) , p (t)) is the overall expected reward corresponding

the different value of transmission energy eitr in the time slot t.

By solving a sub-optimal problem related to Eq. (3.37), we achieve the optimal

amount of transmission energy as follows:

eopttr (t) = ei∗tr = arg max
eitr∈{e1tr,e2tr,...,emax

tr }

(
Eeitr (ere (t) , p (t))

)
(3.38)

In Eq. (3.38), we are going to find out the optimal value of transmission energy eopttr regarding

the current state (ere (t) , p (t)) for the time slot t.

3.4.3 Optimal Mode Decision Policy

Fig. 3.5 shows a flowchart of the proposed scheme. By applying the proposed

scheme, the system’s operations can be summarized as follows. At the beginning of time

slot t, the secondary transmitter senses the primary channel. Subsequently, if sensing result

indicates the PT present, the ST will choose the optimal action as either backscattering or

harvesting, based on the overall expected reward for current time slot t in the Eqs. (3.34),

(3.35), and (3.36). On the other hand, if the PT is absent, the ST will harvest energy from
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ambient RF signals (i.e from the transmission power of the PT) if the remaining energy

of the ST is not enough to transmit data. Conversely, if the ST has enough energy to

transmit data (i.e. ere(t) ≥ emin
tr ) when the PT is absent, it will decide the optimal amount

of transmission energy to use to transmit data to the SR. The optimal transmission energy

for time slot t is decided based on the overall expected reward, obtained by Eqs. (3.37) and

(3.38). After finding out the optimal action, aopt(t), the ST then implements that action

for the actual operation. Then, the remaining energy and the belief will be updated for

time slot t+ 1, based on observations after finishing the selected action. Subsequently, the

process will continue to finish the total number of considered time slots. The overall flow to

find optimal decision for the ST in each processing time slot is shown in Algorithm 3.1.

The computation complexity of algorithm can be analyzed regarding the number of actions,

states, transition probability, and observations. The optimal policy is chosen according to

the iteration-based dynamic value function based on the Bellman’s equation. In the POMDP,

the algorithm complexity can be decomposed as the number of O
(
|A| |S|2

)
operations [79],

where |A| and |S| are the possible action set and state set at the beginning of each time slot,

respectively. It is mainly required for calculating the transition probabilities from one state

(s (t) ∈ S) to another state (s′ (t) ∈ S) after implementing an action (a (t) ∈ A).

3.5 Simulations

In this section, we present simulation results and discussions to verify the efficiency

of secondary system performance with the proposed scheme under various conditions in the

network. In addition, we carried out the performance comparisons with other conventional

schemes, namely, the Myopic-B scheme, the Myopic-H scheme, the Myopic-R scheme,

Reference scheme [80] and the random scheme. In all myopic schemes, the ST always

transmits data to the SR with the maximum transmission energy level when the sensing

result indicates the PT is absent. However, when the PT is present, in the case of the

Myopic-B scheme, the ST always executes backscattering. Similarly in the case of the

Myopic-H scheme, the ST always executes harvesting. In the case of the Myopic-R scheme,

the ST chooses either backscattering or harvesting randomly when the PT is present. Finally,

in the case of the random scheme, the ST chooses randomly available backscattering or

harvesting if sensing shows the PT is present, and if sensing shows the PT is absent, it

will randomly select an amount of energy to transmit data to the SR. Table 3.1 shows the
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Table 3.1: Simulation Parameters

Parameter Description Value

N Number of time slots 104

T Time slot duration 40 ms

τs Sensing duration 0.4 ms

Eca Battery capacity 30 µJ

Etr Transmission energy
7, 11, 16, 20

µJ

ehmean Mean value of harvested non-RF energy 7 µJ

p Initial belief that the PU is absent 0.5

PAA
Transition probability of the PU from state A

to itself
0.8

PPA
Transition probability of the PU from state P to

state A
0.2

δ Energy-harvesting efficiency 0.6

dPTST
Distance between PU transmitter and SU

transmitter
100 m

dSTSR
Distance between SU transmitter and SU

receiver
10 m

Pd Probability of detection 0.9

Pf Probability of false alarm 0.1

PP Transmission power of the PU 10 dBm

GT , Gt Antenna gain of the PT and the ST 6 dBi

σ2 Noise variance at the SU receiver 0.01

α Discount factor 0.9

W Bandwidth 14 MHz

fc Frequency 2.15 GHz

parameter settings of our simulation.

Unless otherwise stated, we assume that the time for the ST to make the decision,

τD, is short and negligible. The PT is assumed to be a cellular base station. Bandwidth

and frequency of the RF signals are set at 14 MHz and 2.15 GHz, respectively [55]. The
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Figure 3.6: The long-term transmission rate of the secondary system under various values

for harvested non-RF energy.
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Figure 3.7: The energy efficiency of the secondary system under various values of harvested

non-RF energy.

backscatter rate is 33 kbps [55]. The distance between the ST and the SR is 10 meters. In

addition, we set the path loss exponent at 3, and the step size of the belief is 0.01 within

the range (0,1).

We first show the impact of non-RF harvested energy on secondary system per-

formance for all considered schemes. The simulation results for the various mean values of

harvested non-RF energy are illustrated in Fig. 3.6, Fig. 3.7, and Fig. 3.8. In Fig. 3.6, we
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Figure 3.8: The selected action statistics of the secondary system under various values of

harvested non-RF energy.

inspect the long-term transmission rate of the schemes with increasing values of harvested

energy per time slot. The reference scheme [80] is adopted by optimizing one-step instant

reward without using backscatter or RF-harvesting when the sensing outcome is busy. The

curves show that the average long-term transmission rate of the ST greatly improves as the

mean of harvested non-RF energy increases. This is because the ST has more energy to

use for the transmission phase when the total amount of harvested non-RF energy becomes

larger. Besides, the reward obtained in reference scheme is less than the scheme myopic-H

scheme and Myopic-B scheme. It is because the system does not leverage backscattering

and RF harvesting techniques. For instance, when ehmean = 4µJ , the transmission rate of

the proposed scheme provides improvements of 36.7%, 50.6%, and 53.1% for the Myopic-H

scheme, the Myopic-B scheme and Reference scheme, respectively. The random scheme

provides the lowest transmission rate due to the random selection when sensing determines

the PT is both present and absent from the channel.

In Fig. 3.7, we investigate the energy efficiency of the system according to different

mean values of harvested non-RF energy. The energy efficiency in this chapter is defined as

an average long-term transmission rate over the total of harvested non-RF and RF energy (in

µJ unit) of the ST during its operation over N time slots

(
EE =

N∑
t=1

R(t)/
N∑
t=1

(Eh(t)+ehv(t))

)
.

We can see that the energy efficiency of all the schemes degrades as ehmean increases. The

reason is as following: The more energy the secondary transmitter harvests, the larger the
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Figure 3.9: The long-term transmission rate of the secondary system according to different

communications ranges.

overflow energy the ST suffers from in its operations. The curves show the superiority of

the proposed scheme as compared with other schemes.

The statistics on action utilization for the proposed scheme, the Myopic-B scheme,

and the Myopic-H scheme over 104 time slots are illustrated in Fig. 3.8(a), Fig. 3.8(b),

and Fig. 3.8(c), respectively. For simplicity, the amount of transmission energy is divided

into four levels, i.e 7µJ , 11µJ , 16µJ , and 20µJ with corresponding notations TM1, TM2,

TM3, and TM4. The results show that the Myopic-B and the Myopic-H schemes have fewer

chances for ST data transmission with the ST’s own energy because it always uses the

maximum transmission energy whenever there is enough energy for transmission. Moreover,

when sensing indicates the PT is present, the ST always chooses backscattering or harvesting

in the Myopic-B scheme and the Myopic-H scheme, which will lower the long-term rewards

of the secondary system. As such, this results in the poor performance shown in Fig. 3.6

and Fig. 3.7. We see in Fig. 3.8(a) that when ehmean is small, the ST in the proposed

scheme only uses a small amount of transmission energy to maximize the total achievable

throughput. Therefore, by dynamically choosing the optimal action in each time slot, the

proposed scheme provides more opportunities for the ST to transmit its data to the SR

when the PT is sensed as absent from the primary channel. As a result, the performance of

the wireless-powered CRN system can be significantly enhanced.

In the rest of the simulation section, we change the communication range between
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Figure 3.10: The energy efficiency of the secondary system according to different communi-

cations ranges.

the ST and the SR to observe the performance of the considered schemes, which is illustrated

in Fig. 3.9, Fig. 3.10, and Fig. 3.11. Fig. 3.9 shows the long-term transmission rate of

the secondary transmitter with different distances between the ST and the SR. The results

in the figure show that a greater communication range provides a lower transmission rate

in the secondary system. This is because the transmitted signals experience more path

loss attenuation at a greater distance. Consequently, this degrades the total amount of

transmitted data that are successfully decoded at the SR.

In Fig. 3.10, we plot energy efficiency according to the different communication

ranges. We can see that the Myopic-B scheme give the highest performance, compared with

the other conventional schemes, since it always uses backscattering when the PT is sensed

as present on the primary channel. In other words, it results in lower energy consumption

by the Myopic-B scheme, in comparison with other conventional schemes. However, the

proposed scheme still is superior with a 10% improvement over the Myopic-B scheme.

In Fig. 3.11, the statistics of actions utilized by (a) the proposed scheme, (b) the

Myopic-B scheme, and (c) the Myopic-H scheme are presented based on the various distances

between the ST and the SR. For all ranges from 10m to 30m, the proposed scheme uses all

the actions except TM4 (transmitting with the maximum amount of transmission energy).

That is because the proposed scheme always chooses the optimal policy by considering the

total expected rewards over the future time slots, not like other conventional schemes that
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Figure 3.11: The selected action statistics of the secondary system according to different

communications ranges.

only consider maximizing the immediate reward in the current time slot. As a result, the

small changes regarding the number of selected actions by the proposed scheme can enhance

system performance when the communication range varies, which is shown in Fig. 3.9 and

Fig. 3.10.

3.6 Conclusion

In this chapter, we proposed a scheme to maximize the long-term transmission

rate of wireless-powered CRNs utilizing ambient backscatter. We adopted the POMDP

framework to obtain optimal action to maximize the long-term transmission rate of the

considered system. Taking the energy-constrained issue of wireless networks into account, we

presented the optimal policy for the secondary system in CRNs by combining RF and non-RF

energy harvesting for secondary users. As a result, a secondary transmitter equipped with

non-RF and RF energy harvesters can apply the proposed scheme to significantly improve

network performance. By using a Matlab simulation, we verified the effectiveness of the

proposed scheme in comparison with other schemes under various network conditions. As a

result, it is showed that the proposed scheme can provide a high long-term transmission rate

for the secondary system due to efficient utilization of energy harvesting from the wireless

environment.



Chapter 4

Uplink NOMA-based Long-Term

Throughput Maximization Scheme

for Cognitive Radio Networks: An

Actor-Critic Reinforcement

Learning Approach

4.1 Introduction

Spectrum scarcity is one of the critical issues in fifth-generation (5G) communica-

tions systems and for future wireless networks, because the lack of accessible spectrum is

hindering the application of novel communications technologies [81–83]. However, in [84],

the authors revealed that the licensed spectrum remains under utilized. In order to deal with

spectrum inefficiency, the dynamic spectrum access techniques are studied, with cognitive

radio (CR), known as the key enabling technology [85]. In a CR network, the unlicensed

secondary users (SUs) can access and utilize the unused spectrum of the licensed primary

users (PUs) [4, 86,87].

Nowadays, the CR network paradigm can broadly be categorized into three main

models [88–90]: underlay, overlay, and interweave. In the underlay CR model, the SUs can

perform their operations if and only if the interference caused by all SUs is lower than a

53
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given threshold. In the overlay CR model, the SUs assist as relays for the PUs, and jointly

transmit their signals using a portion of the licensed spectrum. In the interweave CR model,

the SUs can only transmit when the primary channel is not occupied by any PU. With this

model, vacant spectrum is temporarily available over certain time instants, such that an SU

can opportunistically transmit data when the PU is inactive. In order to reduce collisions

with the PUs and ensure energy-efficient utilization, the SUs sense the surrounding spectrum

to verify the availability of the primary channel in order to transmit their data.

As another potential technique for the next generation of wireless networks, non-

orthogonal multiple access (NOMA) has lately gotten noticeable attention, enabling multiple

users to simultaneously access the spectrum, and it has become an important fundamental

to designing radio access techniques for future wireless networks [91–94]. The key with

NOMA is allowing multiple users to access the same spectrum resource block together,

with the objective being spectral efficiency. NOMA is generally classified into two major

approaches: power-domain NOMA [95–97] and code-domain NOMA [98–101]. In power-

domain NOMA, different power levels are used to jointly serve multiple users at the same time

using the channel frequency under different channel conditions. At the receiver, the signals

of the different transmitters are superposed and then decoded via successive interference

cancellation (SIC).

Moreover, by introducing the two aforementioned concepts, NOMA can be combined

with a CR network in order to improve spectral efficiency. Liu et al. [102] proposed a stochastic

geometry model for a large-scale CR network in order to depict the outage performance

from the paradigm of integrated NOMA and CR. In [103], spectrum efficiency was enhanced

by developing a NOMA-based secure transmission scheme in CR networks. A cooperative

NOMA spectrum-sharing network over the Nakagami fading channel was investigated in [104].

Besides, multicast NOMA is also adopted in 5G systems in terms of user scheduling in order

to improve network performance [105]. It has been pointed out that higher spectral efficiency

can be promised by combining NOMA with CR networks.

In recent years, prolonging the long-term operation of the network is also one of

the nearly essential purposes of wireless systems [106]. Using renewable energy sources for

wireless users is considered a potential solution for dealing with the energy constraints of

wireless devices. In particular, energy for the SUs can be harvested from natural ambient

sources (solar [107,108], wind [109,110], radio frequency [?], etc.). Hence, the battery of a

wireless user can replenish itself without manual recharging. Nevertheless, the harvested
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energy is still restricted to users. That means finding a way for SUs to effectively utilize

the harvested energy needs to be carefully investigated. For that reason, Celik et al. [111]

proposed hybrid energy harvesting in a heterogeneous CR network to enhance spectrum

efficiency while reducing the energy consumption of the system.

Furthermore, a dynamic power allocation algorithm is carefully being investigated

owing to the significant role of power allocation for wireless users in uplink NOMA (i.e.

the effect of power allocation on the rate of each user) [112–114]. In [112], the authors

studied both power control and beamforming methods in order to maximize the sum rate

of the system for millimeter-wave communications. The joint optimization problem for

sum-throughput maximization under transmission power constraints, the minimum rate

requirements of users, and SIC constraints were formulated in [113] for both uplink and

downlink NOMA in a cellular system. In [114], the authors took into account channel

assignment and power control to maximize the sum rate for a NOMA-based uplink network.

They mathematically derived a more tractable form of the formulated problems as a maximum

weighted independent set issue, and then used graph theory to deal with them.

In this chapter, we study an uplink actor–critic learning-based transmission power

allocation scheme that allows multiple SUs access on the same channel by adopting NOMA

in order to maximize the long-term throughput of the network. Herein, the SUs employ the

NOMA technique to simultaneously transmit their information to the cognitive base station

(CBS), and then the CBS can exploit SIC to decode the information. The key contributions

of this chapter can be outlined as follows.

• We consider a CR network with uplink NOMA, where the SUs are allowed to concur-

rently access the same primary channel when it is not used by the PU. Specifically, by

adopting NOMA, the SUs can transmit data on the same channel and in the same

time slot when the sensing result indicates the primary channel is free. However, the

SUs are equipped with a limited-capacity battery. Therefore, solar energy harvesting

is executed by the SUs such that they can externally harvest energy to replenish the

battery for use in long-term data transmission. In addition, the energy-constrained

problem and sensing error issues of the SUs are also taken into account.

• To do this, we first formulate the problem of throughput maximization based on a

Markov decision process (MDP). Afterward, the actor–critic reinforcement learning

approach is adopted such that the CBS can adaptively interact with the environment
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and dynamically assign the optimal amount of energy for each user in every time

slot without prior information about the harvested energy model of the SUs, which is

normally needed by some kinds of partially observable MDP schemes.

• Simulation results show that the proposed scheme, in terms of average throughput

and energy efficiency, outperforms other conventional schemes under various network

parameter variations.

The rest of the chapter is structured as follows. The system model is outlined

in Section 4.2. In Section 4.3, we describe the problem formulation. The proposed power

allocation algorithm is discussed in Section 4.4, and simulation results are provided in Section

4.5. Finally, conclusions are drawn in Section 4.6.

4.2 System Model

4.2.1 Network Model

In this chapter uplink NOMA in a cognitive radio network (CRN) is considered,

as shown in Fig. 4.1, which comprises a CBS, a pair of PU transceivers and a set of SUs

denoted by N = {SU1, SU2, ...., SUN}. Although the PUs have priority to use the licensed

spectrum, the SUs are allowed to simultaneously and opportunistically access the licensed

spectrum of the PU when the sensing result indicates that the primary channel is free. In

the network, the CBS and SUs are equipped with a single antenna to receive and transmit

signals in a time slot on the currently free primary channel. In particular, at the beginning

of a time slot, the SUs will share the primary channel to concurrently transmit data to the

CBS if the sensing result for the primary channel is free, and then, the CBS will decode all

data sent from the SUs by using the SIC technique. In this chapter, the SUs are equipped

with a finite battery capacity Eca, and they can replenish energy by themselves using an

integrated solar energy harvester.

The operation of the considered network consists of three phases: the sensing and

decision phase, the data transmission phase, and the energy information update phase, as

shown in Fig. 4.2. In the first phase, with duration τss, the SUs perform their individual

sensing, and then, they report their local decisions to the CBS; afterward, the CBS gives

its global sensing decision (about the state of the primary channel) and its global action

decisions on the actions assigned to all SUs. The second phase, with duration τtr, is the
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Figure 4.1: System model of the proposed scheme.
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Figure 4.2: Time frame of the three phases in the secondary users’s operations.

time for the SUs to transmit their data to the CBS. In the last phase, the SUs will send

their remaining information to the CBS. Herein, it is assumed that the SUs always have

information available to transmit. Furthermore, each transmission session may last several

time frames, until all the information is successfully transmitted.
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In this chapter, we adopt cooperative spectrum sensing for the SUs in the network.

More specifically, the SUs perform spectrum sensing at the beginning of a time slot to

check whether the licensed spectrum is occupied by the PU or not. There are several

major sensing approaches, such as matched filtering, energy detection, and the cyclo-

stationary method [115]. Energy detection is one of the most effective methods due to its

low computational complexity [116–118]. All sensing results from the SUs are then gathered

and sent to the CBS. After that, the CBS makes a global sensing decision about the activity

or silence of the PU on the primary channel, and then decides whether the SUs should

transmit data to the CBS or stay silent. Normally, the global sensing decision is done by

following a combination rule at the CBS [119–122]. However, in this chapter, we do not

focus on cooperative spectrum sensing, which has been widely investigated in the literature.

Thus, we mainly study a power allocation algorithm for the SUs in order to efficiently use

energy to transmit data to the CBS.

When the CBS determines that the PU is absent in the current time slot, all SUs

can concurrently transmit their signals to the CBS. The received signal at the CBS is given

as follows

y (t) = h1x1 (t) + h2x2 (t) + ....+ hNxN (t) + ω, (4.1)

where hi is the channel gain between the CBS and SUi, i ∈ {1, 2, ..., N}, xi (t) =
√
Pi (t)si (t),

and |h1|2 > |h2|2 > ... > |hN |2, when si (t) is the signal transmitted by SUi
(
E{|si(t)|2}= 1

)
with transmission power Pi (t) = etri (t)

/
τtr, in which etri (t) is the transmission energy

assigned to SUi for the tth time slot; and ω is the additive white Gaussian noise (AWGN) at

the CBS with zero mean and variance σ2
ω.

Fig. 4.3 illustrates the SIC detection process of the received signals at the CBS,

where |h1|2 > |h2|2 > ... > |hN |2. In uplink NOMA, an SU with the strongest channel gain

will definitely have the priority for decoding by the CBS, and then, it vanishes from received

signals y at the CBS, which continues decoding the other SU signals. Consequently, the

attainable throughput of SU1 is affected by interference from other users (SU2,SU3,...,SUN),

and meanwhile, the throughput of the lowest channel gain user (i.e SUN) is obtained without

any interference from the other SUs because interference from stronger signals is eliminated

by the SIC technique. Thereby, the throughput for SUi, ∀i ∈ {1, 2, ..., N} in uplink NOMA
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Figure 4.3: Illustration of SIC detection of the signals at the CBS.

can be computed as

Ri (t) =
T − τss − τu

T
log2

1 +
Pi (t) |hi|2

N∑
j=i+1

Pj (t) |hj |2 + σ2
ω

 , (4.2)

where T , τss, and τu denote the whole-frame time, the sensing and decision time, and the

energy information update time, respectively. The total received throughput at the CBS

can be given by

R (t) =
N∑
i=1

Ri (t). (4.3)

4.2.2 Energy Harvesting and Primary User Models

Herein, we assume that the SUs always harvest energy during the whole of time

slot T , and the amount of harvested energy is stored in their finite capacity batteries. Since

the SUs perform the energy harvesting process in the same environment, it is also worth

noting that they have the same distribution. The amount of harvested energy, ehv,i, of

SUi in each time slot follows a Poisson distribution process with mean value ehvmean. The

value for ehv,i in time slot t can be expressed as ehv,i (t) =
{
ehv1 , ehv2 , ehv3 , ..., ehvν

}
where

0 < ehv1 < ehv2 < ehv3 < ... < ehvν < Eca. The probability mass function for harvested energy

can be given as [123]:

phv (k) = Pr
(
ehv = ehvk

)
=
e−e

hv
mean

(
ehvmean

)k
k!

, k = 1, 2, ..., ν. (4.4)
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Figure 4.4: Markov chain model of the primary user.

In each time slot, cooperative sensing is performed by the secondary network to

predict the state of the PU. At the beginning of each time slot, the PU activity on the

licensed channel may switch between silent (S) and active (A) states according to a two-state

Markov discrete-time process, which is assumed stationary during the entire time slot, T .

The state transition probability for two contiguous time slots is given by Pij |i, j ∈ {S,A}
as shown in Fig. 4.4. For example, PSA refers to the probability that the PU transfers from

the silent state in the current time slot to the active state in the next time slot.

4.2.3 Imperfect Spectrum Sensing

In the network, the SUs need to perform spectrum sensing in every single time slot

to determine the activity of the PU on the primary channel, and then, they report these local

sensing decisions to the CBS. The global sensing decision is assumed to be obtained by the

soft combination scheme from [122]. However, the sensing engine may induce sensing errors

in practice, which results in low transmission performance by the users. Accordingly, we

consider the imperfect spectrum-sensing model for the CR network. The sensing performance

can be evaluated principally by two probabilities: a detection probability Pd and false alarm

probability Pf , which are defined as

Pd = Pr (HA (t) = A |A) and Pf = Pr (HA (t) = A |S ) , (4.5)

respectively. Pd represents the probability that the PU is correctly found to be active,

whereas Pf is the probability that the PU is found active but is actually silent. HA(t)

denotes the state of the PU (i.e. the global sensing decision at the CBS) in time slot t. As

such, the value of Pd is set according to the maximum acceptable probability that collisions
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between the secondary transmission and the primary transmission can happen [78, 124].

Besides, we further assume in this chapter that the value of Pd and Pf are available to the

CBS.

4.3 Problem Formulation

The objective of this chapter is to enhance the long-term throughput of uplink

NOMA at the CBS. The power allocation problem for throughput maximization of an uplink

NOMA system in time slot t can be formulated as follows:

arg max
A(t)∈A

∞∑
k=t

N∑
i=1

Ri (k)

s.t. 0 ≤ etri (t) ≤ etr,max

, (4.6)

where A (t) =

 a (t)

etr (t)

 is the global action that the CBS assigns to the SUs in time slot

t, a (t) and etr (t) represent the assigned action mode vector and the assigned transmission

energy vector for the SUs, respectively. The assigned action mode, and the transmission

energy for the SUs are described in the row vectors with the same dimension. The index of

each element in these vectors represents the index of the corresponding SU. Particularly,

a (t) = [a1 (t) , a2 (t) , ..., aN (t)] includes the assigned actions of all SUs in time slot t,

where ai (t) = {“SL”, “TM”} denotes the different action modes for SUi, in which SL

and TM stand for silent mode and transmission mode, respectively. Meanwhile, etr (t) =[
etr1 ; etr2 ; ...; etrN

]
represents the assigned amount of transmission energy for the SUs in time

slot t, where etri (t) ∈
{

0, etr,1, etr,2, ..., etr,ψ
}

denotes the transmission energy of SUi, in

which etr,j |j ∈ {1, 2, ..., ψ} represents the transmission energy level. etr,max is the maximum

transmission power at the SUs. The constraint in Eq. (4.6) is to guarantee that the assigned

transmission power at each SU should not exceed the value of etr,max. In the next section,

we propose an actor–critic reinforcement learning approach to maximizing the overall reward

from uplink NOMA. In particular, at the start of time slot t, the CBS will determine the

most appropriate action (i.e. silent mode or transmission mode with different transmission

energy levels) for each SU based on the remaining energy in each of the SUs and the belief

that the PU will be inactive in the current time slot. The actor–critic framework will learn
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and interact directly with the environment to obtain the optimal solution for the problem in

Eq. (4.6) after a large enough number of time slots.

4.4 Actor–Critic Reinforcement Learning–Based Algorithm

for Uplink NOMA in Cognitive Radio Networks

In this section, the actor–critic reinforcement learning approach is presented with

the goal of allocating the optimal action for the SUs such that the maximum long-term

throughput of uplink NOMA can be achieved according to information directly collected

via practical interactions with the environment. If an SU does not have enough energy

for data transmission in a time slot, it has to stay silent to save energy for the next time

slot regardless of the active or inactive states of the primary user. If the channel is sensed

as active, the SUs have to stay silent; otherwise, they will be assigned to concurrently

transmit data with the corresponding amount of transmission energy on the channel, which

is described in the following subsection.

4.4.1 Markov Decision Process

The actor–critic approach is a type of MDP [125], that can be defined as a quintuple

〈S,A,P,R, γ〉, where S is the state space, A represents the action space set, P is the transition

probability set in which the state of the agent changes from the current state to the next

state when action A is taken, R is the reward space, and γ ∈ [0, 1) denotes the discount

factor.

• State space: The state of the network in time slot t is s (t) = (µ (t) , ere (t)), where

µ (t) is the belief representing the probability that the PU is idle in this time slot, and

ere (t) = [ere1 (t) , ere2 (t) , ...., ereN (t)] is a vector that includes the remaining energy of

the SUs at the beginning of time slot t.

• Action space: The CBS assigns global action A (t), which comprises two vectors:

a (t) = [a1 (t) , a2 (t) , ..., aN (t)] and etr (t) =
[
etr1 , e

tr
2 , ..., e

tr
N

]
. Note that each element

of these vectors is sorted by following the corresponding index of each SU in the

network.

• Reward : Given the state of the system, s (t), and the action, A (t), each SU performs
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its own assigned action. As a result, the system can obtain an immediate reward

which is defined as the summation of the SUs’ throughput in the current time slot:

R (A (t) , s (t)).

The state–value function V (s (t)) is the cumulative discounted reward from current

state s (t). If the CBS uses the policy, πt (A (t) |s (t)), the probability that the CBS will

assign action A(t) for given state s(t), then the state–value function, V (s (t)), can be

expressed as follows:

V (s (t)) =
∞∑
k=t

γk−tR (s (k) ,A (k)). (4.7)

The objective of the actor–critic reinforcement learning algorithm is to find an

optimal policy π∗t (A (t) |s (t)) that maximizes the state–value function of each state s (t)

defined by Eq. (4.7). The optimal policy can be described by

π∗t (A (t) |s (t)) = arg max
A(t)∈A

{ ∞∑
k=t

γk−tR (s (k) ,A (k) |s (k) = s)

}
. (4.8)

4.4.2 Actor–Critic Reinforcement Learning Algorithm

In this chapter, we present the actor–critic approach as a model-free reinforcement

learning framework to solve the MDP problem. The advantage of this algorithm is that it

does not require any prior information from the dynamic environment (i.e. the harvested

energy distribution). That is, it is worthwhile to utilize the actor–critic scheme in practice

from the viewpoint that prior information from the environment is not easy to acquire.

On the other hand, the system can directly interact with the environment to learn the

information about the harvested energy.

Fig. 4.5 depicts the flowchart of the proposed scheme based on the actor–critic

learning method. In a time slot, after cooperative spectrum sensing is executed, the CBS

makes the global sensing decision about the existence of the PU on the licensed channel.

If the global sensing decision indicates that the PU is active, the SUs accept this result

and stay silent. Then, the SUs send to the CBS an update on their remaining energy, and

the belief µ (t+ 1) can be calculated at the end of time slot t. Otherwise, if the global
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Figure 4.5: The flowchart of the proposed scheme.

sensing decision indicates the PU is inactive, the CBS can choose the possible actions from

set A by applying the proposed actor–critic learning approach. The belief can be updated

by observing the successful/unsuccessful transmissions of the SUs if they are assigned to

transmit data to the CBS.

The actor–critic learning process consists of two components (the actor and the

critic), as shown in Fig. 4.6. The actor is used to define the policy and generate actions

based on the observed environment state, while the critic learns the state–value function

and criticizes the actions selected by the actor. At the start of each time slot, the actor

employs an action, A (t) ∈ A, by following policy πt (A (t) |s (t)). The policy is calculated

via Gibbs soft-max distribution [126]:

πt (A (t) |s (t)) =
eh(s(t),A(t))∑
A∈A

eh(s(t),A)
, (4.9)

where h (s (t) ,A (t)) indicates the tendency to select action A (t) in state s (t).

At the end of a time slot, the system will update the immediate reward, R (s (t) ,A (t)),
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Figure 4.6: The actor–critic learning process.

and the next state s (t+ 1). Subsequently, the critic will criticize the selected action and

evaluate the policy by using the temporal difference (TD) error, which is computed as

δ (t) = R (s (t) ,A (t)) + γV (s (t+ 1))− V (s (t)) , (4.10)

where δ (t) denotes the difference between state–value function V (s (t)) from the preceding

state and the state–value function after taking the selected action. Then, the critic uses the

TD error to criticize the selected action as follows:

V (s (t)) = V (s (t)) + λδ (t) , (4.11)

where λ is the learning step-size of the critic. Thereafter, the TD error is fed back to the

actor, and the tendency to select the action is upgraded as

h (s (t) ,A (t)) = h (s (t) ,A (t)) + βδ (t) , (4.12)

where β is the learning step-size of the actor. Ultimately, the policy is updated by Eq.

(4.9) and Eq. (4.12) for action selection in the subsequent time slots. The training process

will be completed when state–value function V (s (t)) and policy πt (A (t) |s (t)) converge to

V ∗ (s (t)) and π∗t (A (t) |s (t)) with probability 1 as t→∞ [127].

Hereafter, when the CBS assigns an action for each SU, one of the following

observations may happen.
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4.4.2.1 Silent Mode (Ω1)

If the global sensing decision indicates that the PU is active in the current time

slot. The CBS will trust this result and assign action SL to all SUs. In this case, no reward

is achieved, i.e. R (s (t) ,A (t) |Ω1 ) = 0. The belief in the current time slot can be updated

using Bayes’ rule [128] as follows:

µ (t) =
µ (t)Pf

µ (t)Pf + (1− µ (t))Pd
. (4.13)

The updated belief for the next time slot is given as

µ (t+ 1) = µ (t)PSS + (1− µ (t))PAS . (4.14)

For simplicity in this work, we assume that the energy consumed for the information

update of the SUs is tiny and can be ignored. Hence, the remaining energy of SUi for the

next time slot can be calculated as follows:

erei (t+ 1) = min
{
erei (t) + ehv,i (t)− ess, Eca

}
, (4.15)

where ess denotes the energy consumed for spectrum sensing.

4.4.2.2 Transmission Mode

If the global sensing decision indicates that the PU is silent, then the CBS allows

all SUs to transmit data with ai (t) = TM and the corresponding transmission energy level

etri (t). In this case, there are two observations: Ω2 and Ω3.

Observation 2 (Ω2): The CBS can successfully decode the signals transmitted by

the SUs at the end of the time slot. In this case, the system recognizes that the PU was

actually silent in the time slot. The reward can be computed as

R (s (t) ,A (t) |Ω2 ) =

N∑
i=1

Ri (t), (4.16)

where the throughput of the SUi, Ri (t) can be calculated with Eq. (4.2). Belief µ (t+ 1)

for the next time slot can be updated as

µ (t+ 1) = PSS . (4.17)

The remaining energy of SUi can be updated as follows:

erei (t+ 1) = min
{
erei (t) + ehv,i (t)− ess − etri (t) , Eca

}
, (4.18)
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Algorithm 4.1 Actor–critic reinforcement learning procedure of the transmission power

decision policy for the SUs

1: Input: S, A, γ, λ, β, ere(t), µ(t), Eca, e
hv
mean, T . // Initial parameters

2: Initialize state–value function V (s (t)), tendency h (s (t) ,A (t)), and policy

πt (A (t) |s (t));

3: Repeat until convergence

4: for each time slot,

5: Define the current state s (t) ∈ S

6: Choose an action, A (t) ∈ A, according to policy πt (A (t) |s (t)) in Eq. (4.9) after

considering the sensing result and the remaining energy of the SUs.
7:

8: Simultaneously excute the process for all SUs:

9: if ai (t) = “SL” // if SUi is assigned to stay silent

10: SUi stays silent and only harvests solar energy.

11: else// if SUi is assigned to transmit data with the transmission energy etri (t)

12: SUi transmits data to CBS with assigned transmission energy and harvests solar

energy.
13: end if

14: Compute instant reward Ri (s (t) , ai (t)); update network state s (t+ 1).

15:

16: Critic Process:

17: Calculate TD error δ (t) with Eq. (4.10).

18: Update state–value function V (s (t)) with Eq. (4.11).

19:

20: Actor Process:

21: Update tendency to select an action, A (t), h (s (t) ,A (t)), with Eq. (4.12).

22: Update policy to choose action A (t) under the given state, πt (A (t) |s (t)), with

Eq. (4.9).
23: end for

24: Output: Final policy π∗t (A (t) |s (t)). // Optimal action at given state.

where etri (t) denotes the transmission energy of SUi in time slot t.

Observation 3 (Ω3): The CBS can not successfully decode the signals transmitted

by the SUs due to collisions between the SUs and PUs transmissions. The system can infer
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that misdetection occurred in this case. There is no reward: R (s (t) ,A (t) |Ω3 ) = 0.

Belief µ (t+ 1) for the next time slot is updated as

µ (t+ 1) = PAS . (4.19)

The remaining energy of SUi for the next time slot is updated by:

erei (t+ 1) = min
{
erei (t) + ehv,i (t)− ess − etri (t) , Eca

}
. (4.20)

In the actor–critic algorithm, the state–value function and the policy parameters

are sequentially and concurrently updated based on the action of the CBS over the time slots.

The policy of the system can be dynamically obtained from a practical learning process, such

that the local optimal policy can converge over a large number of time slots [129]. Finally,

we summarize the learning process of the proposed actor–critic scheme in Algorithm 4.1.

4.5 Simulation Results

In this section, we analyze the performances of the proposed scheme under various

conditions of the network by using simulation results based on MATLAB R2019a. In

addition, we also compare the proposed scheme with the other conventional schemes, such

as the Myopic NOMA scheme, the Myopic OMA scheme, and the Myopic Random scheme,

where the term “Myopic” refers to the policy that only maximizes the instant reward of the

system. In the Myopic NOMA scheme, if the sensing result indicates the absence of the PU,

the SUs will simultaneously transmit data to the CBS at the highest transmission energy

level, and then, similar to the proposed scheme the received signals will be decoded at the

CBS by applying the SIC technique. For the Myopic OMA scheme, the decision is made by

combining the myopic approach and TDMA-based technique. More specifically, the entire

data transmission phase in a time slot is equally divided into sub-phases according to the

number of SUs. After that, the SUs transmit their information in rapid succession during

their respective sub-phases, one after the other. For the simulation (N = 2), we assumed

each SU transmits data in half of the time for the transmission phase after sensing, and

then, the achievable throughput of SUi at the CBS can be computed as [130]

ROMA
i (t) =

τtr
2T

log2

(
1 +

Pi (t) |hi|2

σ2
ω

)
, (4.21)
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Table 4.1: Simulation Parameters

Parameter Description Value

N Number of SUs 2

T Time slot duration 200 ms

τss Sensing duration 2 ms

τu Update duration 1 ms

Eca Battery capacity 20 µJ

ess Sensing cost 1 µJ

etr Transmission energy 5, 10, 15 µJ

ehvmean Mean value of harvested energy 6 µJ

µ Initial belief that the PU is absent 0.5

PSS
Transition probability of the PU from state S to

itself
0.8

PAS
Transition probability of the PU from state A

to state S
0.2

Pd Probability of detection 0.9

Pf Probability of false alarm 0.1

h1 Channel gain between SU1 and the CBS -20 dB

h2 Channel gain between SU2 and the CBS -35 dB

σ2
ω Noise variance -80 dB

γ Discount factor 0.95

λ, β Learning step-sizes of critic, actor 0.1, 0.1

In the Myopic Random scheme, the CBS randomly assigns NOMA/OMA to the SUs when

the global sensing decision indicates that the PU is silent in the current time slot. For

simplicity, the channel gain for each SU is fixed, and there are three levels for the transmission

energy of the SUs: TM1 = 5 µJ , TM2 = 10 µJ , TM3 = 15 µJ . The span of each belief is

0.1. Furthermore, the performance of the proposed scheme was verified over 30, 000 time

slots, and the results were acquired by averaging 10 separate loops. Table 4.1 shows the

simulation parameters for the scheme proposed in this chapter.

In Fig. 4.7, we examine the convergence of the proposed scheme’s algorithm over

time slots with various step-size parameters, λ and β, based on the reward (throughput) of
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Figure 4.7: The convergence process of the actor–critic according to different values of

learning step-size.

the system. In this chapter, the convergence condition for the proposed scheme was set at

10−3. We can see that the system reward greatly increases during the first 15,000 time slots,

and then gradually converges to the optimal value, which depends on the different values

of λ and β. Obviously, if larger values of λ and β are used, the faster the convergence and

the higher the throughput. However, from the figure, we can see that increasing the value

of λ and β does not always guarantee a higher reward for the network due to underfitting,

whereas the system might be prone to overfitting if we reduce the learning parameters. As

a result, we set the value of actor and critic learning step-sizes as λ = 0.1, and β = 0.1,

respectively, for the proposed scheme in the upcoming simulation.

In Fig. 4.8, we illustrate the effect of the amount of harvested energy of the SUs

and the number ò primary channels on the average throughput of the proposed actor–critic

NOMA, compared with the other conventional schemes. We can see that when ehvmean

increases, the SUs can collect more energy from the solar source, and can transmit at a

higher transmission energy level, which leads to higher achievable throughput at the CBS.

In addition, the performance of the proposed scheme outperforms the conventional schemes,

since the conventional schemes disregard the impact of the current decision on future rewards.

For that reason, whenever the PU is sensed as silent on the primary channel, then these
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Figure 4.8: Average throughput of the secondary system under various values of harvested

energy.

conventional schemes will allow SUs to use as much energy as possible to maximize the

immediate throughput at the CBS. However, this action causes the SUs to stay silent longer

than under the proposed actor–critic NOMA scheme owing to the limitations on battery

capacity and harvested energy. It is also observed that average throughput achieved at the

CBS in the case of two primary channels (2 CHs) is larger than that of a single channel case

(1 CH). Obviously, with more primary channels, the SUs have more chances to transmit their

data. As a consequence, the performance of the cognitive radio system is enhanced in the

case of multiple channels. However, the proposed scheme provides the highest throughput

in both cases of single and multiple channels.

Fig. 4.9 shows the energy efficiency of the system under various mean values of

energy harvesting. In this chapter, we define energy efficiency as the average long-term

throughput over the total energy-harvesting amount during the operations spanning M

(M = 20, 000) time slots

(
EE =

M∑
t=1

N∑
i=1

Ri (t)

/
M∑
t=1

N∑
i=1

ehv,i (t)

)
. In order to enhance the

energy efficiency of the proposed scheme, we set the maximum transmission energy level for

the SU if its battery is likely to overflow in each time slot [131]. From Fig. 4.9, we can see that

the energy efficiency drops with increased levels of energy harvesting, ehvmean. The reason is

that when ehvmean increases, the SUs can gather more energy for their operations but the total
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Figure 4.9: Energy efficiency of the secondary system for various values of harvested energy.

amount of overflow energy in the SUs increases concurrently. As a consequence, the figure

shows that the proposed scheme is still superior to other conventional schemes under different

amounts of harvested energy. For instance, when ehvmean = 6µJ , the energy efficiency of the

proposed scheme can provide 23.8%, 50.3%, and 91.8% in energy utilization improvement for

the Myopic NOMA, Myopic Random, and Myopic OMA schemes, respectively. Myopic OMA

brings the lowest result, because the SUs transmit data in turn during each half-phase of the

data transmission duration, while other NOMA schemes allow the SUs to simultaneously

transmit data over the entire data transmission phase.

Specific information about the number of actions selected for each SU under a

change in ehvmean for the proposed scheme and the Myopic NOMA scheme is illustrated

in Fig. 4.10 and Fig. 4.11, respectively. We can see that the proposed scheme normally

assigns the proper amount of transmission energy for the SUs at low values for the harvested

energy mean, ehvmean. Meanwhile Myopic NOMA scheme assigns the SUs the highest possible

transmission energy at all values of ehvmean. This creates inefficiency in terms of both energy

and throughput metrics, as presented in Fig. 4.8 and Fig. 4.9. It is obvious that although

harvested energy may vary over time slots, the SUs in the proposed scheme usually utilize

TM3 to obtain the highest throughput, provided that the PU is most likely absent, or energy

overflow might happen.
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Figure 4.10: The selected action statistics of each secondary user using the actor–critic

NOMA approach for various values of harvested energy.
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Figure 4.11: The selected action statistics of each secondary user using the Myopic NOMA

approach for various values of harvested energy.

We further investigated the joint impact of channel gain between the CBS and

SUs’ throughput in the system, as shown in Fig. 4.12. It is evident that the performance

of the system goes up with an increase in channel gain h1 and h2. The reason is that the
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Figure 4.12: Average throughput for different values of h1 and h2.

throughput of system throughput is dependent on the channel gain as shown in Eq. (2)

and Eq. (3). Thus, the larger channel gains are, the higher throughput the system obtains.

Specifically, when h1 becomes larger, the average throughput of the system significantly

increases; however, it only slightly increases when h2 increases. That is because the value

of h2 is quite a bit smaller than the value of h1, and in this case, it has less impact on the

signal of SU1 and on total throughput of the system. Thus, increasing h2 does not much

influence the overall obtainable throughput at the CBS due to its small channel gain.

In Fig. 4.13, we investigate the energy efficiency of the proposed scheme versus

the various values for channel gain between the CBS and SU1. The curves show that the

energy efficiency of the system benefits from larger values of h1 because with the same

transmission power for SUs, the higher channel gain will bring more throughput at the CBS.

Consequently, the proposed scheme is verified to be superior to other conventional schemes

in terms of efficient energy utilization under the variation of channel gain.

In Fig. 4.14, we jointly study average system throughput of the schemes under

the impact of various noise variances σ2
ω and primary user activity which is expressed as

transition probability of PUs from state silent to state silent. Fig. 14 shows that a large

amount of noise variance can significantly degrade the obtained throughput. It can be

explained as following: when the noise variance goes up, it will severely interfere with the
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Figure 4.13: Energy efficiency according to the channel gain between the CBS and SU1.
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Figure 4.14: Average throughput according to the noise variance.

received signals at the CBS. According to Eq. (2) and Eq. (21), the noise variance, which is

an interfering component in the denominator of the signal-to-interference-plus-noise ratio

(SINR), will lower the system throughput as it increases, and vice versa. In addition, we can

see that the performances of all schemes can get better as PSS increases. The reason is that

when the transition probability of PUs from state silent to itself rises, the probability that
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Figure 4.15: Energy efficiency according to the noise variance.

the primary channel is free also goes up, which results in more opportunities for the SUs to

transmit data on the primary channel.

Finally, in Fig. 4.15, we examine the effect of noise variance on the energy efficiency

of the schemes. It is observed that the energy efficiency of all schemes deteriorates as the

noise variance increases. The reason for this is as following: the energy efficiency is calculated

by the achieved long-term throughput over the total energy-harvesting during operational

time. Hence, for the large value of the noise variance, the average long-term throughput

tends to be reduced, which results in the low energy efficiency in the system. The figure

shows that the energy efficiency of the proposed schemes dominates the other conventional

schemes. Furthermore, the figure can verify the robustness of the proposed scheme with

respect to noise variation at the CBS.

4.6 Conclusion

In this chapter, we propose an actor–critic reinforcement learning approach using

uplink NOMA in a cognitive radio network. In the network, the solar energy–powered

SUs can simultaneously transmit data to a cognitive base station. The energy-constrained

and the imperfect-sensing problems are also taken into account. Consequently, the optimal

policy can be obtained by using the proposed scheme, where the SUs can be assigned the
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proper action mode (i.e. stay silent or transmit data) to maximize the long-term throughput

of the secondary system. Simulation results demonstrate that the proposed scheme can

improve both long-term throughput and the energy efficiency of the network, compared with

conventional schemes.



Chapter 5

Hybrid NOMA/OMA-Based

Dynamic Power Allocation Scheme

Using Deep Reinforcement

Learning in 5G Networks

5.1 Introduction

Recently, fourth-generation (4G) systems reached maturity, and will evolve into

fifth-generation (5G) systems where limited amounts of new spectrum can be utilized to meet

the stringent demands of users. However, critical challenges will come from explosive growth

in devices and data volumes, which require more efficient exploitation of valuable spectrum.

Therefore, non-orthogonal multiple access (NOMA) is one of the potential candidates for

5G and upcoming cellular network generations [91,92,132].

According to NOMA principles, multiple users are allowed to share time and

spectrum resources in the same spatial layer via power-domain multiplexing, in contrast

to conventional orthogonal multiple access (OMA) techniques consisting of frequency-

division multiple access (FDMA) and time division multiple access (TDMA) [133]. Interuser

interference can be alleviated by performing successive interference cancellation (SIC) on

the receiver side. There has been a lot of research aimed at sum rate maximization,

and the results showed that higher spectral efficiency (SE) can be obtained by using NOMA,

78
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compared to baseline OMA schemes [134–137]. Zeng et al. [134] investigated a multiple-user

scenario in which users are clustered and share the same transmit beamforming vector.

Di et al. [135] proposed a joint sub-channel assignment and power allocation scheme to

maximize the weighted total sum rate of the system while adhering to a user fairness

constraint. Timotheou et al. [136] studied a decoupled problem of user clustering and power

allocation in NOMA systems in which the proposed user clustering approach is based on

exhaustive search with a high required complexity. Liang et al. [137] studied solutions for

user pairing, and investigated the power allocation problem by using NOMA in cognitive

radio (CR) networks.

Nowadays, energy consumption for wireless communications is becoming a major

social and economic issue, especially with the explosive amounts of data traffic. However,

limited efforts have been devoted to the energy-efficient resource allocation problem in NOMA-

enabled systems [138–140]. The authors in [138] maximized energy efficiency subject to a

minimum required data rate for each user, which leads to a nonconvex fractional programming

problem. Meanwhile, a power allocation solution aiming to maximize the energy efficiency

under users’ quality of service requirements was investigated [139]. Fang et al. [140] proposed

a gradient-based binary search power allocation approach for downlink NOMA systems,

but it requires high complexity. NOMA was also applied to future machine-to-machine

(M2M) communications in [141], and it was shown that the outage probability of the system

can be improved when compared with OMA. Additionally, by jointly studying beamforming,

user scheduling, and power allocation, the system performance of millimeter wave (mmWave)

networks was studied [142].

On the other hand, CR (one of the promising techniques to improve SE), has

been extensively investigated for decades. In it, cognitive users (CUs) can utilize the

licensed spectrum bands of the primary users (PUs) as long as the interference caused by

the CUs is tolerable [143–145]. Goldsmith et al. in [89] proposed three operation models

(opportunistic spectrum access, spectrum sharing, and sensing-based enhanced spectrum

sharing) to exploit the CR technique in practice. It is conceivable that the combination of

CR with NOMA technologies is capable of further boosting the SE in wireless communication

systems. Therefore, many studies on the performance of spectrum-sharing CR combined

with NOMA have been analyzed [104,105].

Along with the rapid proliferation of wireless communication applications, most

battery-limited devices become useless if their battery power is depleted. As one of the
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remedies, energy harvesting (EH) exploits ambient energy resources to replenish batteries,

such as solar energy [123], radio frequency (RF) signals [146], and both non-RF and RF

energy harvesting [90], etc. Among various kinds of renewable energy resources, solar power

has been considered one of the most effective energy sources for wireless devices. However,

solar power density highly depends on the environment conditions, and may vary over time.

Thus, it is critical to establish proper approaches to efficiently utilize harvested energy for

wireless communication systems.

Many early studies regarding NOMA applications have mainly focused on the

downlink scenario. However, there are fewer contributions investigating uplink NOMA,

where an evolved NodeB (eNB) has to receive different levels of transmitted power from

all user devices using NOMA. Zhang et al. in [147] proposed a novel power control scheme,

and the outage probability of the system was derived. Besides, the user-pairing approach was

studied in many predefined power allocation schemes in NOMA communication systems [148]

in which internet of things (IoT) devices first harvest energy from BS transmissions in the

harvesting phase, and they then utilize the harvested energy to perform data transmissions

using the NOMA technique during the transmission phase. The pricing and bandwidth

allocation problem in terms of energy efficiency in heterogeneous networks was investigated

in [149]. In addition, the authors in [123] proposed joint resource allocation and transmission

mode selection to maximize the secrecy rate in cognitive radio networks. Nevertheless,

most of the existing work on resource allocation assumes that the amount of harvested

energy is known, or that traffic loads are predictable, which is hard to obtain in practical

wireless networks.

Since the information regarding network dynamics (e.g., harvested energy distri-

bution, primary user’s behavior) is sometimes unavailable in the cognitive radio system,

researchers usually formulate optimization problems as the framework of a Markov de-

cision process (MDP) [90, 123, 150, 151]. Reinforcement learning is one of the potential

approaches to obtaining the optimal solution for an MDP problem by interacting with the

environment without having prior information about the network dynamics or without any

supervision [152–154]. However, it is a big issue for reinforcement learning to have to deal

with large-state-space optimization problems. For this reason, deep reinforcement learning

(DRL) is being investigated extensively these days in wireless communication systems where

deep neural networks (DNNs) work as function approximators and are utilized to learn the

optimal policy [155–157]. Meng et al. proposed a deep reinforcement learning method for a
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joint spectrum sensing and power control problem in a cognitive small cell [155]. In addition,

deep Q-learning was studied for a wireless gateway that is able to derive the optimal policy

to maximize throughput in cognitive radio networks [156]. Zhang et al. [157] proposed

an asynchronous advantage, deep actor-critic-based scheme to optimize spectrum sharing

efficiency and guarantee the QoS requirements of PUs and CUs.

To the best of our knowledge, there has been little research into resource allocation

using deep reinforcement learning under a non-RF energy-harvesting scenario in uplink

cognitive radio networks. Thus, we propose a deep actor-critic reinforcement learning frame-

work for efficient joint power and bandwidth allocation by adopting hybrid NOMA/OMA in

uplink cognitive radio networks (CRNs). In them, solar energy-powered CUs are assigned

the proper transmission power and bandwidth to transmit data to a cognitive base station

in every time slot in order to maximize the long-term data transmission rate of the system.

Specifically, the main contributions of this chapter are as follows.

• We study a model of a hybrid NOMA/OMA uplink cognitive radio network adopting

energy harvesting at the CUs, where solar energy-powered CUs opportunistically use

the licensed channel of the primary network to transmit data to a cognitive base station

using NOMA/OMA techniques. Beside that, a user-pairing algorithm is adopted such

that we can assign orthogonal frequency bands to each NOMA group after pairing.

We take power and bandwidth allocation into account such that the transmission

power and bandwidth are optimally utilized by each CU under energy constraints and

environmental uncertainty. The system is assumed to work on a time-slotted basis.

• We formulate the problem of long-term data transmission rate maximization as the

framework of a Markov decision process (MDP), and we obtain the optimal policy

by adopting a deep actor-critic reinforcement learning (DACRL) framework under a

trial-and-error learning algorithm. More specifically, we use DNNs to approximate the

policy function and the value function for the actor and critic components, respectively.

As a result, the cognitive base station can allocate the appropriate transmission power

and bandwidth to the CUs by directly interacting with the environment, such that the

system reward can be maximized in the long run by using the proposed algorithm.

• Lastly, extensive numerical results are provided to assess the proposed algorithm per-

formance through diverse network parameters. The simulation results of the proposed
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Figure 5.1: System model of the proposed scheme.

scheme are shown to be superior to conventional schemes where decisions on transmis-

sion power and bandwidth allocation are taken without long-term considerations.

The rest of this chapter is structured as follows. The system model is presented

in Section 5.2. We introduce the problem formulation in Section 5.3, and we describe

the deep actor-critic reinforcement learning scheme for resource allocation in Section 5.4.

The simulation results and discussions are in Section 5.5. Finally, we conclude the chapter

in Section 5.6.

5.2 System Model

We consider an uplink CRN that consists of a cognitive base station (CBS),

a primary base station (PBS), multiple primary users, and 2M cognitive users as illustrated

in Figure 5.1. Each CU is outfitted with a single antenna to transmit data to the CBS,

and each is equipped with an energy-harvesting component (i.e., solar panels). The PBS

and PUs have the license to use the primary channel at will. However, they do not always
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Algorithm 5.1 User-pairing Algorithm

1: Input: channel gain, number of groups, M , number of CUs, 2M .

2: Sort the channel gain of all CUs in decending order: g1 ≥ g2 ≥ ... ≥ g2M

3: Define set of channel gains U = {g1, g2, ..., g2M}
4: for j = 1 : M

5: Gj = {∅}
6: Gmax = max {U} , Gmin = min {U}
7: Gj = Gj ∪Gmax ∪Gmin

8: U = U\Gmax\Gmin

9: end for

10: Output: Set of CU pairs.

have data to transmit on the primary channel. Meanwhile, the CBS and the CUs can

opportunistically utilize the primary channel by adopting a hybrid NOMA/OMA technique

when the channel is sensed as free. To this end, the CBS divides the set of CUs into pairs

according to Algorithm 5.1 where the CU having the highest channel gain will be coupled

with the CU having the lowest channel gain, and one of available channels will be assigned

to these pairs. More specifically, the CUs are arranged into M NOMA groups, and the

primary channel is divided into multiple subchannels to apply hybrid NOMA/OMA for

the transmissions between the CUs and the CBS, with G = {G1,G2,G3, ....,GM} denoting

the set of NOMA groups. Additionally, M NOMA groups are assigned to M orthogonal

subchannels, SC = {SC1, SC2,SC3,....,SCM}, of the primary channel such that the CUs in

each NOMA group can transmit on the same subchannel and will not interfere with the

other groups. In this chapter, successive interference cancellation (SIC) [158] is applied at

the CBS for decoding received signals, which are transmitted from the CUs. Moreover, we

assume that the CUs always have data to transmit, and the CBS has complete channel state

information (CSI) of all the CUs.

The network system operation is illustrated in Figure 5.2. In particular, at the

beginning of a time slot, with duration τss, all CUs concurrently perform spectrum sensing

and report their local results to the CBS. Based on these sensing results, the CBS first

decides the global sensing result as to whether the primary channel is busy or not following

the combination rule [122, 159], and then allocates power and bandwidth to all CUs for

uplink data transmission. As a consequence, according to the allocated power and bandwidth
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of the NOMA groups, the CUs in each NOMA group can transmit their data to the CBS

through the same subchannel without causing interference with other groups within duration

τTr = Ttot − τss, where Ttot is the total time slot duration. Information regarding the

remaining energy in all the CUs is updated to the CBS at the end of each time slot. Each

data transmission session of the CUs may take place in more than one time slot until all

their data have been transmitted successfully.
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Figure 5.2: Time frame of the cognitive users’ operations.

During data transmission, the received composite signal at the CBS on subchannel

SCm is given by

ym (t) =
√
P1m (t)x1m (t)h1m +

√
P2m (t)x2m (t)h2m + ωm, (5.1)

where Pim (t) = etrim (t)
/
τTr |i ∈ {1, 2} ,m ∈ {1, 2, ...,M} is the transmission power of CUi in

NOMA group Gm, in which etrim (t) is the transmission energy assigned for CUim in time

slot t; xim (t) denotes the transmit signal of CUim in time slot t,
(
E{|xim(t)|2}= 1

)
; ωm is

the additive white Gaussian noise (AWGN) at the CBS on subchannel SCm with zero mean

and variance σ2; and him is the channel coefficient between CUim and the CBS. The overall

received signal at the CBS in time slot t is given by

y (t) =
M∑
m=1

ym (t). (5.2)

The received signals at the CBS on different sub-channels are independently

retrieved from composite signal ym(t) using the SIC technique. In particular, the CU’s signal
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with the highest channel gain is firstly decoded, and then it will be removed from composite

signal at the CBS, in a successive manner. The CU’s signal with the lower channel gain

in the sub-channel is treated as noise of the CU with the higher channel gain. We assume

perfect SIC implementation at the CBS. The achievable transmission rate for the CUs in

NOMA group Gm are

R1m (t) = τTr
Ttot
× bm (t)× log2

[
1 + P1m(t)g1m

P2m(t)g2m+σ2

]
R2m (t) = τTr

Ttot
× bm (t)× log2

[
1 + P2m(t)g2m

σ2

]
,

(5.3)

where bm (t) is the amount of bandwidth allocated to subchannel SCm in time slot t,

gim = |him|2 is the channel gain of CUim on subchannel m, and g1m ≥ g2m. Since the

channel gain of CU1m, g1m, is higher, CU1m has a higher priority for decoding. Consequently,

the signal of CU1m is decoded first by treating the signal of CU2m as interference. Next, user

CU1m is removed from signal ym (t), and the signal of user CU2m is decoded as interference-

free. The sum achievable transmission rate of NOMA group Gm can be calculated as:

Rm (t) = R1m (t) +R2m (t) . (5.4)

The sum achievable transmission rate at the CBS can be given as follows:

R (t) =

M∑
m=1

Rm (t). (5.5)

5.2.1 Energy Arrival and Primary User Models

In this chapter, the CUs have a finite capacity battery, Ebat, which can be constantly

recharged by the solar energy harvesters. Therefore, the CUs can perform their other

operations and harvest solar energy simultaneously. For many reasons (such as the weather,

the season, different times of the day), the harvested energy from solar resources may vary

in practice. Herein, we take into account a practical case, where the harvested energy of CUi

in NOMA group Gm (denoted as ehim) follows a Poisson distribution with mean value ξavg,

as studied in [160]. The arrival energy amount that CUim can harvest during time slot t can

be given as ehim (t) ∈
{
eh1 , e

h
2 , ..., e

h
υ

}
where 0 < eh1 < eh2 < ... < ehυ < Ebat. The cumulative

distribution function can be given as follows:

F
(
ehim (t) ; ξavg

)
=

ehim(t)∑
k=0

e−ξavg
(ξavg)

k

k!
. (5.6)
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Figure 5.3: Markov chain model of the primary channel.

Herein, we use a two-state Markov discrete-time process to model the state of the

primary channel, as depicted in Figure 5.3. We assume that the state of the primary channel

does not change during the time slot duration, Ttot, and the primary channel can switch

states between two adjacent time slots. The state transition probabilities between two time

slots are denoted as Pij |i, j ∈ {F,B} , in which F stands for the free state, and B stands for

the busy state. In this chapter, we consider cooperative spectrum sensing, in which all CUs

collaboratively detect spectrum holes based on an energy detection method, and they send

these local sensing results to the CBS. Subsequently, the final decision on the primary users’

activities is attained by combining the local sensing data at the CBS [159]. The performance

of the cooperative sensing scheme can be evaluated based on probability of detection Pd

and probability of false alarm Pf . Pd is denoted as the probability that the PU’s presence is

correctly detected (i.e., the primary channel is actually used by the PUs). Meanwhile, Pf is

denoted as the probability that the PU’s is detected to be active, but it is actually inactive

(i.e., the sensing result of the primary channel is busy, but the primary channel is actually

free) .

5.3 Long-Term Transmission Rate Maximization Problem For-

mulation

In this section, we aim at maximizing the long-term data transmission rate for

uplink NOMA/OMA. The 2M users in the CRN can be decoupled into pairs according

to their channel gain, as described in Algorithm 5.1. After user pairing, the joint power
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allocation and bandwidth allocation problem can be formulated as follows:

a∗ (t) = arg max
a(t)

∞∑
k=t

M∑
m=1

Rm (k)

s.t.0 ≤ etrim ≤ etrmax
M∑
m=1

bm (t) = W

, (5.7)

where a (t) = {b (t), ε (t)} represents the action that the CBS assigns to the CUs in time slot t;

b (t) indicates a vector of the allocated bandwidth portions assigned to the corresponding sub-

channel, where b (t) = {b1 (t) , b2 (t) , ...., bM (t)}
∣∣∣∣ M∑
m=1

bm (t) = W is the assigned bandwidth

amount formth sub-channel; ε (t) =
[
etr11 (t) , etr21 (t) , , etr12 (t) , etr22 (t) , ..., etr1M (t) , etr2M (t)

]
refers

to a transmission energy vector of the CUs, where etrim (t) ∈
{

0, etr1 , e
tr
2 , ..., e

tr
max

}
is the trans-

mission energy value for CUim, and etrmax represents the upper-bounded value of transmission

energy for each CU in time slot t.

5.4 Deep Reinforcement Learning-Based Resource Alloca-

tion Policy

In this section, we first reformulate the joint power and bandwidth allocation

problem, which is aimed at maximizing the long-term data transmission rate of the system as

the framework of an MDP. Then, we apply a DRL approach to solve the problem, in which

the agent (i.e., the CBS) learns to create the optimal resource policy via trial-and-error

interactions with the environment. One of the disadvantages of reinforcement learning is

that the high computational costs can be imposed due to the long time learning process of a

system with high state space and action space. However, the proposed scheme requires less

computation overhead by adopting deep neural networks, as compared to other algorithms

such as value iteration-based dynamic programming in partially observable Markov decision

process (POMDP) framework [123] in which the transition probability of the energy arrival is

required for obtaining the solution. Thus, the complex in formulation and computation can

be relieved regardless of the dynamic properties of the environment by using the proposed

scheme, as compared to POMDP scheme.

Furthermore, the advantage of a deep reinforcement learning scheme as compared

with the POMDP scheme is that the unknown harvested energy distribution can be estimated
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to create the optimal policy by interacting with the environment over the time horizon.

In addition, the proposed scheme can work effectively in a large-state-and-space system

by adopting deep neural networks. However, other reinforcement learning schemes such as

Q-learning [161], actor-critic learning [162] might not be appropriate to large-state-and-space

systems. In the proposed scheme, a deep neural network was trained to obtain the optimal

policy where the reward of the system converges to optimal value. Then, the system can

choose an optimal action at every state according to that policy learned from the training

phase without re-training. Thus, deep actor-critic reinforcement learning can be more

applicable to the wireless communication system.

5.4.1 Markov Decision Process

Generally, the purpose of reinforcement learning is for the agent to learn how to

map each system state to an optimal action through a trial-and-error learning process. In this

way, the accumulated sum of rewards can be maximized after a number of training time

slots. Figure 5.4 illustrates the traditional reinforcement learning via agent–environment

interaction. In particular, the agent observers the system state and then chooses an action

at the beginning of a time slot. After that, the system receives the corresponding reward

at the end of the time slot, and transfers to the next state based on the performed action.

The system will be updated and will then go into the next interaction between agent

and environment.
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Figure 5.4: The agent–environment interaction process.

We denote the state space and action space of the system in this chapter as S and

A, respectively; s (t) = {µ (t) , ere (t)} ∈ S represents the state of the network in time slot
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t, where µ (t) is the probability (belief) that the primary channel is free in that time slot,

and ere (t) =
[
ere11 (t) , ere21 (t) , ere12 (t) , ere22 (t) , ere1M (t) , ere2M (t)

]
denotes a vector of remaining

energy of CUs, where 0 ≤ ereim ≤ Ebat represents the remaining energy value of CUim.

The action at the CBS is denoted as a (t) = {b (t) , ε (t)} ∈ A. In this chapter, we define the

reward as the sum data rate of the system, as presented in Eq. (5.5).

The decision-making process can be expressed as follows. At the beginning of

time slot t, the agent observes the state, s (t) ∈ S, from information about the envi-

ronment, and then chooses action a (t) ∈ A following a stochastic policy, π (a |s) =

Pr (a (t) = a |s (t) = s), which is mapped from the environment state to the probability

of taking an action. In this work, the network agent (i.e, the CBS) determines the trans-

mission power for each CU and decides whether to allocate the bandwidth portion to the

NOMA groups in each time slot. Then, the CUs perform their operations (transmit data or

stay silent) according to the assigned action from the CBS. Afterward, the instant reward,

R (t), which is defined in Eq. (5.5), is fed back to the agent, and the environment transforms

to the next state, s (t+ 1). At the end of the time slot, the CUs report information about

the current remaining energy level in each CU to the CBS for network management. In the

following, we describe the way to update information about the belief and the remaining

energy based on the assigned actions at the CBS.

5.4.1.1 Silent Mode

The global sensing decision shows that the primary channel is busy in the current

time slot, and thus, the CBS trusts this result and has all CUs stay silent. As a consequence,

there is no reward in this time slot, i.e., R (t) = 0. The belief in current time slot t can be

calculated according to Bayes’ rule [128], as follows:

µ (t) =
µ (t)Pf

µ (t)Pf + (1− µ (t))Pd
. (5.8)

Belief µ (t+ 1) for the next time slot is updated as follows:

µ (t+ 1) = µ (t)PFF + (1− µ (t))PBF . (5.9)

The remaining energy of CUim for the next time slot is updated as

ereim (t+ 1) = min
(
ereim (t) + ehim (t)− ess, Ebat

)
, (5.10)

where ess is the consumed energy from the spectrum sensing process.
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5.4.1.2 Transmission Mode

The global sensing decision indicates that the primary channel is free in the current

time slot, and then, the CBS assigns transmission power levels to the CUs for transmitting

their data to the CBS. We assume that the data of the CUs will be successfully decoded if

the primary channel is actually free; otherwise, no data can be retrieved due to collisions

between the signals of the PUs and CUs. In this case, there are two possible observations,

as follows.

Observation 1 (Φ1): All data are successfully received and decoded at the CBS at

the end of the time slot. This result means the primary channel was actually free during

this time slot, and the global sensing result was correct. The total reward for the network is

calculated as

R (s (t) |Φ1 ) =

M∑
m=1

Rm (t), (5.11)

where the immediate data transmission rate of NOMA group Gm, Rm (t), can be computed

with Eq. (5.4). Belief µ (t+ 1) for the next time slot is updated as

µ (t+ 1) = PFF . (5.12)

The remaining energy in CUim for the next time slot will be

ereim (t+ 1) = min
(
ereim (t) + ehim (t)− ess − etrim (t) , Ebat

)
, (5.13)

where etrim (t) denotes the transmission energy assigned to CUim in time slot t.

Observation 2 (Φ2): The CBS can not successfully decode the data from the CUs

at the end of time slot t due to collisions between the signals of the CUs and the PUs. It

implies that the primary channel was occupied, and misdetection happened. In this case,

no reward is achieved, i.e., R (s (t) |Φ2 ) = 0. Belief µ (t+ 1) for the next time slot can be

updated as

µ (t+ 1) = PBF . (5.14)

The remaining energy in CUim for the next time slot is updated by

ereim (t+ 1) = min
(
ereim (t) + ehim (t)− ess − etrim (t) , Ebat

)
. (5.15)
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In reinforcement learning, the agent is capable of improving the policy based on the

recursive lookup table of state-value functions. The state-value function, V π (s), is defined

as the maximum expected value of the accumulated reward starting from current state s

with the given policy, which is written as [152]:

V π (s) = E

{ ∞∑
t=1

γtR (t) |s (t) = s, π

}
, (5.16)

where E {.} denotes the expectation, in which γ ∈ (0, 1) is the discount factor, which can

affect the agent’s decisions on myopic or foresighted operations; π is the stochastic policy,

which maps environment state space S to action space A, π (a |s) = Pr (a (t) = a |s (t) = s).

The objective of the resource allocation problem is to find optimal policy π∗ that provides

the maximum discounted value function in the long run, which can satisfy the Bellman

equation as follows [163]:

π∗ (a |s) = arg max
π

V π (s) . (5.17)

The policy can be explored by using an ε− greedy policy in which a random action

is chosen with probability ε, or an action can be selected based on the current policy with

probability (1− ε) during the training process [164]. As a result, the problem of joint power

and bandwidth allocation in Eq. (5.7) can be rewritten as Eq. (5.17), and the solution to

deep actor-critic reinforcement learning will be presented in the following section.
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Figure 5.5: The structure of deep actor-critic reinforcement learning.
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Figure 5.6: The deep neural network in the critic.

5.4.2 Deep Actor-Critic Reinforcement Learning Algorithm

The maximization problem in Eq. (5.17) can be solved by using the actor-critic

method, which is derived by combining the value-based method [165] and the policy-based

method [166]. The actor-critic structure involves two neural networks (actor and critic) and

an environment, as shown in Fig. 5.5. The actor can determine the action according to the

policy, and the critic evaluates the selected actions based on value functions and instant

rewards that are fed back from the environment. The input of the actor is the state of

the network, and the output is the policy, which directly affect how the agent chooses the

optimal action. The output of the critic is a state-value function V π (s), which is used to

calculate the temporal difference (TD) error. Thereafter, the TD error is used to update the

actor and the critic.

Herein, both the policy function in the actor and the value function in the critic

are approximated with parameter vectors θ and ω, respectively, by two sequential models

of a deep neural network. Both value function parameter ω and policy parameter θ are

stochastically initialized and updated constantly by the critic and the actor, respectively,

during the training process.



Chapter 5: Hybrid NOMA/OMA-Based Dynamic Power Allocation Scheme Using Deep
Reinforcement Learning in 5G Networks 93

5.4.2.1 The Critic with a DNN

Fig. 5.6 depicts the DNN at the critic, which is composed of an input layer, two

hidden layers, and an output layer. The critic network is a feed-forward neural network that

evaluates the action taken by the actor. Then, the evaluation of the critic is used by the

actor to update its control policy. The input layer of the critic is an environment state, which

contains (2M + 1) elements. Each hidden layer is a fully connected layer, which involves

HC neurons and uses a rectified linear unit (ReLU) activation function [167,168] as follows:

fReLU (z) = max (0, z) , (5.18)

where z =
2M+1∑
i=1

ωisi (t) is the estimated output of the layer before applying the activation

function, in which si (t) indicates the ith element of the input state, s (t), and ωi is the weight

for the ith input. The output layer of the DNN at the critic contains one neuron and uses

the linear activation function to estimate the state-value function, V π(s). In this chapter,

the value function parameter is optimized by adopting stochastic gradient descent with a

back-propagation algorithm to minimize the loss function, defined as the mean squared error,

which is computed by

Lω = δ2 (t) , (5.19)

where δ (t) is the TD error between the target value and the estimated value, which is given

by

δ (t) = E[R (t) + γVω (s (t+ 1))− Vω (s (t))], (5.20)

and it is utilized to evaluate selected action a (t) of the actor. If the value of δ (t) is positive,

the tendency to choose action a (t) in the future, when the system is in the same state, will

be strengthened; otherwise, it will be weakened. The critic parameter can be updated in the

direction of the gradient, as follows:

∆ω = αcδ (t)∇ωV π
ω (s (t)) , (5.21)

where αc is the learning rate of the critic.

5.4.2.2 The Actor with a DNN

The DNN in the actor is shown in Fig. 5.7, which includes an input layer, two

hidden layers, and an output layer. The input layer of the actor is the current state of the
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Figure 5.7: The deep neural network in the actor.

environment. There are two hidden layers in the actor, where each hidden layer is comprised

of HA neurons. The output layer of the actor provides the probabilities of selecting actions

in a given state. Furthermore, the output layer utilizes the soft-max activation function [152]

to compute the policy of each action in the action space, which is given as:

πθ (a |s) =
eza∑

a
′∈A

eza′ , (5.22)

where za is the estimated value for the preference of choosing action a. In the actor,

the policy can be enhanced by optimizing the state-value function as follows:

J (πθ) = E [V π (s)]

=
∑
s∈S

dπ (s)V π (s) ,
(5.23)

where dπ (s) is the state distribution. Policy parameter θ can be updated toward the gradient

ascending to maximize the objective function [162], as follows:

∆θ = αa∇θJ (πθ) , (5.24)

where αa denotes the learning rate of actor network, and policy gradient ∇θJ (πθ) can be

computed by using the TD error [169]:

∇θJ (πθ) = E [∇θ log πθ (s,a) δ (t)] . (5.25)



Chapter 5: Hybrid NOMA/OMA-Based Dynamic Power Allocation Scheme Using Deep
Reinforcement Learning in 5G Networks 95

Algorithm 5.2 The training procedure of the deep actor-critic reinforcement learning algo-

rithm

1: Input: S, A, γ, αa, αc, e
re(t), µ(t), Eca, ξavg, T , W , εmin, εmax, εd.

2: Initialize network parameters of the actor and the critic: θ,ω.

3: Initialize ε = εmax.

4: for each episode e = 1, 2, 3, ..., L :

5: Sample an initial state s ∈ S.

6: for each time step t = 0, 1, 2, 3..., T − 1 :

7: Observe current state s (t), and estimate state value V π
ω (s (t)).

8: Choose an action:

9:

10: a (t) =

 arg maxπθ (a (t) |s (t)) w.p 1− ε
random action a (t) ∈ A otherwise

11: Execute action a (t), observe current reward R (t).

12: Update epsilon rate ε = max (ε.εd, εmin)

13: Update next state s (t+ 1)

14: Critic Process:

15: Estimate next state value V π
ω (s (t+ 1)).

16: Critic calculates TD error δ (t)

17: if episode is end at time slot t:

18: δ (t) = R (t)− Vω (s (t)) .

19: else

20: δ (t) = R (t) + γVω (s (t+ 1))− Vω (s (t)) .

21: end if

22: Update parameter of critic network ω ← ω + ∆ω

23: Actor Process:

24: Update parameter of actor network θ ← θ + ∆θ

25: end for

26: end for

27: Output: Final policy π∗t (a (t) |s (t)).

It is worth noting that TD error δ (t) is supplied by the critic. The training

procedure of the proposed DACRL approach is summarized in Algorithm 5.2 . In the
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algorithm, the agent interacts with the environment and learns to select optimal action in

each state. The convergence of the proposed algorithm depends on number of steps per

episode, the number of training episodes and the learning rate, which is discussed in the

following section.

Table 5.1: SIMULATION PARAMETERS

Parameter Description Value

M Number of groups 3

Ttot Time slot duration 200 ms

τss Sensing duration 2 ms

W Total system bandwidth 1 Hz

Ebat Battery capacity 30 µJJ

ess Sensing cost 1 µJ

etr Transmission energy 0, 10, 20 µJ

ξavg Mean value of harvested energy 5 µJ

µ Initial belief that the primary channel is free 0.5

PFF
Transition probability of the primary channel

from state F to itself
0.8

PBF
Transition probability of the primary channel

from state B to state F
0.2

Pd Probability of detection 0.9

Pf Probability of false alarm 0.1

σ2 Noise variance −80 dB

γ Discount factor 0.9

αa Learning rate of the actor 0.001

αc Learning rate of the critic 0.005

ε Epsilon rate 1→ 0.01

εd Epsilon decay 0.9999

L Number of episodes 300

T Number of iterations per episode 2000
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5.5 Simulation Results

In this section, we investigate the performance of uplink NOMA systems using our

proposed scheme. The simulation results are compared with other myopic schemes [170]

(Myopic-UP, Myopic-Random, and Myopic-OMA) in terms of average data transmission rate

and energy efficiency. In the myopic schemes, the system only maximizes the reward in the

current time slot, and the system bandwidth is allocated to the group only if it has at least

one active CU in the current time slot. In particular, with the Myopic-UP scheme, the CBS

arranges the CUs into different pairs based on Algorithm 5.1. In the Myopic-Random

scheme, the CBS randomly decouples the CUs into pairs. In the Myopic-OMA scheme,

the total system bandwidth is divided equally into sub-channels in order to assign them to

each active CU without applying user pairing. In the following, we analyze the influence of

the network parameters on the schemes through the numerical results.

In this chapter, we used Python 3.7 with the TensorFlow deep learning library

to implement the DACRL algorithm. Herein, we consider a network based on different

channel gain values between the CUs and the CBS, such as h1 = −20 dB, h2 = −25 dB,

h3 = −30 dB, h4 = −35 dB, h5 = −40 dB, h6 = −45 dB, where h1, h2, h3, h4, h5, h6 are

the channel gains between CU1, CU2, CU3, CU4, CU5, CU6 and the CBS, respectively. Two

sequential DNNs are utilized to model the value function and the policy function in the

proposed algorithm. Each DNN is designed with an input layer, two hidden layers and an

output layer as described in Section 4. The number of neurons in each hidden layer of the

value function DNN in the critic, and the policy function in the actor, are set at HC = 24

and HA = 24, respectively. For the training process, value function parameter ω and the

policy parameter θ are stochastically initialized by using uniform Xavier initialization [171].

The other simulation parameters for the system are shown in Table 5.1.

We first examine the average transmission rates of the the DACRL scheme under

different training iterations, T , while the number of episodes, L, increases from 1 to 400. We

achieved the results by calculating the average transmission rate after separately running the

simulation 20 times, as shown in Fig. 5.8. The curves sharply increase in the first 50 training

episodes, and then gradually converge to the optimal value. We can see that the agent

needs more than 350 episodes to learn the optimal policy at T = 1000 iterations per episode.

However, with the increment in T , the algorithm begins to converge faster. For instance,

the proposed scheme learns the optimal policy in less than 300 episodes when T = 2000.
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Figure 5.8: The convergence rate of the proposed actor-critic deep reinforcement learning

with different training steps in each episode.

Nevertheless, it might take a very long time for the training process if each episode uses too

many iterations, and the algorithm evenly converges to a locally optimal policy. As a result,

the number of training iterations per episode and the number of training episodes should

not be too large or too small. In the rest of the simulations, we set training episodes at 300

and training iterations at 2000.

Fig. 5.9 shows the convergence rate of the proposed scheme according to various

values of actor learning rate αa and critic learning rate αc. The figure shows that the reward

converges faster with increments in the learning rates. In addition, we can observe that the

proposed scheme with actor learning rate αa = 0.001 and critic learning rate αc = 0.005

provides the best performance after 300 episodes. When the learning rates of the actor

and the critic increase to αa = 0.01 and αc = 0.005, respectively, the algorithm converges

very fast, but does not bring a good reward due to underfitting. Therefore, we set the

actor and critic learning rates at αa = 0.001 and αc = 0.005, respectively, for the rest of

the simulations.

Fig. 5.10 illustrates the average transmission rates under the influence of mean

harvested energy. We can see that the average transmission rate of the system increases

when the mean value of harvested energy grows. The reason is that with an increase in
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Figure 5.9: The convergence rate of the proposed actor-critic deep reinforcement learning

according to different learning rate values.

5.0 5.5 6.0 6.5 7.0 7.5 8.0
����
������������	���μJ�

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

��
��
�	

��
���

�
�
��
��
�

���
��
���

��
�

DACRL (Proposed)
Myopic-UP
Myopic-Random
Myopic-OMA

Figure 5.10: Average transmission rate according to different values for mean harvested en-

ergy.

ξavg, the CUs can harvest more solar energy, and thus, the CUs have a greater chance to

transmit data to the CBS. In addition, the average transmission rate of the proposed scheme

dominates the conventional schemes because the conventional schemes focus on maximizing
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Figure 5.11: Energy efficiency according to different values of harvested mean energy.

the current reward, and they ignore the impact of the current decision on the future reward.

Thus, whenever the primary channel is free, these conventional schemes allow all CUs to

transmit their data by consuming most of the energy in the battery in order to maximize

the instant reward. This makes the CUs stay silent in the future due to energy shortages.

Although the Myopic-Random scheme had lower performance than the Myopic-UP scheme,

it still had greater rewards than Myopic-OMA. This outcome demonstrates the efficiency of

the hybrid NOMA/OMA approach, compared with the OMA approach, in terms of average

transmission rate.

In Fig. 5.11, the energy efficiency of the schemes was compared with respect to

the mean value of the harvested energy. In this chapter, we define energy efficiency as

the transmission data rate obtained at the CBS over the total energy consumption of the

CUs during the operations. We can see that the energy efficiency declines as ξavg rises.

The reason is that when the harvested energy goes up, the CUs can gather more energy

for their operations; however, the amount of energy overflowing the CUs’ batteries also

increases. The curves show that the performance of the proposed scheme outperforms the

other conventional schemes because the DACRL agent can learn about the dynamic arrival

of harvested energy from the environment. Thus, the proposed scheme can make proper

decision in each time slot.
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Figure 5.12: Average transmission rate according to noise variance.
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Figure 5.13: Energy efficiency according to noise variance.

In Figs. 5.12 and 5.13, we plot the average transmission rate and the energy

efficiency, respectively, based on differing noise variance at the CBS. The curves show that

system performance notably degrades when noise variance increases. To explain this, noise

variance will degrade the data transmission rate, as shown in Eq. (5.3). As a consequence,

energy efficiency also decreases with an increment in noise variance. Based on noise variance
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at the CBS, the figures verify that the proposed scheme dominates the myopic schemes.

5.6 Conclusions

In this chapter, we investigated a deep reinforcement learning framework for joint

power and bandwidth allocation by adopting both hybrid NOMA/OMA and user pairing in

uplink CRNs. The DACRL algorithm was employed to maximize the long-term transmission

rate under the energy constraint in the CUs. A DNN was applied to approximate the

policy function and the value function such that the algorithm can work in the system

with large state and action spaces. The agent of the DACRL can explore the optimal

policy by interacting with the environment. As a consequence, the CBS can effectively

allocate bandwidth and power to the CUs based on the current network state in each

timeslot. The simulation results verified the advantages of the proposed scheme in improving

network performance under various network conditions in the long run, compared to the

conventional schemes.



Chapter 6

Deep Q-learning-based Resource

Allocation for Solar-powered Users

in Cognitive Radio Networks

6.1 Introduction

The fifth-generation (5G) network requires efficient enabling technologies to ac-

commodate increasing requirements for high spectrum efficiency and high data rates in

wireless communications. Therefore, the tremendous development of wireless-transmission

and mobile-networking technologies has led to surging demand for resources in the last few

decades. Both academic and industrial communities have been developing efficient resource

management approaches to attain efficient spectrum utilization for the emerging mobile

Internet [172]. Specifically, network virtualization [173] and software-defined networking

(SDN) [174] are regarded as the key techniques to enhance network utility in terms of higher

data rates, better resource utilization, and lower operational costs. Moreover, cognitive radio

(CR) and NOMA have been considered potential techniques that allow secondary users

to share licensed spectrum bands to improve spectrum efficiency and tackle the resource

scarcity issues [175,176].

There are several conventional multiple access schemes, such as TDMA, orthogonal

frequency division multiple access (OFDMA), and code division multiple access (CDMA),

to avoid interference among users. Nevertheless, owing to the rapid growth in the number of

103
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mobile devices, these methods might not satisfy the requirements of users needing access to

wireless communication systems. For that reason, NOMA is emerging as a critical principle

in 5G networks for designing multi-access schemes, because it allows multiple users to utilize

the same frequency resources at the same time [91]. Basically, the NOMA technique is

categorized into two types: code domain and power domain. In this chapter, we focus

on the power domain, where multiple users are assigned to use the same frequency and

time resources for their data transmissions. In particular, the signals of multiple users are

superposed to transmit over the same resources, and successive interference cancellation (SIC)

is executed to decode the users’ desired signals and remove interference at the receiver [130].

Many research works on NOMA schemes have been investigated in different communication

systems, such as the Industrial Internet of Things (IIoT) [177, 178], machine-to-machine

communications [179,180], and cooperative communications [181,182].

In reality, however, one of NOMA’s drawbacks is that a massive NOMA-enabled

communication systems might give rise to high computational complexity at the receiver.

Besides, in designing the optimization schemes, numerous users applying NOMA will

significantly degrade the performance of the system [183]. Indeed, NOMA can work well

if it is multiplexed by a small number of users in a group [184]. Thus, combination of

different multiple access techniques was proposed [185,186]. In those studies, the authors

proposed hybrid NOMA and OMA algorithms where the users switch between NOMA

and OMA modes to improve network performance. In addition, the integration of NOMA

with CR networks was studied to deal with 5G challenges, such as spectrum efficiency,

and massive connectivity [102, 105, 187, 188]. The authors in [187] devised a taxonomy

to categorize the literature according to operation paradigms, objectives, techniques, and

optimization characteristics. Meanwhile, closed-form expressions of the outage probability

for large-scale underlay cognitive networks were derived by using stochastic geometry [102].

In order to enhance the performance of both primary and secondary networks, the authors

in [105] proposed an application of NOMA for cooperative multicast CRNs. Xu et al. [188]

investigated optimal sensing duration adaptation, matching-theory user scheduling, and

power allocation for cognitive OFDM-NOMA in order to boost system capacity.

Along with rapid developments of mobile devices, energy management is also a

crucial issue. There have been a lot of model-based resource allocation schemes proposed

to increase EE or other objectives in NOMA systems. The problem of power assignment

was studied in [138], while the joint subcarrier assignment and power allocation algorithm



Chapter 6: Deep Q-learning-based Resource Allocation for Solar-powered Users in Cognitive
Radio Networks 105

was proposed in [189]. However, these conventional approaches require complete network

information, and induce high computational complexity, or even inapplicable, in practice.

To address this problem, several studies have applied model-free deep learning to reduce

computational complexity with available training data. Gui et al. [190] and Liu et al. [191]

investigated resource allocation problems by using a neural network to train offline with

simulated data first, and to then output results through well-trained networks. However, it is

hard to obtain the correct data set or optimal solutions, and the training process is generally

time-consuming. For the above issues, deep reinforcement learning (DRL) [192] has been

emerging as a feasible option for real-time decision-making problems, since the requirements

of the system model and the need for a priori data are significantly relaxed. Rather than

optimizing current benefits only, DRL is able to generate an optimal decision policy that

maximizes the long-term performance of systems through trial-and-error interaction with the

environment. Deep Q-learning, considered one of the more famous DRL methods, applies

a deep Q-network (DQN) that uses deep neural networks in conventional reinforcement

learning (RL). Nowadays, DRL has been broadly used from many aspects, such as power

allocation in NOMA systems [193], in heterogeneous networks [194], and IoT systems [195].

In recent years, one of most effective ways to enhance self-sustainability is to equip

wireless devices with a rechargeable battery that is able to harvest ambient energy to enable

long-term operation. There are many energy harvesting approaches from many natural

resources for improving the lifetime of wireless users, such as solar energy [90, 123], wind

power [196], and thermal power [197]. Among various types of energy harvesting resources,

solar is regarded as one of the most effective sources for wireless users. Nevertheless, its

effectiveness is highly dependent on the environment. For this reason, it is important to

determine proper schemes to efficiently leverage harvested energy for wireless communication

networks. Thanh et al. [123] proposed a framework of a partially observable Markov decision

process (POMDP) to allocate both optimal frequency bands and optimal transmit power to

solar-powered cognitive users.

To further improve performance, other techniques were studied in NOMA systems

[198–202]. Ding et al. [198] introduced NOMA power allocation to acquire high sum data

rates by grouping users with distinctive channel conditions. A resource allocation algorithm

design was formulated as a non-convex optimization problem in which the authors considered

the channel state information as well as quality of service (QoS) constraints [199]. Besides, Li

et al. adopted a DQN to deal with the challenge of unknown system dynamics and maximize
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the number of the successful transmissions from secondary systems without interfering with

primary transmissions [200]. Furthermore, hybrid access mechanisms that include TDMA

and NOMA technology were proposed [201,202]. In [201], a dynamic clustering approach was

proposed to increase system throughput and balance power consumption, and the authors

in [202] studied a method of power allocation and power splitting-ratio assignment for

users to minimize transmission power under minimum rate and minimum-energy harvesting

constraints.

In the aforementioned works, the authors in [201] proposed hybrid TDMA/NOMA-

based dynamic clustering for machine-to-machine communications to improve the energy

efficiency, throughput and lifetime of machine. However, the concept of energy harvesting

was not considered. To facilitate the wireless communications, A1-Obiedollah et al. in [202]

investigated hybrid TDMA/NOMA scheme by using the energy harvesting from radio

frequency signal in order to minimize the transmit power. They utilized sequential convex

approximation method to tackle with the non-convexity of the minimization problem. For

improving radio spectrum and energy utilization efficiencies, the authors in [123] proposed

the POMDP scheme to maximize the long-term secrecy rate of the solar-powered CRNs.

Nevertheless, the approach requires the prior information of energy harvesting distribution,

which is not easy to obtain in the practical scenarios. Motivated by the above analysis, in

this chapter we focus on maximizing the long-term throughput of solar-powered secondary

systems without prior knowledge of energy harvesting distribution by using NOMA/TDMA-

based deep Q-learning scheme, in which secondary users can opportunistically use the licensed

channel of the primary users. Consequently, by employing a deep Q-learning algorithm,

the system is capable of obtaining optimal policy from trial-and-error interactions with

the environment after training. The main contributions of this chapter are summarized as

follows

• First, we investigate an uplink NOMA CRN in which multiple secondary users aim to

transmit their data to a secondary base station (SBS), and in which secondary users

are able to harvest solar energy for self-sustainability. In addition, we consider sensing

error when the secondary system determines the status of the primary system through

cooperative spectrum sensing.

• Second, we propose a NOMA/TDMA-based deep Q-learning approach to maximize the

long-term throughput of a secondary system in which a deep neural network (DNN)
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Figure 6.1: The considered network model.

is used to approximate the value function of every state-action pair. Throughout

the training phase, the proposed scheme does not have prior information about the

harvested energy distribution of the secondary users. Instead, that energy information

can be learn, and then an optimal decision policy is achieved through trial-and-error

interactions with the environment.

• We further present the impact of changed network parameters via the numerical

simulation in which a performance comparison between the proposed scheme and

conventional schemes is made based on the various parameters.

The remainder of this chapter is organized as follows. Section 6.2 describes the

system model. The problem formulation is presented in Section 6.3. The DQL algorithm for

power allocation is proposed in Section 6.4. Simulation results are discussed in Section 6.5.

Finally, we conclude the chapter in Section 6.6.
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Figure 6.2: Time frame structure.

6.2 System Model

6.2.1 Network Model

This chapter considers an uplink CRN where multiple secondary users attempt

to transmit data to an SBS by opportunistically using a licensed channel of the primary

system. In particular, the network consists of an SBS and SUs, as illustrated in Fig. 6.1.

Each SU is equipped with an energy-harvesting circuit that can harvest solar energy for

its long-term operation. We assume the SUs always have data to transmit to the SBS and

they can simultaneously harvest energy in the whole time frame while do other assigned

actions. Hence, they opportunistically utilize the licensed channel of the primary system to

transmit their data to the SBS by applying a joint NOMA and TDMA technique when the

PUs are not active. To this end, in this chapter, the SBS assembles SUs into pairs according

to a conventional near–far user pairing technique [203], in which the furthest user and the

nearest user from the SBS can be coupled into a pair (i.e. a group of two users) based on

their locations. In particular, the group Gn = {SU1n, SU2n} is the nth NOMA group which

consists of 2 SUs, SU1n and SU2n, as shown in Fig. 6.1. Each user in a NOMA group can

simultaneously transmit data by using the NOMA technique, and SIC from [130] is applied

at the SBS to decode the received signals of each secondary user. Each group executes

data transmission in turn during a whole time frame, such that there is no interference

between each group. Each time frame of the system is divided into two phases (sensing and

data transmission) as shown in Fig. 6.2. In this chapter, we adopt cooperative spectrum

sensing in which the global sensing result is generated by the SBS. In the first phase, with

a duration of ts, all SUs simultaneously perform spectrum sensing in their local regions,
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and then inform the SBS of their local results. Thereafter, the SBS determines the global

sensing result on the status of the primary channel (vacant or occupied) by applying the

combination rule from [159]. Subsequently, transmission power levels are assigned to all

SUs for their data transmissions. As a result, the SUs in each NOMA group can transmit

their data to the SBS on the primary channel based on the allocated transmission power

without causing interference with other groups. Specifically, by adopting TDMA, each time

frame is divided into N identical time slots according to the number of NOMA groups.

Subsequently, each NOMA group respectively transmits data in its assigned time slot, with

duration tTr = Ttot−ts
N , where Ttot is time frame duration, ts is spectrum sensing duration,

and and N is number of NOMA groups. The operation of the considered network model is

illustrated in Fig. 6.2. The received signal at the SBS that is transmitted by nth group, Gn,

can be given as follows:

yn (t) =
2∑
i=1

√
Pin (t)hin (t)xin (t) + z, (6.1)

where Pin (t) = eTrin (t)
/
tTr |i ∈ {1, 2} , n ∈ {1, 2, ..., N} is the transmission power allocated

to the ith SU of NOMA group n in time frame t; xin (t) denotes the normalized signal of

SUin,
(
E{|xin(t)|2}= 1

)
; hin (t) = gin (t) d−κin denotes the channel gain between SUin and

the SBS in time frame t, in which gin (t) is the channel coefficient that follows the Rayleigh

distribution, din denotes the distance between SUin and the SBS, and κ and z are the path

loss coefficient and the additive white Gaussian noise (AWGN) with zero mean and variance

σ2, respectively. The overall received signal at the SBS in time frame t is expressed as

y (t) =

N∑
n=1

yn (t). (6.2)

Let Γin (t) = h2
in (t)

/
σ2 denote the channel-to-noise ratio (CNR) of SUin. Without

loss of generality, we assume the CNRs of the SUs in each NOMA group Gn are arranged

in descending order: Γ1n ≥ Γ2n. The SIC technique is applied to each NOMA group in

order to retrieve the signals at the SBS. According to the NOMA principle, the received

signal transmitted by the higher-CNR user is decoded first, and then it is removed from the

composite signal at the SBS, which considers the signal of the another user as interference.

After that, the interference-free signal of the lower-CNR user in NOMA group n is decoded.
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Figure 6.3: Two-state Markov discrete-time model for states of the primary channel.

As a result, the throughput of secondary users in NOMA group n can be expressed as follows:

R1n (t) = tTr
Ttot

log2

(
1 + P1n(t)Γ1n(t)

1+P2n(t)Γ2n(t)

)
,

R2n (t) = tTr
Ttot

log2 (1 + P2n (t) Γ2n (t)) .
(6.3)

The sum of the achievable throughput at the SBS can be calculated as

R (t) =
N∑
n=1

2∑
i=1

Rin (t). (6.4)

6.2.2 Energy Arrival and Primary Channel Models

The SUs are powered by solar energy to prolong their operational lifetimes. The

amount of harvested energy of SUin during time frame t, is denoted as ehin (t) ∈
{
eh1 , e

h
2 , ..., e

h
υ

}
,

with 0 < eh1 < eh2 < ... < ehυ < Ec, where Ec represents the battery capacity for the SUs. We

assume that ehin follows a Poisson distribution with mean value ehavg.

Fig. 6.3 illustrates the two-state Markov discrete-time model for the states of the

primary channel, in which O and V denote the states occupied and vacant, respectively. The

probability that the primary channel changes its state between two adjacent time frames

is denoted as Pij |i, j ∈ {O, V } . In this chapter, an imperfection scenario for the spectrum

sensing in the secondary system is taken into account. Thus, the performance of cooperative

spectrum sensing is evaluated through two metrics: the detection probability, Pd, and the

false alarm probability, Pf . Pd represents the probability that the occupied state of the

primary channel is accurately detected, whereas Pf represents the probability that the

primary channel is identified as occupied but it is actually vacant. It is obvious that the
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performance of the system can be lowered by misdetections (i.e. the sensing result indicates

that the primary channel is vacant but it is actually occupied).

6.3 Long-term Throughput Maximization Problem Formula-

tion

In this chapter, the main goal is to obtain the maximum long-term throughput

from an uplink NOMA/TDMA system. In particular, finding the optimal power allocation

solution allows the SUs to transmit data to the SBS more efficiently, and hence, achieve

higher throughput in long-term operation. Therefore, the problem formulation can be

presented as follows:

a∗ (t) = arg max
a(t)∈A

∞∑
k=t

N∑
n=1

2∑
i=1

Rin (k)

s.t
C1 : 0 ≤ εtrin (t) ≤ εtr,max

C2 : 0 ≤ εtrin (t) ≤ εrein (t)

, (6.5)

where a (t) =
{
εtr11 (t) , εtr21 (t) , εtr12 (t) , εtr22 (t) , ..., εtr1N (t) , εtr2N (t)

}
is the allocated transmis-

sion power for all SUs in time frame t. Thus, εtrin (t) ∈
{

0, εtr,1, εtr,2, ..., εtr,max
}

is the amount

of transmission energy for SUin; εtr,max represents the upper bound of transmission energy

for each SU in time frame t, and εre (t) = {εre11(t), εre21(t), εre12(t), εre22(t), ..., εre1N (t), εre2N (t)} is

a remaining-energy vector that consists of information about the remaining energy of SUs.

εrein(t) denotes the value of the energy remaining in SU in (i.e., the remaining energy of SU i

in group n). Constraint C1 shows that the transmission energy of SUin does not exceed the

maximum transmission value. In addition, constraint C2 guarantees that the transmission

energy of each user is always less than or equal the remaining energy.

In order to solve problem (5), we can reformulate it into a Markov Decision Process

(MDP) problem and obtain the solution by using iteration-based dynamic programming

method. However, this approach requires the prior knowledge of the environment such as the

harvested energy distribution, which is hard to achieve in practical scenarios. Furthermore,

it also may impose a high computational overhead. To address problems without prior

knowledge, the reinforcement learning has been considered as one of the potential approaches

where the agent can obtain the optimal policy by directly interacting with the environment

through trial-and-error [152, 204]. Unfortunately, it can be challenging to efficiently work in
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such a large state-and-space system. Motivated by aforementioned things, we utilize a deep

Q learning-based algorithm where Q-value for each action based on each state in Q-learning

algorithm is approximated by using a neural network to deal with the formulated problem

assuming that there is no prior knowledge of the environment. To achieve the solution to the

problem in Eq. (6.5), we transform this problem into the Markov decision process (MDP)

problem presented in the next section.

6.4 Deep Q-Learning–Based Resource Allocation Policy

In this section, we first reformulate the problem (5) into the MDP problem. Then,

the observations based on the possible actions are introduced. Subsequently, a deep Q-

learning approach is proposed to solve the MDP problem.

6.4.1 Decision-making process

Reinforcement learning is the framework for the MDP problem, which allows the

agent to learn the optimal policy by interacting with an uncertain environment. The policy

is regarded as guidance that tells the agent which action should be selected according to each

state in order to obtain the maximum expected long-term throughput. Fig. 6.4 illustrates

an interaction between agent and environment in the proposed deep reinforcement learning

scheme. Herein, the agent can conceive of what happens in the environment after executing

the selected action. Therefore, the optimal decision solution can be attained, as time goes

on, through the learning process. Traditionally, an MDP is composed of five components in

a tuple {S,A,P,R, γ}, where S represents the state space, A is the action space, P indicates

the state transition probability, R refers to the reward function, and γ ∈ [0, 1] is a discount

factor that determines how much the selected action in the current time frame affects future

rewards. It is worth noting that if γ = 0, the agent only maximizes the throughput in the

current time frame without considering the impact of the current action on future rewards.

States: At the beginning of time frame t, the agent observes the system information

in current state s (t) ∈ S. The state is a combination of the belief and remaining energy

vector, as follows:

s (t) = {p (t) , εre (t)} , (6.6)

where p (t) represents the probability that the primary channel is vacant in time frame t.
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Figure 6.4: Overall structure of the proposed DQL-based power allocation scheme.

Actions: After observing current state s(t), the agent selects an action a (t) ∈ A,

which is defined as

a (t) =
{
εtr11 (t) , εtr21 (t) , εtr12 (t) , εtr22 (t) , ..., εtr1N (t) , εtr2N (t)

}
(6.7)

where εtrin(t) refers to the allocated transmission power of SU in in time frame t.

Transition Probability: The state transition probability represents the proba-

bility that the environment will transfer into a new state, s (t+ 1), from current state s (t)

when selecting action a (t). However, in the reinforcement learning algorithm, the agent can

deal with the problem of having no prior information about the state transition probability.

Instead, the agent can directly interact with the environment, and then gradually learn the

optimal solution without using the information on system uncertainty.

Reward function: In this chapter, the immediate reward is defined as the sum

achievable throughput at the SBS in time frame t. Specifically, after employing selected

action a (t) in current state s (t), the immediate reward R (t) is calculated with Eq. (6.4).

6.4.2 Observations

In this section, we describe the possible observations when the assigned action is

executed by the SUs.
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6.4.2.1 Silent Mode

If the SBS concludes that the primary channel is occupied after combining the

local sensing results from all SUs, the SBS will assign the action “stay silent” to the SUs. In

this case, all SUs do nothing until the end of the data transmission phase. Consequently, no

reward is attained in this time frame, i.e., R (t) = 0. Belief p(t) in the current time frame is

estimated by Bayes’ rule, as follows:

p (t) =
p (t)Pf

p (t)Pf + (1− p (t))Pd
. (6.8)

As a result, belief p(t+ 1) for the next time frame can be updated as follows:

p (t+ 1) = p (t)PV V + (1− p (t))POV . (6.9)

The remaining energy of SUin that can be used for the next time frame is updated by

εrein (t+ 1) = min
(
εrein (t) + ehin (t)− es, Ec

)
, (6.10)

where es is the required energy for the sensing process at the beginning of each time frame.

6.4.2.2 Transmission Mode

After the global sensing decision, if the SBS decides that the primary channel is

vacant, it allocates the transmission power levels to all SUs. Then, the SUs transmit their

data based on the allocated transmission power levels. In this case, there are two possible

observations.

Observation 1 (Ω1): The SBS can not successfully decode the signals transmitted

by the SUs because of collisions between SUs and PUs. This means that a misdetection

occurred, since the sensing result was wrong. Hence, no reward is achieved in this slot:

R (s (t) , a (t) |Ω1 ) = 0. Belief p (t+ 1) for the next time frame is updated by

p (t+ 1) = POV . (6.11)

The remaining energy of SUin is updated as

εrein (t+ 1) = min
(
εrein (t)− εtrin (t) + ehin (t)− es, Ec

)
. (6.12)

Observation 2 (Ω2): The SBS successfully decodes all data from the SUs at the

end of the time frame. This means that the primary channel was vacant during the time
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frame. So the total reward of the system is computed as

R (s (t) , a (t) |Ω2 ) =
N∑
n=1

2∑
i=1

Rin (t), (6.13)

where the instant throughput for each SU is calculated by using Eq. (6.3). Belief p (t+ 1)

for the next time frame is updated as follows:

p (t+ 1) = PV V . (6.14)

The remaining energy in SUin for the next time frame is updated by

εrein (t+ 1) = min
(
εrein (t)− εtrin (t) + ehin (t)− es, Ec

)
. (6.15)

The purpose of reinforcement learning is to find a policy that brings the maximum

long-term cumulative reward, called the state action-value function. It indicates how good

action a is in state s. Hence, the expected state-action value function (or Q−value function)

can be written as follows [152]

Q (s, a) = E
[ ∞∑
k=t

γk−tR (k) |s (t) = s, a (t) = a

]
= E [R (t) + γQ (s′, a′) |s (t) = s, a (t) = a ]

, (6.16)

where E[.] represents the expectation, and γ ∈ [0, 1] is the discount factor. Thus, our aim is

to find the optimal action, a∗, in the current time frame to maximize the state-action value

function Q (s, a), which is expressed as follows:

a∗ = arg max
a∈A

{Q (s, a)} , (6.17)

where A is the action space of the system. In general, this equation can be tackled by utilizing

reinforcement learning approaches (e.g. Q-learning, actor–critic learning). Nevertheless, the

computational complexity for traditional Q-learning algorithms is too high if the system has

a large state space and action space. Generally, the traditional Q-learning scheme updates its

Q-table that consists of the total numbers of states and actions. As the spaces of state and

actions are larger, the size of the Q-table will also get very larger. Subsequently, the number

of computational operations for calculating the Q-value of each state will be significantly

increased. Thus, the complexity of Q-learning notably depends on the number of state

and action spaces of the system. Meanwhile, the deep Q-learning scheme can apply the

deep neural network to approximate the Q-value of the states, which reduces the number of
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Figure 6.5: Structure of the neural network used for DQL.

computational operations for updating Q-values through each step of training process. Thus,

the computational complexity can be significantly improved by using deep Q-learning. In

the next subsection, we present deep Q-learning scheme to find the solution of the problem.

6.4.3 Deep Q-Learning

Generally, deep Q-Learning is an approach that combines a value-based method

and a neural network. The neural network, considered a DQN, is used to approximate the

Q-value function for each action based on each given state. Fig. 6.5 illustrates an example

of the structure of a neural network including one input layer, two hidden layers, and one

output layer. In this work, the input layer of the DQN represents the system state, which

includes (2N + 1) elements (a belief about the primary channel and 2N remaining energy

values for the SUs). There are two hidden layers in the DQN such that each hidden layer is

comprised of H neurons. A vector of size |A| is the output of the network, in which each

value of the Q-value function represents the probability that the system tends to select that

action. That means the size of the output vector is the total number of possible actions that

we defined in the system. A rectified linear unit (ReLU) function is used as an activation

function [205] for each hidden layer, which is expressed as follows:

f (x) =

 0 if x ≤ 0

x otherwise
, (6.18)
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Algorithm 6.1 The training process of the proposed DQL-based power allocation scheme

1: Input: S, A, α, εre(t), p(t), Ec, e
h
avg, T , εini, εmin, εd.

2: Initialize network parameter θ, replay memory M, exploration rate ε = εini

3: Repeat until convergence

4: Randomly select an s(t) ∈ S

5: for each time frame t = 1, 2....T :

6: Observe current state s (t)

7: With probability ε select random action a ∈ A

8: Otherwise select a = arg max
a∈A

Q (s, a,θ)

9: Execute action a

10: Attain immediate reward R (s, a) by Eq. (6.4)

11: Store transition 〈s, a,R (s, a) , s′〉 in replay memory M

12: Randomly sample mini-batchs of transitions from M

13: for each 〈s, a,R (s, a) , s′〉 in mini-batchs:

14: if s′ is the terminal state:

15: Qtarget = R (t)

16: else

17: Qtarget = R (s, a) + γmax
a′∈A

Q (s′, a′,θ)

18: end if

19: Perform back-propagation to calculate loss function L(θ) in Eq. (6.19)

20: Update Q-network parameter θ by minimizing the loss function

21: end for

22: Update next state s′, target network parameter θ, exploration rate ε =

max (ε.εd, εmin)

23: end for

24: Output: Q-network parameter θ.

where x =
2N+1∑
i=1

θisi (t) is the estimated output of the layer before applying activation

function, in which si (t) denotes the ith-element of input state s(t), and θi refers to the

weight value from the ith input state. In this chapter, the weight parameter of the network,

θ, is optimized by adopting stochastic gradient descent with a back-propagation algorithm



118
Chapter 6: Deep Q-learning-based Resource Allocation for Solar-powered Users in Cognitive

Radio Networks

to minimize the loss function, which is defined as follows:

L (θ) = E

 R (s, a) + γmax
a′∈A

Q (s′, a′, θ)

−Q (s, a, θ)

2

, (6.19)

where Q (s, a,θ) can be updated as

Q (s, a,θ)← Q (s, a,θ) + α

 R (s, a) + γmax
a′∈A

Q (s′, a′,θ)

−Q (s, a,θ)

 , (6.20)

in which α ∈ (0, 1] is a learning rate. The parameter θ is updated in the direction of the

gradient as

θ = θ + α∇θQ (s, a,θ) δ, (6.21)

where δ denotes the temporal different (TD) error, which is calculated by

δ = R (s, a) + γmax
a′∈A

Q (s′, a′,θ)−Q (s, a,θ) . (6.22)

The details of the training process of the proposed DQN are expressed in Algorithm 6.1.

In each learning step, the SBS selects an action, a(t), based on an ε−greedy method, and

then observes and updates the next state, s′. The system will store the transition tuple

〈s, a,R (s, a) , s′〉 in replay memory M. During the training phase, the agent updates the

network parameters by using the TD error to enhance system performance. The training

process repeats until convergence.

6.5 Simulation Results

6.5.1 Simulation Setting

Throughout the simulation, we considered a cognitive radio network consisting of

2N = 4 SUs located at different distances from the SBS (d1 = 50m, d2 = 100m, d3 = 150m,

and d4 = 200m). There were four layers in the DQN: an input layer, two hidden layers, and

an output layer in which each hidden layer has 64 nodes. The learning rate of the Q-network

was set at α = 0.005. We utilized ReLU function as an activation function for the hidden

layers, and a linear function as an activation function for the output layer of the DQN.

An adaptive optimization algorithm (i.e. the Adam optimizer) was used to periodically
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update the weights of the Q-network after each step. The main parameter settings in the

experiments are presented in Table 6.1. In this section, we compare the performance of the

proposed scheme and other baseline schemes: a Q-learning, a deep Q-learning TDMA only,

a Myopic-NOMA/TDMA scheme, a Myopic-TDMA scheme, and a TDMA-Random scheme.

These schemes are described as follows in more details.

• Q-learning: The SUs are clustered into a group based on a conventional near–far user

pairing algorithm. In this scheme, we also adopt the Q-learning algorithm proposed

in [204] that uses both NOMA and TDMA techniques.

• Deep Q-learning TDMA only: In this scheme, the system uses the proposed deep

Q-learning algorithm but only TDMA technique without NOMA, where the data

transmission duration is divided into the number of slots based on the number of SUs

and they respectively transmit data according to their assigned slots.

• Myopic-NOMA/TDMA: The SUs are clustered into a group using a conventional near–

far user pairing algorithm. In this scheme, the system uses both NOMA and TDMA

techniques. Nevertheless, the SUs are always allocated the optimal transmission power

to transmit their data when the primary channel is sensed as vacant, and without

considering the future reward.

• Myopic-TDMA: In the data transmission phase of each time frame, the data transmis-

sion time is equally divided among all the SUs, and the SUs transmit their data in

turn. Similar to the Myopic-NOMA/TDMA, the system only maximizes the instant

reward, and thus, the SUs are assigned the maximum transmission power available in

their batteries in each slot.

• TDMA-Random: The values for the transmission power of the SUs are randomly

allocated, and the SUs transmit their data in turn within the equal data transmission

time.

6.5.2 Results and Discussion

The convergence rates of the proposed DQL-based power allocation scheme and

the Myopic-NOMA/TDMA scheme through 200 training episodes are shown in Fig. 6.6.

The average long-term throughput of the proposed scheme rapidly increases during the first
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Table 6.1: Simulation Parameters

Parameter Description Value

N Number of groups 2

T Time frame duration 200 ms

ts Sensing duration 2 ms

Ec Battery capacity 20 µJ

es Sensing cost 1 µJ

εtr Transmission energy
0, 5, 10, 15

µJ

ehavg Mean value of harvested energy 5 µJ

pV Initial belief that the primary channel is free 0.5

PV V
Transition probability of the primary channel

staying in state V
0.8

POV
Transition probability of the primary channel

changing from state O to state V
0.2

Pd Probability of detection 0.9

Pf Probability of false alarm 0.1

σ2 Noise variance -80 dB

γ Discount factor 0.9

α Learning rate 0.001

ε Epsilon rate 1→ 0.01

εd Epsilon decay 0.9999

L Number of episodes 200

K Number of iterations per episode 3000

50 episodes, and gradually converges to the optimal value. It is obvious that since the SBS

in the Myopic-NOMA/TDMA scheme always maximizes the instant reward in the current

time frame, the average long-term throughput of this scheme remains unchanged throughout

the increasing number of training episodes.

In Fig. 6.7, we show the average throughput of the system according to harvested

energy that varied from 5µJ to 13µJ . We can see that, the performance of all schemes

increases as ehavg goes up because the SUs have more opportunities to transmit data to
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Figure 6.6: The convergence behavior of the proposed scheme.
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Figure 6.7: The average long-term throughput according to various values for mean harvested

energy.

the SBS. Besides, the average throughput of the proposed scheme converges that of the

Q-learning scheme. Thus, it can validate the good performance of the deep-Q learning in

terms of approximating the Q-value function of Q-learning. Obviously, the proposed scheme

outperforms the other schemes since it considers not only the immediate reward but also



122
Chapter 6: Deep Q-learning-based Resource Allocation for Solar-powered Users in Cognitive

Radio Networks

5 6 7 8 9 10 11 12 13
�
������
��
	�
�
�����μJ�

0.2

0.3

0.4

0.5

0.6
��


�
��

�

���
��

�

��
���

�μ
J�

Q-learning
Proposed deep Q-learning
Myopic-NOMA/TDMA
Deep Q-learning TDMA only
Myopic-TDMA
TDMA-Random

Figure 6.8: Energy efficiency according to various values for mean harvested energy.

the future evolution. On the other hand, the myopic schemes are easily affected by system

uncertainties. Meanwhile, the proposed scheme effectively allocates transmission power to

the SUs by learning network information through training. Besides, it is worthy that, as

the mean harvested energy is high, the average throughput of myopic approaches to that of

the proposed deep Q-learning methods. The reason is that, the benefit of power allocation

method may be gradually degraded with the increment of available transmit power.

Fig. 6.8 shows the energy efficiency of the schemes according to different values

of mean harvested energy. The curves show that the proposed scheme is superior to the

other schemes, although the system becomes less efficient in energy utilization with an

increment in harvested energy. Fig. 6.9 shows the average throughput of the system versus

different values for noise variance and transition probability (PV V = 0.7 and PV V = 0.8)

of the primary channel. The values of noise variance were varied from −80 dB to −65 dB

with increments of 5 dB. Obviously, the greater the value for noise variance, the smaller the

average throughput of the system. Similarly, as PV V increases, the system throughput goes

up. It is because the system has higher probability of detecting the status “vacant” of the

primary channel, which leads to more primary channel utilizations of the SUs. Moreover,

the proposed DQL-based power allocation approach can achieve about 4%, 14%, and 15%

higher average throughput, compared with the Myopic-NOMA/TDMA, Myopic-TDMA,
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Figure 6.9: Average throughput according to various values for noise variance.
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Figure 6.10: Energy efficiency according to various values for noise variance.

and TDMA-Random schemes, respectively.

Fig. 6.10 shows the energy efficiency of the system for the proposed DQL-based

power allocation scheme, versus the Myopic-NOMA/TDMA, Myopic-TDMA, and TDMA-

Random schemes at various values for noise variance. Similarly, a lower energy efficiency is

acquired with increments of σ2. The reason is that higher noise variance can reduce more of
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the total achievable throughput at the SBS, and thus, the system works less efficiently.

6.6 Conclusion

In this chapter, we investigated an uplink CRNs in which multiple secondary users

attempt to transmit data to a secondary base station, and in which the users are powered

by solar energy. Deep reinforcement learning for resource allocation is proposed for the

secondary users by combining NOMA and TDMA. This chapter aims to maximize the

long-term throughput of the system under energy constraints of the SUs. In the proposed

scheme, a neural network is utilized to approximate the Q-value function with a large-scale

system. The SBS can attain the optimal decision policy by applying the proposed scheme

after a number of training time frames. Simulation results demonstrate the advantage of the

proposed algorithm in improving the performance of solar-powered cognitive radio networks in

long-term operation. In the future work, we aim to use another deep reinforcement learning

technique, which is the combination between the value-based method and policy-based

method to consider power allocation problem. Furthermore, beyond the NOMA/TDMA

technique studied in this chapter, it can be interesting future work to apply for more

advanced systems with multi-channel and multi-agent using other reinforcement learning

algorithms.



Chapter 7

Summary of Contributions and

Future Works

7.1 Introduction

Previous chapters have presented the research motivations, the problems, and

solutions regarding the applications of the accomplished research . This chapter summarizes

the main contributions of this dissertation and discusses future research directions.

7.2 Summary of Contributions

This dissertation discusses the applications of machine learning techniques, such

as reinforcement learning and deep learning, in wireless communication networks, which

intend to enhance the long-term performance of the network. The main contributions of

this research are summarized as follows:

Firstly, we consider the jamming attack scenario in cooperative communication,

where a jammer intends to block the direct transmission link. The behavior of the jammer

is assumed to follow the Markov chain model. In addition, the relay is used to help the

source to forward the data to the destination and it has definite capacity in its battery.

Hence, the energy harvesting technique is applied to solve the energy-constrained problem at

the relay. Moreover, the imperfection of SS mechanism to detect the jammer at the source

is also considered. We propose a POMDP-based scheme at the source node to determine

the operation mode of the relay considering its remaining energy and the sensing result to

125
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improve the achievable throughput of the network. The objective of this work is to find

the optimal action according to the optimal policy in order to maximize the long-term

throughput of the network in the presence of the jamming attack.

Secondly, we studied the ambient backscatter technique for the SUs in wireless-

powered CRN. In such a network, the ST can simultaneously harvest non-RF energy from

the ambient environment and perform backscattering/RF harvesting/transmitting for the

SR in the data communication phase. The ST usually performs spectrum sensing to check

whether the primary channel is free or not. Subsequently, based on the sensing result,

the ST can effectively select its proper operation and allocate power for data transmission

to maximize the accumulative discounted reward of the secondary system. The problem

was formulated according to the framework of POMDP in a time-slotted fashion for the

secondary system to achieve the optimal policy. The simulation results validated that our

proposed scheme can efficiently provide a high long-term transmission rate for the secondary

system due to efficient utilization of energy harvesting from the wireless environment.

Thirdly, we investigated a CRN with uplink NOMA, where the SUs are allowed to

simultaneously access the same channel at the same time. In addition, the energy-constrained

and imperfect sensing issues of the SUs are also taken into account. We formulated the

optimization problem as a Markov decision process. Afterward, an actor-critic reinforcement

learning approach was employed such that the CBS can adaptively interact with the

environment to find the optimal solution for maximizing the system rewards. The simulation

results validated that our proposed scheme can efficiently improve both the throughput and

energy utilization in the long run.

Next, we studied a model of a hybrid NOMA/OMA uplink CRN adopting energy

harvesting at the CUs. We consider power and bandwidth allocation such that each CU is

able to optimally utilize the power and bandwidth under energy constraint and uncertain

environmental conditions. The problem was first formulated as the framework of MDP, then

we applied a deep actor–critic reinforcement learning framework to obtain the optimal policy.

More specifically, we exploited deep neural networks to approximate the policy and value

functions, which allowed the algorithm to work with large state space and action space.

Consequently, the CBS can allocate the appropriate transmission power and bandwidth to

the CUs by interacting with the environment. The simulation results verified the advantages

of our proposed scheme in improving network performance under various network conditions

in the long run.
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Finally, we consider an uplink CRN where multiple SUs attempt to transmit data

to an SBS by opportunistically using a licensed channel of the primary system. The proposed

NOMA/TDMA-based deep Q-learning approach was proposed to maximize the throughput

of a secondary system in the long run. In particular, the DNN is used to approximate the

value function of every state-action pair. After training, the agent of the DQL algorithm is

able to allocate transmission powers to each CU based on the current state of the network.

The simulation results showed the average throughput attained by the proposed scheme was

significantly improved compared to that of conventional schemes.

7.3 Future Directions

For future research directions regarding to machine learning-based techniques for

enhancing wireless network performance, we consider several aspects as follows:

Due to massive advancement in technologies such as large and distributed antenna

arrays, ultra-dense network, software-based networks. The low latency and high reliability

requirements are essential needs for future applications, which requires extensive research

on machine learning applications. Thus, further studies must to be carried out to enhance

the efficiency of RL techniques and guarantee the advantage in the high mobility of radio

environments. However, improving low latency and high reliability under transmission

rate guarantee results in many network challenges. These parameters are not able to be

compatible since when one of them is improved, the other two will be detrimental. Deep

reinforcement learning can be a promising solution for these issues by efficiently allocating

resources to balance the data rate, reliability and latency trade off. More specifically, the

DQL framework allows the system to learn knowledge about the network to select intelligent

decisions for maximizing the network performance.

In mobile crowd sensing, mobile users supply their sensing data to a crowd sensing

service provider and receive a reward in exchange. However, the mobile devices have to

decide on whether upload their data to the provider or not, and also how much data to be

uploaded due to resource limitation and scarcity. Hence, the provider has to determine the

given amount of reward that should be appropriate to according actions of the mobile users.

Due to enormous number of users and uncertain environment, DRL can be applied to obtain

an optimal crowd sensing policy for wireless system.

Nowadays, the huge number of vehicles has induced traffic delay, safety risks
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and accidents in the transportation system. It is hardly enable to control the traffic load

due to the high traffic density. IoT-enable autonomous transportation system (ATS) has

emerged as a promising solution to provide highly efficient, flexible, and smarter approach

for transportation. The ATS operates its actions based on DRL and infrastructure of IoT.

The agent of DRL, which is a vehicle, carries out certain action in the environment (a

traffic scenario). After every action, the agent moves from one state to another state and

receives a reward. The DRL is designed to enhance decision making parameters in emergency

transportation. The objective of IoT-enable ATS is to minimize total moving time, energy

consumption, and environment pollution while increasing the safety. It is really meaningful

in case of emergency healthcare service, where it can reasonably increase delivery of services

and also reducing the overall burden on healthcare organizations.
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