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[국문 요약]

Estimated Stroke Volume Variation using 1-D 

Convolutional Neural Network from Arterial 

Blood Pressure

울산대학교 대학원

의공학과

김 재 만

Stroke volume Variation (SVV, 일회박출량 변화도)는 전신 마취 수술에서 환자의 수액

반응성을 판단하는 중요한 지표이다. 하지만 SVV 를 측정하는 장비는 공간을 차지하고

가격이 비싸서 모든 환자에게 적용하기 힘들다. 이 연구는 인공지능 모델을 이용하여

SVV 를 측정하여 현재 장비의 문제점을 극복하고자 하였다.

총 557 명 환자를 대상으로 진행했으며 training (210 명), validation (217 명), 그리고

test (130 명) 세트로 나누어서 학습을 진행하였다. 인공지능 모델 입력은 10 초의 동맥압

파형 (Arterial Blood Pressure, ABP)을 2 초마다 기존 장비에서 측정된 SVV 값과

매칭하여 구성하였다. Convolutional Neural Networks (CNN)을 이용해서 전처리,

다중채널, 차원축소의 개선으로 모델을 향상시켰다.

인공지능 모델을 학습한 결과를 기존 장비의 값과 통계적으로 비교하였다. 처음에는

작은 데이터셋에서 모델 개선을 진행하였다. 기본 모델은 상관 관계가 0.66, 평균 제곱

에러가 22.86 이 나왔고, 전처리와 차원축소를 개선한 모델은 상관 관계가 0.91, 평균

제곱 에러가 6.92 로 향상되었다. 전체 데이터셋에서는 1 개 신호만 사용했을 때는 상관

관계가 0.91, 평균 제곱 에러는 4.74 로 결과가 낮았고, 3 개 채널을 사용한 모델은

상관관계가 0.95, 평균 제곱 에러가 2.13 으로 높은 정확도를 보였다.

우리는 인공지능 모델을 이용해서 기존 장비의 환자 정보 이슈를 극복하였다. 또한

인공지능 모델을 이용해서 장비의 비용, 공간 등의 한계를 극복하여 더 많은 환자들에게

수액 투여 관리를 받을 수 있게 될 것이다.
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INTRODUCTION

The anesthesiologist looks at various surgical indicators to determine the 

administration of fluid in general anesthesia surgery. Among them, stroke volume 

variation (SVV) has been used as a hemodynamic monitoring indicator to predict fluid 

reactivity in patients with mechanical ventilation. [1]. Fluid monitoring using SVV is 

essential for many bleeding surgical patients. Various medical papers the use of SVV 

to improve the prognosis of patients. [2, 3, 4]

SVV can be measured accurately using echocardiography, but they are 

measured using Edward’s FloTrac equipment in surgery. FloTrac is a real-time 

analysis of arterial pressure waveforms for continuous monitoring of the patient's 

hemodynamic state and evaluates arterial tree impedance by calculating heart 

performance using Khi -X. Therefore, the device is ready to use after obtaining the 

demographics values and no external calibration is necessary [5]. However, FloTrac 

has various problems. The price of equipment is high and disposable medical supplies 

is required for each operation. Nevertheless, SVV of FloTrac is measured around and 

can be affected by damping, reflecting waves, and vascular tone. [6]. The operating 

room lacks a place because it has various anesthesia equipment. it's hard to bring 

equipment to the operation room in case of an emergency.

Recently, artificial intelligence techniques have developed in many areas [7, 

8]. In particular, a deep learning model that requires a lot of computation has 

developed rapidly as hardware advances. Recently, many results have been reported 

in the medical field, including corneal examinations, brain tumor tests, and chest tumor 

tests. [9,10,11].

Many of deep learning techniques shows improved performance compared by 

previous method from predicted classification and regression models. Convolutional 

Neural Networks is one of the most typical and successful deep learning models in 

medical imaging [12, 13]. Recently, Reports of prediction clinical outcomes published 

papers using the CNN model [14]. Recently, it has also been used in bio-signal areas 

such as arrhythmia detection models [15, 16]. However, deep learning has not been 

used much in the field of anesthesia, and guidelines for models have not been 
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established yet.

A deep learning model can overcome problems and limitations of existing 

equipment in predicting SVV. First, it can be freed from the cost, space aspect. If you 

just connect the line to the existing equipment, you can predict it with a mobile device.

In this study, we proposed SVV from the CNN model using arterial blood 

pressure waveform in general anesthesia operation patients. Comparing the SVV of 

model and the SVV of FloTrac, we confirmed that our model is competitive.

METHODS

Data preparation 

This observational study was approved by Asan Medical Center Institutional 

Review Board (No. 2018-1163), and written informed consent was waived from the 

patients. Medical data recorded 624 general anesthesia patients from February 2018 

to February 2019 in our institution. According to the Asan Medical Center standard 

protocol, biometric data of patients recorded during anesthesia surgery were collected. 

Anesthesia was induced with thiopental sodium, fentanyl, and vecuronium. After 

intubation, anesthesia was maintained with sevoflurane or desflurane in a mixture of 

50% oxygen/air. The vecuronium and fentanyl were continuously infused. The 

hemodynamic parameters including radial and femoral arterial pressure and 

electrocardiogram (ECG), core temperature, pulse oximetry, and capnometer were 

constantly monitored. SVV was continuously monitored using FloTrac (Edwards 

Lifescience, USA). Severe patients use femoral vein catheterization and Swan-Ganz 

for monitoring inferior vena cava (IVC) pressure and pulmonary arterial pressure 

(PAP).

Data collection used computer application of medical record system. We 

collected all patients vital parameters including ECG, arterial blood pressure (ABP), 

central venous pressure (CVP), PAP, HR, and all of the parameters during surgery 

using data acquisition software named Vital Recorder [17].
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Convolutional Neural Network (CNN) and Model Improvements

The observation that a neuron in the brain looks at each different part of the 

brain when a cat looks at an object led to the birth of the Convolutional Neural Network 

(CNN). [18] Through these observations, they came up with the idea that high-level 

neurons are based on the output of neighboring low-level neurons. LeNet-5 first used 

CNN to recognize handwritten letters [19]. These days, the CNN model solved various 

problems of image segmentation and classification in medical images [20].

CNN models have been carried out in the neural network, including the 

classification of vital signs for medical use. [21, 22]. The CNN model has benefited 

from training speed and comparatively wide feature extraction. And Recurrent Neural 

Networks (RNN) model is also widely used in the field of biometric signals [24]. 

However, research suggests that the RNN model will not surpass the CNN model in 

signal data, even if the performance difference is not significant. [25]. Most CNN 

models do not have guidelines for medical vital signals. Then, we built a customized 

CNN model as follows. Inputs should be set so that information on signals can be 

calculated well. The SVV is known as involved in differ of respiration cycle to the ABP 

waveform. Model input vectors have to include more than 1 cycle of respiration from 

the ABP waveform. So, input sequence is 10 sec obtained at 100Hz sampling rates. 

This model structure based on the CNN model reference by VGGNET [26]. For setting 

up hyperparameters on CNN models, see the temporal convolutional networks 

experimental guidelines [27]. Also, a model idea originally proposed on the SH-Moon 

et al [28]. We Improve the model to better performance. Input data for model overlap 

8 seconds for augmentation. Our model composed a model using a convolutional stride 

layer whenever 2 layers instead of max-pooling layer to dimension reduction [29]. 

There are a total of 16 blocks and fully connected layers predict SVV value. Our model 

structure is shown in Figure 1. The loss function evaluated mean squared error(MSE) 

from predicted SVV and device SVV parameter. This model used Adam optimizer and 

was implemented by Keras library (https://github. com/keras-team/keras) and Python 

3.6.
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Figure 1. Convolutional neural network (CNN) model customized this project. Input pre-

processed 10 seconds of arterial blood pressure (ABP) waveform into 3 channels. The inputs 

consist of pre-processed, frequency, and slope of ABP waveform. The model consists of 15 

CNN layers and applies stride every second time.

Dataset, Pre-processing and Model Training

Totally 624 patients, 19 patients were excluded due to severe arrhythmia 

such as arterial fibrillation, and 48 patients with short time or noise recorded were 

also excluded. Finally, 557 patients were enrolled in a deep learning model dataset. 

Patients were split into Training set (n=210, 2018.02.01 ~ 07.31), Validation set 

(n=217, 2018.08.01 ~ 12.31), Test set (n=130, 2019.01 ~ 02.28). Patient distribution 

was adjusted by period and data set ratio. We recorded parameters measured Bx50 

and FloTrac of the general medical devices. A data set concludes ABP waveform and 

SVV values during full-time surgery. The data set is reconstructed with ABP 

waveform and SVV values for 10 seconds. If there is a noise section in the ABP

waveform, it is statistically detected and excluded. The data set consists of three 

channels. The one of input channels is the ABP waveform removed direct current 

(DC) offset using a digital high pass filter above the 0HZ. The baseline of the ABP 
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waveform was moved to zero by the removal of the DC offset. This pre-processing 

helps deep learning model concentrate ABP forms and variance. Other input data are 

frequency data from 1 to 12.2 Hz on ABP waveforms using Fast-Fourier Transform. 

The last input data is the differential value of the ABP signal. This allows us to see 

the slope of ABP. Output is the SVV value learned using SVV of FloTrac. We trained 

a deep learning model using a GPU server with 4 GTX-1080Ti GPUs.

Statistical analysis

Variables displayed a number (percentage), average ± standard deviation, or median 

number (range of quartile). The intergroup analysis was performed using the student's 

t-test, Mann-Whitney U test, Logistic regression, the analysis of variance, or Kruskal-

Wallis test for continuous variables, χ� test, or accurate test for categorical variables 

in Fisher. The mean squared error (MSE) and mean absoluted error (MAE) were 

calculated difference between values. Also, the relationship was evaluated using linear 

regression. The Bland-Altman plot was used to calculate the matching limits and 

deflection [E]. Trend analysis was performed using quadrants. In the paper, a margin 

of error of 5% was used to calculate the concordance rate. All variables were 

compared between FloTrac and DL models as previously explained statistic method.

To evaluate the estimated model, the statistic results built Python 3.6 of programming 

language. Scikit-learn (https://github.com/scikit-learn/scikit-learn). Scikit-learn 

package evaluated Mean Absolute Error (MAE) and Mean Squared Error (MSE).

RESULTS

The patients of characteristics are displayed in Table 1. Patient characteristics 

did not differ depending on training, verification, and statistical test sets. The total 

8,512,564 data (3,620,386 Training data, 3,944,224 Validation data and 947,954 Test 

data) records for 2,364 hours were used in this study. Table 2 shows the hemodynamic 

parameters of the device in the data set. All hemodynamic parameters compared in 

the data set.
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Table 1. Patient characteristics in study.

Training set

(N=210)

Validation

(N=217)

Testing set

(N= 130)

Total set

(N=557)

P-

value

Demographics

Age (yrs) 58 (49-63) 56 (45-63) 56 (41-64) 57 (47-63) 0.166

Sex (male) 145 (69.0) 154 (71.0) 82 (63.1) 381 (68.4) 0.300

Weight (kg) 65 ± 12 67 ± 13 64 ± 12 66 ± 13 0.021

Height (cm) 166 (160-

171)

167 (160-

172)

166 (160-

170)

166 (160-

172)
0.134

Body mass index 

(kg/m2)

23.4 (21.1-

26.2)

24.0 (21.6-

26.8)

23.4 (21.6-

25.4)

23.6 (21.3-

26.2)
0.120

ASA classification <0.001

  1                12 (5.7) 8 (3.7) 23 (17.7) 43 (7.7)

  2                63 (30.0) 68 (31.3) 68 (52.3) 199 (35.7)

  3                111 (52.9) 115 (53.0) 38 (29.2) 264 (47.4)

  4                18 (8.6) 25 (11.5) 0 (0.0) 43 (7.7)

  5                6 (2.9) 1 (0.5) 1 (0.8) 8 (1.4)

Underlying disease

Diabetes mellitus 55 (26.2) 56 (25.8) 26 (20.0) 137 (24.6) 0.379

Hypertension 63 (30.0) 69 (31.8) 32 (24.6) 164 (29.4) 0.355

Operation time, mins 779 (399-

870)

755 (423-

842)

430 (320-

740)

733 (376-

834)
<0.001

Emergency surgery 25 (11.9) 20 (9.2) 8 (6.2) 53 (9.5) 0.210

Type of Operation

Transplant† 150 (71.4) 150 (69.1) 53 (40.8) 353 (63.4) <0.001

Major open abdominal 

surgery
52 (24.8) 62 (28.6) 71 (54.6) 185 (33.2) <0.001

Major laparoscopic 

abdominal surgery
2 (1.0) 4 (1.8) 4 (3.1) 10 (1.8) 0.357

Minor abdominal surgery 5 (2.4) 0 (0.0) 0 (0.0) 5 (0.9) 0.015

Others‡ 1 (0.5) 1 (0.5) 2 (1.5) 4 (0.7) 0.449

Transplant†: Liver, kidney, and pancreas transplant

Others‡: Postoperative bleeding control and sternal closure

Values are expressed as the mean (±SD) or median (interquartile range) for continuous 

variables, and n (%) for categorical variables.
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Table 2. Hemodynamic parameter trends during the operation.

We changed preprocessing and dimensional reduction to improve the model in 

the sample set. The sample dataset has training (n:33, data:418,121) and validation 

set (n:14, data:204,435). The min-max normalization of data pre-processing displayed 

lower performance of correlation and mean squared error (r = 0.66, MSE = 22.86).

The removed DC offset replaced min-max normalization strides have better 

performance (correlation: 0.83, MSE: 9.3). The dimension reduction replaced

convolutional strides have higher performance (correlation: 0.83, 0.91, MSE: 9.3, 6.92) 

in Table 3.

Table 4 shows some improvements to the input ABP waveform. Our model 

shows different results depending on the input signal. The ABP signals and ABP signal 

converted to frequency show lower performance of correlation coefficients (r=0.91, 

0.88). Preprocessed ABP and slope of ABP little higher performance of correlation 

Training

(n=210, 

37.7%)

Validation

(n=217, 

38.9%)

Test

(n=130, 

23.4%)

Overall

(n=557)
P-Value

Duration (min) 120,679 131,474 31,598 283,752

Blood pressure (mmHg)

Systolic 110.7 ± 16.8 114.2 ± 17.4 113.0 ± 18.1 112.8 ± 17.4 <0.001

Diastolic 55.2 ± 9.6 57.5 ± 9.9 56.2 ± 9.9 56.5 ± 9.8 <0.001

Heart rate (bpm) 82.0 ± 15.2 81.3 ± 16.2 82.8 ± 14.1 81.8 ± 15.5 <0.001

Stroke volume (mL/beat) 87.3 ± 29.4 86.6 ± 26.4 80.0 ± 24.2 85.2 ± 27.5 <0.001

Stroke volume index 

(mL/beat/m2)

50.7 ± 16.2 50.1 ± 14.5 48.8 ± 15.2 50.2 ± 15.3 <0.001

Systemic vascular 

resistance (dyne ∙s/cm5)

854.3 ± 

354.5

880.7 ± 

331.8

931.4 ± 

381.0

877.6 ± 

349.6

<0.001

Cardiac output (L/min) 7.0 ± 2.6 6.9 ± 2.3 6.5 ± 2.0 6.9 ± 2.4 <0.001

Stroke volume variance 

(%)

8.1 ± 4.9 8.1 ± 4.4 9.4 ± 5.2 8.3 ± 4.8 <0.001

Values are expressed as mean ± standard deviation or number (%). SV, SVR, SVV, SVI, CO 

measured by monitoring devices calculated by stroke volume using radial arterial catheter 

(reference data, FloTrac, Edward Lifesciences). 
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Table 3. Improve models in samples

Model type
Pearson 

correlation, r
Mean Squared Error

Minmax Normalization + max pooling 0.64 33.21

Minmax Normalization + average pooling 0.66 22.86

Minmax Normalization + convolutional strides 0.65 31.15

Removed DC offset + max pooling 0.80 9.59

Removed DC offset + average pooling 0.83 9.3

Removed DC offset + convolutional strides 0.91 6.92

Compared of typical CNN model pre-processing and dimension reduction with proposed 

model in samples. Conv, convolutional layer.

coefficients and errors (r=0.93, 0.93). The combined input of pre-processed signals 

and frequency signals has much better performance than other inputs of correlation 

and error (r=0.95). Figure 2. Display a representative plot of the SVV and SVV 

estimates of the FloTrac. Bland-Altman analysis shows a low SD of difference (Bias: 

-0.85, 95% CI, -2.88 ~0.71) And the concordance rate of trend analysis demonstrated 

a competitive rate (95.9). the concordance rate had higher pre-processing datasets 

than multi-channel models (96.23%, Figure 3).

Our study analysis based on mean absoluted error and mean squared error. 

ABP waveforms, frequency showed higher error (MAE=1.55, 2.05, MSE= 4.74, 8.62). 

The pre-processed and slope ABP waveforms a little lower error (MAE=1.30, 1.38, 

MSE=4.08, 4.59) however, combined pre-processed and slope ABP and all combined 

input vectors show lower error (MAE: 1.24, 1.01, MSE: 3.18, 2.13). The results 

showed that changed and combined input signals contributed to improved performance.
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Figure 2. Representative plot of predicted SVV using the proposed deep learning model 

compared by SVV of FloTrac and Arterial blood pressure waveform (ABP). The model shows 

the competitive result of estimated SVV. A and C were slightly different variations and areas 

the lower SVVs of arterial blood pressure. B and D represent high SVV of large ABP variance 

and area differences.
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Figure 3. Bland Altman plot (A) and Four-quadrant (B) plot analysis between SVV of FloTrac

and SVV of the proposed model. Each color represents patients. A central red zone is excluded.
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Table 4. Trend Analysis of various pre-processing methods.

Data type

Linear regression analysis Bland-Altman analysis Mean Absolute 

Error

Mean Squared 

Error

Concordance Rate 

(%)Pearson correlation, r (95% CI) Bias 95% Limits of agreement

ABP signal 0.91 -1.00 -4.47 ~ 2.48 1.55 4.74 95.89%

Preprocessed ABP 0.93 -0.87 -4.34 ~ 2.59 1.30 4.08 96.23%

Frequency of ABP 0.88 -0.88 -5.03 ~ 3.27 1.52 5.08 94.85%

Slope of ABP 0.93 -1.00 -4.62 ~ 2.61 1.38 4.59 96.06%

Combined preprocessed 

and slope ABP
0.94 -0.93 -4.02 ~ 2.17 1.24 3.18 95.04%

All combined ABP 0.95 -0.85 -2.88 ~ 0.71 1.01 2.13 95.90%

Based on pre-processed data, the results are compared with the stroke volume variation (SVV) of the model and the SVV of the FloTrac. Preprocessed arterial blood 

pressure (ABP) waveform removed DC offset to remove baseline. Frequency data are the values that convert ABP to 1 ~ 12.2Hz using Fast Fourier Transform (FFT). 

The slope data are obtained by differential ABP waveform. 
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DISCUSSION 

In this study, we predicted stroke volume variation using arterial blood 

pressure in general anesthesia operation. The proposed CNN model estimated SVV 

and accuracy that could replace the SVV of FloTrac. However, our model has yet to 

be tested in real-time general anesthesia surgery.

The proposed CNN model can solve the limitations of equipment including 

FloTrac. This model can obtain SVV values by solving a spatial problem and 

connecting it to the device anywhere when obtained ABP waveform. If an emergency

occurs outdoors, or an operating room without a FloTrac, it can be administered 

without equipment, judging that there is not enough fluid. it can also save costs. In 

the case of FloTrac, the equipment itself is very expensive, and patients must 

purchase disposable medical supplies products at one use. However, measuring with 

the deep learning model does not cost money. With these deep learning model-based 

measurements, many patients who do not have SVV-based fluid management will be 

able to receive anesthesia management without any burden.

Many signal analysis deep learning model uses RNN models, which did not 

perform well and took a very long time when trying with LSTM on a sample dataset. 

We also tested the RCNN model, the RNN + CNN model, but it didn't perform well. 

The best performance was the repeated model of CNN strides that could not be 

dimension reduction.

In a typical CNN model, normalization is performed by applying the min-max 

method to input data and then deep learning is learned. However, in the ABP 

waveform, min-max normalization can lead to loss of information. The SVV predicted 

by the ABP waveform is known to make SVV measurements based on shape and 

slope. The FloTrac model, predicted by the ABP waveform, is known to measure SVV 

based on shape and slope. Therefore, the DC offset of the signal was removed without 

min-max normalization applied. Also, it is typical to apply max pooling to CNN, which 

is a problem with the ABP waveform. In the medical images used, high values often 

have information, but in ABP signals, there is often information even at low or medium 

values. So we applied a convolutional strides layer to learn dimension reduction. This 
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process has improved performance over the previous model. 

Deep learning models have different results depending on input data 

processing. The default ABP waveform shows low statistical results and improves 

with data preprocessing for each method. Removing the DC offset and slope of the 

data results in improved results. Frequency data shows rather low statistic results. 

The model is constructed by combining pre-processed data in several methods, and 

results are improved as input data increases to multiple channel models. This explains 

the effectiveness of verification to reduce overfit each other, rather than adding 

information. The correct SVV value of the equipment is a completely unmatched ABP 

waveform. Therefore, severe over-fitting occurs with just one signal. Thus, as 

channels are added, the results are improved.

Limitation

Since the model was trained with the SVV of the FloTrac, it is not possible to 

derive the correct value when there is a problem with the ABP signal. However, SVV 

has been steadily shown to be trusted parameter of fluid reactivity in adults [31], 

there will be no major problems with the model. We plan to use more accurate values 

such as echocardiogram to predict SVV in the future. In the future we will overcome 

the limitations of the current model.

Conclusion

We have shown that we can predict SVV using deep learning model. SVV could be 

measured with only ABP waveform without existing equipment. Besides, data 

processing and model improvement using patient vital signals from anesthesiologists 

will help other researchers. We would like to help patients who measure ABP 

waveforms but cannot measure SVV due to space and cost to get more help in 

accurate anesthesia quality management.
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ABSTRACT

BACKGROUND Stroke volume variation (SVV) was used as a predictor of fluid 

reactivity for patients with mechanical ventilation. However, measuring devices 

currently in use have limitations in terms of space and cost. SVV is not being measured 

in all patients with arterial blood pressure (ABP). The purpose of this study was to 

predict SVV with ABP waveform using a machine learning method and overcome 

limitations of current equipment.

METHODS Learning model using ABP waveforms and SVV acquired by Bx50, FloTrac. 

For model learning and examinations, patients were divided into three groups 

according to period and proportion. Training (n = 210, data = 3,620,386) validation (n 

= 217, data = 3,944,244), and test (n = 130, data = 947,954) set totally 557 patients 

and 8,512,564 data set of SVV. As one of the deep learning models, this study used a 

model of convolutional neural network (CNN). It applied preprocessing, multichannel, 

and dimension reduction to improve CNN model.

RESULTS Estimated SVV of the model and SVV of FloTrac were compared statistically. 

The model was improved using preprocessing and dimension reduction of ABP 

waveform in the samples. The model with min-max preprocessing and max-pooling 

for dimension reduction to have low correlation and high mean squared error (r=0.66, 

MSE = 22.86). The proposed model showed better results removing direct current (DC) 

offset of ABP waveforms and using convolutional strides to dimension reduction 

(r=0.91, MSE=6.92). The results of the basic signal were relatively low (r = 0.91, MSE 

= 4.74). SVV with three channel inputs and improved deep learning model structure 

appears to have high correlation (r=0.95), lower mean squared error (2.13), the high 

concordance rate of trend analysis (95.9%).

CONCLUSION We calculated SVV using a convolutional neural network (CNN) model. 

This model has a smaller error and similar performance compared by SVV of FloTrac. 

The CNN model can overcome space and cost problems limitations of FloTrac. The 

CNN model seems to be replaceable when the FloTrac device is not available.
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