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Abstract

We implement a method for computing the interatomic potentials by training and fitting neural
networks with the data obtain from molecular dynamics simulations. We construct a long-
range neural network potential and apply it to NaCl system including ideal and defected sys-
tems. We keep the short-range part with Behler type and the long-range part is calculated
using the Ewald summation. The reason for choosing the Ewald sum is because it provides
high accuracy and feasible computational speed when estimating the long-range potential, due
to the rapid convergence between long-range contribution in reciprocal space and the short-
range contribution in real space. In this work, we not only compare the result to molecular
dynamics simulations but also adopt them into the training set of neural network.
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Chapter 1

Introduction

An accurate description of the potential-energy surfaces (PESs) is an essential ingredient to
carry out the reliable MD simulations [1]. The PESs describes the energy of a system in terms
of certain parameters, normally the positions of the atoms. The ab initio method using density-
functional theory can give quite accurate PES of many systems. It proposes to calculate elec-
tronic wave functions as the solution of the Schrödinger equation in the Born–Oppenheimer
approximation. The electronic wave functions can be split into many elementary functions
approximated with only one-electron functions which are the linear combination of a finite
set of basis functions. However, since this approach can render the exact solution with the
high numerical burden, it confines the computation in simulation time to restrict the number
of particles [2]. Another solution is classical force fields which divides the total energy into
bonded and non-bonded interactions. Low dimensional bonds, bonding angles, and dihedral
angles are taken into account in the bonded terms, whereas the non-bonded term describing
the electrostatic and van der Waals interactions. The most popular drawback of classical force
fields is the difficulty in simulating the construction and dissociation of bonds. A new promis-
ing approach to compute PES is machine learning (ML) techniques without a direct physical
meaning, which will be studied in this thesis.

The fundamental for ML was laid down in the middle of the last century. However, the
rapid development in this technique drives an explosion of ML applications in everything, in-
cluding physics. ML with the development of neural network potentials (NNPs) has opened
a new direction to deal with PES since the old methods facing difficulties. In principle, NNPs
need to fit an analytic expression to a set of reference data obtained in electronic structure
calculations as accurately as possible [3]. In simple words, each set of atomic positions gives
a corresponding energy, through the NN. This relationship will be expressed by a function of
weight parameters, and the final task is to find the optimal weight parameters for the NN. The
workflow of the NNPs is given in Fig. 1.1, this process is repeated until the best weights are
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Figure 1.1: Workflow of the NNPs.

gained. So far some small size systems have been constructed with many frozen degrees of
freedom to reduce complexity. However, one requirement is that the potential energy values
must be invariant under permutations of the same atoms. We need to handle this problem to
construct physically correct PESs and improve the efficiency of the fitting process. The high-
dimensional NN which can overcome this issue has been proposed by Behler and Parrinello in
2007. This NNPs represent well the short-range energy which is the sum of atomic energies
and crucially depends on the local environment of each atom. The local environment is char-
acterized by a set of symmetry function values converting from the Cartesian coordinates of
atomic positions. Each element accompanies a specific NN architecture, making the resulting
PES fully permutation invariant. The high-dimensional NNPs are also able to scale for large
systems of up to thousands of atoms with much less computational time compared to the ab
initio calculations. Furthermore, it does not require the exact functional form of PES [4].

We constructed the high-dimensional NNPs for ideal and defected sodium chloride crys-
tals. This model performs well in ideal case. However, the transferability to defected system
is not good. This might be due to the truncation in the cutoff radius which can yield only
the short range energy. Therefore, we consider the long-range energy based on the model of
Behler-Parrinello type.



Chapter 2

Ewald summation

2.1 Why Ewald sum?

In classical MD simulations, the potential energy function is denoted as the force field to
consider the bonds and non-bonded interactions. In this chapter, we only discuss the lat-
ter. The non-bond contributions can be the van der Waals interaction, which is built in the
Lennard-Jones potential (VLJ) or the electrostatic interaction (VC) from Coulomb’s Law [5].
The equations of these potentials are:

VLJ =
4εσ12

r12 − 4εσ6

r6 =
Arep

r12 −
Bdisp

r6 , (2.1)

where the first term is the repulsive term and the second is the attractive long-range term
describing dispersion force and

VC =
Q

4πε0r
, (2.2)

where Q is the charge. The main drawback of VC is the slow convergence with distance in the
periodic systems. The closed forms of these potential are not known since they are defined
with any distance larger than 0, but they must be truncated at some cutoff distance to be
evaluated:

Vtrunc (r) =

 V (r)−V (rc)

0

for r ≤ rc

for r > rc,
(2.3)

where rc is the cutoff radius.

In addition, there is another problem in Coulomb potential. The interaction between ions
decays in the inverse power of r, but the number of interacting ions at the radius r is pro-
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Figure 2.1: Charge distribution in the Ewald sum (Ewald summation techniques in perspec-
tive: a survey. Computer Physics Communications, 95(2):73–92, 1996).

portional to the surface area of a sphere, which is given by 4πr2[6]. Therefore, the energy
density interaction increases with distance. An alternative solution that can handle all these
problems is an Ewald summation. The idea is that transforming a single conditionally and
slowly convergent sum into two rapidly convergent sums.

2.2 Ewald summation

The Ewald summation, or Ewald sum for short, is a technique to sum long-range interactions
between particles and all their infinite periodic images efficiently [7]. The long-range inter-
action in this method is split into two parts: a short-range contribution, which is calculated
in real space, and a long-range contribution which is using Fourier transform to compute. As
in Fig. 2.1, the charge distributions in the real space and reciprocal space cancel each other
and the remainder is Ewald sum. Assuming that the short-range part can be summed easily,
the main challenge is to obtain the long-range term. Since the long-range term is computed
from the Fourier sum, the system is infinitely periodic. One unit cell is chosen as the "central
cell" and the remaining cells are called images. The method of Ewald sum will be explained
in detail in the next following sections.

2.2.1 Problem statement

Consider we have N ions at locations r1, r2, ..., rN and they are imposed to be in periodic
boundary conditions. Then, the potential energy can be written as

E =
1

4πε0

1
2 ∑

m∈Z3

′ N

∑
i=1

N

∑
j=1

qiq j∣∣ri j +mL
∣∣ , (2.4)
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Figure 2.2: Building up the sphere of simulation boxes. Each copy of the periodic box is
represented by a small square. The shaded region represents the external dielectric continuum
of relative permittivity εs (Computer simulation of liquids. Oxford University Press, Oxford,
United Kingdom, second edition, 2017).

where qi, q j are charges and ri j = r j− ri. The sum is over all ionic pairs (i, j) and the factor
of 1

2 prevents double counting. The vector m = (mx,my,mz) is over all triples of integers and
we ignore m = 0, for i = j. For cubic box, the center of each box in the periodic array is
represented by mL. Increasing the values mx, my, and mz to infinite, we can construct a infinite
sphere system as in Fig. 2.2.

Electric potential due to an ion with charge qi at ri is

φi (r) =
1

4πε0

qi

|r− ri|
. (2.5)

Electric potential due to N ions with their periodic images is

φ (r) =
1

4πε0
∑
m

N

∑
j=1

q j∣∣r− r j +mL
∣∣ . (2.6)

Electric potential due to all ions excluding ion i is

φ[i] (r)≡ φ (r)−φi (r) =
1

4πε0
∑
m

′ N

∑
j=1

q j∣∣r− r j +mL
∣∣ , (2.7)

where i = j is omitted. The potential energy in the Eq. 2.4 can be written as

E =
1

4πε0

1
2

N

∑
i=1

qiφ[i] (ri) . (2.8)

The Ewald method will evaluate E by transforming it into summations that converge rapidly
and absolutely.
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2.2.2 Splitting the charge distributions

The Poisson’s equation for electrostatics is

∇
2
φi (r) =−

ρi (r)
ε0

, (2.9)

where ρi (r) = qiδ (r− ri) is the charge density at the point charge qi and the potential φi (r)
is the solution of Poisson’s equation which now can be given as the form

φi (r) =
1

4πε0

∫ ρi

(
r′
)

∣∣r− r′
∣∣d3r

′
. (2.10)

The total potential energy in the Eq. 2.8 is given by the new expression

E = 1
4πε0

1
2∑

m

′ N
∑

i=1

N
∑
j=1

∫∫ ρi(r)ρ j

(
r′
)

|r−r′+mL|d
3rd3r′

= 1
4πε0

1
2∑

m

′ N
∑

i=1

N
∑
j=1

qi
∫ ρ j

(
r′
)

|r−r′+mL|d
3r′.

(2.11)

Splitting the charge distributions by adding and subtracting a Gaussian distribution [8], we
have

ρi (r) = [qiδ (r− ri)−qiGσ (r− ri)]+qiGσ (r− ri)

= ρS
i (r)+ρL

i (r) ,
(2.12)

where Gσ (r) = 1

(2πσ2)
3/2 exp

(
− |r|2σ2

2
)

, and σ is the standard deviation of the Gaussian dis-

tribution. For convenience, we use another parameter κ = 1√
2σ

indicating the width of the

distribution. Hence, Gκ (r) = κ3

π3/2 exp
(
−κ |r|2

)
. Likewise, the electric potential can be can

be divided into

φi (r) = qi
4πε0

∫ δ

(
r−r′

)
−Gκ

(
r−r′

)
r−r′

d3r′+ qi
4πε0

∫ Gκ

(
r−r′

)
r−r′

d3r′

= φ S
i (r)+φ L

i (r) ,
(2.13)

and also the total energy

E = 1
2

N
∑

i=1
qiφ

S
[i] (ri)+

1
2

N
∑

i=1
qiφ

L
[i] (ri)

= 1
2

N
∑

i=1
qiφ

S
[i] (ri)+

1
2

N
∑

i=1
qiφ

L (ri)− 1
2

N
∑

i=1
qiφ

L
i (ri)

= ES +EL−Esel f .

(2.14)
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2.2.3 Short-range potential in real space

The solution of the Poisson’s equation in sphere coordinates is φκ (r) =
q

4πε0r erf(κr), where

erf(z) = 2√
π

∫ z
0 e−t2

dt ≡ 1− erfc(z) [9]. Thus,

φ
S
i (r) =

1
4πε0

qi

|r− ri|
erfc(κ |r− ri|) (2.15)

φ
L
i (r) =

1
4πε0

qi

|r− ri|
erfc(κ |r− ri|) , (2.16)

and

φ
S
[i] (r) =

1
4πε0

∑
m

′ N

∑
j=1

q j∣∣r− r j +mL
∣∣erfc

(
κ
∣∣r− r j +mL

∣∣) . (2.17)

The short-range term in the Ewald sum is

ES = 1
2

N
∑

i=1
qiφ

S
[i] (ri)

= 1
4πε0

1
2∑

m

′ N
∑

i=1

N
∑
j=1

qiq j

|ri j+mL|erfc
(
κ
∣∣ri j +mL

∣∣) . (2.18)

2.2.4 Long-range potential in reciprocal space

From Eq. 2.16 and the fact thatlim
z→0

erf(z) = 2√
π

z [9], the electric field is

φ
L
i (ri) =

qi

4πε0

2√
π

1√
2κ

, (2.19)

and therefore the self-term energy is

Esel f =
1

4πε0

κ

π1/2

N

∑
i=1

q2
i . (2.20)

Because the long-range energy cannot be directly computed in the real space, the Ewald
sum will transform it into a sum in the reciprocal space. Since the potential φ L (ri) is generated
by a periodic array of ions, the total charge density is

ρ
L (r) = ∑

m

N

∑
i=1

ρ
L
i (r+mL) . (2.21)

Applying Fourier transformation for φ L (ri) and ρL (r), we have

φ̂ L (k) =
∫

V
φ

L (r)exp(−ik · r)d3r, (2.22)
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ρ̂L (k) =
∫

V
ρ

L (r)exp(−ik · r)d3r. (2.23)

The inverse Fourier transform give

φ
L (r) =

1
V ∑

k
φ̂ L (k)exp(ik · r) , (2.24)

ρ
L (r) =

1
V ∑

k
ρ̂L (k)exp(ik · r) . (2.25)

Once again, the electric field and the charge distribution are related by the Poisson’s equation
∇2φ L (r) = −ρL(r)

ε0
, which can be transformed into reciprocal space k2φ̂ L (k) = ρ̂L(k)

ε0
. The

Fourier transform of the charge density is

ρL (r) = ∑
m

N
∑
j=1

q jGκ

(
r− r j +mL

)
, (2.26)

and

ρ̂L (k) =
∫

V

N
∑
j=1

q jGκ

(
r− r j +mL

)
exp(−ik · r)d3r

=
N
∑
j=1

q j
∫

R3 Gκ

(
r− r j

)
exp(−ik · r)d3r

=
N
∑
j=1

q j exp
(
−ik · r j

)
exp
(
−k2/4κ2) .

(2.27)

The potential in the reciprocal space is

φ̂ L (k) =
1

k2ε0

N

∑
j=1

q j exp
(
−ik · r j

)
exp
(
−k2/4κ

2) , (2.28)

and the inverse Fourier transform gives

φ L (r) = 1
V ∑

k̸=0
φ̂ L (k)exp(ik · r)

= 1
V ε0

∑
k̸=0

N
∑
j=1

q j
k2 exp

(
−ik · (r− r j

)
exp
(
−k2/4κ2) . . (2.29)

We ignore k = 0 because the contribution to this term is zero if the supercell is charge neutral,
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i.e.
N
∑

i=1
qi = 0. Hence, the long-range energy is

EL = 1
2

N
∑

i=1
qiφ

L (ri)

= 1
2L3ε0

∑
k̸=0

N
∑

i=1

N
∑
j=1

qiq j
k2 exp

(
−ik · ri j

)
exp
(
−k2/4κ2) . (2.30)

Consider the dielectric constant εs which is related to the nature of medium surrounding
the sphere, the medium is conductive as εs = ∞ and vacuum as εs = 1. The energy difference
between these two cases is the dipole energy and should be included in the Ewald sum [10]:

E (εS = 1)−E (εS = ∞) =
1

6L3ε0

∣∣∣∣∣∑i
qiri

∣∣∣∣∣
2

. (2.31)

Combining all Eqs. 2.18, 2.20, 2.31, and 2.30, and for convenience, omitting 4πε0 for non-
SI unit of charge, the final result is the total sum of the real-space term, the reciprocal-space
term, the self term, and the surface term.

EEwald = 1
2

N
∑

i=1

N
∑
j=1

qiq j

(
∞

∑
′

|m|̸=0

erfc(κ|ri j+mL|)
|ri j+mL|

+ 1
πL3 ∑

k ̸=0

4π2

k2 exp
(
−k2/4κ2)exp

(
−ik · ri j

))
− κ

π1/2

N
∑

i=1
q2

i +
2π

3L3

∣∣∣∣ N
∑

i=1
qiri

∣∣∣∣2
≡ Ereal +Erecip−Esel f +Esur.

(2.32)





Chapter 3

Fundamental of Artificial Neural
Networks

In the 1950s, Arthur Samuel created the first computer program which can self-learn, and
the term "machine learning (ML)" was coined concurrently with the demonstration of the
basic concept of artificial intelligence. We can understand ML as a science of programming
computer that is used to make decisions or predictions based on training data without building
a specific algorithm for each task. Due to great capability, nowadays, the work on ML becomes
widespread in the last two decades with many applications in different fields such as image
recognition, robot control, etc. However, the accuracy of ML crucially depends on data, which
means it can not give the expected result when there is a lack of data in training data set or bad
data chosen.

ML can be classified in many different ways such as the basement on the task that it solves,
the difference in its approach, etc. The common types of ML are the following:

• Supervised learning: The training data contain both the inputs and the desired outputs
called labels. There are two typical tasks: classification and regression. In the former
algorithm, the outputs are limited to a set of "class" while in the later, the outputs have
any value predicted from the mapping inputs.

• Unsupervised learning: The training data are unlabeled. Alternatively, the computer
tries to analyze the input data in order to find the rules or detect patterns.

• Semi-supervised learning: Falling between two types of above, in this learning, the
training data are able to contain both labeled data and unlabeled data.

• Reinforcement learning: The learning system called "agent" studies from the environ-
ment, and makes the actions that can get the "reward" or "penalty". This process repeats
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Figure 3.1: ANNs performing simple logical computations (Hands-on Machine Learning with
Scikit-Learn, Keras and TensorFlow. O’Relly Media, second edition, 2019).

until the agent learns all the possible states.

One of the branches in ML is deep learning which is based on artificial neural networks
(ANNs). In deep learning, the information is transformed from input to output, and this chain
is called "credit assignment path". In the feed-forward NN, for example, the depth of credit
assignment path (the number of hidden layers plus output layer) is larger than two. In other
words, the NN needs to have two or more hidden layers. Deep learning can be supervised
learning, unsupervised learning, or semi-supervised learning [11].

3.1 Perceptron

ANNs inspired by our brains are the core of deep learning. The very first precursor of ANNs
is the network of artificial neurons performing simple logical computations. In 1943, Warren
McCulloch and Walter Pitts introduced the artificial neuron containing only one output, and
it will be activated when more than a number of binary inputs are activated. The perceptron
algorithm will converge if the two data layers are linearly separable. However, it is quickly
proven to be impossible to solve simple problems. Fig. 3.1 shows examples of ANNs that
perform simple logical computations with artificial neurons.

Over a decade later, an upgrade version of the artificial neuron called "threshold logic unit"
or “linear threshold unit” was invented by Frank Rosenblatt, which is the fundamental element
of "perceptron". Frank Rosenblatt added a weight which is the value to accentuate the role of
each input for associated output [12]. The structure of the threshold logic unit is shown in Fig.
3.2a. The net of inputs is calculated by multiplying the input xi with the weight wi and then
add them up as follow:

z = w1x1 +w2x2 + . . .+wnxn = xw. (3.1)
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(a) (b)

Figure 3.2: a) Threshold logic unit and b) single layer perceptron (Hands-on Machine Learn-
ing with Scikit-Learn, Keras and TensorFlow. O’Relly Media, second edition, 2019).

The output value is generated after applying z into an activation function. An alternative
activation function for perceptron is a Heaviside step function

h(z) =

{
0 i f z < 0
1 i f z≥ 0

. (3.2)

The perceptron models are used in binary classification problems, if the linear combination
of inputs exceeds a threshold the output is either a positive or negative instance. Fig. 3.2b
presents a single layer perceptron with an additional bias neuron. It allows shifting the deci-
sion boundary to the left or right, away from the origin, and independent of input values. The
summation in the Eq. 3.1 can be written as

z = w0x0 +w1x1 +w2x2 + . . .+wnxn = xw+b, (3.3)

where x0 = 1. There might be more complicated problems that require a complex relationship
between the inputs and outputs. Therefore, it is necessary to insert one or more hidden layers
between them. This kind of structure called "multi-layer perceptron" as demonstrated in Fig.
3.3. The biases are included in every layer except for the output layer, and each layer is fully
connected with the next layer from the input through the output layer. The backpropagation
algorithm introduced by David Rumelhart, Geoffrey Hinton, and Ronald Williams in 1986 is
used to train the multi-layer perceptron model. The backpropagation computes the gradient of
the loss function corresponding to the weights of the network. The optimization method uses
this gradient to update the weights and minimize the loss function.
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Figure 3.3: Multi-layer perceptron.

3.2 Feed-forward neural network

The simplest type of neural network is a feed-forward neural network in which the information
moves in one direction from the input layer to output layer. Between the input and output
layer are hidden layers, and each layer contains nodes which are connected by the weights.
A particular layer just has connections with the adjacent layers and each node in a layer fully
connects to all nodes in the subsequent layer. All of the layers and the number of nodes per
layer define the architecture of the NN. An example of the FFNN 2-4-4-1 is shown in Fig. 3.4.
The node number i in the layer j is computed by equation:

y j
i = b j

i +
N j−1

∑
k=1

w j−1, j
k,i · y j−1

k , (3.4)

where N j−1 is the number of nodes in layer j−1, and w j−1, j
k,i is the weight connecting the node

i in layer j with the node k in the previous layer j−1 . This equation is the linear combination
of all nodes in the previous layer, which is shifted by the bias weight b j

i . For instance, we can
evaluate each node i in the first and second hidden layers as

y1
j = b1

j+
2

∑
i=1

w01
i j · x0

i = b1 +w01x, (3.5)
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Figure 3.4: Feed-forward neural network with the only one output value.

y2
k = b2

k+
4
∑
j=1

w12
ki · y1

k

= b2
k+

4
∑
j=1

w12
jk ·
(

b1
j+

2
∑

i=1
w01

i j · x0
i

)
= b2 +w12(b1 +w01x

)
=
(
w12w01)x+

(
w12b1 +b2) .

(3.6)

Then, the output is

y3
1 = b3

1+
4
∑

k=1
w23

k1 · y
2
k

= b3
1+

4
∑

k=1
w23

k1 ·

(
b2

k+
4
∑
j=1

w12
jk ·
(

b1
j+

2
∑

i=1
w01

i j · x0
i

))
= b3 +w23[(w12w01)x+

(
w12b1 +b2)]

=
(
w23w12w01)x+

(
w23w12b1 +w23b2 +b3) .

(3.7)

As we can see, all three equations above have the linear form Wx+b. The reason is that the
hidden values are the linear function of the inputs and the outputs are also linear function of
the hidden values. Hence, for any values of the weights, the outputs just yield the linearity.
However, we can overcome this limitation by applying the nonlinear activation function to
each hidden node values after the linear transformation of each layer. Some common acti-
vation functions will be introduced in the next subsection 3.3. Eq. 3.5 can be generalized
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Figure 3.5: Activation function: (a) Binary step function, (b) Linear activation function, (c)
ReLU activation function, (d) Sigmoid activation function, (e) Hyperbolic Tangent activation
function.

as

y j
i = f j

i

(
b j

i +
N j−1

∑
k=1

w j−1, j
k,i · y j−1

k

)
. (3.8)

The output of example NN turns out

y3
1 = f 3

1

(
b3

1+
4

∑
k=1

w23
k1 · f 2

k

(
b2

k+
4

∑
j=1

w12
jk · f 1

j

(
b1

j+
2

∑
i=1

w01
i j · x0

i

)))
. (3.9)

3.3 Activation function

3.3.1 Binary step function

h(z) =

{
0 if z < threshold
1 if z≥ threshold

(3.10)

The Heaviside step function introduced in Section 3.1 is a kind of binary step function. If
the input value is above the threshold, the node is activated. The drawback of this function is
that it cannot provide multiple value of outputs, which means that it is not available for the
multinomial classification problems.

3.3.2 Linear activation function

f (z) = z (3.11)

The output of this function is not confined between any range and proportional to the
input. However, the derivative of the linear function is a constant, so it is not possible to use
backpropagation to train the NN since there is no relation between the gradient and input.
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Furthermore, as discussed above, without activation function, no matter how many layers in
the NN, the output layer is always the linear function of the input layer. Thus, the NN with the
linear activation function is just a linear regression model.

3.3.3 Non-linear activation functions

ReLU activation function

ReLu(z) = max(z,0) (3.12)

ReLu is the abbreviation of the rectified linear unit which is the most common activation
function used in the NN. The ReLU returns output z if z is positive and 0 otherwise. It is a non-
linear function and have the derivative allowing for backpropagation. Furthermore, because
the ReLU includes simple mathematical operations so it can converge quickly. Nevertheless,
there is a restriction that the gradient can be zero for negative z, this is so-called "Dying ReLu".
If the nodes turn zero, there is no meaning for the activation in the next layer and the weights
are not updated with the gradient descent.

Sigmoid activation function

y = f (x) =
1

1+ e−x (3.13)

It is similar to step function but looks more smooth and it can prevent suddenly "jump"
in the output values. The boundary of the outputs is from 0 to 1 because the outputs are
normalized. The small changes in x lead to significant change in y, and this can be clearly
observed in Fig. 3.5d. For the x values from -2 to 2, the corresponding Y values are very
steep. Therefore, the sigmoid function tends to bring y values to the edge of the curve, which
means 1 or 0. So it allows clear predictions or distinctions. On the other side, due to the barely
change of y values when x values go toward either end of the sigmoid function, the gradients
at these regions are small. For that reason, the network denies to learn further or takes a long
time to achieve accurate results.

Tanh/Hyperbolic Tangent activation function

y = f (x) = tanh(x) =
2

1+ e−2x −1 = 2sigmoid(2x)−1 (3.14)

The tangent function is a scaled sigmoid function, so both are similar and can be derived
from each other. The differences are that its derivatives are steeper, and it is zero centered (the
boundary is from -1 to 1). Both sigmoid and tangent functions are widely used, but the ReLu
function is preferred because tanh is computationally expensive.
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3.4 Backpropagation

Backward propagation of error or for short "backpropagation" is a popular algorithm for train-
ing the FFNN under supervised learning using gradient descent. In this method, the gradient
of the error function with respect to the weights of NN is calculated for the final layer first and
then for the first layer. That means the process is "backward" through the network. The main
target of training progress is to find the best weights and biases for hidden layer nodes [13].

For clearly, the notations of FFNN are rewritten as following:

• wkl
i j : weight connecting the node i in layer k with the node j in the next layer l = k+1

• bk
i : bias for the node i in layer k

• ak
i : bias plus product of summation for node i in the layer k

• ok
i : output for the node i in layer k

• σ : activation function for the hidden layer nodes

• σout : activation function for the output layer nodes.

The bias bk
i can be analyzed as the multiple of the weight wk−1,k

0i with a fixed output ok−1
0 = 0

for the node 0 in the layer k−1. Hence, bk
i = wk−1,k

0i ·1 = wk−1,k
0i . The output for the node i in

layer k before passing to the activation function is:

ak
i = bk

i +
Nk−1

∑
j=1

wk−1,k
ji ·ok−1

j =
Nk−1

∑
j=0

wk−1,k
ji ·ok−1

j . (3.15)

The dataset of NN includes m input-output pairs X = {(−→x1 ,
−→y1) , . . . ,(

−→xm,
−→ym)}, where −→xi is the

input and −→yi is the output label. Considering the NN which has only one output, the output
label is not a vector, so the input-output pairs will have the form (−→xi ,yi). An error function
E (X ,θ) describes the error between predicted output and the output label for a set of input-
output pairs X and a value of parameter θ . In general, training NN with backpropagation
means the calculation of the gradient of the error function E (X ,θ) with respect to the weights
and biases. The next step is updating the parameters at each iteration of gradient descent with
the learning rate α ,

θ
t+1 = θ

t−α
∂E (X ,θ t)

∂θ
. (3.16)
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The error function over m training examples minimized by backpropagation is mean square
error (MSE):

E (X ,θ) = MSE =
1

2m

m

∑
i=1

(ŷi− yi)
2 , (3.17)

where ŷiis the predicted output of NN, and the derivative of it can be computed as the sum
over individual error terms for each individual input-output pair

∂E (X ,θ)

∂wk−1,k
i j

=
1
m

m

∑
n=1

∂

∂wk−1,k
i j

(
1
2
(ŷn− yn)

2
)
=

1
m

m

∑
n=1

∂E (X ,θ)n

∂wk−1,k
i j

. (3.18)

Then, the error function for each input-output pair is

E =
1
2
(ŷ− y)2 . (3.19)

Applying chain rule to estimate the partial derivative of the error function

∂E

∂wk−1,k
i j

=
∂E
∂ak

j

∂ak
j

∂wk−1,k
i j

= δ
k
j ok−1

i , (3.20)

in which δ k
j =

∂E
∂ak

j
and

∂ak
j

∂wk−1,k
i j

= ∂

∂wk−1,k
i j

(Nk−1

∑
l=0

wk−1,k
l j ·ok−1

l

)
= ok−1

i . The product of error δ k
j

and output ok−1
i implies the weight wk−1,k

l j connecting the input node j in layer k and the output
node i in layer k−1.

Considering that there is only one output with activation function in the final layer, we can
evaluate the error function as

E =
1
2
(ŷ− y)2 =

1
2
(
σout

(
aout

0
)
− y
)2
. (3.21)

The error for the node in the final layer is

δ out
0 = ∂E

∂aout
0

= ∂

∂aout
0

[
1
2

(
σout

(
aout

0
)
− y
)2
]

=
(
σout

(
aout

0
)
− y
)

σ
′
out
(
aout

0
)
= (ŷ− y)σ

′
out
(
aout

0
)
.

(3.22)

From the Eqs. 3.20 and 3.22, the partial derivative of the error function with respect to a
weight in the final layer can be expressed as

∂E

∂wout−1,out
i0

= δ
out
0 oout−1

i = (ŷ− y)σ
′
out
(
aout

0
)

oout−1
i . (3.23)
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Considering the error δ k
j in the layers 1≤ k ≤ out,

δ
k
j =

∂E
∂ak

j
=

Nk+1

∑
l=1

∂E
∂ak+1

l

∂ak+1
l

∂ak
j

=
Nk+1

∑
l=1

δ
k+1
l

∂ak+1
l

∂ak
j
. (3.24)

Since the bias ok
0 relating to wk,k+1

0 j is fixed, its value is independent of the outputs of the
previous layer. So l does not have value 0. With the appearance of activation function,

ak+1
l =

Nk

∑
j=1

wk+1
jl σ

(
ak

j

)
. (3.25)

Thus,

∂ak+1
l

∂ak
j

= wk+1
jl σ

′
(

ak
j

)
. (3.26)

Substituting Eq. 3.26 into Eq. 3.24, the error term in the hidden layers is

δ
k
j =

Nk+1

∑
l=1

δ
k+1
l wk+1

jl σ
′
(

ak
j

)
= σ

′
(

ak
j

) Nk+1

∑
l=1

wk+1
jl δ

k+1
l (3.27)

Hence, the partial derivative of the error function with respect to a weight in the hidden layers
1≤ k ≤ out has the form

∂E

∂wk−1,k
i j

= δ
k
j ok−1

i = σ
′
(

ak
j

)
ok−1

i

Nk+1

∑
l=1

wk+1
jl δ

k+1
l . (3.28)

In summary, there are five equations required in the backpropagation algorithm:

• The partial derivatives: ∂E
∂wk−1,k

i j
= δ k

j ok−1
i

• The error in the final layer (for NN having only one output): δ out
1 = σ

′
out
(
aout

1
)
(ŷ− y)

• The error in the hidden layers: δ k
j = σ

′
(

ak
j

) Nk+1

∑
l=1

wk+1
jl δ

k+1
l

• The partial derivatives for each input-output pair: ∂E(X ,θ)

∂wk−1,k
i j

= 1
m

m
∑

n=1

∂

∂wk−1,k
i j

(
1
2 (ŷn− yn)

2
)
=

1
m

m
∑

n=1

∂E(X ,θ)n

∂wk−1,k
i j

• The equation for updating the weights: ∆wk−1,k
i j =−α

∂E(X ,θ)

∂wk−1,k
i j

The process of backpropagation can be concluded as the following steps,
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1. Forward pass: for initial random parameters and input nodes, calculate and store the
value of nodes in the hidden layers until getting the predicted output value ŷi.

2. Backward pass:

• Estimating the error term δ out
1 for the output layer

• Backpropagating the error terms δ k
j for the hidden layers

• Evaluating the partial derivatives of the individual error with respect to the weights

• Combining the individual gradients to obtain the total gradient ∂E(X ,θ)

∂wk−1,k
i j

for the set

of input-output pairs.

3. Updating weights: using the total gradient and the learning rate to update the next
weights.





Chapter 4

Constructing Long-range Neural Network
Potentials

4.1 Conventional NNPs

The conventional NNPs use feed-forward NNs to define the relation between energy and
atomic configurations. The input layer contains a vector of input coordinates R = {Ri}, and
the energy is obtained in the node of the output layer as in Fig. 4.1. In principle, optimizing
the weights in the conventional NNPs are similar to feed-forward NNs. The initial choices
of the weight parameters can be the random numbers and the number of weights need to be
optimized is

Nw =
NHL+1

∑
k=1

(Nk−1 ·Nk +Nk) (4.1)

where NHL is the number of hidden layers and Nk is the number of node in the layer k.

The conventional NNPs soon reveals its drawbacks. First, it performs well for a small
system, but if the system contains too much input node then many weights need to be defined.
Therefore, the computational cost is expensive, and it is inefficient to obtain energy. Another
problem is for exchanged atoms, for example, a water monomer with the exchanging of two
hydrogen atoms. the potential energies in both cases need to be the same since the structure
has not changed. However, exchanging atomic positions accidentally changes the order of
the input coordinates, which yields different energies for the same atomic configurations. A
similar problem occurs with translating and rotating system, distinct energies are given due to
the change in input coordinates. Finally, if we add or remove an atom from the system, the
weight parameters for that atom are not available or ill-defined and the conventional NNPs
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Figure 4.1: Conventional NNPs.

need to be trained again [4].

4.2 High-dimensional NNPs

In 2007, Jörg Behler and Michele Parrinello introduced the high-dimensional NNPs which
contribute the short-range energy as a function of all atomic positions. They propose these
positions will be transformed into a set of symmetry functions that can describe the local
environment of an atom i. The total energy is the summation of all atomic energies.

The structure in high dimensions is shown in Fig. 4.2. The
{

Rα
i
}

represents the Cartesian
coordinates α of the atom i. Then, these coordinates will be converted to a set of symmetry
function values

{
Gµ

i
}

for each atom. These symmetry function values which play an impor-
tant role to describe the local environment of each atom are the inputs for the subnet Si. The
subnet Si is the conventional NNPs, and the subnets are the same for all atoms of the same el-
ement. For each element, there is a distinct subnet architecture. After optimizing the weights,
the subnet Si gives atomic energies Ei. Summing these energies we can obtain the total energy
of the system,

E = ∑
i

Ei. (4.2)

This kind of NN can overcome the limitations of conventional NNPs. The properties of
symmetry functions help the total energy be invariant with permutation of atoms of the same
element and translation or rotation of the system. Moreover, the size of the system is easy to
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Figure 4.2: Structure of high-dimensional NNPs for system containing three atoms.

vary since each atom has its own scheme.

Since the energy of the system crucially depends on the atomic configurations, a suitable
set of coordinates need to be selected. The Cartesian coordinates are not possible, because it
is not invariant with respect to translation and rotations of the system. An alternative solution
is transforming all atomic positions into many body functions inside the cutoff spheres, these
transformed coordinates called "symmetry functions". There are some properties that symme-
try functions must have, first, the vector of symmetry function values must be unaffected by
the permutation of atoms of the same element and also the rotation and translation of the sys-
tem. The symmetry functions are able to identify the different atomic environment and give
similar coordinates for identical atomic configurations, that means it provides a unique de-
scription of the atomic environment. Finally, the number of symmetry functions independent
of the number of atom inside the cutoff spheres [14].

The symmetry functions are formulated from cutoff functions multiplied by radial or an-
gular functions. The cutoff function neglects the interaction which yields the interatomic
distance Ri j larger than the cutoff radius Rc. It has the form

fc(Ri j) =

 0.5
[
cos
(

πRi j
Rc

)
+1
]

0

for Ri j ≤ Rc

for Ri j > Rc
, (4.3)

which is the monotonically decreasing part of a cosine function. If Ri j increases, the function
will be decreased, this reflects the strength of the interactions between the atoms vary with the
distance.

The simplest radial symmetry function is the sum of the cutoff functions for all neighboring
atoms j inside the cutoff sphere,

G1
i = ∑

j
fc(Ri j). (4.4)

A set of these functions can be constructed by using different cutoff radii which yield different
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Figure 4.3: Example of an initial radial symmetry function set G2 with cutoff radius Rc = 6Å
andRs = 0.

spatial extensions. Another choice is a sum of Gaussians multiplied by cutoff functions,

G2
i = ∑

j
e−η(Ri j−Rs)

2

· fc(Ri j), (4.5)

where the width of Gaussian is controlled by the parameter η and the Gaussians can be shifted
to a certain radial distance by the parameter Rs. For small values of η and Rs = 0 function
G2 reduces to function G1. An example of an initial radial symmetry function type G2 is
presented in Fig. 4.3. Finally, the radial function G3 represents damped cosine functions,

G3
i = ∑

j
cos
(
κRi j

)
· fc(Ri j), (4.6)

where the period length adjusted by parameter κ . Since there are positive and negative func-
tion values, the neighboring atoms at different distances can cancel each other’s contributions
to the summation. Thus, this function needs to use with another function.

There are two types for angular symmetry function,

G4
i = 21−ζ

all

∑
j,k ̸=i

(
1+λ cosθi jk

)ζ · e−η

(
R2

i j+R2
ik+R2

jk

)
· fc
(
Ri j
)
· fc (Rik) · fc

(
R jk
)
, (4.7)
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and

G5
i = 21−ζ

all

∑
j,k ̸=i

(
1+λ cosθi jk

)ζ · e−η(R2
i j+R2

ik) · fc
(
Ri j
)
· fc (Rik) . (4.8)

The angle θi jk = arccos
(

Ri j·Rik
Ri j·Rik

)
is centered at the central atom i and is enclosed by the two

interatomic distances Ri j and Rik. They are different in the radial parts, and have the same
angular part. The parameter λ = ±1 shifts the maxima of the cosine function to θi jk = 0°
with λ = 1 or θi jk = 180° with λ = −1. The distribution of angle can be investigated by
using different values ζ , while the normalization factor 21−ζ ensures that the range of values
is independent of the choice of exponent. The value of function G5 is larger than G4 since both
fc
(
R jk
)

and e−ηR2
jk are smaller than one, so G5 is more useful for larger atomic separations. In

addition, there is no constraint on the distance between atom i and atom j, thus a significantly
number of angles is added in the function.

The parameters Rc, η , Rs, ζ , λ , and κ which define the spatial shape of the symmetry
functions are fixed during the optimization. The set of symmetry functions should cover the
configuration space in an unbiased way. The spatial extension of the function with the smallest
effective range should be selected based on the shortest interatomic distances present in the
data set. For each element, the width of the Gaussian with the largest η value should corre-
spond to the shortest interatomic distance and vice versa. If the difference between the smallest
and largest symmetry function value, is too small, the symmetry function is not contributing to
the distinction of different structures. Thus, for each symmetry function, the range of values
should be analyzed. It is good for computational cost if the number of symmetry functions is
kept as small as possible. However, it must be large enough for the NNP to distinguish distinct
atomic structures.

4.3 Long-range neural network potentials

The long-range NNPs is constructed with the short-range part from high-dimensional NNPs
and the long-range part is calculated using the Ewald summation. The reason for choosing the
Ewald sum is because it provides high accuracy and feasible computational speed when esti-
mating the long-range potential, due to the rapid convergence between long-range contribution
in reciprocal space and the short-range contribution in real space.

The total energy Etotal of the system is the sum of short-range energy and long-range
energy. The former is calculated as the combination of atomic energies, and the latter is
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Figure 4.4: Structure of long-range NNPs.

obtained from the reciprocal part in the Ewald sum:

Etotal = ESR +ELR = ∑
i

Ei +EX . (4.9)

The structure of this NN is shown in Fig. 4.4. The Rα
i represents the Cartesian coordinates

of the atom ith of molecule α , and similar for Rβ

i . Then, these coordinates will be converted
to a set of symmetry function values for each atom (Gα

i , Gβ

i ). These symmetry function
values which play an important role to describe the local environment of each atom are the
inputs for the subnet (Sα

i , Sβ

i ). In addition, the original Cartesian positions are the input of
reciprocal-subnet (Xrecip) . In other words, the short-range atomic potentials depend on the
symmetry function values, while the long-range reciprocal part is directly expressed in regard
to Cartesian coordinates.

The Ewald sum is the total sum of the real-space term, the reciprocal-space term, the self
term and the surface term,

EEwald = 1
2

N
∑

i=1

N
∑
j=1

qiq j

(
∞

∑
′

|m|̸=0

erfc(κ|ri j+mL|)
|ri j+mL|

+ 1
πL3 ∑

k ̸=0

4π2

k2 exp
(
−k2/4κ2)exp

(
−ik · ri j

))
− κ

π1/2

N
∑

i=1
q2

i +
2π

3L3

∣∣∣∣ N
∑

i=1
qiri

∣∣∣∣2
≡ Ereal +Erecip−Esel f +Esur.

(4.10)
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Pretermitting the energy in real-space and concentrate on the last three terms,

EX = Erecip−Esel f +Esur

= 1
2L3

N
∑

i=1

N
∑
j=1

qiq j ∑
k ̸=0

4π

k2 exp
(
−k2/4κ2)exp

(
−ik · ri j

)
− κ

π1/2

N
∑

i=1
q2

i +
2π

3L3

∣∣∣∣ N
∑

i=1
qiri

∣∣∣∣2
≡ E1 +E2 +E3.

(4.11)

We will analyze this potential as the sum of qaqa.X1 + qaqb.X2. Now, a and b indicate two
distinct molecules, Na and Nb are number of atom type a and b in the system, respectively.

For E1 : 1
2L3

N
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i=1

N
∑
j=1

qiq j ∑
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4π

k2 exp
(
−k2/4κ2)exp

(
−ik · ri j

)
= 1

2L3 ∑
k ̸=0

4π

k2 exp
(
−k2/4κ2) N

∑
i=1

N
∑
j=1

qiq j exp
(
−ik · ri j

)
= 1

2L3 ∑
k ̸=0

4π

k2 exp
(
−k2/4κ2)[qaqa

Na
∑

i=1

Na
∑
j=1

exp
(

ik · ra
i j

)
+ qbqb

Nb
∑

i=1

Nb
∑
j=1

exp
(

ik · rb
i j

)
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(
ik · rb

j

)]
For E2 : κ
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q2

i = qaqa
κ
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For E3 : 2π
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Thus,

EX = qaqa

[
1
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For example, applying Eq. () for the NaCl ionic system,

EX = qNaqNa

[
1

2L3

NNa
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∑
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k ̸=0

4π

k2 e(−k2/4κ2)e(ik·rNa
i j )−

NNa

∑
i=1

κ

π1/2 +
2π

3L3

∣∣∣∣NNa

∑
i=1

rNa
i

∣∣∣∣2
]

+ qClqCl

[
1

2L3

NCl

∑
i=1

NCl

∑
j=1

∑
k ̸=0

4π

k2 e(−k2/4κ2)e(ik·rCl
i j )−

NCl

∑
i=1

κ

π1/2 +
2π

3L3

∣∣∣∣NCl

∑
i=1

rCl
i

∣∣∣∣2
]

+ qNaqCl

 1
L3

NNa

∑
i=1

NCl

∑
j=1

∑
k ̸=0

4π
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≡ qNaqNaX1 +qClqClX2 +qNaqClX3

≡ θ1X1 +θ2X2 +θ3X3.
(4.13)

The potential EX becomes the linear combination of parameters θi multiplying with feature
values Xi. We treat the feature values Xi, which directly depend on the atomic positions, as
the nodes and parameters θi, which are trained with the whole model, as the weights. Finally,
computing EX together with short-range atomic energy from Behler-Parrinello type we can
obtain the complete model as in Fig. 4.4.



Chapter 5

Training Neural Network Potentials for
NaCl

5.1 Preparing for the model

(a) Ideal NaCl (b) Defected NaCl

Figure 5.1: Ideal NaCl and defected NaCl.

The initial data sets were obtained from simulating cubic crystal NaCl with a lattice constant of
5.64 Å at different temperatures. For both ideal and defected systems, in total 6000 structures
and corresponding energies were given, 5400 of which were used for optimizing the NN, and
600 as a validation set. The validation set was used to investigate the predictive capability of
the model and not included in the training set. The Fig. 5.1a shows the supercell 1x1x1 of
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Table 5.1: Symmetry function parameters for G2 and G5.

ideal NaCl system and the Fig. 5.1b show the supercell 2x2x2 of defected NaCl system, in
which the red Na atoms and the blue Cl atoms are missing.

Following Behler’s suggestions [14], we decided to use symmetry function type G2 =

∑
j
e−η(Ri j−Rs)

2

· fc(Ri j) since it does not need to use with another radial functions as G3 =

∑
j

cos
(
κRi j

)
· fc(Ri j) and it can reduce to function G1 = ∑

j
fc(Ri j) for small η and Rs = 0.

An equidistant set of radial functions as shown in Fig. 4.3 were used in which the small-
est value of η correspond to the largest interatomic distance. Because there is no restriction

on the distance between atom j and k, the angular symmetry function type G5 = 21−ζ
all
∑

j,k ̸=i(
1+λ cosθi jk

)ζ · e−η(R2
i j+R2

ik) · fc
(
Ri j
)
· fc (Rik) can give larger range of angle than G4 =

21−ζ
all
∑

j,k ̸=i

(
1+λ cosθi jk

)ζ ·e−η

(
R2

i j+R2
ik+R2

jk

)
· fc
(
Ri j
)
· fc (Rik) · fc

(
R jk
)
. Thus, we prefer sym-

metry function G5 to G4. A set of 8 radial functions and 16 angular functions are used with
radius cutoff of 6 Å, and the parameters are listed in Table 5.1. The value of symmetry func-
tions can have different range, in which the biggest value can have significant effect on the
model, while the smallest value does not contribute to the model. For this reason, the sym-
metry functions are required to be rescaled to make their range in a particular interval. The
symmetry functions in this thesis are scaled to be in the range of [−1,1] by applying

Gscaled
i =

2(Gi−Gi,min)

Gi,max−Gi,min
−1, (5.1)

where Gi,min and Gi,max are the smallest and largest values of symmetry functions in the data
set.
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5.2 Optimizer and learning rate

The backpropagation algorithm mentioned in section 3.4 computes the gradient of the loss
function with respect to each parameter in order to update the weight parameters. Some-
times the gradients become smaller as the processes pass to the lower layers, this leads to tiny
changes on the weights and the training will not convert to an expected solution. This is called
the "vanishing gradients" problem. Reversely, when the gradients increase, the weights get
large update and we call this "exploding gradients". There are many better and faster solutions
that will be introduced in this section such as Momentum optimization, AdaGrad, RMSProp,
Adam optimizations.

First, the most basic form for updating the weight vector θ is θ new ← θ old −η∇θ J(θ)
where η is the learning rate and this form has been seen in the backpropagation method. The
next optimizer is Momentum. Suppose we have a ball rolling down on a smooth surface, it will
be slow at first, but it then picks up momentum and gains the final velocity. It is the basic idea
of Momentum optimizer. Large slopes accelerate the process of convergence and prevents
fluctuation at the end of the process. The momentum vector m is changed at each iteration,
m← βm−η∇θ J(θ), and this vector is added into the weights for updating θ ← θ +m. β is
called the momentum hyperparameter, which must be set between 0 (high friction) and 1 (no
friction). A typical momentum value is 0.9 [15].

A little bit different from Momentum optimizer, which calculates the derivative at the
current position for updating momentum and make a jump based on the previous momentum
vector, the Nesterov accelerated gradients rely on the old momentum vector to calculate the
next position and then using the gradient at the new positions to update [15]. The process is:

1. m← βm−η∇θ J(θ +βm)

2. θ ← θ +m.

Unlike the previous methods, the learning rate is almost the same for training, AdaGrad opti-
mizer considers learning rate as a parameter. The AdaGrad algorithm steps are:

1. s← s+∇θ J(θ)⊗∇θ J (θ)

2. θ ← θ −η∇θ J (θ)⊘
√

s+ ε

The symbol � and � present the element-wise multiplication and division. The first step is
equivalent to compute si← si+(∂J (θ)/∂θi)

2, each element si of the vector s accumulates the
squares of the partial derivative of the cost function with regards to parameter θi. In the second
step the gradient vector is reduced by a factor of

√
s+ ε where ε is a smoothing term to avoid

division by zero, typically set to 10–10. An advantage of AdaGrad is to avoid adjusting the
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learning rate manually, usually set it to 0.01 and then the algorithm will automatically adjust.
One drawback of AdaGrad is that the learning rate gets scaled down very fast, making training
become frozen before reaching the global optimum [16].

RMSProp optimizer appears to fix AdaGrad’s problem by accumulating only the gradients
from the most recent iterations [16]. It does so by using exponential decay in the first step of
the process:

1. s← βs +(1−β )∇θ J(θ)⊗∇θ J (θ)

2. θ ← θ − η√
s+ε

∇θ J (θ)

The decay rate β is typically set to 0.9.
Finally, Adam optimizer is the combination of Momentum optimization and RMSProp. It

maintains the average of the past slope, like the Momentum, and it keeps the mean square of
the past slope, just like RMSProp:

1. m← β1m− (1−β1)∇θ J(θ)

2. s← β2s+(1−β2)∇θ J(θ)⊗∇θ J (θ)

3. m̂← m
1−β t

1

4. ŝ← s
1−β t

2

5. θ ← θ +η
m̂√
ŝ+ε

In steps 3 and 4, m and s will be biased toward 0 at the beginning of training since m and s
are initialized at 0, so these two steps will help boost m and s at the beginning of the learning
process. The hyperparameter β1, which is often initialized to 0.9, is momentum decay, while
the scaling decay hyperparameter β2 is often initialized to 0.999. As mentioned before, the
smoothing term ε is usually initialized to a tiny number such as 10–7. The Adam is adaptive
learning rate algorithm like AdaGrad and RMSProp, so we can often use the default value
η = 0.001, making Adam easier to be used than others [17]. In this thesis, we use Adam
optimizer for the training process.

The learning rate used in the optimization method also needs to be considered. If it is too
high, the training can diverge. If it is a little bit high, it will make progress very quickly at first,
but it will end up moving around the optimum. Using an adaptive learning rate, optimization
algorithms such as AdaGrad and RMSProp can improve the optimization process, but it still
wastes the computation time. If the learning rate is too low, training will converge to the
optimum, but it will take very long time. We can find a good learning rate by training the NN
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Figure 5.2: Learning curves for various learning rates.

several times during just a few epochs using various learning rates and comparing the learning
curves. For the NaCl, the learning curves are shown in the Fig. 5.2, and the orange and green
lines seem good. However, with just a few epochs we do not know whether the loss value will
converge or diverge after that. Another way is to start with a high learning rate and then reduce
it until it stops making fast progress, the strategy to reduce the learning rate during training is
called learning schedules. The most common schedule is exponential scheduling. If we set
the learning rate to η (t) = η00.1t/s, the learning rate will drop by a factor of 10 every s steps.
The exponential scheduling is easy to adjust and fast converges to the optimal value. Since it
is supported by Keras, we use this method and start with a learning rate of 0.01.

5.3 Overfitting problem

After determining the learning algorithm, we need to train the model on some data and some-
times we will confront the "bad data" problem. Deep neural networks with so many parameters
have a huge amount of freedom and can fit an enormous variety of complex datasets. How-
ever, this flexibility also leads to "overfitting" problem. Overfitting is a common problem in
machine learning that occurs when the model performs well on the training data but it fails to
fit new data. The possible solution is regularization which can constrain a model to make it
simpler and reduce the risk of overfitting [18]. In the next subsection, we will introduce two
regularization ways:

• regularizing the weights of the model

– Ridge Regression



36 Training Neural Network Potentials for NaCl

– Lasso Regression

– Elastic Net

• regularizing the iterative learning algorithms

– Early stopping

5.3.1 Ridge Regression

The weights are constrained by adding a regularization term α
n
∑

i=1
θ 2

i to the cost function

during training. The full expression of the Ridge Regression cost function is

J (θ) = MSE (θ)+α
1
2

n

∑
i=1

θ
2
i . (5.2)

The hyperparameter α determines how much you want to regularize the model. If α = 0, the
Ridge Regression becomes Linear Regression. If α goes to infinity, all the weights almost turn
to zero and the result is a straight line going through the mean of data. In this cost function
the bias term θ0 is not considered since the regularization term starts at i = 0. Denote that the

norm lk of a vector v containing n elements is ∥v∥k =
(
|v0|k + |v1|k + · · ·+ |vn|k

) 1
k . The norm

l0 gives the number of non-zero elements in the vector, and l∞ gives the maximum absolute
value in the vector. If the vector of feature weights (θ1 to θn) is w, the regularization term is
1
2 (∥w∥2)

2, where the norm l2 of the weight vector is ∥w∥2. The penalty hyperparameter sets
the type of regularization term equal to a half of the square of the magnitude of the weight
vector [19].

5.3.2 Lasso Regression

Lasso Regression is very similar to Ridge Regression. It also adds a regularization term to the
cost function, but it adds penalty equivalent to absolute value of the magnitude of the weight
vector. The Lasso Regression cost function is

J (θ) = MSE (θ)+α

n

∑
i=1
|θi| . (5.3)

The Lasso Regression tends to completely remove the least essential weight features by setting
them to zero. It automatically performs feature selection and outputs a sparse model. The
Lasso cost function is not differentiable at θi = 0 (for i = 1,2, . . . ,n), but Gradient Descent
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still works if a subgradient vector g is used instead when θi = 0. One possible subgradient
vector equation which can be used for Gradient Descent with the Lasso cost function is [20]

g(θ ,J) = ∇θ MSE (θ)+α


sign(θ1)

sign(θ2)
...

sign(θn)

 , where sign(θi) =


−1 if θi < 0
0 if θi = 0
+1 if θi > 0

. (5.4)

5.3.3 Elastic Net

Elastic Net is a middle ground between Ridge Regression and Lasso Regression. The regu-
larization term is a mix of both Ridge and Lasso’s regularization terms, with mix ratio r. The
Elastic Net cost function is

J (θ) = MSE (θ)+ rα

n

∑
i=1
|θi|+

1− r
2

α

n

∑
i=1

θ
2
i . (5.5)

If r = 0, Elastic Net is equivalent to Ridge Regression, and if r = 1, it is equivalent to Lasso
Regression.

It is supposed to be used a little bit of regularization to avoid plain Linear Regression.
Ridge Regression is majorly used to prevent overfitting. Since it includes all the features, it is
not very useful in the case of the high number of features. Lasso Regression provides a sparse
solution, and it has the computational advantage since the features with zero coefficients can
simply be ignored. Lasso Regression can be unreliable when the number of features is greater
than the number of training instances or when several features are strongly correlated. In this
case, the Elastic Net is an alternative solution [21].

5.3.4 Early Stopping

Early stopping is used to constrain the iterative learning of the model to stop training as soon
as the validation error reaches a minimum. the Fig. 5.3 shows an example of a model which is
trained using Batch Gradient Descent. The algorithm learns and its prediction error (RMSE)
on the training set goes down as the increase of epochs, and so does its prediction error on the
validation set. The model will be stopped training as soon as the validation error reaches the
minimum [22].
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Figure 5.3: Early stopping regularization (Hands-on Machine Learning with Scikit-Learn,
Keras and TensorFlow. O’Relly Media, second edition, 2019).

5.4 Constraint in the model weights

Since the sodium chloride with and without vacancy are in a neutral system and the weight
parameters in the long-range NNPs represent the charge, we need to constrain the model
weights to satisfy the neutrality condition. The long-range part for NaCl is

EX = θ1X1 +θ2X2 +θ3X3

= qNaqNaX1 +qClqClX2 +qNaqClX3.

In neutral system, |qNa|= |qCl| and qNa +qCl = 0, so

(qNa +qCl)
2 = qNaqNa +2qNaqCl +qClqCl = 0

θ1 +θ2 +2θ3 = 0
θ1 +θ2 = −2θ3

Because qNaqNa = qClqCl , we have θ1 = θ2and thus

EX = θ1X1 +θ2X2 +θ3X3

= θ1 (X1 +X2)+θ3X3

= θ1 (X1 +X2−X3) .

In the beginning, the NNs start with random weights, and after training the weight parameters
have arbitrary values. Hence, to make the model physically meaningful we analyze the long-
range part as shown in Fig. 5.4. The number of weight parameters is reduced from 3 to 1. The
weight θ1 need to be constrained to be positive since it is the square of the charge qNa and its
value should be close to 1 as the oxidation number of Na is +1e.
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Figure 5.4: Constrain on the long-range part.

5.5 Results and discussion

In this thesis, we improved the high-dimensional NNPs by adding the long-range term from
the Ewald sum to obtain the total energy of the system. The reliability of the model is tested
in NaCl crystal with an ideal crystalline system and a defected system missing one atom Na
and one atom Cl. To find the atomic structures and relevant energies we simulate cubic crystal
NaCl at different temperatures.

The Behler-Parrinello method was implemented to deal with short-range energy calcu-
lations. The symmetry functions with various parameters were used as the input of NNPs.
The long-range part of Ewald sum was analyzed as the linear combination of parameters qi

multiplied by the feature values Xi,

EX = qNaqNa
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≡ qNaqNaX1 +qClqClX2 +qNaqClX3

≡ θ1X1 +θ2X2 +θ3X3.

Unlike the short-range part which is transformed to a set of symmetry functions, the long-
range term is computed directly from the atomic positions. The feature values Xi are treated
as the nodes and the parameters θi, which are trained with the whole model, as the weights.
To construct the model NNPs, we used the hyperparameter following Table 5.2.
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Table 5.2: The hyperparameters of the model NNPs. The learning rate was optimal using
exponential scheduling method.

(a) High-dimensional NNPs without vacancy. (b) High-dimensional NNPs with vacancy.

(c) Long-range NNPs without vacancy. (d) Long-range NNPs with vacancy.

Figure 5.5: Comparison of DFT energy and predicted energy with the high-dimensional NNPs
and long-range NNPs applied to ideal and defected sodium chloride systems.

The high-dimensional NNPs and long-range NNPs are performed as shown in Fig. 5.5.
The Behler-Parrinello model gives the RMSE of 19.8 meV for the ideal NaCl system, while
the RMSE in long-range NNPs is 4.9 meV. For the defected NaCl system, the NNPs with
long-range part is more reliable than the short-range NNPs: the RMSE of the former is 41.2
meV and that of the latter is 89.1 meV. Moreover, the long-range NNPs also meet the physical
meaning since we applied the constraints on the model. The number of weight parameters
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Table 5.3: Long-range fitting parameters and RMSE for the ideal NaCl and the defected NaCl.

θ1 (e2) RMSE (meV/atom)
Ideal NaCl 0.9028 4.9

Defected NaCl 0.8436 41.2

in the long-range part is reduced to 1 as the long-range potential equals to θ1 (X1 +X2−X3),
after testing θ1 is positive and its value close to 1, as shown in Table 5.3.

The NNPs computation is faster than the corresponding ab initio energy calculation that
takes a few days to finish. Table 5.4 represents the difference in computational cost between
high-dimensional NNPs and long-range NNPs. Because the number of epochs (the number
times that the learning algorithm will work through the entire training dataset) tested for the
defected system is larger than that for the ideal system, the computational time in divacancy
case is longer than ideal case. The long-range NNPs model takes more time than the high-
dimensional NNPs model since the long-range NNPs model needs time to compute the value
of Xi from Ewald summation, however this difference is not significant.

Table 5.4: Comparison of the computational times (unit: second) of the high-dimensional
NNP and the long-range NNP for the ideal NaCl and defected NaCl.

High-dimensional NNPs Long-range NNPs
Ideal NaCl 1851 2136

Defected NaCl 1993 3015





Chapter 6

Conclusion

In conclusion, we constructed the long-range NNPs which are the combination of the short-
range energy from the Behler-Parrinello type and the long-range energy from Ewald summa-
tion. The short-range energy depends on the local environment of atoms, which is defined by
a cutoff radius. There are separate sub-NNs for the atoms of different elements, but the atoms
of the same element have identical sub-NNs. The positions of the atoms with respect to the
central atom are transferred to a vector of symmetry function as the input of sub-NNs. The
long-range energy is added to the total energy by using the reciprocal part of Ewald summa-
tion. The product of the charges is supposed to be the weight parameters which are optimized
during the training process.

The capability of long-range NNPs has been demonstrated for sodium chloride cubic sys-
tem. The Behler-Parrinello type can give high accuracy for the ideal cubic NaCl system with
a cutoff radius, but it can not give the expected exactness for the defected NaCl system with
a divacancy of Na and Cl. Meanwhile, the long-range NNPs not only inherit the success but
also overcome the transferability confinement of the high-dimensional NNPs. The long-range
NNPs can be numerically very accurate on both cases: For ideal system, this model shows the
RMSE of about four times as small as the high-dimensional NNPs and for the defected case,
this error is just a half. Moreover, the long-range term of the model also fulfills the physi-
cal meaning since the constraint on the weight is applied. The data sets were obtained from
ab initio simulations at different temperatures, and we developed the Python program with the
TensorFlow package to train NNPs and fit the weights to the data sets. The computational time
of NNPs is obviously faster than ab initio method. Besides, compared to the Behler-Parrinello
model, the additional computational cost of the long-range NNPs is insignificant.





References

[1] F Ercolessi and J. B Adams. Interatomic Potentials from First-Principles Calculations:
The Force-Matching Method. Europhysics Letters (EPL), 26(8):583–588, June 1994.

[2] I. A. Courtney, J. S. Tse, Ou Mao, J. Hafner, and J. R. Dahn. Ab initio calculation of the
lithium-tin voltage profile. Physical Review B, 58(23):15583–15588, December 1998.

[3] Frederico V. Prudente, Paulo H. Acioli, and J. J. Soares Neto. The fitting of potential
energy surfaces using neural networks: Application to the study of vibrational levels of
H3+. The Journal of Chemical Physics, 109(20):8801–8808, November 1998.

[4] Jörg Behler and Michele Parrinello. Generalized Neural-Network Representation of
High-Dimensional Potential-Energy Surfaces. Physical Review Letters, 98(14):146401,
April 2007.

[5] Norman S. Ham and Klaus Ruedenberg. Mobile Bond Orders in Conjugated Systems.
The Journal of Chemical Physics, 29(6):1215–1229, December 1958.

[6] Monika Thol, Gabor Rutkai, Roland Span, Jadran Vrabec, and Rolf Lustig. Equation of
State for the Lennard-Jones Truncated and Shifted Model Fluid. International Journal
of Thermophysics, 36:25–43, November 2015.

[7] Jiri Kolafa and John W. Perram. Cutoff Errors in the Ewald Summation Formulae for
Point Charge Systems. Molecular Simulation, 9(5):351–368, January 1992.

[8] Abdulnour Y. Toukmaji and John A. Board. Ewald summation techniques in perspective:
a survey. Computer Physics Communications, 95(2):73–92, June 1996.

[9] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh Ewald: An N log(
N ) method for Ewald sums in large systems. The Journal of Chemical Physics,
98(12):10089–10092, June 1993.



46 References

[10] Henry David Herce, Angel Enrique Garcia, and Thomas Darden. The electrostatic sur-
face term: (I) Periodic systems. The Journal of Chemical Physics, 126(12):124106,
March 2007.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[12] F. Rosenblatt. The perceptron: A probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65(6):386–408, 1958.

[13] Pushparaja Murugan. Feed Forward and Backward Run in Deep Convolution Neural
Network. ArXiv, abs/1711.03278, 2017. arXiv: 1711.03278.

[14] Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional neu-
ral network potentials. The Journal of Chemical Physics, 134(7):074106, February 2011.

[15] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. page 14.

[16] Mahesh Chandra Mukkamala and Matthias Hein. Variants of RMSProp and Adagrad
with Logarithmic Regret Bounds. page 9.

[17] S V G Reddy, K Thammi Reddy, and V ValliKumari. Optimization of Deep Learning
using various Optimizers, Loss functions and Dropout. 7(4):8, 2018.

[18] Xue Ying. An Overview of Overfitting and its Solutions. Journal of Physics: Conference
Series, 1168:022022, February 2019.

[19] Ali Muayad and A. N. Irtefaa. Ridge Regression using Artificial Neural Network. Indian
Journal of Science and Technology, 9(31), August 2016.

[20] Caihao Cui and Dianhui Wang. High dimensional data regression using Lasso model
and neural networks with random weights. Inf. Sci., 372:505–517, 2016.

[21] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–
320, April 2005.

[22] Rich Caruana, Steve Lawrence, and C Lee Giles. Overfitting in Neural Nets: Backprop-
agation, Conjugate Gradient, and Early Stopping. page 7.


	1 Introduction
	2 Ewald summation
	2.1 Why Ewald sum 
	2.2 Ewald summation 
	2.2.1 Problem statement
	2.2.2 Splitting the charge distributions  
	2.2.3 Short-range potential in real space 
	2.2.4 Long-range potential in reciprocal space 


	3 Fundamental of Artifcial Neural Networks
	3.1 Perceptron 
	3.2 Feed-forward neural network  
	3.3 Activation function 
	3.3.1 Binary step function 
	3.3.2 Linear activation function  
	3.3.3 Non-linear activation functions

	3.4 Backpropagation

	4 Constructing Long-range Neural Network Potentials
	4.1 Conventional NNPs 
	4.2 High-dimensional NNPs 
	4.3 Long-range neural network potentials

	5 Training Neural Network Potentials for NaCl
	5.1 Preparing for the model  
	5.2 Optimizer and learning rate
	5.3 Overftting problem  
	5.3.1 Ridge Regression  
	5.3.2 Lasso Regression 
	5.3.3 Elastic Net  
	5.3.4 Early Stopping  

	5.4 Constraint in the model weights  
	5.5 Results and discussion 

	6 Conclusion
	References


<startpage>24
1 Introduction 1
2 Ewald summation 3
 2.1 Why Ewald sum  3
 2.2 Ewald summation  4
  2.2.1 Problem statement 4
  2.2.2 Splitting the charge distributions   6
  2.2.3 Short-range potential in real space  7
  2.2.4 Long-range potential in reciprocal space  7
3 Fundamental of Artifcial Neural Networks 11
 3.1 Perceptron  12
 3.2 Feed-forward neural network   14
 3.3 Activation function  16
  3.3.1 Binary step function  16
  3.3.2 Linear activation function   16
  3.3.3 Non-linear activation functions 17
 3.4 Backpropagation 18
4 Constructing Long-range Neural Network Potentials 23
 4.1 Conventional NNPs  23
 4.2 High-dimensional NNPs  24
 4.3 Long-range neural network potentials 27
5 Training Neural Network Potentials for NaCl 31
 5.1 Preparing for the model   31
 5.2 Optimizer and learning rate 33
 5.3 Overftting problem   35
  5.3.1 Ridge Regression   36
  5.3.2 Lasso Regression  36
  5.3.3 Elastic Net   37
  5.3.4 Early Stopping   37
 5.4 Constraint in the model weights   38
 5.5 Results and discussion  39
6 Conclusion 43
References 45
</body>

