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Abstract

Introduction: Distinguishing between neuromyelitis optica spectrum disorder 

(NMOSD) and multiple sclerosis (MS) is important because their treatments differ, 

and disease-modifying treatments for MS can worsen NMOSD. Brain magnetic 

resonance imaging (MRI) is one of the most important diagnostic tools used to 

differentiate between the two diseases. To date, considerable effort has been put in 

the identification of the brain MRI characteristics that enable the differentiation 

between MS and NMOSD. Machine learning has been studied as a method for 

identifying medical images. The study aimed to implement a supervised machine-

learning method to perform differential diagnosis of MS and NMOSD by using brain 

MRIs.

Methods: Fluid-attenuated inversion recovery (FLAIR) MRIs were acquired from 

patients with relapsing-remitting MS (RRMS) and NMOSD with aquaporin-4 

immunoglobulin G (AQP4-IgG) admitted at the Asan Medical Center, Seoul, Korea, 

between 2005 and 2017. FLAIR MRIs were used for a machine-learning method 

based on the combination of lesion frequency analysis for feature voxel selection and 

support vector machines (SVM) for classification algorithm. Diagnostic performance 

of machine learning was compared to that of two neurologists with more than two 

years of clinical experience in demyelinating disease.

Results: Final analysis included 746 and 292 MRIs from 172 patients with RRMS 

and 97 patients with NMOSD with AQP4-IgG, respectively. Lesion frequency 
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analysis found that lesions adjacent to the lateral ventricle and in the inferior 

temporal lobe were frequently observed in RRMS, and dorsal medulla, cerebral 

peduncle/internal capsule, and corpus callosum lesions were frequently observed in 

NMOSD. The performance of SVM was 57.5% sensitivity, 78.4% specificity, and 

63.3% accuracy, which showed a fair level of agreement with human raters (Cohen’s 

κ, rater A=0.279, rater B=0.262).

Conclusion: Machine learning using brain MRI data could discern RRMS and 

NMOSD with comparable accuracy to that of clinicians, encouraging the application 

of machine learning-aided diagnosis in clinical practice.

Key words: brain MRI, multiple sclerosis, neuromyelitis optica spectrum disorder, 

machine learning, support vector machine
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Introduction

1. Diagnosis of NMOSD

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central 

nervous system (CNS), mostly involving the optic nerve and the spinal cord.1) Although it is a 

rare disease, an epidemiological study estimated its prevalence to be as high as 10 per 

100,000 in an Afro-Caribbean population,2) whereas a recent study reported the prevalence to 

be 4.1 per 100,000 in Hokkaido, a part of northern Japan, in Asia.3) There is no exact data yet 

on the prevalence of NMOSD in Korea. A recent review suggested a similar global 

prevalence of NMOSD as 5 or less per 100,000 habitants, compared to the uneven global 

distribution of multiple sclerosis (MS) prevalence.4) NMOSD characteristically demonstrates 

a high female predominance of approximately three to nine females affected to every one 

male affected,5) most with a disease-specific autoantibody to aquaporin-4 (AQP4-Ab),6) and 

frequently manifesting as severe bilateral/recurrent optic neuritis or severe longitudinally 

extensive transverse myelitis (LETM).7) However, a number of studies have revealed that 

brain abnormalities are not rare in NMOSD. The incidence of reported brain abnormalities in 

NMOSD was approximately 59% to 79%.8, 9) Various diseases such as MS, inflammatory 

diseases, vascular diseases, infection, or malignancy can mimic NMOSD by either involving 

optic nerves and/or spinal cords, manifesting bilateral optic neuritis or LETM,10) and/or 

showing brain lesions resembling those of NMOSD. Therefore, the diagnosis of NMOSD can 

be complicated.

The diagnostic criteria of neuromyelitis optica (NMO) stemmed from the original criteria in 

1999,11) through those revised in 2006,12) and finally to the first international consensus 

criteria in 2015.1) The latest criteria have adopted the broader term of NMOSD to include 
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patients with limited manifestations. Further, NMOSD has been classified into two types 

according to the new diagnostic criteria: NMOSD with aquaporin-4 immunoglobulin G 

(AQP4-IgG) and NMOSD without AQP4-IgG or with unknown AQP4-IgG status. NMOSD 

with AQP4-IgG refers to patients who have at least one core clinical characteristics of 

NMOSD in optic nerve, spinal cord, dorsal medullar, brainstem, diencephalon, or cerebrum; 

who test positive for AQP4-IgG; and in whom alternative diagnoses are excluded.1)

According to the 2015 criteria, the presence of AQP4-Ab is crucial for the diagnosis of 

NMOSD with AQP4-IgG. Nevertheless, clinical and radiological differential diagnosis of 

NMOSD with AQP4-IgG remains important for the following reasons: (1) in clinical practice, 

the AQP4-Ab assay may not be performed or may not be readily available for all patients 

with inflammatory disease of the CNS. Rather, clinicians need to identify patients with 

probable NMOSD in whom the AQP4-Ab assay should be performed; (2) the test result for 

AQP4-Ab could be affected by factors such as test methods and clinical (relapse or remission) 

situations; (3) many diseases, including inflammatory, infectious, or neoplastic conditions, 

can involve the CNS and mimic the clinical and radiological features of NMOSD; and (4) 

some patients with NMOSD do not have AQP4-Ab (NMOSD without AQP4-IgG or with 

unknown AQP4-IgG status).1)

2. Differential diagnosis of MS and NMOSD

Both MS and NMO are inflammatory diseases of the CNS with relapsing courses. As they 

share some clinical and radiological features, there has been considerable debate on whether 

these two diseases are fundamentally different. However, since the discovery of AQP4-Ab, 

the disease-specific autoantibody to NMOSD, studies have confirmed that the two diseases 

have distinct features in their epidemiology, serology, pathology, response to treatment, and 
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prognosis.13) Differentiating NMOSD from MS is important, because treatment for each 

disease differs, and disease-modifying treatments for MS, including interferon-β, fingolimod, 

and natalizumab can worsen NMOSD.14-16)

3. Role of brain MRI for differential diagnosis of two diseases

Due to the presence of NMOSD without AQP4-IgG and the fact that approximately 5% to 

42% of patients with NMO fulfill the Barkhof magnetic resonance imaging (MRI) criteria for 

MS,17, 18) brain MRI is one of the most important diagnostic tools that can enable the 

differentiation between the two diseases. To date, there has been considerable effort to 

identify brain MRI characteristics that differ between MS and NMOSD.17, 19, 20) A recent 

study identified the criteria of “at least one lesion adjacent to the body of the lateral ventricle 

and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion; or a 

Dawson’s finger-type lesion,” which could distinguish patients with MS from those with 

NMOSD with 92% sensitivity and 96% specificity.17) In addition, the same criteria were used 

to distinguish MS from myelin oligodendrocyte glycoprotein (MOG)-antibody disease with 

90.9% sensitivity and 95.2% specificity.20) However, the abovementioned studies excluded 

brain MRIs without abnormalities, and the brain lesion distribution criteria was difficult to 

apply for clinicians who had minimal experience with demyelinating disease. Therefore, 

recent efforts have focused on alternative approaches for the analysis of neuroimaging data.

4. Machine learning

Machine-learning techniques are based on algorithms that can automatically extract 

information from brain images and classify individual structural or functional brain images 

by maximizing the distance between groups of images.21) Machine learning is typically 
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classified into supervised and unsupervised learning.22, 23) Supervised machine learning uses a 

training dataset labeled by humans to define known answers. It may expedite classification or 

regression processes with large datasets and can be useful for predicting clinical outcomes or 

classifying clinical diagnoses. However, it requires a human labeling process, which is often 

tedious and time-consuming. Examples of supervised learning methods include the support 

vector machine (SVM), decision tree, linear regression, logistic regression, naive Bayes, and 

random forest.23) In contrast, unsupervised machine learning does not use human-defined 

answers. Instead, it seeks to identify hidden patterns in large datasets, which cannot be 

usually recognized by humans. Therefore, unsupervised learning may be useful in seeking 

novel disease mechanisms, genotypes, and phenotypes. Examples of unsupervised learning 

include K-means, mean shift, affinity propagation, hierarchical clustering, and Gaussian 

mixture modeling.24)

In machine learning, variables used as input data are generally referred to as features, which 

may be numerical or nominal values. Because the performance of machines is variable 

according to the entered features, it is very important to select and extract features from the 

data appropriately. The entered features are usually determined by researchers and data 

scientists. Various feature selection methods have been developed to enhance the selection 

process and establish machine models with high accuracy. Using these features, machine-

learning algorithms determine the optimal decision boundary, select features and develop a 

model, and conduct a set task. For imaging data, various image features such as the size, 

location, shape, and signal intensities of the lesion can be used for machine learning.23)

5. Support vector machine
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SVM is a supervised machine-learning method, which is useful for developing a model to 

classify an object in one category or another. Therefore, SVM is widely used in clinical

imaging analysis, which classifies or categorizes a diagnosis. SVM constructs a hyper-plane 

in a high-dimensional space as the decision surface. To achieve better performance, the 

margin of separation between classes is maximized. For a nonlinear classification, SVM uses 

the kernel technique, which implicitly converts the input features into high-dimensional 

feature spaces. Therefore, selection of the kernel must be appropriate to avoid increases in 

error rates. Several studies have assessed the diagnostic value of the machine learning (i.e., 

SVM) for differentiating Parkinson’s disease from progressive supranuclear palsy and 

Alzheimer’s disease from elderly controls.21, 25) Salvatore et al. used an SVM algorithm on 

T1-weighted brain MRIs in Parkinson’s disease and progressive supranuclear palsy, and 

diagnostic performance showed more than 90% accuracy, sensitivity, and specificity.21)

Magnin et al. applied an SVM algorithm to classify patients with Alzheimer’s disease and 

control subjects with 96.6% mean specificity and 91.5% mean sensitivity.25)

6. Fluid-attenuated inversion recovery 

Fluid-attenuated inversion recovery (FLAIR) is an MRI technique that shows areas of tissue 

with T2 prolongation as bright while suppressing the image of cerebrospinal fluid (CSF), 

clearly revealing lesions in proximity to CSF such as juxtacortical and periventricular lesions 

[26]. FLAIR has been considered superior to T2-weighted images for detecting MS brain 

lesions, including those in or adjacent to the cerebral cortical gray matter.27) The evidence-

based guidelines from the Magnetic Resonance Imaging in MS (MAGNIMS) network 

suggested a mandatory MRI sequence: 1) axial proton-density and/or T2-FLAIR/T2-
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weighted, 2) sagittal two-dimensional (2D) or three-dimensional (3D) T2-FLAIR, and 3) 2D 

or 3D contrast-enhanced T1-weighted images.28)

7. The aim of the study 

The study aimed to implement a supervised machine-learning method (i.e., SVM) able to 

perform individual differential diagnosis of MS and NMOSD by using brain FLAIR MRIs.
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Methods

1. Subjects

We retrospectively reviewed medical records of patients with relapsing-remitting multiple 

sclerosis (RRMS) and NMOSD who were admitted to the Asan Medical Center, Seoul, Korea, 

between 2005 and 2017. Patients with RRMS who fulfilled the 2010 McDonald criteria and 

patients with NMOSD with AQP4-IgG according to the 2015 International Consensus of 

NMOSD were included in this study. AQP4-IgG testing was performed by a tissue-based 

indirect immunofluorescence or a cell-based assay. Patients without available brain MRIs 

were excluded from the study.

2. Data Acquisition

Brain MRI scans including FLAIR sequences were acquired on various 1.5- or 3.0- T 

scanners (Siemens, GE, Philips) in Asan Medical Center or other centers that referred patients 

to Asan Medical Center and transferred images.

3. RRMS and NMOSD Classification: Human Raters

Two neurologists (i.e., rater A and B) participated as human raters. Both had one year of 

experience with demyelinating disease as a fellowship after completion of four years of 

neurology residency. During the five-year training period, the two neurologists accumulated 

at least two years of clinical experience diagnosing and treating patients with MS, NMOSD, 

and other CNS inflammatory diseases. Human raters binarily decided either RRMS or 

NMOSD based on FLAIR images with the following demographic information: age at time 

of MRI, age at disease onset, sex, and duration from both first and latest episode of symptoms.
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4. RRMS and NMOSD Classification: Machine Learning

4.1. Image Processing

A characteristic of white matter lesion was anomalous hyperintensity in the FLAIR image. 

To reduce the systemic variation in the FLAIR images due to different MRI equipment and 

parameters, intensity normalization was applied to each FLAIR image as implemented in the 

Lesion Segmentation Toolbox (www.statisticalmodelling.de/lst.html) for statistical parametric 

mapping [29]. In detail, brain area was segmented into gray matter, white matter, and 

cerebrospinal fluid from the FLAIR image. The voxel intensities of FLAIR image were 

normalized using the mean intensity of gray matter area as follows (i.e., gray matter belief 

map in this study):

}{}{/ GMvGMvvv FFFB == -=

where vB and vF indicated the gray matter belief value, and original intensity of a FLAIR 

image at a voxel v, respectively; and 
}{GMv

F
=

indicated mean of FLAIR intensity in the gray 

matter voxels.

Threshold for lesion identification from the gray matter belief map was determined based on 

mean and standard deviation (SD) of concatenated gray matter belief values of brain area 

across subjects who belonged to training set (see Data Division; mean ± SD of gray matter 

belief values = 0.0261 ± 0.1199). Estimated threshold for anomalous white matter 

hyperintensity based on gray matter belief values was 0.32 (p < 0.01; mean + SD × 2.54). An 

individual lesion map was then prepared from the individual gray matter belief map showing 

which voxel was above the threshold. Spatial normalization procedure was then applied to 

transform the individual lesion map from the acquisition space to standard Montreal 

Neurological Institute space with isotropic 3 mm voxel size for further analyses.
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4.2. Support Vector Machine for RRMS and NMOSD Classification

SVM is a supervised machine-learning method, which is useful for developing a model to 

allocate an object to one category or another. In the present study, SVM was used to 

determine the either NMOSD or RRMS for the inputted FLAIR image. SVM classification 

was performed using LIBSVM software (www.csie.ntu.edu.tw/~cjlin/libsvm). For the 

nonlinear SVM classifier, two parameters were specified: C (regularization) and α (parameter 

for radial basis function kernel). By using a combination of grid search and cross-validation 

procedures in the training samples, the optimal values of C and α were estimated while 

considering the generalizability of the trained SVM model. The optimal parameters were 

determined by grid searching the parameter space and selecting the pair of values (C, α) at 

which the M-fold cross-validation accuracy was maximum (M = 10 in this study). In order to 

search for a wide range of values, the values of C and α were varied from 0.125 to 32 in steps 

of 2 (0.125, 0.25, 0.5, …, 16, 32).

4.3. Lesion Frequency Analysis for Feature Voxel Selection 

Feature selection is the most important process for SVM. A chi-square test was performed 

for individual lesion maps between RRMS and NMOSD groups in the training set to evaluate 

the importance of discrimination power at a voxel. The voxels were included as features for 

SVM in order of significance level from the chi-square test.

Various number of voxels were tested to evaluate the optimal number of feature voxels for 

RRMS and NMOSD classification (from one voxel to whole brain voxels in order of 

significance level from the chi-square test in the training set; n = 1, 2, 4, 8, 16, 32, 64, 128, 

256, 512, 1024, 2048, 4096, 8192, 16384, 32768, and 48193 voxels).



１０

5. Statistical Analysis

5.1. Data Division

FLAIR images were randomly divided into 70% of training set to build a machine model 

and 30% of test set to evaluate the performance of decisions from the human raters and SVM 

for each RRMS and NMOSD group, respectively.

5.2. Performance Measurements

Performance was measured by sensitivity (i.e., correct ratio for RRMS group), specificity 

(correct ratio for NMOSD group), accuracy (i.e., correct ratio regardless of group), and area 

under the curve (AUC) from the decisions on test set by the human raters (i.e., rater A and B) 

and various SVM models, depending on number of feature voxels.

5.3. Intra-Rater Reliability of Human Raters

Cohen’s kappa (κ) test was adopted to evaluate the intra-rater reliability of human raters 

between first and second decision on randomly duplicated 10% of the same sample in test set.

5.4. Inter-Rater Agreement Between Human Raters and SVM

McNemar’s and Cohen’s kappa (κ) tests were used to test the inter-rater agreement between 

decisions on test samples from the human raters A and B, SVM, and each other. Strength of 

agreement based on κ was judged according to the following guidelines: < 0.2 = slight; 0.2–

0.4 = fair; 0.4–0.6 = moderate; 0.6–0.8 = substantial; > 0.8 = almost perfect.30)
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Results

1. Baseline characteristics of patients with RRMS and NMOSD with AQP4-IgG

We reviewed 748 axial FLAIR MRIs from 172 patients with RRMS and 293 axial FLAIR 

MRIs from 97 patients with NMOSD with AQP4-IgG. We excluded two MRIs in patients 

with RRMS and one MRI in patients with NMOSD with AQP4-IgG due to poor image 

quality. Thus, the final analysis included 746 and 292 MRIs from 172 patients with RRMS 

and 97 patients with NMOSD with aquaporin-4 immunoglobulin G, respectively.

The clinical characteristics of all patients with RRMS and NMOSD with AQP4-IgG are 

presented in Table 1. The mean age at onset was lower in the patients with RRMS (32.7 ± 

12.4 years) than in those with NMOSD (39.3 ± 12.9 years). Forty-four (25.6 %) of the RRMS 

patients and 12 (12.4%) of the NMOSD patients were male. The disease duration in both 

groups was comparable (RRMS = 10.6 ± 6.5 years, NMOSD = 9.7 ± 6.0 years).
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Table 1. Clinical characteristics of patients with RRMS and NMOSD with AQP4-IgG

RRMS (n = 172) NMOSD (n = 97) P-value

Age at onset, mean ± SD 32.7 ± 12.4 39.3 ± 12.9 < 0.001

Male, n (%) 44 (25.6) 12 (12.4) 0.010

Disease duration, mean ± SD 10.6 ± 6.5 9.7 ± 6.0 0.270

AQP4 IgG, n (%) 0 (0) 97 (100) < 0.001

Axial FLAIR MRI, n 746 292 -

RRMS: relapsing-remitting multiple sclerosis, NMOSD: neuromyelitis optica spectrum 

disorder, AQP4-IgG: aquaporin-4 immunoglobulin G, FLAIR MRI: fluid-attenuated 

inversion recovery magnetic resonance image, SD: standard deviation.
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2. Lesion frequency analysis of brain MRI from RRMS and NMOSD patients

The lesion frequency maps for the RRMS and NMOSD patient groups are shown in Figure 

1A and 1B. The maps may include some artifacts like right cerebellum, which show high 

frequency in both diseases. Figure 1C shows the voxel-wise chi-squared test comparison of 

the lesion distribution in each group. Frequent lesions for RRMS were adjacent to the lateral 

ventricle and in the inferior temporal lobe. In contrast, frequent lesions for NMOSD were in 

the dorsal medulla, cerebral peduncle/internal capsule, corpus callosum, and nonspecific 

subcortex.
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Figure 1. Lesion frequency maps for the relapsing-remitting multiple sclerosis (RRMS) 

and neuromyelitis optica spectrum disorder (NMOSD)

Lesion frequency maps for 172 patients with RRMS (A) and 97 patients with NMOSD (B). 

The color scale (from > 10% to > 50%) represents the lesion frequency in a spatial location. 

(C) Voxel-wise comparison of lesion frequency map with chi-squared test. The red color scale 

represents the frequent sites for RRMS, and the blue color scale represents the frequent sites 

for NMOSD. 
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3. Diagnostic performance of SVM

We randomly divided brain MRIs to the training (70%) and the test (30%) sets with the 

same percentage of patients with RRMS and NMOSD. The baseline characteristics of the 

training and test sets were comparable (Supplementary Table 1). Figure 2 shows schematic 

workflow of machine learning. The voxels were selected as features for SVM in order of 

significance level from the chi-square test. Various number of voxels were tested from one 

voxel to whole brain voxels in order of significance level from the chi-square test in the 

training set; n = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 

and 48193 voxels. Figure 3 presents the representative images of selected voxel distribution 

(Figure 3A = 2 voxel, Figure 3B = 32 voxel and, Figure 3C = 4096 voxel). Figure 4 

summarizes the performance of the SVM. To achieve the best AUC of the test set, the SVM 

model from 27 voxel was selected. The performance of SVM from 27 voxel was 57.5% 

sensitivity, 78.4% specificity, 63.2% accuracy, and 75.3% AUC. Figure 5B shows the 

distribution of selected 27 voxels. The selected voxel lesions were dorsal medulla, inferior 

temporal lobe, adjacent to lateral ventricle, and nonspecific subcortex, which largely agreed 

with the lesions from the chi-squared testing comparison (Figure 5A).
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Figure 2. Schematic workflow of the machine learning
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Figure 3. Representative images of selected voxel distribution

The voxels were selected as features for SVM in order of significance level from the chi-

square test. Various number of voxels were tested from one voxel to whole brain voxels in 

order of significance level from the chi-square test in the training set; n = 1, 2, 4, 8, 16, 32, 64, 

128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, and 48193 voxels. These are 

representative images of selected voxel distribution: (A) 2 voxel, (B) 32 voxel, and (C) 4096 

voxel.
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Figure 4. Diagnostic performance of support vector machine (SVM)

Blue lines show the performance with the training set. Red lines show the performance with 

the test set. The relationship between the number of voxels selected for SVM and sensitivity 

(A), specificity (B), accuracy (C), and area under curve (AUC) (D) are depicted, respectively. 

The highest AUC was achieved with the 27 voxel-selected SVM model.

#voxel: number of voxels, AUC: area under curve
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Figure 5. Visualization of selected 27 voxel for support vector machine (SVM) compared 

to chi-squared testing comparison

(A) Voxel-wise comparison of lesion frequency map with chi-squared test. (B) Visualization 

of selected 27 voxel for support vector machine (SVM).
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4. Diagnostic performance of human raters and SVM

The performance of human raters and SVM is shown in Table 2. The specificity of SVM 

was comparable to or better than that of human raters. The sensitivity of SVM was lower than 

that of human raters. Intra-rater reliability of each human rater was substantial (κ, rater A = 

0.680, rater B = 0.679); inter-rater agreement between the human raters was moderate (κ = 

0.414); and inter-rater agreement between the SVM and each human rater was fair (κ = 0.279 

for SVM and rater A, κ = 0.262 for SVM and rater B). McNemar’s test suggested no 

systematic difference of accuracy between SVM and each human rater (p = 0.111 for SVM 

and rater A, p = 0.407 for SVM and rater B).
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Table 2. Diagnostic performance of support vector machine (SVM) and human raters 

Sensitivity Specificity Accuracy Intrarater reliability 

SVM 57.5 (51.0–63.7) 78.4 (68.7–85.7) 63.3 (57.9–68.4) 100.0

Rater A 64.0 (57.6–70.0) 81.8 (72.5–88.5) 69.0 (63.7–73.8) 68.0

Rater B 69.7 (63.5–75.3) 58.0 (47.5–67.7) 66.5 (61.1–71.4) 67.9

Data are presented as percentage (95% confidence interval).
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Discussion

1. Diagnostic criteria of MS and NMOSD

Diagnostic criteria for MS have evolved over time, with the most recent being the 2017 

McDonald criteria from the International Panel on Diagnosis of Multiple Sclerosis (1965 

Schumacher, 1983 Poser, 2001, 2005, 2010 McDonald).31-36) The increasing incorporation of 

paraclinical assessments, especially imaging, to supplement clinical findings has allowed 

earlier, more sensitive, and more specific diagnosis.37) The 2017 McDonald criteria were 

intended to simplify or clarify components of the 2010 McDonald criteria, to facilitate earlier 

diagnosis when multiple sclerosis was likely but not diagnosable with the 2010 McDonald 

criteria, and to preserve the specificity of the 2010 McDonald criteria and promote their 

appropriate application to reduce the frequency of misdiagnosis.36) A recent study applying 

the 2017 McDonald criteria to a patient with typical clinically-isolated syndrome (CIS) 

showed greater sensitivity (68% vs. 36%) but less specificity (61% vs. 85%) for a second 

occurrence of symptoms than the 2010 McDonald criteria.38) Another study that applied the 

new criteria to Korean patients with CIS showed higher sensitivity (89% vs. 53%) but lower 

specificity (43% vs. 69%) compared with the 2010 McDonald criteria for prediction of 

conversion to clinically-definite MS.39) Therefore, the previous diagnostic criteria for MS 

were intended for earlier diagnosis of patients in whom MS was clinically suspected, rather 

than to differentiate MS from other mimicking disorders.37) With the current criteria, 

clinicians should differentiate various other CNS diseases when they encounter a patient with 

abnormal brain MRI, considering clinical and laboratory information in addition to MRI 

characteristics.
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The previously reported brain lesion distribution criteria for distinguishing MS from 

seropositive NMOSD showed high sensitivity (92%) and specificity (96%).17) The suggested 

criteria was: “at least one lesion adjacent to the body of the lateral ventricle and in the inferior 

temporal lobe; or the presence of a subcortical U-fiber lesion; or a Dawson’s finger-type 

lesion,” which could be somewhat subjective and difficult to apply for clinicians who had 

minimal experience with radiological findings from patients with MS or NMOSD.

    

2. Advantages of the study 

In this study, we demonstrated that machine learning could identify RRMS and NMOSD 

with acceptable accuracy comparable to neurologists with more than two years of clinical 

experience with demyelinating disease. The machine-learning method for differential 

diagnosis offers some advantages, including consistent interpretation (intra-rater reliability κ 

= 1.0), moderately high sensitivity and specificity, and prompt reporting of results.

Matthews et al. reported brain lesion distribution criteria but only analyzed MRIs with brain 

abnormalities.17) Jurynczyk et al. applied the same criteria to distinguish MS from AQP4-Ab 

NMOSD and MOG-antibody disease, but they only included MRIs with the presence of brain 

lesions.20) In the present study, we included all brain MRIs with or without abnormal lesions. 

A total of 94% (44/47) of the brain MRIs without abnormalities from the NMOSD test set 

were classified as NMOSD, suggesting the SVM algorithm identified the brain MRIs without 

abnormalities as NMOSD. Therefore, we confirmed that machine learning could overcome 

the limitation of the previous brain lesion distribution criteria, which excluded brain MRIs 

without abnormalities.

In Europe and North America, prevalence of MS (100 per 100,000) outweighs that of 

NMOSD (5 or less per 100,000).4) In contrast, in Asia where prevalence of MS (0–20 per 
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100,000) is relatively low 40) and relative frequency of NMO to MS is 1.06,41) differential 

diagnosis of the two diseases is particularly important. Moreover, because several disease-

modifying treatments for MS can aggravate the course of NMOSD,14-16) high diagnostic 

accuracy for NMOSD in our SVM model is beneficial for clinical practice in Asian countries. 

Our machine-learning method can discern RRMS and NMOSD with only brain MRI data, in 

contrast to the human raters with comparable diagnostic performance even with additional 

clinical information (age at onset, age at MRI, sex, and disease duration).

Therefore, machine learning may serve as a diagnostic support system for a clinician who 

has minimal experience with RRMS and NMOSD.

3. Limitation of the study 

Machine learning (i.e., SVM) for discriminating medical diagnoses has been previously 

reported. Salvatore et al. used an SVM algorithm on T1-weighted brain MRIs in Parkinson’s 

disease and progressive supranuclear palsy, with more than 90% accuracy, specificity, and 

sensitivity of diagnosis.21) Magnin et al. applied an SVM algorithm to classify patients with 

Alzheimer’s disease and control subjects with 96.6% mean specificity and 91.5% mean 

sensitivity.25) Considering the strong performance (more than 90%) of the previous studies, 

our result of 57.5% sensitivity and 78.4% specificity seems relatively low. First, the low 

diagnostic performance may reflect a genuine difficulty in discriminating between RRMS 

and NMOSD. In our study, the diagnostic performance of board-certified neurologists who 

had more than two years of clinical experience with demyelinating disease showed similar 

sensitivity and specificity compared to machine learning. Second, through reviewing the 

false-negative images of our SVM model, we recognized that automatic lesion identification 

could be the main cause of low sensitivity for RRMS. The automatic lesion identification 
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labeled many artifacts as true lesions, mainly those located at the periventricular regions, 

including adjacent areas to third and fourth ventricle and corpus callosum.42, 43) These artifact-

prone areas overlapped with the known susceptible sites for NMOSD. Therefore, in our SVM 

model, many brain MRIs from patients with RRMS that mislabeled artifacts as lesions were 

classified as NMOSD, even though there were small but obviously characteristic RRMS 

lesions (Supplementary Figure 1).

We can consider some changes in methodology to improve diagnostic performance of 

machine learning. First, we may change the image processing method. In this study, we 

defined the factitious hyperintensity threshold as more than 0.32 (p < 0.01) for lesion 

identification, which caused false inclusion of FLAIR artifacts. We may apply voxel 

hyperintensity as continuous variables for SVM training. Second, we may include clinical 

information as additional features for the machine-learning training.44) Third, we may analyze 

only acute-phase MRIs (< 3 months after relapse). Fourth, we may apply a “deep-learning” 

method for this classification. Currently, deep-learning techniques are state-of-the-art for 

classification of images. To date, promising results have been reported, including detection of 

pulmonary tuberculosis from chest radiography, diabetic retinopathy from fundus images, and 

skin cancer from clinical images.45-47) We may apply the deep convolutional neural network 

for classification of MRIs from patients with RRMS and NMOSD, comparing the diagnostic 

performance to that from the SVM model in this study.

Finally, the current machine-learning algorithm can only be applied for dichotomous 

differentiation between RRMS and NMOSD after excluding other CNS diseases. By using 

clinical and laboratory data, clinicians need to exclude other CNS disorders that mimic 

demyelinating disease before applying the machine-learning algorithm.
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4. Perspective of the machine learning for medical images  

Today’s machine-learning approaches have been progressing very rapidly. Because of the 

rapid pace of technological advancements, tasks previously thought to be limited to clinicians 

will be acquired by machine-learning systems. Machine learning is already being applied in 

the practice of radiology, and these applications will probably grow at a rapid pace [23]. 

There are several neurologic diseases that can be aided by machine-learning systems for 

diagnosis: primary CNS lymphoma,48) primary angiitis of the CNS,49) and other inflammatory 

diseases. These diseases need confirmatory biopsy, but the machine-learning system may 

obviate the need for invasive biopsy after being trained by an adequate amount of imaging 

data. 

5. Conclusion

In conclusion, we confirmed that the machine learning method on brain MRI data can 

discern RRMS and NMOSD with comparable accuracy to that of clinicians. The machine 

learning technique may aid differential diagnosing the two important demyelinating diseases 

in clinical practice.
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Supplementary Table 1. Baseline characteristics of training and test sets

Training set (n=722) Test set (n=316) P-value

Attack index, mean ± SD 3.2 ± 2.4 3.2 ± 2.8 0.869

Disease duration, mean ± SD 5.3 ± 5.9 5.2 ± 5.5 0.714

Age at onset, mean ± SD 34.6 ± 12.1 33.7 ± 12.1 0.301

Age at imaging, mean ± SD 38.4 ± 11.7 37.2 ± 11.9 0.142

Male, n (%) 121 (16.8) 60 (19.0) 0.384

Patients with RRMS, n (%) 518 (71.7) 228 (72.2) 0.893

Patients with NMOSD, n (%) 204 (28.3) 88 (27.8)

RRMS: relapsing-remitting multiple sclerosis, NMOSD: neuromyelitis optica spectrum 

disorder, SD: standard deviation.
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Supplementary Figure 1. Representative false-negative MRI (RRMS, but classified as 

NMOSD by the SVM model)

(A) Original image, (B) Automatically detected lesions. It captured many artifacts as lesions; 

for example, cerebellum, medulla, and adjacent area to third ventricle, in addition to Dawson 

finger-like true lesions.

RRMS: relapsing-remitting multiple sclerosis, NMOSD: neuromyelitis optica spectrum 

disorder, SVM: support vector machine..
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국문 요약

서론: 시신경척수염범주질환과 다발경화증의 치료법이 다르고, 다발경화증에 대한

질병조절치료가 시신경척수염범주질환을 악화시킬 수 있기 때문에, 두 질환을 감별하는

것은 중요하다. 뇌 자기공명영상 검사는 두 질환을 감별하는 중요한 진단법 중에 하나로,

현재까지 두 질환을 식별할 수 있는 뇌 자기공명영상검사의 특징을 찾기 위한 상당한

노력을 기울였다. 기계학습은 의료영상을 감별하는 한 가지 방법으로 연구되어 왔다. 이

연구의 목적은 뇌 자기공명영상검사 자료를 이용해 다발경화증과

시신경척수염범주질환의 감별진단을 수행할 수 있는 기계학습 방법을 구현하는 것이다.

연구방법: 우리는 2005 년부터 2017 년 사이에 서울아산병원에 내원한 재발-이장성

다발경화증과 아쿠아포린 4-면역글로불린 G (Aquaporin 4-immunoglobulin G)를 가진

시신경척수염범주질환 환자의 FLAIR (fluid attenuated inversion recovery) 자기공명영상

검사를 획득하였다. FLAIR 자기공명영상을 기계학습에 이용하였고, 기계학습은 병변 빈도

분석을 통해 복셀 (voxel)을 선택하고, 서포트 벡터 머신 (support vector machine)을

분류 알고리즘으로 사용하였다. 기계학습의 진단성능은 2 년 이상의 탈수초성질환

임상경험이 있는 2 명의 신경과 의사와 비교 되었다.
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연구결과: 최종 분석에는 172 명의 재발-이장성 다발경화증 환자의 746 개 뇌

자기공명영상과 97 명의 시신경척수염범주질환 환자의 292 개 뇌 자기공명영상이

포함되었다. 병변 빈도 분석을 통해 가측 뇌실 근처와 하측두엽이 재발-이장성

다발경화증의 흔한 병변 위치이고, 등쪽 연수, 대뇌다리/속섬유막, 뇌들보가

시신경척수염범주질환의 흔한 병변 영역임을 확인하였다. 기계학습은 57.5% 민감도, 78.4% 

특이도, 63.3% 정확도를 보였고, 이는 임상의사와 비교하였을 때, 상당한 수준의

일치도를 보였다. (Cohen’s κ, rater A=0.279, and rater B=0.262).

결론: 결론적으로, 우리는 뇌 자기공명영상에 대한 기계학습이 임상 의사와 유사한

정확도로 재발-이장성 다발경화증과 시신경척수염범주질환을 감별 진단할 수 있다는

것을 확인하였다. 이는 임상 진료에서, 기계학습 보조 진단의 적용을 시사한다.

중심 단어: 뇌 자기공명영상, 다발경화증, 시신경척수염범주질환, 기계학습, 서포트 벡터

머신
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