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Abstract

Background: The structural network of schizophrenia is characterized by the increased 

segregation and decreased integration. However, a local deficit in a specific region of interest 

(ROI) is not sufficient to explain the pathophysiology of schizophrenia. Considering the human 

brain consists of small-worlds with different connectivity characteristics, the aberrant network 

structure in schizophrenia should be investigated at a smaller subnetwork level. 

Objective: To investigate structural dysconnectivity in two subnetworks of schizophrenia.

Methods: A total of 189 patients and 213 healthy controls were recruited from four different 

neuroimaging sites. T1 and diffusion-weighted images were used to perform probabilistic 

tractography, which in turn led to the association matrices of all participants. Network analysis 

based on graph theoretical approach was then proceeded. Nodal betweenness centrality was 

used in the k-means clustering algorithm to distinguish two subnetworks from the whole 

network. Global network properties of schizophrenia and healthy controls were compared in 

each subnetwork and robustness simulation as well as clinical correlation with network 

measures were performed. 

Results: The subnetwork 1 comprised 75 ROIs with lower betweenness centrality and the 

subnetwork 2 comprised 12 ROIs with higher betweenness centrality. Patients had an increased 

level of local efficiency, clustering coefficient, and overall connectivity in the subnetwork 1 

whereas these properties as well as global efficiency were decreased in the subnetwork 2. The 

subnetwork 1 was more robust to sequential nodal damages in patients than controls. The 

increased network measures in the subnetwork 1 was negatively associated with disease 

duration. 

Conclusions: The central subnetwork (subnetwork 2) was less integrated and segregated 
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whereas the non-central subnetwork (subnetwork 1) was more segregated, stronger, and 

vulnerable to targeted damages. The disrupted connectivity in the non-central subnetwork 

became less prominent while the disease duration increased. We conclude that the integration, 

segregation, and robustness of structural network in schizophrenia are differently manifested 

between central and non-central subnetworks. 

Key words: schizophrenia, diffusion tensor MRI, tractography, connectivity
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1. INTRODUCTION

1.1. Schizophrenia as a disconnection syndrome

Schizophrenia is a chronic brain disorder which is characterized by positive symptoms (such 

as hallucination, delusion) and negative symptoms (apathy, abulia, asociality, alogia) [1]. In 

early 1900s, Carl Wernicke and Eugene Bleuler suggested the concept of anatomical disruption 

or splitting of different mental domains in patients with schizophrenia [2, 3]. The sejunction 

hypothesis in schizophrenia was introduced by Carl Wernicke, which is concordant with the 

structural dysconnectivity whereas Bleuler’s concept of the disintegration of psyche in 

schizophrenia is concordant with the functional dysconnectivity.

These concepts had been further elaborated and evidenced by recent neuroimaging and 

electroencephalogram (EEG) studies in which abnormal functional connectivity among brain 

regions was observed in patients with schizophrenia [4-7]. The term ‘disconnection syndrome’ 

was first introduced by Karl Friston and Chris Frith in year of 1995 [8] to explain the possible 

pathophysiology of schizophrenia, that is, profound disruptions of functional integration 

between prefrontal and temporal areas were associated with the development of schizophrenia 

[9]. Because functional integration is determined by proper connections between two or more 

neuronal systems, a large number of studies were performed to explain functional and structural 

dysconnectivity in schizophrenia. For example, functional connectivity in frontal regions is 

consistently reduced in chronic schizophrenia patients when compared to healthy controls [10-

12]. Moreover, structural connectivity was reduced in frontal and temporal regions as well as 

corpus callosum [13-16]. This structural and functional dysconnectivity are also observed in 

ultra-high risk subjects [17, 18] and patients with first episode psychosis [19, 20], which could 

be regarded as a potential biomarker of the disorder. 



2

1.2. Probabilistic tractography

The Diffusion-weighted imaging (DWI) is a non-invasive brain imaging method which 

measures the free motion of water molecules within a voxel. The DWI can measure isotropic 

and anisotropic diffusion of water molecule in a quantitative manner with apparent diffusion 

coefficient and fractional anisotropy (FA), which are generated from the restriction of water 

molecules by cellular structures. Meanwhile, the diffusion tensor imaging (DTI) is derived 

from the DWI and analyzes diffusion tensor, the three-dimensional shape of the diffusion of 

water molecule. The DTI of gray matter or white matter tracts is considered as brain structure, 

therefore, valuable information about the microstructure could be obtained from it [21-33]. For 

example, the diffusivity measure obtained from the DTI would be changed when certain 

damages are imposed on neural tissues or disorganization of neural fibers occurs within the 

tissues. The tractography is an extended three-dimensional model from the DTI which enables 

researchers to visualize nerve tracts within the brain. Unlike deterministic tractography, 

probabilistic tractography repeatedly generates thousands of voxel-wise streamlines between 

brain regions and regards the likelihood of connection as a connection probability [34]. 

1.3. Graph theory and network analysis

The graph theory is a field of mathematics which simplifies and visualizes pairwise relations 

between two or more objects. The term ‘graph’ in the theory indicates a combination of multiple 

points and lines that constitutes a network while focusing on the presence or absence of direct 

connections between two points [35]. The graph theory enables researchers to analyze big data 
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more efficiently and to detect connections between specific objects and further explain the 

importance of connections within the network. The first concept of graph theory was published 

in 1736 by Leonhard Euler who described the connections of seven bridges between two 

islands located in the city of Königsberg [35]. The term ‘graph’ was first introduced by J. J. 

Sylvester in 1878 [36] and the topic had been further elaborated as a theory since year of 1936 

[37]. In recent decades, it has been applied in a variety of fields such as computer science, 

physics, chemistry, social sciences, economics as well as medicine.

The network analysis is a set of statistical methods based on graph theory, which enables 

researchers to investigate relations among objects and to analyze network structures derived 

from these relations. According to the network analysis, any system that can be modelled as a 

network is considered appropriate to be analyzed. Another advantage of this method is that 

both quantitative and qualitative information on connections within a given network is 

available. For instance, studies on genetic co-expression frequently adopt this graph theoretical 

approach [38] because genetic data obtained from the microarray is suitable for constructing a 

network. The network can have not only a two-dimensional but also a three-dimensional 

structure, thus used in the analysis of neuroimaging data. 

1.4. Network analysis in schizophrenia 

Evidence from preceding research suggests that most brain regions are somehow associated 

with the pathophysiology of schizophrenia [39]. In other words, a deficit in single brain region 

is never sufficient to explain the development of schizophrenia. As mentioned above, focusing 

on the connections within the network derived from structural or functional neuroimaging 

would be more appropriate to investigate the biological mechanism of schizophrenia. 
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In this context, efforts have been made to apply graph theoretical approaches to investigate the 

aberrance of brain network in patients with schizophrenia [30]. For network construction, a 

structural brain network is typically reconstructed from structural MRIs which include the DTI, 

diffusion tractography, or even cortical thickness whereas a functional network is reconstructed 

from the functional MRI (fMRI) or EEG [40]. Both structural and functional networks are 

closely related because densely clustered cortical structures are well-matched with the 

specialized brain function of the relevant region [41].

As for the structural network, a specific region of interest (ROI) in the brain is regarded as a 

node and the connections between two or more nodes are regarded as edges. The global 

network properties, which are usually considered as criteria for network characteristics, focus 

on the localization and integration within the overall network. The degree of localization is 

presented with local efficiency, clustering coefficient, and modularity. On the other hand, the 

degree of integration is usually presented with global efficiency and/or characteristic path 

length. 

Precedent research on structural dysconnectivity in schizophrenia reported that structural 

network was disrupted and disorganized in a less effective manner. In short, structural network 

in schizophrenia is characterized by a higher segregation and a lower integration. First, the 

clustering coefficient [42] and modularity [43] were increased in schizophrenia, which 

indicated that the network showed a tendency to cluster and form a separated network units 

when compared to healthy subjects. Second, the shortest path length was increased in 

schizophrenia [44, 45], which in turn led to the lower global efficiency in the network [42]. 

Similarly, schizophrenia patients had a decreased level of global efficiency while local 

efficiency remained unchanged [46]. In their article, Zhang et al. reported increased 
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characteristic path length and clustering coefficient in schizophrenia, suggesting a less 

integrated and more segregated pattern of the network [45]. The decrease of global efficiency 

in schizophrenia could be explained by the fact that the lesions involving a wide range of white 

matter have a higher chance of changing the architecture of long white matter tracts. More

localized networks would reflect the underlying disruption in the network integrity [47]. As a 

result, the whole structural network in schizophrenia comprises a significantly higher number 

of small-world networks because of the disruption of global network properties. In addition, 

the abnormal hierarchical organization was observed among schizophrenia patients in that the 

hierarchy of the network was significantly reduced [48]. 

The brain network “hubs” are important when investigators analyze network properties 

according to brain regions [49]. The hub is a node which is characterized by high degree and 

high betweenness centrality within the network. Therefore, the hubs have a greater likelihood 

of being in the middle of network connections with a lower level of clustering coefficient [50]. 

The human brain is reported to have hub regions in the fronto-temporal area, corpus callosum, 

cingulate cortex, insula, and subcortical areas and the lesions of brain disorders were likely to 

be located in the hubs [51]. In schizophrenia, the centrality was decreased in frontal, temporal, 

limbic area, and putamen [44, 46].

1.5. Necessity for a subnetwork analysis

Mixed results have been found on the global network connectivity in schizophrenia because of 

methodological differences. For example, previous studies and a recent meta-analysis showed 

that patients with schizophrenia had the lower network segregation when compared to healthy 

subjects [10, 52-55]. However, these results were obtained from either undirected binary graphs 
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that were reconstructed from the EEG data [53, 54] or fMRI data [10, 55], reflecting a 

functional connectivity of schizophrenia rather than a structural connectivity.

Because the structural abnormalities in schizophrenia could be subtle at each regional level and 

the disorder is considered be associated with the aberrant connections between these regions, 

a network analysis might be more helpful in highlighting subtle structural differences between 

patients and healthy subjects. This approach enables researchers to compare or summarize 

network properties more efficiently, because the results reflect a more comprehensive 

characteristics of the network instead of giving information on network properties obtained 

from every single ROI. Moreover, the topological network measures could offer researchers 

insights about network properties which are not available on the single connection level, which 

suggests the strategy is more suitable when an exploratory investigation or a crude analysis is 

required [56]. Unlike preceding research which examined the connectivity of the whole 

structural network, a network analysis at a sub-system level could be more suitable for 

investigating structural dysconnectivity of schizophrenia. This is because each node could have 

a different characteristic in terms of connectivity properties or role within the whole structural 

network. For example, the human brain exists as a combination of small-worlds and is inter-

connected through network hubs, regions of high degree and high centrality [57]. In addition, 

certain connections could be categorized as rich-club connections (i.e. hub nodes to hub nodes) 

while others as feeder connections (i.e. hub nodes to non-hub nodes) or local connections (i.e. 

non-hub nodes to non-hub nodes) [58]. As for the graph theoretical approach, network 

examination at a subnetwork (a distinct cluster of nodes comprising the whole network system)

level could be taken into consideration. A subnetwork analysis could be more suitable because 

exploratory investigation is inevitably necessary because of the complexity of pathophysiology 
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and the clinical heterogeneity of schizophrenia. A previous study suggested that analyzing brain 

subnetworks have methodological advantages in that 1) it could reflect the investigator’s 

hypothesis or prior knowledge of schizophrenia and 2) it reduces the number of comparisons 

and the possibility of the noise variance because not all the values from every ROI are not used 

[56]. 

Nonetheless, a significant problem still exists, that is how to identify subnetworks. Several 

statistical methods were suggested for subnetwork detection, one of which is k-means 

clustering strategy [59]. Similarly, the degree-corrected stochastic blockmodel which was 

originated from k-means clustering method has gained its popularity [60, 61] where the edges 

within the graph are randomly placed between the nodes. Preceding research on subnetworks 

of schizophrenia reconstructed the functional connectivity from resting-state fMRI [62-64] and 

performed Ward’s method to identify clusters of functional connections based on a Euclidean 

distance metric or from the gene-based analysis using protein interaction network-based 

pathway analysis [65, 66]. Drakesmith et al. masked the structural connectivity matrices with 

spatially and temporally independent subnetworks which were obtained from fMRI data [67]. 

Another study on structural network examined the network dependency index, a weighted 

network measure obtained from deterministic tractography, which resulted in four different 

subnetworks [68]. In addition, the whole structural network derived from the diffusion MRI 

data were categorized into subnetworks based on the level of centrality, which resulted in 

central and non-central subnetworks [69]. Betweenness centrality was suggested to be one of 

significant features that could discriminate schizophrenia patients from healthy controls [70]. 

Similarly, another preliminary research on graph theoretical approach of functional networks 

indicated that betweenness centrality was a significant network property which could 
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discriminate patients from healthy controls [71]. 

1.6. Purpose of this study

To the best of our knowledge, there is a paucity of literature on the structural networks in 

schizophrenia which investigated the structural dysconnectivity at each subnetwork level. We 

aimed to distinguish two subnetworks from the whole structural network based on the level of 

nodal centrality and to investigate network properties within each subnetwork. In addition, we 

simulated each subnetwork’s stability to sequential nodal damages and observed the 

association between network properties and clinical characteristics. 
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2. MATERIALS AND METHODS

The overall processed of our study is shown as a flow diagram in [Figure 1]. After structural 

MRI data were collected from four different sites, we performed the quality control and 

preprocessed the obtained neuroimages. The harmonization of diffusion MRI was performed 

and tested for the performance. Then, an association matrix was obtained from the probabilistic 

tractography and further used in the graph theoretical analysis. We examined for nodal 

betweenness centrality and the k-means clustering algorithm was applied to divide two 

subnetworks from the whole structural network. Global network measures were calculated 

from each subnetwork and compared between two groups. Lastly, robustness simulation and 

clinical correlation was investigated. 

2.1. Study subjects and further data collection 

We collected data of patients with schizophrenia and healthy controls from open public 

databases as well as one university-affiliated hospital for the large-scale integration of 

neuroimage data. Each project obtained ethical approval from the Institutional Review Board 

(IRB) and written informed consent was obtained from all participants. 

2.1.1. Asan medical Center 

Patients with schizophrenia and healthy subjects were recruited from the department of 

psychiatry at Asan Medical Center (AMC), a tertiary hospital located in Seoul, Korea. For the 

patient group, the diagnosis of schizophrenia was established by a board-certified psychiatrist 

according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text 
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Revision. Patients who volunteered to participate in the research were required to have 

presented their first psychotic symptoms within past five years and not to have other psychiatric 

comorbidities. They were all aged between 20 and 40 years, right-handed, and free of organic 

brain diseases. We excluded patients when their initial psychiatric diagnosis had changed 

within 1-6 months during the follow-up periods. 

On the other hand, healthy volunteers were enrolled only if they were not diagnosed with any 

Axis I psychiatric diagnosis. Participants who had any first-degree relative with an Axis I 

psychiatric diagnosis or those who were unable to complete MRI scanning sessions for any 

kind of reasons were excluded from this study. Informed consent was obtained from all patients 

and healthy volunteers. Ethical approval was obtained from the IRB at the AMC. 

2.1.2. University of California Los Angeles consortium for neuropsychiatric phenomic LA5c 

study (UCLA) 

The structural MRIs from the UCLA Consortium for Neuropsychiatric Phenomic LA5c study 

were collected with the accession number of ds000030 at OpenNeuro (openneuro.org). The 

dataset comprises structural and functional brain MRI of patients with schizophrenia and 

schizophrenia spectrum disorders, bipolar disorder, and attention-deficit hyperactivity disorder. 

Moreover, the results of neuropsychological tests and neurocognitive tasks of patient group and 

healthy controls are included in the dataset [72]. The T1-weighted images (T1-WI) and DWI 

data of schizophrenia patients and healthy controls were used in this study.



11

2.1.3. Center for biomedical research excellence (COBRE) and neuromorphometry by 

computer algorithm Chicago (NMorphCH)

The COBRE and the NMorphCH are freely accessible from SchizConnect (schizconnect.org) 

[73]. The projects which are included in SchizConnect enables neuroimaging data, 

neuropsychological test results, and neurocognitive tests to be integrated, which enables 

researchers to actively participate in the investigations on the neural mechanisms of 

schizophrenia. As aforementioned, we adopted the T1-WI and DWI data of schizophrenia 

patients and healthy controls in our study. Those diagnosed with schizoaffective disorder were 

excluded in further analysis to achieve a higher homogeneity of clinical samples.

2.2. Image acquisition

The MRI data from the AMC were acquired on a 3-Tesla scanner with an 8-channel SENSE 

head coil (Philips Achieva) while all other neuroimaging data were acquired on a 3-Tesla 

Siemens Trio scanner. 

In the AMC study, the T1 WI was acquired using a turbo field echo sequence and the DWI ‐

was obtained via echo-planar imaging sequence for one baseline (b value, 0 s/mm2) and 32 

gradient directions (b value, 1,000 s/mm2). In the UCLA study, T1-WIs were acquired with a 

MPRAGE sequence and DWIs were collected with a slice thickness of 2 mm. In the COBRE 

study, the coronal T1-WI was acquired with a 12-channel head-coil and a five-echo MPRAGE 

sequence and the DWI was acquired with a voxel size of 2.0 × 2.0 × 2.0 mm. In the NMorphCH 

study, the coronal T1-WI was acquired with a 32-channel head coil and a MPRAGE sequence 

and the DWI was acquired with a 2 mm slice. 

The parameters for neuroimage acquisition from all projects are presented in [Table 1]. 
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Table 1. Parameters for neuroimage acquisition

Project Scanner Protocol

AMC 3T Philips Achieva

T1 Field of view (FOV), 240*240*170; voxel size, 1*1*1 mm3; echo time 

(TE), 4.6 ms; repetition time (TR), 9 ms; flip angle, 8°

DWI FOV, 224*224*135 mm; voxel size, 2*2*3 mm3; TE, 70 ms; TR, 5422 ms; 

flip angle, 90°

UCLA 3T Siemens Trio

T1 FOV, 250 × 250 mm; slice thickness, 1 mm; 176 slices; TR, 1900 ms; TE, 

2.26 ms; matrix, 256 × 256

DWI Slice thickness, 2 mm; 64 directions; TR/TE, 9000/93 ms; flip angle, 90°; 

matrix, 96 × 96; axial slices, b = 0 and 1000 s/mm2

COBRE 3T Siemens Trio

T1 TE, 1.64, 3.5, 5.36, 7.22, and 9.08 ms; TR, 2.53 s; TI, 1.2 s; flip angle = 
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AMC: Asan Medical Center, DWI: Diffusion-weighted image, UCLA: University of California Los Angeles Consortium for Neuropsychiatric 

Phenomic LA5c Study, COBRE: Center of Biomedical Research Excellence, NMorphCH: Neuromorphometry by Computer Algorithm Chicago.

7°; number of excitations, 1; slice thickness, 1 mm; FOV, 256 mm; 

resolution = 256 × 256

DWI TR = 9000 ms; TE = 84 ms; b = 0 and 800  s/mm2; bandwidth = 1562; 72 

slices and 35 directions

NMorphCH 3T Siemens Trio

T1 TR = 2400 ms, TE = 3.16 ms, flip = 8°, 256 × 256 matrix, 176 slices, slice 

thickness = 1 mm

DWI TR = 8000 ms, TE = 86 ms,  b = 0 and 800  s/mm2; flip = 90°, 896 × 896 

matrix, 35 slices and 30 directions
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2.3. Quality control of structural and diffusion MRI 

First, the T1-WI and DWI obtained from all projects were visually inspected. We detected 28 

subjects with signal dropouts and/or artifacts and excluded from further analysis. Second, we 

used the software SlicerDiffusionQC to remove bad diffusion gradient volume [74]. This 

software enables researchers to check for the quality of diffusion-weighted MRI. The bad 

diffusion gradient is determined by comparing distance of each gradient to a median line, which 

is calculated from the Kullback-Leibler divergence, a measure of difference between two 

probability distribution. After the automatic processing of the software, we visually inspected 

the classification result and discarded bad gradient volumes. 

2.4. Preprocessing MRI image 

After the quality control process, we applied the Psychiatry Neuroimaging Laboratory (PNL) 

pipeline (https://github.com/pnlbwh/pnlutil) to preprocess DWIs. This pipeline removes 

oblique coordinate transform (axis alignment) and changes origin to be at the center of the 

volume (centering). Then, it corrects for motion and eddy current artifacts through affine whole 

brain registration, with a baseline b = 0 volume using FLIRT in FSL (v 6.0, FMRIB Software, 

Oxford, UK [75, 76]). We compensated the directions of the gradients for rotations during the 

affine registration process. 

The T1-WIs were parcellated into discrete anatomical regions of interest (ROIs) by the 

Desikan-Killiany atlas of FreeSurfer V. 6.0. [77, 78]. White and grey matter of each ROI was 

combined into a single ROI for each anatomical structure. As a result, a total of 87 ROIs across 

the whole brain were defined in this study. Then, the parcellated T1-WIs were registered to the 
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DWIs using FLIRT with six degrees of freedom [79]. The list of 87 ROIs is presented in [Table 

2]. 
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Table 2. List of regions of interest according to the Desikan-killiany atlas

Regions of interest a Area

Posterior corpus callosum Corpus callosum

Middle posterior corpus callosum Corpus callosum

Central corpus callosum Corpus callosum

Middle anterior corpus callosum Corpus callosum

Anterior corpus callosum Corpus callosum

Pallidum Sub-cortical

Hippocampus Sub-cortical

Amygdala Sub-cortical

Thalamus Sub-cortical

Caudate Sub-cortical

Accumbens Sub-cortical

Ventral diencephalon Sub-cortical

Rostral anterior cingulate Cingulate 

Caudal anterior cingulate Cingulate 

Posterior cingulate Cingulate 

Isthmus cingulate Cingulate

Banks of superior temporal sulcus Temporal

Caudal middle frontal Frontal

Cuneus Occipital

Entorhinal Temporal

Fusiform Temporal

Inferior parietal Parietal

Inferior temporal Temporal

Lateral occipital Occipital

Lateral orbitofrontal Frontal
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Lingual Occipital

Medial orbitofrontal Frontal

Middle temporal Temporal

Parahippocampal Temporal

Paracentral Frontal

Pars opercularis Frontal 

Pars orbitalis Frontal

Pars triangularis Frontal

Pericalcarine Occipital

Postcentral Parietal

Precentral Frontal

Precuneus Parietal

Rostral middle frontal Frontal

Superior frontal Frontal

Superior parietal Parietal

Superior temporal Temporal

Supramarginal Parietal

Frontal pole Frontal

Temporal pole Temporal

Transverse temporal Temporal

Insula -

a Each region includes left/right hemisphere counter-parts except for corpus callosum 
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2.5. Diffusion-weighted MRI harmonization

The multi-site diffusion-weighted MRI harmonization is a method which integrates brain MRI 

data obtained from multiple sites. This method can enable researchers to perform integrated 

study of various brain diseases and to include more study participants in their research. 

However, inter-site difference of image acquisition parameters and scanner-specific artifacts 

limit the possibility of data integration. Therefore, the DWIs should be harmonized by 

removing scanner-specific differences [80-82].

The retrospective harmonization of raw diffusion images removes scanner-specific differences, 

which are related to b-values, spatial resolution, and number of gradient directions. On the 

other hand, it preserves inter-subject anatomical variability. In general, this method is divided 

into two consecutive steps: a) random sampling of subjects from each study site to learn inter-

site differences; b) applying the inter-site differences to all image acquisition sites to harmonize 

all subjects. 

In our study, we assigned the UCLA dataset as a reference site based on the sample size and 

image parameters while the AMC, COBRE, and NMorphCH dataset were assigned as target 

sites for harmonization. First, we selected 20 right-handed healthy subjects from the reference 

site. Second, a subset of 20 right-handed healthy subjects who were matched for age and sex 

were selected from each target site. All subsets from the reference and target sites comprised 

solely healthy controls. We compared the subset of the reference site and each target site using 

unpaired t-test and chi-square test [Table 3]. 



19

Table 3. Comparison of subjects from the reference site and each target site for harmonization

Variable Site t / χ2 df P

UCLA (n = 20) AMC (n = 20)

Age, year, mean (SD) 29.5 (8.2) 29.5 (5.4) 0.000 38 1.000

Sex, male (%) 7 (35) 7 (35) 0.000 1 1.000

UCLA (n = 20) COBRE (n = 20)

Age, year, mean (SD) 29.0 (7.4) 29.0 (7.5) 0.000 38 1.000

Sex, male (%) 8 (40) 8 (40) 0.000 1 1.000

UCLA (n = 20) NMorphCH (n = 20)

Age, year, mean (SD) 31.5 (9.2) 31.5 (9.3) 0.000 38 1.000

Sex, male (%) 10 (50) 10 (50) 0.000 1 1.000

AMC: Asan Medical Center, COBRE: Center of Biomedical Research Excellence, NMorphCH: 

Neuromorphometry by Computer Algorithm Chicago, SD: Standard Deviation, UCLA: 

University of California Los Angeles Consortium for Neuropsychiatric Phenomic LA5c Study
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Using the dMRIharmonization [80], the b-value mapping was made from original diffusion 

MRI data and resampling of diffusion images with an unringing method was performed [83]. 

The scale maps were generated from pairs of rotation-invariant spherical harmonics feature 

templates, which were derived from spherical harmonic coefficients. The scale maps were then 

applied to the raw diffusion images of each target site, which in turn resulted in harmonized 

DWI data. The dMRIharmonization software includes the default options for the procedure (b-

value = 1000s/mm2; resample = 1.53mm3; spherical harmonic order = 6; number of zero-

padding = 10), which were adopted in this study. 

We validated the performance of the harmonization by comparing the mean FA value over the 

whole brain white matter skeleton before and after the procedure. The mean FA value was 

calculated from the Illinois Institute of Technology Human Brain Atlas v.5.0 

(IITmean_FA_skeleton.nii.gz) [84]. The inter-site differences were evaluated using an 

unpaired t-test. 
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2.6. Network analysis

2.6.1. Probabilistic tractography

We used the FMRIB’s Diffusion Toolbox (FDT) software in the FMRIB’s Software Library 

(FSL) for employing a probabilistic tractography to track white matter streamlines [85]. The 

diffusion tractography is a non-invasive method that visualizes white matter tracts of the brain 

[86]. In particular, the probabilistic tractography can generate probabilistic maps for the 

distribution of fiber orientation at each voxel whereas the deterministic tractography 

determines streamlines by assigning a fixed direction at each voxel [87]. In other words, the 

probabilistic tractography generates connectivity distribution at each voxel level. This process 

is based on the Metropolis-Hastings Markov chain Monte Carlo sampling (bedpostx) [34, 88].

In our study, the probabilistic tracking was performed by a sampling of five thousand 

streamline fibers at each voxel (probtrackx) [34, 88]. The connectivity probability between the 

seed ROI and the second ROI was calculated as the number of streamline tracts passing through 

the second ROI divided by the total number of streamlines. The non-directional connectivity 

probability between two ROIs was calculated as the average of the probabilities obtained from 

the tracking of each ROI.

2.6.2. Network reconstruction

The structural networks were reconstructed from the association matrix derived from the 

probabilistic tractography. The networks were based on 87 ROIs, and the connectivity 

probabilities between any two ROIs were calculated from the tractography. The reconstructed 

networks were then transformed as a graph, an ordered pair of edges between nodes. The node 
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of the association matrix represented each 87 ROIs (nodes of the graph) and the edge

represented connections between the nodes, that is, connectivity probabilities. We discarded 

the connections which were lower than 50% threshold of overall connectivity probabilities in 

each subject to remove weak or spurious edges. The thresholding value was determined 

arbitrarily, as it is often applied in previous studies because there is still no consensus or proper 

null hypothesis [86]. Thresholding could be challenging to  This strategy of applying 

proportional thresholding (density-based thresholding) to all subjects was employed by 

preceding research [89-91] to remove the same number of weak connections across subjects 

whereas Hagmann et al. used absolute-thresholding strategy [92]. The connections with the 

lowest weights are often associated with a higher chance of false-positive network. 

2.6.3. Network examination 

As aforementioned, we assumed that the whole brain network could be classified into two 

subnetworks because of the small-world attributes and highly clustered network patterns in 

structural and functional network of human brain [93]. First, we calculated nodal betweenness 

centrality of each subject to divide the whole structural network into two discrete subnetworks. 

The MATrix LABoratory (MATLAB), a multi-paradigm platform for technical computing, was 

used to apply brain connectivity toolbox (http://www.brain-connectivity-toolox.net) which 

enables researchers to calculate a variety number of network properties including nodal 

network properties (network measure of each ROI) and global network properties [89]. These 

network measures were based on the non-directional and weighted matrices. 

Nodal network properties include (nodal) local efficiency, degree, and betweenness centrality. 
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Each nodal network properties represents the network connectivity at each ROI level. First, 

nodal local efficiency is defined as the inverse value of the shortest path length between a given 

node and direct neighbors. Therefore, the node is considered more efficient when the shortest 

path length is shorter. Second, nodal degree is defined as the number of all possible connections 

to a given node. Third, nodal betweenness centrality is defined as the number of shortest paths 

that passes through a given node in the network. For weighted graphs, the shortest path between 

two nodes is calculated in the manner that the sum of the weights of the connections is 

minimized. The betweenness centrality represents the level of a given node’s influence in the 

network. In short, nodal local efficiency reflects the amount of the network segregation [94], 

while nodal degree and betweenness centrality represent the importance of each node [89, 95].

Global network properties include global efficiency, clustering coefficient, and mean 

connectivity strength. Each global properties represent the topological characteristics in the 

whole network. First, global efficiency is defined as the mean of the inverse values of the 

shortest path length between all possible pairs of nodes. Second, clustering coefficient is the 

likelihood that connections exist between a given node and its direct neighbors. Third, mean 

connectivity strength is the average connectivity probabilities of all possible connections. 

Fourth, the average value of nodal local efficiency and nodal betweenness centrality was 

calculated. In short, global efficiency reflects network integration [94], clustering coefficient 

and the averaged local efficiency represents network segregation [96], mean connectivity 

strength reflects the strength of the entire network [97]. 
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2.6.4. k-means clustering 

The k-means clustering is a mathematical algorithm that aims to categorize every observation 

into k clusters. In this algorithm, clustering is performed repeatedly in an unsupervised manner 

while each observation is necessarily classified into one of the k clusters with the nearest mean 

value [98]. A previous study performed the k-means clustering algorithm to identify 

standardized subsystems from the default mode network [99]. In our study, we defined the 

nodal betweenness centrality of each 87 ROIs as observations with k = 2. After the k-means 

clustering, we calculated the global network properties in each subnetwork. 

2.7. Robustness simulation  

The network robustness is an indicator for the stability under the situation of sequential network 

damages [100]. To simulate robustness of two subnetworks, we eliminated nodes of all 

participants one by one in the order of the highest nodal degree. At each nodal deletion process, 

global network properties were calculated repeatedly. To compare network robustness between 

patients and healthy controls, a linear mixed-effect model was applied. The number of removed 

nodes, age, sex, and group (patient or healthy control) was regarded as a fixed effect and each 

subject was considered as a random effect. The interaction between the number of removed 

nodes and group, and sex was explored. 

2.8. Correlation with clinical characteristics

Patients with schizophrenia were selected for further analysis of associations between clinical 

variables and network properties. The relationships between network properties and clinical 
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factors including age, sex, symptom severity, disease duration, and antipsychotic medication

were investigated. Only those with known clinical information were analyzed for this statistical 

analysis. The information about disease duration (year), the dose of antipsychotic medication, 

and the scores of the Positive and Negative Syndrome Scale (PANSS) was available in the 

AMC and COBRE dataset [101]. The dose of antipsychotic medication was calculated as the 

olanzapine equivalent dose (mg/day) [102]. 

2.9. Statistical analysis  

The baseline characteristics between patients and healthy controls were compared by an 

independent t-test, chi-square test, or Fisher’s exact test. The group comparison for network 

properties was performed by an independent t-test and further adjusted for age and sex in a 

multivariable linear regression model. Similarly, a linear regression model was reapplied to 

estimate the relationships between clinical characteristics and each network properties. The 

independent variables in the regression model included age, sex, disease duration, the PANSS 

score, and medication dose. For the correction of multiple comparisons, i.e., a total of five 

regression analysis for each diffusion measure, we used Bonferroni correction. The P value 

below 0.01 was considered statistically significant in the regression models. The R packages 

(ver. 4.0.2) were used for statistical analyses [103]. 
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3. RESULTS

Performance of diffusion MRI harmonization 

The performance of the harmonization was validated by a comparison of mean FA before and 

after the procedure. The mean FA value was calculated from the white matter skeleton in the 

whole brain. The inter-site differences between the reference site and the target site are 

presented in [Table 4]. 

Before generating the probabilistic tractography, the mean FA was computed from the 

resampled diffusion MRI data from the reference sites as well as from the target sites. We 

excluded a total of 11 subjects whose FA value was 1.5 interquartile range below the first 

quartile of the mean FA. In total, the study sample comprised 189 patients with schizophrenia 

and 213 healthy controls. 
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Table 4. Inter-site differences between the reference and target sites before and after the 

harmonization

Value Site t P

UCLA AMC

Mean FA (SD)

Before harmonization 0.495 (0.017) 0.450 (0.016) 8.590 < 0.001***

After harmonization 0.495 (0.017) 0.477 (0.015) 3.454 0.001**

UCLA COBRE

Mean FA (SD)

Before harmonization 0.489 (0.017) 0.493 (0.015) −0.938 0.354

After harmonization 0.489 (0.017) 0.490 (0.013) −0.277 0.783

UCLA NMorphCH

Mean FA (SD)

Before harmonization 0.494 (0.014) 0.483 (0.047) 1.043 0.304

After harmonization 0.494 (0.014) 0.484 (0.045) 0.941 0.353

AMC = Asan Medical Center; COBRE = Center of Biomedical Research Excellence; FA = 

Fractional Anisotropy; NMorphCH = Neuromorphometry by Computer Algorithm Chicago; 

SD = Standard Deviation; UCLA = University of California Los Angeles Consortium for 

Neuropsychiatric Phenomic LA5c Study

** P < 0.01

*** P < 0.001
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Baseline characteristics

A total of 402 subjects comprising 189 patients with schizophrenia and 213 healthy controls 

were included in the analysis [Figure 1]. The mean age did not differ significantly between 

patients and healthy controls (34.1 ± 9.9 vs. 33.7 ± 10.1, respectively; t = -0.374, P = 0.709). 

More male subjects were included in schizophrenia group without statistical significance (65.6% 

vs. 59.6 %, respectively; X2 = 1.529, P = 0.216). Meanwhile, more right-handed subjects were 

enrolled in healthy control group (90.0% vs. 95.8%, P = 0.024) and the sites for imaging 

acquisition were significantly different between two groups (P < 0.001) [Table 5]. 
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Figure 1. Flow diagram of network analysis and k-means clustering
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Table 5. Baseline characteristics of patients with schizophrenia and healthy controls 

Characteristics Subjects Statistical tests

SZ (N = 189) HC (N = 213) t or X2 P

Age (mean, SD) 34.1 (9.9) 33.7 (10.1) -0.374 0.709

Sex 1.529 0.216

    Male (N, %) 124 (65.6) 127 (59.6)

    Female (N, %) 65 (34.4) 86 (40.4)

Handedness a 0.024*

    Right (N, %) 170 (90.0) 204 (95.8)

    Left (N, %) 13 (6.98) 4 (1.9)

    Both (N, %) 4 (2.1) 5 (2.4)

    NA (N, %) 2 (1.1) 0 (0)

Imaging sites 23.342 <0.001***

    AMC 48 (25.4) 23 (10.8)

    COBRE 57 (30.2) 73 (34.3)

    NMorphCH 40 (21.2) 32 (15.0)

    UCLA 44 (23.3) 85 (39.9)

a Calculated by a Fisher’s exact test

SZ = Schizophrenia; HC = Healthy control; SD = Standard deviation; AMC = Asan medical 

center; COBRE = Center of biomedical research excellence; NMorphCH = Neuromorphometry 

by computer algorithm Chicago; UCLA = University of California Los Angeles Consortium 

for Neuropsychiatric Phenomic LA5c Study

* P < 0.05

*** P < 0.001
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Local network analysis and k-means clustering

The nodal betweenness centrality, one of the local network measures was calculated from each 

ROIs and selected as a variable for further classification of the whole network. As a result, two 

distinct subnetworks were classified from the whole brain network; the subnetwork 1 consisted 

of 75 ROIs; the subnetwork 2 comprised 12 ROIs. The nodal betweenness centrality was 

significantly higher in the subnetwork 2 (mean = 198.0, standard deviation [SD] = 120.6 in the 

subnetwork 1; mean = 730.0, SD = 240.3 in the subnetwork 2). The mean value of betweenness 

centrality in each ROI is presented in [Figure 2]. In particular, the subnetwork 2 included 

anterior and posterior corpus callosum, caudate, pallidum, posterior and isthmus cingulate, and 

insula in both hemispheres. All other regions were included in the subnetwork 1. The lists of 

ROIs in the subnetwork 1 and 2 are presented in [Table 6]. 
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Figure 2. Distribution of betweenness centrality in each node from the whole structural network

ROI = Region of interest

Mean betweenness centrality is presented with 95% confidence interval    
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Table 6. Lists of brain regions in each subnetwork after k-means clustering

Subnetwork Regions of interest a

1 Middle posterior corpus callosum Medial orbitofrontal

Central corpus callosum Middle temporal 

Middle anterior corpus callosum Parahippocampal

Hippocampus Paracentral

Amygdala Pars opercularis 

Thalamus Pars orbitalis

Accumbens Pars triangularis

Ventral diencephalon Pericalcarine

Rostral anterior cingulate Postcentral

Caudal anterior cingulate Precentral

Banks of superior temporal sulcus Precuneus

Caudal middle frontal Rostral middle frontal 

Cuneus Superior frontal

Entorhinal Superior parietal

Fusiform Superior temporal 

Inferior parietal Supramarginal

Inferior temporal Frontal pole

Lateral occipital Temporal pole

Lateral orbitofrontal Transverse temporal 

Lingual 

2 Posterior corpus callosum Posterior cingulate

Anterior corpus callosum Isthmus cingulate

Pallidum Insula

Caudate 

a Each region includes left/right hemisphere counter-parts except for corpus callosum 
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Group comparison of global network properties in each subnetwork

The group comparison of global network measures in each subnetwork is presented in [Table 

7]. In the subnetwork 1 (75 ROIs), patients with schizophrenia had a lower level of clustering 

coefficient (0.016 ± 0.008 vs. 0.018 ± 0.010, P = 0.044) and overall connectivity (0.023 ± 0.005 

vs. 0.024 ± 0.006, P = 0.045). Global efficiency (0.073 ± 0.001 vs. 0.074 ± 0.008, P = 0.366), 

local efficiency (0.020 ± 0.009 vs. 0.022 ± 0.013, P = 0.052), and betweenness centrality 

(237.756 ± 32.565 vs. 239.153 ± 40.034, P = 0.703) did not show a statistical significance.

In the subnetwork 2 (12 ROIs), reduced global network measures were observed in patients 

compared with healthy controls. Patients with schizophrenia had a lower level of global 

efficiency (0.129 ± 0.021 vs. 0.121 ± 0.018, P = 2.11E-05), local efficiency (0.107 ± 0.023 vs. 

0.100 ± 0.021, P = 1.54E-03), clustering coefficient (0.089 ± 0.018 vs. 0.084 ± 0.017, P = 

4.22E-03), and overall connectivity (0.076 ± 0.012 vs. 0.072 ± 0.010, P = 1.40E-04). 

Betweenness centrality did not differ significantly between two groups (18.377 ± 4.429 vs. 

18.794 ± 4.599, P = 0.356). 



35

Table 7. Comparison of global network properties between patients with schizophrenia and 

healthy controls in each subnetwork

Network properties SZ (N = 189) HC (N = 213) t P

Subnetwork 1

BC (Mean, SD) 239.153 ± 40.034 237.756 ± 32.565 -0.381 0.703

CCo (Mean, SD) 0.018 ± 0.010 0.016 ± 0.008 -2.019 0.044*

GE (Mean, SD) 0.074 ± 0.008 0.073 ± 0.001 -0.905 0.366

LE (Mean, SD) 0.022 ± 0.013 0.020 ± 0.009 -1.952 0.052

OC (Mean, SD) 0.024 ± 0.006 0.023 ± 0.005 -2.015 0.045*

Subnetwork 2

BC (Mean, SD) 18.794 ± 4.599 18.377 ± 4.429 -0.924 0.356

CCo (Mean, SD) 0.084 ± 0.017 0.089 ± 0.018 2.878 4.22E-03**

GE (Mean, SD) 0.121 ± 0.018 0.129 ± 0.021 4.304 2.11E-05***

LE (Mean, SD) 0.100 ± 0.021 0.107 ± 0.023 3.188 1.54E-03**

OC (Mean, SD) 0.072 ± 0.010 0.076 ± 0.012 3.846 1.40E-04***

*P < 0.05 

**P < 0.01

***P < 0.001

SZ = Schizophrenia; BC = Betweenness centrality; CCo = Clustering coefficient; GE = 

Global efficiency; LE = Local efficiency; OC = Overall connectivity
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Multivariable linear regression of global network properties

The multivariable linear regression analysis was performed, which defined age, sex (male as 

reference), and group (healthy control as reference) as independent variables and each network 

measure as a dependent variable. 

In the subnetwork 1, a significant group difference was found in local efficiency (beta 

coefficient = 2.76E-03, P = 6.85E-03), clustering coefficient (beta coefficient = 2.51E-03, P = 

5.52E-03), and overall connectivity (beta coefficient = 1.40E-03, P = 5.24E-03) in the 

regression models. The beta coefficients indicated that these network properties had a positive 

relation with being patient group after adjusting for age and sex. Meanwhile, there was no 

significant association between group and other network measures such as global efficiency 

and betweenness centrality (P = 0.094, 0.910, respectively). All regression models were valid 

with a statistical significance of P < 0.001 [Table 8].

In the subnetwork 2, a significant difference between patients and healthy controls was 

observed in global efficiency (beta coefficient = -7.51E-03, P =3.77E-05), local efficiency (beta 

coefficient = -5.95E-03, P = 2.77E-03), clustering coefficient (beta coefficient = -4.20E-03, P 

= 8.11E-03), and overall connectivity (beta coefficient = -3.66E-03, P = 2.27E-04). Unlike the 

subnetwork 1, a negative association between group and the network measures was observed 

after adjusting for age and sex. Betweenness centrality, however, did not show a statistically 

significant difference (P = 0.558). All regression models were valid with a significance of P < 

0.001 [Table 9].
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Table 8. Linear regression model for global network properties in subnetwork 1

Network properties Coefficient (B) SE t P

BC < 2.20E-16***

Age 1.134 0.164 6.918 1.83E-11***

Sex (female) -20.812 3.388 -6.143 1.96E-09***

Group (SZ) -0.370 3.259 -0.113 0.910

CCo <2.20E-16***

Age -2.44E-04 4.52E-05 -5.389 1.22E-07***

Sex (female) 6.22E-03 9.35E-04 6.659 9.16E-11***

      Group (SZ) 2.51E-03 8.99E-04 2.790 5.52E-03**

GE < 2.20E-16***

Age -1.49E-04 3.33E-05 -4.467 1.03E-05***

Sex (female) 5.95E-03 6.87E-04 8.656 < 2.20E-16***

Group (SZ) 1.11E-03 6.61E-04 1.677 0.094

LE <2.20E-16***

Age -2.77E-04 5.11E-05 -5.419 1.04E-07***

Sex (female) 7.05E-03 1.06E-03 6.677 8.21E-11***

Group (SZ) 2.76E-03 1.02E-03 2.718 6.85E-03**

OC < 2.20E-16***

Age -1.24E-04 2.50E-05 -4.973 9.83E-07***

Sex (female) 3.66E-03 5.16E-04 7.086 6.30E-12***

Group (SZ) 1.40E-03 4.97E-04 2.808 5.24E-03**

** P < 0.01

*** P < 0.001

SE = Standard error; SZ = Schizophrenia; BC = Betweenness centrality; CCo = Clustering 

coefficient; GE = Global efficiency; LE = Local efficiency; OC = Overall connectivity
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Table 9. Linear regression model for global network properties in subnetwork 2

Network properties Coefficient (B) SE t P

BC 3.64E-12***

Age 0.123 0.021 5.774 1.82E-05***

Sex (female) -1.902 0.438 -4.339 1.82E-05***

Group (SZ) 0.247 0.422 0.586 0.558

CCo < 2.20E-16***

Age -5.72E-04 7.93E-05 -7.206 2.90E-12***

Sex (female) 9.86E-03 1.64E-03 6.016 4.05E-09***

      Group (SZ) -4.20E-03 1.58E-03 -2.661 8.11E-03**

GE < 2.20E-16***

Age -5.63E-04 9.07E-05 -6.206 1.36E-09***

Sex (female) 8.76E-03 1.87E-03 4.672 4.08E-06***

Group (SZ) -7.51E-03 1.80E-03 -4.168 3.77E-05***

LE < 2.20E-16***

Age -7.50E-04 9.95E-05 -7.537 3.27E-13***

Sex (female) 1.22E-02 2.06E-03 5.950 5.86E-09***

Group (SZ) -5.95E-03 1.98E-03 -3.011 2.77E-03**

OC < 2.20E-16***

Age -3.73E-04 4.95E-05 -7.542 3.15E-13***

Sex (female) 6.73E-03 1.02E-03 6.577 1.51E-10***

Group (SZ) -3.66E-03 9.84E-03 -3.721 2.27E-04***

** P < 0.01 

*** P < 0.001

SE = Standard error; SZ = Schizophrenia; BC = Betweenness centrality; CCo = Clustering 

coefficient; GE = Global efficiency; LE = Local efficiency; OC = Overall connectivity
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Robustness simulation of each subnetwork

The scatter plots showing changes of global network properties during the robustness 

simulation in the subnetwork 1 and 2 are illustrated in [Figure 2 & 3].

In the subnetwork 1, the robustness simulation showed that betweenness centrality, global 

efficiency, and overall connectivity had a tendency to decrease continuously as more nodes 

were sequentially deleted from the subnetwork. Both clustering coefficient and local efficiency 

increased during the simulation, however, an abrupt decrease in the values was observed after 

more than 60 nodes were omitted, showing an inverted U-shaped pattern. In schizophrenia, a 

higher degree of decrement was found in betweenness centrality, global efficiency, and overall 

connectivity whereas a lower degree of increment was found in other network properties 

[Figure 3].

In the subnetwork 2, all network properties including betweenness centrality, clustering 

coefficient, global efficiency, local efficiency, and overall connectivity continuously decreased 

during the robustness simulation. Unlike the subnetwork 1, a lower level of decrement was 

observed in patients when compared to healthy controls, except for betweenness centrality that 

showed a higher decrement in the value [Figure 4].

A linear mixed-effect model was performed to compare the inclination of the change of network 

properties. The group-by-number of deleted nodes interaction during the simulation was 

investigated. For the statistical model, the change of network properties was compared until 

60th nodes were eliminated from the subnetwork 1 and 10th nodes from the subnetwork 2, 

considering the linearity shown in the scatter plots.
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In the subnetwork 1, a significant group-by-number of deleted nodes interaction was found in 

global efficiency (coefficient = -5.21E-05, P < 0.001, marginal R2 = 0.686, conditional R2 = 

0.816). Similarly, a significant interaction was observed in local efficiency (coefficient = -

3.73E-05, P < 0.001, marginal R2 = 0.317, conditional R2 = 0.769), clustering coefficient 

(coefficient = -3.05E-05, P < 0.001, marginal R2 = 0.352, conditional R2 = 0.761), overall 

connectivity (coefficient = -4.37E-05, P < 0.001, marginal R2 = 0.102, conditional R2 = 0.455), 

and betweenness centrality (coefficient = -0.150, P < 0.001, marginal R2 = 0.748, conditional 

R2 = 0.823) [Table 10].

In the subnetwork 2, a significant group-by-number of deleted nodes interaction was found in 

global efficiency (coefficient = 1.15E-03, P < 0.001, marginal R2 = 0.433, conditional R2 = 

0.661), local efficiency (coefficient = 1.20E-03, P < 0.001, marginal R2 = 0.335, conditional R2 

= 0.581), clustering coefficient (coefficient = 9.25E-04, P = 0.004, marginal R2 = 0.255, 

conditional R2 = 0.528), overall connectivity (coefficient = 5.12E-04, P < 0.001, marginal R2 = 

0.312, conditional R2 = 0.627), except for betweenness centrality (coefficient = -0.055, P = 

0.017, marginal R2 = 0.819, conditional R2 = 0.862) [Table 11].
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Figure 3. Global network measures during robustness simulation in subnetwork 1

(a) Betweenness centrality

(b) Clustering coefficient
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(c) Global efficiency

(d) Local efficiency
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(e) Overall connectivity
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Figure 4. Global network measures during robustness simulation in subnetwork 2

(a) Betweenness centrality

(b) Clustering coefficient
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(c) Global efficiency

(d) Local efficiency
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(e) Overall connectivity
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Table 10. Linear mixed effect model for network robustness simulation in subnetwork 1

(a) Betweenness centrality

Coefficient SE t P

(Intercept) 261.992 5.239 50.006 < 0.001***

Number of deletions -3.570 1.57E-02 -227.452 < 0.001***

Age 0.645 0.144 4.490 < 0.001***

Sex -11.186 2.179 -5.134 < 0.001***

Group 5.719 7.460 0.767 0.444

Group * Number of deletions -0.150 2.29E-02 -6.543 < 0.001***

Group * Age 1.25E-02 0.210 5.95E-02 0.953

(b) Clustering coefficient

Coefficient SE t P

(Intercept) 1.91E-02 2.76E-03 6.921 < 0.001***

Number of deletions 5.20E-04 4.21E-06 123.598 < 0.001***

Age -2.41E-04 7.61E-05 -3.168 0.001**

Sex 7.63E-03 1.15E-03 6.618 < 0.001***

Group 6.61E-03 3.94E-03 1.679 0.094

Group * Number of deletions -3.05E-05 6.13E-06 -4.986 < 0.001***

Group * Age -1.10E-04 1.11E-04 -0.989 0.323
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(c) Global efficiency

Coefficient SE t P

(Intercept) 7.76E-02 1.35E-03 57.302 < 0.001***

Number of deletions -6.62E-04 3.18E-06 -208.365 < 0.001***

Age -1.32E-04 3.72E-05 -3.545 < 0.001***

Sex 3.66E-03 5.64E-04 6.481 < 0.001***

Group 1.23E-03 1.93E-03 0.637 0.525

Group * Number of deletions -5.21E-05 4.62E-06 -11.255 < 0.001***

Group * Age 1.31E-05 5.43E-05 0.240 0.810

(d) Local efficiency

Coefficient SE t P

(Intercept) 2.40E-02 2.99E-03 8.026 < 0.001***

Number of deletions 4.90E-04 4.26E-06 115.233 < 0.001***

Age -2.66E-04 8.23E-05 -3.231 0.001**

Sex 8.34E-03 1.25E-03 6.690 < 0.001***

Group 7.33E-03 4.26E-03 1.722 0.086

Group * Number of deletions -3.73E-05 6.20E-06 -6.015 < 0.001***

Group * Age -1.20E-04 1.20E-05 -1.000 0.318
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(e) Overall connectivity

Coefficient SE t P

(Intercept) 2.36E-02 7.24E-04 32.565 < 0.001***

Number of deletions 7.18E-05 1.77E-06 40.582 < 0.001***

Age -6.18E-05 1.99E-05 -3.110 0.002**

Sex 1.92E-03 3.01E-04 6.369 < 0.001***

Group 1.64E-03 1.03E-03 1.592 0.112

Group * Number of deletions -4.37E-05 2.58E-06 -16.960 < 0.001***

Group * Age -4.00E-09 2.90E-05 -1.30E-04 0.095

** P < 0.01

*** P < 0.001

SE = Standard error 
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Table 11. Linear mixed effect model for network robustness simulation in subnetwork 2

(a) Betweenness centrality

Coefficient SE t P

(Intercept) 17.703 0.384 46.078 < 0.001***

Number of deletions -1.812 1.57E-02 -115.149 < 0.001***

Age 4.86E-02 1.04E-02 4.697 < 0.001***

Sex -0.608 0.157 -3.876 < 0.001***

Group 0.699 0.547 1.278 0.202

Group * Number of deletions -5.47E-02 2.29E-02 -2.386 0.017

Group * Age -1.05E-02 1.51E-02 -0.695 0.488

(b) Clustering coefficient

Coefficient SE t P

(Intercept) 9.87E-02 6.88E-03 14.357 < 0.001***

Number of deletions -7.99E-03 2.19E-04 -36.425 < 0.001***

Age -1.33E-05 1.87E-04 -0.071 0.943

Sex 6.44E-03 2.83E-03 2.273 0.024

Group 1.97E-02 9.79E-03 2.016 0.044

Group * Number of deletions 9.25E-04 3.19E-04 2.898 0.004**

Group * Age -6.27E-04 2.73E-04 -2.300 0.022
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(c) Global efficiency

Coefficient SE t P

(Intercept) 0.136 4.50E-03 30.223 < 0.001***

Number of deletions -7.54E-03 1.35E-04 -55.934 < 0.001***

Age -3.60E-04 1.22E-04 -2.942 0.003**

Sex 8.88E-03 1.86E-03 4.781 < 0.001***

Group -1.55E-03 6.40E-03 -0.242 0.809

Group * Number of deletions 1.15E-03 1.96E-04 5.857 < 0.001***

Group * Age -1.90E-04 1.79E-04 -1.061 0.289

(d) Local efficiency

Coefficient SE t P

(Intercept) 0.118 7.09E-03 16.648 < 0.001***

Number of deletions -1.00E-02 2.25E-04 -44.538 < 0.001***

Age -8.17E-05 1.93E-04 -0.423 0.672

Sex 7.97E-03 2.92E-03 2.725 0.007**

Group 1.85E-02 1.01E-02 1.835 0.067

Group * Number of deletions 1.20E-03 3.28E-04 3.652 < 0.001***

Group * Age -6.40E-04 2.82E-04 -2.272 0.024
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(e) Overall connectivity

Coefficient SE t P

(Intercept) 7.66E-02 3.16E-03 24.251 < 0.001***

Number of deletions -3.80E-03 8.55E-05 -44.377 < 0.001***

Age -1.61E-04 8.62E-05 -1.867 0.063

Sex 5.25E-03 1.31E-03 4.016 < 0.001***

Group 3.23E-03 4.50E-03 0.719 0.473

Group * Number of deletions 5.12E-04 1.25E-04 4.110 < 0.001***

Group * Age -1.83E-04 1.26E-04 -1.456 0.146

** P < 0.01

*** P < 0.001

SE = Standard error
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Correlation with clinical characteristics 

A total of 107 patients with schizophrenia were recruited from AMC and COBRE. However, 

clinical information about either disease duration or the PANSS score was missing or incorrect 

in 19 subjects. As a result, 88 patients with schizophrenia comprising 57 males (64.7%) and 31 

females (35.3%) were included for further analysis. The comparison of clinical characteristics 

between male and female patients are presented in [Table 12]. Age, the PANSS positive and 

negative score, and medication dose were not significantly different between male and female 

patients (36.2 vs. 32.3, P = 0.114; 15.88 vs. 15.74, P = 0.927; 17.46 vs. 15.84, P = 0.240; 15.08 

vs. 17.03, P = 0.469; respectively). On the other hand, disease duration was longer in male 

patients than female patients with a statistical significance (13.67 vs. 6.90, P = 0.009). A Mann-

Whitney U test indicated that there was significant difference (W = 1057.5, P = 0.0227) 

between male and female patients for disease duration.

A multivariable linear regression model was performed to investigate the association between 

network properties that were significantly different between patients and healthy controls and 

other clinical factors in each subnetwork. In the subnetwork 1, local efficiency had a significant 

association with being female (coefficient = 8.51E-03, P = 2.81E-03) and disease duration 

(coefficient = -6.86E-04, P = 1.21E-04). Similarly, clustering coefficient had an association 

with being female (coefficient = 7.56E-03, P = 2.80E-03) and disease duration (coefficient = -

6.06E-04, P = 1.29E-04). Overall connectivity had a positive association with being female 

(coefficient = 4.22E-03, P = 2.42E-03) and a negative association with disease duration 

(coefficient = -3.43E-04, P = 8.60E-05) [Table 13]. All statistical models were valid with a 

clinical significance at P < 0.001. 
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In the subnetwork 2, global efficiency was significantly associated with age (coefficient = -

6.38E-04, P =5.94E-03) whereas local efficiency, clustering coefficient, and overall 

connectivity were not associated with clinical factors including age, sex, medication dose, 

disease duration, and the PANSS score [Table 14]. All regression models were statistically 

significant at P < 0.01. 
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Table 12. Comparison of clinical characteristics between male and female patients with known 

clinical information

Male (n = 57) Female (n = 31) t P

Age, yr (SD) 36.2 (12.4) 32.3 (10.2) 1.598 0.114

PANSS-P score (SD) 15.88 (6.56) 15.74 (6.62) 0.092 0.927

PANSS-N score (SD) 17.46 (5.52) 15.84 (6.40) 1.187 0.240

Medication dose, mg/day (SD) a 15.08 (11.46) 17.03 (11.83) -0.730 0.469

Disease duration, yr (SD) 13.67 (13.70) 6.90 (9.78) 2.678 0.009**

a Calculated as olanzapine equivalent dose

** P < 0.01 

SD = Standard Deviation, PANSS-P = Positive and Negative Syndrome Scale-Positive, 

PANSS-N = Positive and Negative Syndrome Scale-Negative
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Table 13. Association between network properties and clinical characteristics in subnetwork 1

Coefficient (B) SE t P

LE

  Age, yr, 1.07E-04 1.77E-04 0.603 0.548

  Sex (female) 8.51E-03 2.76E-03 3.084 2.81E-03**

Medication dose a, 

mg/day

-1.27E-05 1.13E-04 -0.112 0.911

  Disease duration, 

yr

-6.86E-04 1.70E-04 -4.044 1.21E-04***

  Total PANSS 

score

-4.99E-05 1.24E-04 -0.401 0.690

CCo

  Age, yr, 9.42E-05 1.58E-04 0.599 0.551

  Sex (female) 7.56E-03 2.45E-03 3.086 2.80E-03**

Medication dose, 

mg/day

-1.20E-05 1.00E-04 -0.119 0.905

  Disease duration, 

yr

-6.06E-04 1.51E-04 -4.027 1.29E-04***

  Total PANSS 

score

-4.40E-05 1.10E-04 -0.398 0.692

OC

  Age, yr, 6.72E-05 8.65E-05 0.777 0.440

  Sex (female) 4.22E-03 1.35E-03 3.134 2.42E-03**

Medication dose, 

mg/day

-8.13E-06 5.52E-05 -0.147 0.883
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  Disease duration, 

yr

-3.43E-04 8.27E-05 -4.14 8.60E-05***

  Total PANSS 

score

-2.38E-05 6.07E-05 -0.392 0.696

a Calculated as olanzapine equivalent dose 

** P < 0.01 

*** P < 0.001 

SE = Standard error; LE = Local efficiency; CCo = Clustering coefficient; OC = Overall 

connectivity; PANSS = Positive and negative syndrome scale
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Table 14. Association between network properties and clinical characteristics in subnetwork 2

Coefficient (B) SE t P

GE

  Age, yr -6.38E-04 2.26E-04 -2.828 5.94E-03**

  Sex (female) 4.75E-03 3.51E-03 1.352 0.180

  Medication dose a, 

mg/day

-2.77E-04 1.44E-04 -1.921 0.058

  Disease duration, 

yr

1.03E-04 2.16E-04 0.477 0.635

  Total PANSS 

score

-4.69E-05 1.58E-04 -0.296 0.768

LE

  Age, yr, -4.60E-04 2.51E-04 -1.830 0.071

  Sex (female) 8.27E-03 3.91E-03 2.116 0.038

  Medication dose, 

mg/day

-3.27E-04 1.60E-04 -2.040 0.045

  Disease duration, 

yr

-4.93E-04 2.40E-04 -2.052 0.043

  Total PANSS 

score

1.44E-04 1.76E-04 0.818 0.416

CCo

  Age, yr -2.99E-04 2.10E-04 -1.425 0.158

  Sex (female) 8.09E-03 3.26E-03 2.480 0.015

Medication dose, 

mg/day

-2.72E-04 1.34E-04 -2.031 0.046
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  Disease duration, 

yr

-4.84E-04 2.00E-04 -2.415 0.018

  Total PANSS 

score

1.50E-04 1.47E-04 1.021 0.310

OC

  Age, yr -2.16E-04 1.18E-04 -1.833 0.071

  Sex (female) 4.62E-03 1.83E-03 2.520 0.014

Medication dose, 

mg/day

-1.62E-04 7.51E-05 -2.162 0.034

  Disease duration, 

yr

-2.00E-04 1.13E-04 -1.775 0.080

  Total PANSS 

score

9.69E-06 8.26E-05 0.117 0.907

a Calculated as olanzapine equivalent dose 

** P < 0.01 

SE = Standard error; LE = Local efficiency; CCo = Clustering coefficient; OC = Overall 

connectivity; PANSS = Positive and negative syndrome scale
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4. DISCUSSION

A total of 402 subjects comprising 189 patients and 213 healthy controls were included in our 

study. There was no significant difference of age and sex between two groups whereas more 

right-handed subjects were included in healthy controls. The diffusion MRI harmonization was 

performed to integrate neuroimaging data from four different projects. The k-means clustering 

algorithm divided the subnetwork 1 (75 ROIs) and 2 (12 ROIs) from the whole structural 

network, which was obtained from the probabilistic tractography. The subnetwork 2 included 

anterior and posterior corpus callosum, caudate, pallidum, posterior half of cingulate, and 

insula in both hemispheres. In the subnetwork 1, patients had a higher level of clustering 

coefficient and overall connectivity when compared to healthy controls while they had a lower 

level of clustering coefficient, local efficiency, global efficiency, and overall connectivity in 

the subnetwork 2. After adjusting for age and sex, clustering coefficient, local efficiency, and 

overall connectivity were higher in schizophrenia in the subnetwork 1 whereas clustering 

coefficient, local efficiency, global efficiency, and overall connectivity were lower in the 

subnetwork 2.

The robustness simulation and a linear mixed-effect model indicated that a more abrupt 

decrease was observed in betweenness centrality, global efficiency, and overall connectivity 

while a more gradual increase was found in local efficiency and clustering coefficient in the 

subnetwork 1 of schizophrenia group. On the other hand, global efficiency, local efficiency, 

clustering coefficient, and overall connectivity decreased more slowly in the subnetwork 2. 

Among all participants, 88 patients with known clinical information were included in the 

further analysis. Approximately two-thirds of the patients were male although there was no 

significant difference of age, the PANSS score, and daily medication dose between male and 
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female patients, except for disease duration. In the subnetwork 1, a significant negative 

association was observed between disease duration and network properties such as local 

efficiency, clustering coefficient, and overall connectivity while a positive association was 

observed between these network properties and being female. In the subnetwork 2, only age 

was negatively associated with global efficiency when adjusting for all other variables. 

Betweenness centrality, one of centrality measures in network analysis was used to discriminate 

two subnetworks in our study. This approach had rationales as follows: First of all, previous 

studies on graph theoretical analysis suggested betweenness centrality serves as an important 

feature that could distinguish schizophrenia patients from unaffected subjects [70, 71]. Second, 

patients with schizophrenia have a decreased level of betweenness centrality in the whole 

structural network [104] as well as in a specific ROI such as parietal hub [105] and frontal hub 

[44], which are suggested to be associated with the symptom manifestation of schizophrenia 

[106]. Lastly, the centrality measure at a specific ROI was decreased in certain nodes while it

was reversely increased in other regions, indicating the less optimal organization of structural 

network in schizophrenia [45]. Therefore, we categorized every node into either the 

subnetwork 1 or the subnetwork 2 according to the betweenness centrality at each ROI’s level. 

Our results showed that a distinct subnetwork could be distinguished from the whole structural 

network. A smaller subnetwork, namely the subnetwork 2, consisted of 12 ROIs; anterior and 

posterior corpus callosum, caudate, pallidum, posterior half of cingulate, and insula in both 

hemispheres. These brain regions were considered to have a higher nodal betweenness 

centrality when compared to other regions from the subnetwork 1. Therefore, the group of 

nodes (12 ROIs) characterized by high centrality could be regarded as “hubs” in the structural 

network. The hubs are group of nodes that have a high level of nodal degree and betweenness 
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centrality and are considered be in the middle of network connections and thus responsible for 

the control of information flow within the network [49]. There is evidence that central hubs 

exist in fronto-temporal, limbic, paralimbic, and subcortical areas of human brain [107-110]. 

The nodes with high centrality in the subnetwork 2 were in line with a previous study that 

showed brain regions with high betweenness centrality included major white matter tracts that 

included corpus callosum, cingulum, and several projections connecting the subcortical areas 

with cortical areas such as caudate nucleus, insula, and pallidum [111]. However, other central 

regions such as frontal and parietal hubs were not included in the subnetwork 2. This may be 

the result of methodological differences and heterogeneity of study participants. For example, 

several human brain hubs such as superior frontal, superior parietal, and precuneus [112] were 

not categorized as the subnetwork 2 despite the high value of betweenness centrality because 

the number of clusters from k-means clustering algorithm was arbitrary.

We examined the structural connectivity in each subnetwork because both central and non-

central subnetworks could be associated with schizophrenia. Alloza et al. suggested that a 

characteristic of schizophrenia is an alteration of structural connectivity that is found not only 

in brain hubs but also in non-central regions [69]. In other words, the structural connectivity 

abnormalities of the average network derived from the whole brain are caused by central and 

non-central subnetworks. While most preceding research focused on structural dysconnectivity 

in hub nodes [45, 48], they emphasized the role of non-central networks because the role of 

hubs might be replaced by other brain regions because of the apparent hierarchical 

disorganization of schizophrenia [48]. In other words, schizophrenia should be considered in 

the context of the imbalanced connectivity within each subnetwork. In this point of view, the 

different network connectivity observed in the subnetwork 1 and 2 could reflect the imbalanced 
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connections within each small-worlds.

In the subnetwork 1, patients had a higher level of local efficiency and clustering coefficient. 

Because these network properties reflect the degree of network segregation, patients with 

schizophrenia were thought to have a more localized subnetwork 1 when compared to healthy 

controls. Moreover, overall connectivity, a measure for the strength of overall connections, was 

higher in schizophrenia patients, which suggested that the connections within the subnetwork

1 were stronger. Considering the subnetwork 1 consisted of a majority of the nodes in the whole 

network, this finding was in line with previous studies that the structural network in 

schizophrenia is more segregated than in healthy subjects [42, 45]. Unlike preceding research 

which suggested a less integrated connectivity pattern in schizophrenia, global efficiency did 

not show a significant difference between two groups in our study. This discrepancy could 

happen because the subnetwork 1 did not include many nodes with high centrality. In other 

words, deficits of white matter tracts with many connections (i.e. the subnetwork 2) could 

disrupt the network integration in both patients and healthy controls [47, 107]. 

In the subnetwork 2, local efficiency, clustering coefficient, global efficiency, and overall 

connectivity was lower in schizophrenia. In other words, patients had a less segregated and 

integrated, and weaker network connections within the subnetwork 2. When highly central 

nodes are closely connected among themselves, the group of nodes can be termed “rich-club”, 

meaning the highly interconnected club of nodes with rich connections [113]. The human 

brain’s rich club was detected in frontoparietal hubs as well as other regions including cingulate 

cortex and insula [43, 113]. Therefore, the subnetwork 2 in our study could also be regarded as 

a rich-club organization although frontoparietal cortical hubs were not included. This disparity 

might happen owing to methodological differences or even be derived from the decrease of the 
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number of hubs which is observed among schizophrenia patients [44-46, 114]. The disruption 

of this rich club organization was suggested to interfere with the whole brain’s integrity because 

it is responsible for the appropriate information flow among remote brain regions [115]. Our 

results were consistent with previous reports that global efficiency was lower [44, 116] and 

connectivity was decreased [117] in the rich club of schizophrenia. The less segregated network 

characteristics in the subnetwork 2 was also thought to reflect the aberrant structural 

dysconnectivity in schizophrenia. To the best of our knowledge, however, little is known about 

the impact of impaired segregation on the rich club. Moreover, caution must be taken when 

interpreting our results because the subnetwork 2 comprised a small number of nodes, which 

could limit the possibility of further analysis of network properties at a smaller regional level. 

Each ROIs included in the subnetwork 2 could be further understood at the regional level. First, 

structural abnormalities of corpus callosum in schizophrenia had been consistently reported 

since year of 1994 [118, 119]. Diffusion tensor imaging revealed that patients had a reduced 

level of FA in the splenium of corpus callosum [120, 121]. However, there was a lack of 

literature on structural connectivity of corpus callosum in schizophrenia although patients with 

bipolar affective disorder had a decreased level of global and local efficiency in their structural 

networks, of which the impaired network organization was most prominent in corpus callosum 

[122]. Second, a decreased level of network segregation and integration was observed in basal 

ganglia of schizophrenia patients [123, 124]. This region was also associated with the decreased 

functional connectivity according to a recent meta-analysis [125]. Third, the aberrance of 

structural connectivity was observed in posterior cingulate of schizophrenia patients where the 

mixed results for functional connectivity were reported in the same region [99, 126]. This 

discrepancy might be regarded as a core pathophysiology of schizophrenia, that is the 
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decoupling of structural and functional connectivity in posterior cingulate. On the other hand, 

functional connectivity in schizophrenia would be more complex than structural connectivity 

although they are closely related to each other [127, 128]. Fourth, insular hub was suggested 

to be the most severely damaged ROI in a previous study on structural network of 

schizophrenia. Specifically, the connection strength was decreased in the region, which was in 

accordance with our results [110]. Insula has a wide range of bidirectional connections to other 

brain cortices and limbic areas and integrates external sensory stimuli such as auditory or visual 

stimuli, information with emotional value, and somatic pain. Therefore, psychotic symptoms 

could occur when insula is damaged because the affected person loses the ability to integrate 

enormous amount of information or to relate to other person’s emotional experiences [129, 

130]. 

As more nodes were sequentially excluded from the subnetwork 1, a gradual decrease was 

detected in betweenness centrality, global efficiency, and overall connectivity, indicating that 

the integrity and strength of the subnetwork and overall importance of 75 nodes were disrupted 

from the additive damages. The decrement was more prominent in patients with a statistical 

significance, which reflected the vulnerability of the subnetwork 1 in schizophrenia [100]. Our 

results were consistent with previous studies which showed the structural connectivity was 

more vulnerable to either random or targeted damages in schizophrenia patients [123, 131]. 

Meanwhile, local efficiency and clustering coefficient, the network properties implying the 

degree of network segregation continuously increased, indicating that the subnetwork 1 became 

not only less integrated but also more segregated during the simulation. The increment was 

more profound in healthy subjects than in patients. This gap between two groups was thought 

to occur because the subnetwork 1 of patients was already more segregated before any nodal 
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damage. After more than 60 nodes were eliminated, an abrupt change of network properties 

was detected, which was probably an error derived from the small number of residual nodes. 

Robustness simulation of the subnetwork 2 showed that all network measures declined as more 

nodes were eliminated, meaning that targeted damages induced the disruption of the structural 

connectivity. The subnetwork 2 was considered more robust in schizophrenia patients than in 

healthy controls because the decrease of network properties was more prominent in healthy 

participants. There is evidence that schizophrenia patients have a more robust structural 

network; their network measures remained stable during the simulation of targeted damages 

[132] or random damages [10]. This phenomenon was also observed among childhood-onset 

schizophrenia or unaffected relatives of schizophrenia patients [132, 133]. The stableness of 

network properties in schizophrenia was suggested to be associated with a compensation for 

the disrupted local networks [133] and might have a survival benefit from the local brain 

damages [10]. However, most preceding research on the network robustness was based on 

fMRI data [10, 132, 133], and adopted a binary, undirected graph or evaluated the robustness 

only with the global efficiency [132]. As aforementioned, the interpretation of the result should 

be made with caution because the subnetwork 2 consisted of a smaller number of nodes.

The clinical correlation with network properties showed that disease duration had a negative 

association with local efficiency, clustering coefficient, and overall connectivity in the 

subnetwork 1. The longer the duration of illness, the weaker and less segregated network 

connectivity in the subnetwork 1. This was in accordance with a previous study in that the 

decrease of local efficiency, clustering coefficient, and connectivity strength was associated 

with the duration of schizophrenia [55]. Palaniyappan et al. suggested that the change of the 

structural connectivity in non-hub regions can occur because of cortical reorganization which 
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is a compensatory mechanism for the diminished central role of brain hubs [10, 123] where the 

progressive structural changes are profound during the early phase of schizophrenia [134]. In 

other words, the difference of network properties in non-central regions, that is the subnetwork 

1, is evident in early schizophrenia and decreases with the longer disease duration. It is further 

evidenced by previous suggestions that the progressive change of brain structure occurs during 

the first two years after the development of schizophrenia [135, 136]. When we assumed the 

increased segregation and strength in the subnetwork 1 of schizophrenia as a reactive change 

as discussed before, this compensation was considered to decrease with the longer duration of 

illness. Indeed, disease duration of the patients in the AMC was mostly less than two years. 

Moreover, female patients had a higher level of network measures in the regression model, 

which was in line with our interpretation in that disease duration of male patients was almost 

twice the duration of female patients. Meanwhile, no significant association between disease 

duration and network properties was observed in the subnetwork 2 although the decreased level 

of connectivity strength was suggested to be associated with the duration of illness in the 

connections between hub regions [117]. In our results, the level of network segregation was 

negatively associated with disease duration if the Bonferroni correction was not used. However, 

there was a lack of literature on the network segregation within the connections between hubs 

to the best of our knowledge. A negative relationship between age and global efficiency in the 

subnetwork 2 was reasonable because the integration in hub regions decreases linearly with 

age [137]. The PANSS score was not significantly associated with the network properties in 

our study, which might suggest that the disruption of network was rather trait-dependent than 

state-dependent. 

There are some limitations to our study that should be taken into consideration. First, mean FA 
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in the AMC dataset was significantly higher than in the UCLA dataset after the diffusion MRI 

harmonization. This was probably because most healthy subjects in the AMC dataset (20 out 

of 23) were included as a training set whereas 20 healthy subjects from the UCLA dataset were 

sampled in a random manner. Plus, the multi-site diffusion MRI harmonization required the 

neuroimaging data to be very well matched for not only age and sex but also socio-economic 

status and intelligence level, which were not available from the open public databases. 

Nonetheless, we could minimize the difference of mean FA of the AMC data after the 

harmonization procedure, thus processing the data more suitable for further analysis. Second, 

the network properties were adjusted for age, sex, and group in the regression models. Other 

clinical factors such as intellectual performance [138, 139] or antipsychotics use [140] could 

affect the measurements, however, such information could not be fully obtained from the 

database. Third, the goodness-of-fit statistics was lower in the linear mixed-effect model of the 

robustness simulation of the subnetwork 2. As only 12 nodes were included in the subnetwork 

2, a caution should be taken when interpreting the changes of the network measures during the 

simulation. Fourth, the number of patients with known clinical information was small, thus 

limiting the generalizability of the clinical correlation analysis. Lastly, we divided the whole 

structural network into two separate subnetworks experimentally. However, the number of 

clusters should be better determined when it is calculated optimally [141]. Future studies 

should consider the optimal number of clusters when investigating subnetworks. Moreover, 

other clinical features such as fMRI, EEG, other clinical symptom scales, genetic information, 

or neuroimaging of unaffected relatives could be included in the network examination. 

Nevertheless, the strength of our study is that we included a large sample of 189 patients with 

schizophrenia and 213 healthy controls. Before the network analysis, we performed the quality 



69

control of structural MRIs and integrated DWIs obtained from four different sites through the 

harmonization procedure. Moreover, we examined the network properties in two distinct 

subnetworks, which was suggested to be a more appropriate method in terms of small-world 

property of human brain and the difference of centrality measure observed in schizophrenia. In 

addition, we simulated the robustness of each subnetwork and investigated the association 

between the network properties and clinical characteristics to elaborate the structural 

dysconnectivity in schizophrenia.
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5. CONCLUSION 

In summary, the structural network of schizophrenia can be divided into two subnetworks based 

on nodal betweenness centrality. The central subnetwork was less integrated and segregated 

whereas the non-central subnetwork was more segregated, stronger, and vulnerable to targeted 

damages. The disrupted connectivity in the non-central subnetwork was significantly 

associated with disease duration. We conclude that the integration, segregation, and robustness 

of structural network in schizophrenia are differently manifested between central and non-

central subnetworks.
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국문요약

배경: 조현병의 연결성 장애는 네트워크 분석을 통해 증명할 수 있다. 뇌가 작은

세상 네트워크의 집합체라는 점과 특정 뇌 구역에 국한된 이상 소견이 조현병의

발생 기전을 설명할 수 없다는 점 때문에 구조연결성은 더 작은 서브네트워크 단

위에서 연구되어야 한다.

목표: 조현병의 구조연결성 장애를 두 개의 서브네트워크 단위에서 분석하고자

한다.

방법: 공공 데이터베이스를 이용해 뇌확산 영상으로 구조 네트워크를 구성한다.

노드 단위에서의 매개 중심성을 기준으로 k-means 알고리즘으로 두 개의 서브네

트워크를 구성한다. 각 서브네트워크에서 환자군과 대조군의 네트워크 지표를 비

교하고 견고성 시뮬레이션과 임상 지표와의 관련성을 분석한다.

결과: 1번 서브네트워크는 75개의 ROI로 구성되고 2번 서브네트워크는 중심성이

높은 12개의 ROI로 구성되었다. 로컬 효율성, 클러스터링 계수, 전반적 연결성은

1번 서브네트워크에서 환자가 더 높았는데 이들 지표와 글로벌 효율성이 2번 서

브네트워크에서는 환자가 더 낮았다. 조현병 환자의 1번 서브네트워크가 연속적

데미지에는 더 견고하였고 1번 서브네트워크에서 상승한 3개의 지표는 유병 기간

과 음의 상관을 보였다.

결론: 높은 중심성 서브네트워크는 분리와 통합 정도가 낮았으며 낮은 중심성 서

브네트워크는 분리와 연결 정도가 높고 데미지에 견고했다. 낮은 중심성 네트워

크의 구조연결성 장애는 유병 기간과 연관되어 있다. 따라서, 조현병 환자의 구

조 연결성은 높은 중심성과 낮은 중심성 서브네트워크에서 다르게 나타난다.
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