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ABSTRACT
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A High-efficiency Real-time Facial Emotion Recognizer Using Deep Learning

Architectures

by Muhamad Dwisnanto Putro

Facial emotion recognition is a method to localize and predict human facial ex-

pressions. It identifies the texture of face elements in an interaction process. Besides,

this domain is nonverbal communication that conveys facial indications to show

feelings. Facial expression recognition work is a trending study field in human-robot

interaction. This research plays an important role in supporting assistive robot per-

formance. A real-time system is required to increase the robot’s abilities and prevent

misunderstandings caused by dynamic personal activities. Moreover, a practical

application requests real-time performance from the computer vision technique on

low-cost computing devices.

This work in this manuscript focuses on human facial emotion recognition in

a real-world scenario that estimates the location of faces and fast identifies their

expressions. The network efficiency does not ignore the predicted performance of

each module. Therefore, the research in this thesis proposes high performance and

efficiency using deep learning architecture for detecting face area and classifying

the emotion from a live streams video. Each module works separately and operates

smoothly by achieving real-time speed.

A complete real-time facial emotion recognizer consists of two-stage CNN-based

architecture containing a face detector and a facial expression classification. The pro-

posed face detection plays an essential role in filtering the face area from the back-

ground. It also avoids the prediction error of the single-label classification system

when there is more than one face in an image. It utilizes several shallow layers
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of convolution that form a lightweight architecture implemented as a real-time de-

tector. However, this does not neglect its precision for localizing faces of varying

sizes and poses. The proposed face detector contains two main parts, a backbone to

discriminate specific components and multi-level detection to estimate the multiple-

scale faces location. It also utilizes several techniques to improve the training per-

formance, such as balanced loss function and tweaking of parameters configuration.

The facial expression classification module categorizes seven fundamental hu-

man emotions: neutral, fear, surprise, disgust, sad, happy, and anger. This system

also focuses on the efficiency of computational and parameters to support lightweight

and fast integrated systems. An efficient facial expression framework proposes a se-

quential attention network to enhance the backbone performance. It includes three

modules, global attention to highlight the global context of features, channel atten-

tion, and dimension attention, which concentrate on the relationship of local ele-

ments in the channel and spatial dimension. Besides, It offers the Efficient Partial

Transfer (EPT) module as an efficient extractor of facial features from an image.

Augmentation of various facial poses increases reliability and capability to recog-

nize non-frontal facial expressions. It supports the proposed system’s performance,

enabling implementation in a real-world scenario.

Several experimental results for each module show satisfying performance to

each benchmark dataset and achieve competitive accuracy from competitors. It is

due to the proposed modules that increase performance without producing redun-

dant computing and parameters. The light network can precisely learn the char-

acteristics of specific and global features in the data variation. Additionally, system

integration demonstrates that the emotion recognizer operated at real-time speed on

the CPU-based devices and an edge device.
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Chapter 1

Introduction

1.1 Motivation and Background

Facial expressions, voice tone, and body gestures are communication approaches

to identify human emotions. This research topic is a hot issue in computer vision

(Xi et al., 2021) and plays an important position in Human-robot Interaction (HRI).

It has the main task of connecting and synchronizing information between robots

and users. Therefore, the misunderstanding of perception will impact the mistake of

robot action and incompatibility with the purpose. Currently, robots are developing

to collaborate with users, especially an assistive robot that needs social interaction

techniques (Putro and Jo, 2018). It aims to help the daily activities of humans, even

working all the time without compromising.

The proportion of interaction activities is 7% of the affective information is con-

veyed through words, 38% is delivered by tone, and 55% through facial expressions

(Rawal and Stock-Homburg, 2021). This fact shows that facial emotions are needed

to support affective communication. It encourages a social robot to comprehend

human emotions correctly. On the other hand, HRI needs this robot to cooperate

with users. The emotional information has to be fast identified by a robot. Thus,

the approach is required to operate at a real-time speed so that robots can assist

human activities efficiently. It is also driven by practical applications that demand

computer vision methods to work quickly on low computing devices and adapt in

real case scenarios. Figure 1.1 shows the illustration of a real-time facial emotion

recognizer for human-robot interaction.
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Predicted emotion 
categories

Prediction : Happy

Prediction : Fear

FIGURE 1.1: Illustration of a real-time face emotion recognizer.

Facial expression recognition is a classification method that predicts facial emo-

tion categories by identifying critical facial features. Paul Ekman has described the

six basic emotions: angry, disgust, happiness, surprise, sadness, and afraid (Ekman,

1992). Each facial expression contains different characteristics and specific correla-

tions of features between the elements (Li and Deng, 2020). Eyes, cheeks, nose, eye-

brows, lips, forehead, and mouth are interesting facial features and have a crucial

influence on predicting expression (Kumari, Rajesh, and Pooja, 2015). In addition,

the shape and texture of these features show different characteristics in each gesture.

This composition is informative knowledge for the final decision of the prediction.

Previous works have successfully predicted facial expression based on the con-

ventional method (Hu et al., 2019; He and Chen, 2020). Hu et al. have used local de-

scriptors to obtain specific facial components. Center-Symmetric Local Signal Mag-

nitude Pattern (CS-LSMP) filters facial texture from an input image. It captures the

difference of gray information from neighbor pixels and represents it in magnitude

information. In addition, He et al. have applied a traditional extractor to recognize

person-independent for recognizing the expressions. It improves the LBP (Local Bi-

nary Pattern) and singular value decomposition methods. Conventional feature ex-

traction methods are weak for discriminating facial features, so their works generate

a large number of false predictions.
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Image classification works already implemented a Convolutional Neural Net-

work (CNN) as a robust feature extractor (Zeiler and Fergus, 2014; Hossain, Al-

Hammadi, and Muhammad, 2019; Shahbaz and Jo, 2020). The convolutional opera-

tion utilizes updated filters to discriminate the essential features of an object. Then,

it employs back-propagation to update those weights. This method has been im-

plemented in several facial expression tasks and successfully performed with high

accuracy. The Deep Convolutional Neural Network (DCNN) has been utilized as

an extractor to deliver satisfying performance (Hayale, Negi, and Mahoor, 2021; Ot-

berdout et al., 2020). However, those architectures produce a lot of parameters and

heavy computations. The CNN model requires high GPU usage to work quickly,

while this accelerator is not cheap. Meanwhile, a practical application demands

a simulation with real-time performance and can operate on low-cost devices. A

DCNN approach tends to run slowly on these devices.

Although a DCNN architecture provides powerful performance, this model re-

quires high processing times and heavy computations. This slow computation re-

stricts the applicability of deep learning models. Even though the shallow model

allows fast operation on low-cost devices, the deeper model delivers better per-

formance and demands more computing resources (Kim et al., 2019). Therefore,

a balance of trade-off between performance and efficiency is needed to support the

implementation of robotics.

1.2 Problem Description and Objective

In general, the image classification system predicts a specific class. It also finds the

important features and the relationship between elements. However, this system

is constrained by accuracy when it contains complex background components that

obtain a lot of false predictions. The single category classification has significant

error occurs when there is more than one face. In order to address this problem,

the proposed system localizes the facial area at the beginning of the stage to filter it

from the background elements that produce facial patches. Then, it applies a facial

expression classification system to each patch. We offer an integrated deep learning

model that combines face detection and facial expression classification to recognize

facial emotions accurately. In addition, the proposed system emphasizes increasing
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the speed of data processing to be efficiently implemented on low-cost devices.

An integrated face emotion recognizer contains two main parts, as described in

Figure 1.2. An input image is processed by face detection to extract the region of in-

terest (RoI). This approach avoids background noise helping the facial emotion clas-

sifier to focus on predicting only the facial area. Efficient face detectors are designed

to support a real-time system that works on CPU and edge devices. Although the

shallow architecture has light computation, the proposed face detector overcomes

problems with variations in scale, pose, occlusion, and extreme backgrounds. The

second stage is facial expression classification employs an efficient backbone layer

and the robust attention module to extract specific and global essential features. The

network’s end predicts seven expressions that represent basic human facial emo-

tions.

Face Detection

Face Emotion Classification

FIGURE 1.2: Major components in the two-stage real-time face emo-
tion recogntion.

The work in this study develops a high-performance face emotion recognizer

that is powerful and efficiently operates within reasonable processing time. A deep

learning network is utilized for both architectures to acquire high precision and
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overcome several challenges. However, the general problem of this method is the

computational overhead cost. Efficient architecture overcomes this issue while com-

pressing excessive learnable parameters. Moreover, the specific architecture with the

combination of attention increases the accuracy of the prediction without adding

significant parameters. On the other hand, the performance of CNN models also

tends to be influenced by other factors such as data augmentation, training strat-

egy, and loss function. This work also uses several tweak techniques to improve the

network’s performance.

1.3 Contributions

The work in this research explores various approaches to developing a complete

real-time facial emotion recognition framework. It proposes a face detector and fa-

cial emotion classification on low-cost computing devices to build a high-efficient

system. The first part of this study introduces real-time face detection to find the

facial location. The work contributions are as follows:

• A novel high-performance face detector uses lightweight CNN architecture to

fast localize faces region in real-time and is implemented on low-cost devices.

• A novel face detection architecture employs a backbone to discriminate facial

elements, and a multi-level prediction supports this detector to estimate the

multiple face locations on different scales.

• The proposed face detector was conducted comprehensive evaluations on bench-

marks, showing that the model reaches comparative performance against the

state-of-the-art CPU detectors.

• This efficient face detection is fastest than other low-cost detectors, real-time

operating on the low-cost devices.

The second study offers an efficient facial expression classification to predict the

emotion of the face region of interest. The study contributions are as follows:

• A novel light backbone architecture presents efficient feature extraction using

a partial transfer approach that rapidly filters specific elements with fewer pa-

rameters than the baseline model.
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• A cascade attention network selects the interest features in a series configura-

tion at the end of the backbone. The module sequentially enhances the valu-

able features to increase the accuracy of the facial emotion classifier without

producing high computation costs.

• The proposed model achieves competitive accuracy against the state-of-the-art

model on benchmark datasets. Additionally, this model can smoothly operate

at a processing data speed of 90 FPS on a CPU device.

• The integration of face detection and facial expression network can effectively

recognize human emotions emphasizing effectiveness and efficiency. integrated

model can run in real-time at 45 FPS on a CPU device.

1.4 Disposition

This part describes the organization of this manuscript. Section 2 discusses various

methods related to deep learning models to detect and classify facial expressions. It

contains the classical and the current techniques that present face detection on the

CPU using single and hybrid approaches. It also discusses several influential works

on facial expression.

Section 3 discusses the proposed architecture of a low-cost face detection net-

work. It includes the general architecture, proposed backbone, detection module,

anchor method, and training strategy. The last part of this section contains the eval-

uation of the proposed face detector compared to other CPU models.

Section 4 explains the proposed architecture for face emotion classification. This

section contains several parts related to the proposed model, including an efficient

backbone, sequential attention, connection, and classifier module. Furthermore, it

also examines the proposed model on several datasets.

Section 5 discusses the proposed model integration for high-efficiency facial ex-

pression recognizers on low-cost devices. It includes the hardware setup and dis-

cussion on the speed test and visualization results in real-case scenarios.

Finally, Section 6 concerns the possible future research direction and conclusion

of this research work.
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Chapter 2

Literature Review

The scope of this thesis considers three central components, including face detection,

facial expression, and attention mechanism. This section discusses several publica-

tions on these issues that influence the recent studies.

This section includes three parts. The first part concerns several methods affect-

ing the current CPU-based face detection. Then, the second part presents several

works related to facial expression recognition. Finally, the last one describes atten-

tion mechanism methods in a deep learning model.

2.1 Vision System

FIGURE 2.1: The process flow of human vision (Elgendy, 2020).

Visual perception is a process of scanning patterns from an object that tries to

create a system. It can help to understand the environment based on visual input

(Elgendy, 2020). Traditional image processing techniques are not entirely accurate.

Machines can process images with different understandings, and it is not a trivial
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task. The visual system works like humans, animals, and most living organisms see

things. It utilizes sensors or eyes to capture images. It then uses the brain to process

that information and interpret it, as illustrated in Figure 2.1. The system then issues

an image prediction based on the extracted data.

Computer vision is inspired by the human vision system and has been able to

copy visual abilities to machines in recent years. Figure 2.2 shows that computer

vision also requires two main components: a sensory device like the eye and a robust

algorithm as a brain to interpret and classify image content.

FIGURE 2.2: The parts of computer vision utilize sensing and an in-
terpreting device (Elgendy, 2020).

2.2 Image Classification

Image classification is a computer vision task that categorizes groups of pixels in

an image. It predicts the image’s content label by applying a particular method.

Categorization rules can use one or more features and texture characteristics. There-

fore, it predicts class content based on feature information extracted in an image.

It requires feature extraction to determine feature characteristics and obtain specific

information as important data for the classifier to decide the categories.

The learning-based classification system shows a more satisfactory performance

than the conventional approach. The learning-based classification approach consists

of supervised using labeled datasets and unsupervised learning analyzing and clas-

sifying unlabeled datasets.
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2.3 Object Detection

Object detection is used to localize objects through the input image. This research

has been growing in the past few years. Machine learning contributes a lot to im-

prove its performance. Object detection generally consists of feature extraction and

classification tasks (Kurnianggoro, 2019). This localization task utilizes bounding

boxes as the output of the detection results for each object.

Figure 2.3 illustrates the basic principle of an object detection method. It consists

of two-stage methods. The feature extractor is applied initially to find useful fea-

tures from an area in the image. Region candidate of the object provides its location

information. Then, a classifier predicts the region, whether it is a specific object or

not, based on the input features. The detector repeats all processes from the top-

left until the bottom right frame. A sliding window can adjust its scale, making it

possible for the detector to predict objects in different scales.

Classifica�onExtract the “features” for each ROI

3rd scale

2nd scale

1st scale

FIGURE 2.3: An object detector with the sliding window strategy
(Kurnianggoro, 2019).

2.4 Classical Face Detector

A conventional method applies feature engineering and machine learning to extract

information from pixels and selects important features of an image. Both tasks are

crucial elements in classical object detection. Feature engineering plays the lead-

ing role in discriminating against distinctive features, while machine learning helps

detectors amplify important features through a continuous learning process. A de-

tector is generally designed from a combination of feature design and classifier se-

lection.
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Viola&Jones approach (Viola and Jones, 2001) has succeeded in robustly localiz-

ing faces and claims that it produces less processing time. This detector can operate

at a real-time speed that is applied on low-cost devices. Haar-like features extracted

important features while the AdaBoost classifier predicted those features as facial

features. The role of the Integral image is to compress processing time so that the

detector can work quickly. An integral image computes the total sum over a given

region by accessing four locations in the summed area table. This operation results

in a more efficient computation than standard calculations of haar features.

Haar-like features compute the difference between light and dark regions com-

pared to one or more regions nearby. It utilizes pre-defined templates containing

rectangular combinations. Furthermore, the integral method is applied to each re-

gion to calculate the total score. This technique shortens the computation time, al-

lowing the Viola&Jones face detector to operate efficiently.

On the other hand, AdaBoost machine learning is used to select a particular Haar

feature and adjust its threshold value. This approach combines weak classifiers to

generate strong classifiers. This combination is an efficient series filter for interpret-

ing the characteristics of an object. Classifiers are arranged into a cascade. The great-

est weight filter is inserted at the beginning of the stage to remove non-face images

quickly. If an image area fails to pass one filter during the classification process, then

that area is immediately classified as non-face. Thus, the predictable area of the face

must successfully pass through the entire filter process.

Another work of face detector has utilized template matching and skin-color in-

formation to localize the frontal face (Jin et al., 2007). It segmented the eye area

instead of applying segmentation to all image regions containing information from

the three-dimensional position, orientation, and lighting conditions. Then extract

the skin-color information and apply normalization to the candidate’s facial areas.

Template matching helps the detector to classify facial areas with normalized data

distribution.

Remarkable classical face detection has also been presented by (Ban et al., 2014),

which offers a skin-color probability approach through a boosting algorithm. It

serves to emphasize skin color features and ignore non-skin color knowledge. The

color distribution is implemented in YCbCr space to separate the luminance and

chrominance. The histogram displays the difference in the intensity of information
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contained in an image area. It supports the performance of the Bayes rule to estab-

lish the probability of a color vector. Candidates of the facial area are trained by the

skin boosted cascade to separate and select the valuable skin color distribution.

A semi-local structure pattern (SLSP) has been proposed as a feature extractor

approach based on a set of binary patterns at local region-based differences (Jeong,

Choi, and Jang, 2015). It solves the problem of illumination variations, distortion,

and sparse noise. The SLSP can encode the comparison of the center features with

local neighbors of the surrounding area. Furthermore, the AdaBoost feature selec-

tion method trains specific features extracted in a region to predict facial regions.

The complicated background in an image causes a conventional face detector to

produce a high false positive. Therefore, (Kang, Choi, and Jo, 2016) has offered a

skin color modeling to enhance the region-based classifier performance that sepa-

rates facial and background features. In addition, a sliding window efficiency helps

the whole algorithm to be able to reduce the processing time so that it can operate

quickly. It reduced time to a maximum of 47% from the standard sliding window

method. The combination of skin modeling and segmentation strengthens the color

characteristic selector and emphasizes noise reduction to discriminate against inter-

est features.

2.5 Deep learning-based Face Detector

The face detectors using Convolutional Neural Network (CNN) are presented to

overcome challenges that are difficult to handle by the classic method, including

challenges in scale, position, distortion, and background. A single-shot scale-invariant

face detector (S3FD) uses CNN architecture that develops the SSD (Single-shot de-

tector) model for localizing faces with small object variations, huge amounts of neg-

ative anchors, and few amounts of anchors that match with the face. In addition,

the S3FD also introduces several approaches to alleviate these problems. It applies

six face detection layers of varying sizes. The Conv3_3 layer is used to predict small

faces with a feature map size of 160 × 160, while the other detection layers work

on the Conv4_3, Conv5_3, and three more layers at the extra convolution layers at a

stride of 32, 64, and 128. Figure 2.4 illustrates the architecture of S3FD.

The S3FD uses varying anchor sizes that match the size of the receptive field. It
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FIGURE 2.4: A S3FD architecture (Zhang et al., 2017).

effectively uses an anchor size of 16, 32, 64, 128, 256, and 128 on prediction layers.

The first detection layer contains about 75% anchors, but the background contains

more than 99.8%. This problem creates an imbalance between positive and negative

classes in training. In order to overcome this issue, S3FD discriminates against the

background with the maximum value. It assigns each prediction layer to predict

one foreground and n-background. Then it selects the maximum value as the final

predictive score and sets another score to be foreground.

The dual-shot face detector (DSFD) is a face detection architecture that applies an

FPN-like model to improve the relationship between features of different frequen-

cies (Li et al., 2019). The feature pyramid network (FPN) is implemented to improve

the prediction of the object on multiple scales (Lin et al., 2017). It is proposed to fuse

low-level with high-level features to enrich the object information extracted by the

convolution layer. In addition, it also implements an enhancement module (FEM) to

improve the quality of the feature combination. It uses upsampling and convolution

techniques to equalize the different channel sizes at each level. A single convolution

layer adjusts the channel size, and a dot product operation is used to aggregate two

maps with distinct levels. Furthermore, the dilated convolution was applied to three

branches with different amounts stages and combined all outputs with concatenat-

ing technique. DSFD applies predictions on basic and enhanced features. So this

strategy gets better results when it is compared to the other single-shot detection
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architectures.

A TinaFace detector (Zhu et al., 2020) proposes a robust architecture with a sim-

ple baseline to localize various human faces, as shown in Figure 2.5. It uses ResNet-

50 (He et al., 2016) to extract facial features and discriminate against trivial features.

In order to improve multi-scale detection performance, TinaFace applies a six-level

Feature Pyramid Network to filter out the features on different scales. It employs

an Inception module to enrich the receptive area inserted in each detection head.

Regression and classification heads apply five layers of FCN series to generate fi-

nal predictions. This model achieves high accuracy on the WIDER dataset, which is

highly efficient and effective in overcoming these challenges.

FIGURE 2.5: A TinaFace architecture (Zhu et al., 2020).

Recently, YOLOV5 was introduced as an object detection tool that can work ef-

fectively and efficiently. YOLO5Face (Qi et al., 2021) made a few modifications to

YOLOv5 and implemented it as a face detector. It applies CSPNet (Cross Stage

Partial Network) (Wang et al., 2020) to extract essential facial features efficiently,

as shown in Figure 2.6. In addition, YOLO5Face uses Spatial Pyramid Pooling to

increase the receptive area and split the essential elements. The FPN structure is

also employed to aggregate features with different frequencies. A feature aggregate

network is applied to each neck to enrich information by fusing FPN features with

the backbone. YOLO5Face provides a variety of architectural sizes with different

computations, parameters, and performance scores that are competitive with other

competitors. It is claimed to be a capability of the detector capacity that can adapt to

hardware implementation.

A benchmark is utilized to quantify the performance of face detection methods.

Wider face provides various challenges and is categorized into three face sizes: large,

medium, and small. There are more than 50 methods are competing with each other
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FIGURE 2.6: A YOLOV5Face architecture (Qi et al., 2021).

including traditional models (Yang et al., 2014; Mathias et al., 2014; Viola and Jones,

2001) and deep learning models (Chi et al., 2019; Najibi et al., 2017; Zhu et al., 2018;

Cai et al., 2016; Yashunin, Baydasov, and Vlasov, 2020; Liu et al., 2021). The evalua-

tion shows that the recent deep learning models outperform the traditional models.

2.6 Facial Expression Network

Facial expression classification is a method for predicting human facial gestures that

represent human emotions. It is influenced by interconnected facial components and

composes a specific texture to describe the relationship between these features. Pre-

vious work has applied a conventional approach to recognizing human expressions.

However, this method achieves low accuracy even for non-frontal face challenges.

Traditional feature extractors are not robust in discriminating against similar facial

features to the background and feature occlusions.

Deep learning-based methods show high performance as feature extractors to

discriminate specific facial components. (Otberdout et al., 2020) has proposed deep

covariance descriptors to identify human expressions. The input face encodes us-

ing local and global covariance descriptors that occupy at the symmetric positive

definite (SPD) manifold, as shown in Figure 2.7.

This approach uses the Gaussian kernel and Support Vector Machine (SVM) to

generate a proper positive-definite on the specific manifold and classify static facial
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FIGURE 2.7: The ExpNet approach (Otberdout et al., 2020).

expressions, respectively. In order to align trajectories, it is helped by Global Align-

ment (GA) using the Log-Euclidean Riemannian Metric (LERM). The experimental

results show that high performance is achieved by this deep approach on three pub-

lic datasets.

Other work has obtained high accuracy by offering an ensemble architecture

with multi-level convolutional neural networks that predict seven emotion classes

(Nguyen et al., 2019). The robust feature extractor was developed from VGGNet by

utilizing 3 x 3 filters to optimize performance and efficiency. This architecture ignor-

ing the fully connected and setting the channel size on the entire feature map is a

power of two for computational reasons.

The multi-level network aggregates the final feature map at the third to fifth

stages to obtain a fusion of middle and high-level features. It emphasizes varied

information rather than using only high-level frequencies for classification. This

ensemble model achieves increased accuracy by combining three parallel networks

and applying a different combined feature variation to each network, as shown in

Figure 2.8. However, this architecture produces a lot of parameters and an expensive

computational cost.

MLCNN offers a 3DCNN configuration on video input for extracting features

through image sequences. It applies the ensemble of MLCNNs as the backbone

to distinguish facial features for all faces from the background. A temporal model
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FIGURE 2.8: Overview of the ensemble of MLCNNs approach
(Nguyen et al., 2019).

utilizes convolutional and pooling to extract the information and applies softmax

activation to generate the prediction.

Efficient architecture has been introduced to classify facial expressions using Hi-

erarchical Deep Neural Network Structure (Kim et al., 2019). Feature extraction

highlights the appearance of facial components combined with geometric features.

LBP (Local Binary Pattern) computes the divergence of interest features with the

background through the difference between center features and local neighbors.

Then the geometric feature-based model learned to extract the action units (AUs)

information based on coordinates. It recognizes the muscle movement characteris-

tics and relates them to facial expressions predictions.

In order to improve its performance, it integrates the probabilities result of the

two features with considering the second-highest prediction error. Additionally, this

work generates neutral emotion by applying an autoencoder architecture to extract

dynamic features between neutral and peak expression.
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2.7 Attention Mechanism

A lightweight model generates a few parameters and a low computational cost. It

generally employs a small number of kernels and channels. Nevertheless, this ar-

chitecture tends to achieve low accuracy. A lightweight model is not robust to dis-

criminate valuable features. Therefore, it requires additional modules, including the

attention block (Fu et al., 2019). The attentive module distinguishes specific features

and reduces unimportant elements (Cao et al., 2019). It can also highlight several

interest features and interprets the weighted score. It is applied to improve the im-

portant information from the input features (Hu, Shen, and Sun, 2018).

The attention network is already presented by previous work to improve the

performance of the backbone in facial expression recognition. An attention visual-

based approach was utilized after the VGG-16 network to increase the accuracy score

(Sun, Zhao, and Jin, 2018). It offered an attentive CNN architecture consisting of

three main modules: local convolution, region of interest, and aggregation of local

features with a prediction layer.

FIGURE 2.9: The CNN with visual attention (Sun, Zhao, and Jin,
2018).

An eleven-layered CNN with Visual Attention was employed to extract specific

facial features. This baseline is inspired by the VGG network and improves its ac-

curacy with visual attention at the last stage, as illustrated in Figure 2.9. It adds an

enhancement block before the dense module. It is assumed to improve high-level

features quality by applying weighted probability. The softmax function helps this

module by normalizing feature information so that each vector denotes the feature

at a specific location.
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A work utilized a Multiple Attention network (MA) to filter specific facial com-

ponents for face expression tasks (Gan et al., 2020). It simulates humans’ coarse-

to-fine visuals to increase convolutional performance as extractor features. The at-

tention mechanism can learn discriminative features. A region-aware sub-net finds

locally important areas that describe features of interest. Meanwhile, the ERSnet

module comprehensively discriminates against these features by applying multiple

attention.

The MA block plays a crucial role in aggregating various references using the

learned masks. It employs a hybrid block on a branching sub-module, containing

learned region attention. Besides, each mask is learned comprehensively to capture

expression characteristics. Furthermore, it is diffused with a feature map extracted

by the backbone, namely a weight learning branch. These sub-branches adaptively

extract the critical regions that provide intensive global attention to the features of

interest.

(Li et al., 2020) employed an attention module with a superficial configuration on

a combined extraction. This architecture contains four main components: the feature

extractor, the attention block, the reconstruction block, and the classifier module. It

combines RGB and LBP inputs to increase the variety of feature textures. VGG-16

Net discriminates against both input maps, which have a strong transfer learning

ability. A 13-layers of this baseline extracts deep features and then reduces the di-

mensionality to the same size of both inputs.

An attention mechanism is applied after the twin backbone module to find valu-

able features that help increase prediction performance, as illustrated in Figure 2.10.

Different regions are assessed by the attention score that represents the most useful

features. The trunk and mask branches highlight specific features by comprehensive

learning of different input textures. Then, it applies an element-wise product to ag-

gregate the two sections and generates refined feature maps. In order to adjust the

attention map, it implements a reconstruction module that utilizes dense connection

convolution layers. An atrous convolution is used to capture large receptive fields

without increasing the number of kernel parameters. Besides, a double backbone

and a reconstruction module add extra computational cost.

An architecture of deep CNN relies on a graphics processor to operate fast at the

inference phase. Besides, an attention module can increase the performance of the
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FIGURE 2.10: The architecture of attention mechanism-based CNN
network (Li et al., 2020).

extractor feature. Therefore, the proposed model offers a robust sequential attention

network to enhance the lightweight extractor ability. It also retains the real-time

speed of the system to increase its efficiency.
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Chapter 3

Face Detection Network

Face detection is a basic computer vision approach to predict the face’s location

through an image. This method screens the facial area against the background, en-

abling the facial emotion recognizer to improve the accuracy in a real-world sce-

nario. Conventional methods have been introduced with problems of inaccuracy in

difficult challenges (Viola and Jones, 2001, Jin et al., 2007, Ban et al., 2014, Jeong,

Choi, and Jang, 2015 and Kang, Choi, and Jo, 2016). On the other hand, deep learn-

ing as a modern method can significantly increase accuracy. Convolutional neural

network extracts feature objects robustly by distinguishing important facial com-

ponents from background features. Several methods adopted the most of the recent

object detector architecture (Zhang et al., 2017 and Li et al., 2019). They apply FPN to

aggregate features at different frequency levels that apply multiple prediction layers

to assign varying anchor dimensions.

The deep CNN architecture emphasizes the precision of essential feature predic-

tion by employing a large number of convolution filters (Zhu et al., 2020, and Qi et

al., 2021). Lightweight parameters and cheap computation do not support the high

performance of the method. They generate a lot of learnable parameters. In addition,

They also used many operations to employ neuron nodes that inflict computational

overhead. These weaknesses require that these detectors have a dependence on ac-

celerator devices, so they tend to work slowly on cheap devices such as CPUs and

with the heavy cost of processing time. Implementing a deep learning method in

real-world scenarios is the biggest issue for application developers.

FaceBoxes (Zhang et al., 2019) and Densely Connected Face Proposal Network

(DCFPN) (Zhang et al., 2018) accurately localize faces on a CPU running at real-time
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speed. FaceBoxes employs a light architecture to decrease the sizes of maps and ex-

tract the information using Rapidly Digested Convolution Layers. It sets a series of

convolution and pooling with large strides. C.Relu was employed to activate neu-

ronal output by reducing the number of output channels. This method is claimed to

improve computational efficiency significantly. Multiple Scale Convolution Layers

(MSCL) apply an inception block to enrich the variety of information from the fea-

ture map. In addition, this module plays a role in predicting multiple scales of faces.

The features pyramid technique is involved in the architecture to merge the feature

information of objects of various sizes. FaceBoxes achieves excellent precision and

is able to operate at 28 FPS on CPU devices.

DCFPN has offered a CNN architecture for face detection with high accuracy and

CPU real-time speed. It uses a robust convolution network and an anchor matching

strategy to increase the precision rate of small objects. In addition, it explores the

performance of a proper L1 loss function to evaluate the predicted boxes that localize

small faces. DCFPN can detect multiple faces at 30 FPS on a low-cost device in 640

× 480 resolution.

Both detectors can only run smoothly on CPU devices with high clock rate spec-

ifications. So the efficiency of these detectors still depends on relatively expensive

devices. The work of this manuscript is proposed an efficient and accurate face

detection that can work on low-cost computing devices with CNN-based light ar-

chitecture. The architecture includes superficial layers, which use sub-blocks and

specific configurations to avoid reduced performance. This work focuses on two

things. Firstly, it designs a CNN-based architecture by applying convolution layers

and an efficient structure without compromising detection performance. Secondly,

the training strategy improves detector performance without increasing consump-

tion and operation time, such as the balancing loss function, augmented image tech-

niques, and parameter configurations.

3.1 System Architecture

The proposed detector is designed with two essential modules, including a back-

bone and a prediction layer. It leverages the robustness of CNN as a feature extrac-

tor by applying a small number of the filter compared to regular architectures. The
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feature extractor using CNN architecture has delivered excellent performance by

producing high precision and accuracy. However, this requires high computation to

acquire a slow data processing speed. In order to avoid this problem, the proposed

extractor utilizes a superficial layer that filters the spatial information maps. There-

fore, this model emphasizes improving real-time speed and maintaining detection

performance.

3.1.1 Backbone Module

The backbone module plays an essential role in sequentially extracting features that

take advantage of feature learning. The main block can discriminate against im-

portant facial components from the background. This module implements shrink

block rapidly declines spatial maps with maintaining essential elements. It shrinks

the feature map dimension with local extracting at the different stages. On the other

hand, this block focus prevents the increase in overhead computation and the heavy-

weight of kernel usage on large feature maps. The four convolution series is applied

to capture specific features while keeping the quality of feature information. Fig. 3.1

shows that this module reduces a map dimension to 32 times less than a source size.
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FIGURE 3.1: Architecture of the face detector network.

In order to fast reduce the maps, it applies a large filter size at the beginning of

the process and then uses the 3 × 3 kernel in the remaining phase. This approach

can save memory usage and increase detector speed by applying a big kernel at the

initial stage. Instead of using the same stride size, it sets 4, 2, 2, and 2 to quickly and

drastically reduce the map. Furthermore, the training time is accelerated using batch
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normalization, which helps this detector obtains optimal performance. In addition,

rectified linear units (ReLU) are also applied in the neurons by eliminating negative

scores linearly.

The proposed detector applies stem block as an important sub-module to fully

discriminate facial features. It sequentially employs four mini-inception that is more

efficient than the common version. This module extracts object features by increas-

ing the variety of the receptive field (Szegedy et al., 2015). Moreover, it generates

cheap parameters to catch information on different receptive areas. Several works

implemented this block in the real-time application for object detection and image

recognition task (Lee et al., 2017; Jiang et al., 2019).
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FIGURE 3.2: Mini-inception module for face detector network.

Instead of applying extensive filters or a lot of branches, the proposed mod-

ule avoids high computation by producing an informative map. It takes advantage

of simple element characteristics that comprehensively help a shallow network se-

lect feature interests. To improve performance, it implements more than one block,

which simultaneously applies the convolution and pooling processes, as shown in

Fig. 3.2. It combines the feature map developed by a combination of convolution and



Chapter 3. Face Detection Network 24

pooling to produce valuable information. This aggregation enriches the knowledge

of the coverage area of different filters, which increases face detection accuracy.

3.1.2 Detection Module

w

h

c_in c_in

Depthwise
Conv 3x3, 
c_in

Batch
Norm ReLU

w

h

w

h

w

h

c_in c_in c_out

Conv 1x1, 
c_out

Batch
Norm ReLU

w

h

w

h

c_out

w

h

c_out

FIGURE 3.3: Transition block for face detector network.

Several approaches have been introduced to estimate region proposals prospects

in various object scales. In order to produce an abundant number of parameters,

the detector implements a pyramidal feature hierarchy that involves multi-layers

prediction and clusters the face candidate based on the size.

Transition block. This detector uses a transition block to transform feature map

sizes between multiple prediction layers. In order to save computation, it applies

simple blocks to keep the information of the features map. It avoids applying pool-

ing to decline the map dimension. Fig. 3.3 shows that it bridges important features

maps at different levels by convolution with stride two. It is more potent than a

pooling operation. Hence, it adopts the depthwise separable convolution (Howard

et al., 2017) to extract high-level features, and a 3 × 3 convolution is used to reduce

the map dimension. The convolutional block is more robust than a scalar filter. It

can be assumed that the transition block sets the specific map scale by increasing the

amount of information. This module accommodates three predictors with different

sizes, transferred to a head network to assign the prediction result.

Multi-level detection. Object detector commonly utilizes the detection layer to es-

timate the location of objects at the last framework. This high-performance detec-

tor applies multi-level detection to predict different face scales, addressing the lim-

itation of a single predictor. The specific receptive area is unable to accommodate

variations in the size of the face. Besides, information about the small object is over-

reduced in the last network, resulting in the loss of valuable features.
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The proposed detector uses the pyramidal feature hierarchy to avoid extra com-

putation from the Feature Pyramid Network (FPN). It establishes different feature

map sizes to accommodate different object scales. Additionally, it employs a variety

of scaled anchors that will adjust the size of the predicted box. In order to support

multi-scale prediction, the module employs three levels that assign it according to

face dimension. It allocates small, medium, and large faces at 32, 16, and 8 predic-

tion map dimensions, respectively. The diversity of anchor sizes can accommodate

the variation of the face scale in the specific prediction layer.

3.1.3 Anchor Strategy
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FIGURE 3.4: A approach of anchor density with 32 × 32 (a), 64 × 64
(b), and 96 × 96 (c) dimension.

Initial scale information is defined using the anchor technique in estimating the

size of the predicted bounding boxes. It is employed to increase the prediction pre-

cision based on dimensional clusters. In order to capture represented multiple-scale

faces, it allocates not one type of anchor box. According to this assignment, multi-

square anchors are assigned to various detection modules. The proposed detector

utilizes anchor densification to boost the precision of small predicted objects (Zhang

et al., 2018). It involves the same scale neighboring anchors with specific intervals.

It uses center point information to define the distance between boxes. However, it

adds a new scale of 96 to reduce the gap on small faces, which contrasts with the

original version.
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Fig. 3.4 illustrates that this strategy is applied only to small anchors to avoid

redundant computation. This approach employs 9, 4, and 4 anchors with 32, 64, and

96 scales at the first detection block, respectively. In addition, single anchors with

128, 256, and 512 are applied to all prediction layers.

3.1.4 Balanced Loss Functions

Generally, a anchor-based object detector generates regression and class scores. It

specifies the coordinate parameters, size boxes, and class of each predicted anchor.

On the other hand, a learning method requires measuring predictive that quantifies

the difference between the actual value with the reference. It helps to boost the per-

formance of weight neurons by minimizing errors. The proposed detector applies

multi-boxes loss that combines the regression and classification error by assigning it

to each anchor. However, the imbalanced score has a problem that causes only one

function to work optimally. Therefore, it offers a balancing function to address the

issue by associating the error prediction. The loss function is expressed as:

L(clsn
i , regn

i ) =
δ

Pos
·∑

i
Lclass(clspred

i , clsgt
i ) +

η

Pos
·∑

i
Lreg(regpred

i , reggt
i ), (3.1)

where regpred
i is prediction vectors that indicate as coordinates and size of box for

each i-th anchor and class n, reggt
i is the reference box from the dataset, clspred

i is the

predicted label class, and clsgt
i is the reference label class from annotation dataset.

The Pos is the number of matched boxes with ground truth, and it is used δ and η, as

the balancing constant of 2 and 1, respectively. Lclass(clspred
i , clsgt

i ) is a classification

error using softmax-loss, illustrated as:

Lclass(clspred
i , clsgt

i ) = − ∑
iεPos

mpred
i Log(clspred

i )− ∑
iεNeg

Log(cls0
i ), (3.2)

where mpred
i is a matching logic of each initial box to reference that defines as 1 or

0, and cls0
i is the non-object probabilities. Additionally, this detector applies Huber

loss in the regression part:
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Lreg(regpred
i , reggt

i ) = ∑
iε{x,y,w,h}

Hr(regpred
i − reggt

i ), (3.3)

in which

Hr(x) =

 0.5x2 : |x| < 1

|x| − 0.5 : otherwise
(3.4)

is a smooth error to calculate the difference of both scores optimally. The equation

describes that input less than 1 will be affected by a soft effect using the quadratic

function.

3.2 Training Dataset and Implementation Details

In the training phase, the model uses the WIDER FACE dataset to obtain feature

knowledge. This benchmark provides 32,203 images that include the training image

of 12,800. The variation of data is used as learnable information of facial elements.

In order to increase the various instance, it applied the augmentation technique. It is

involved in reducing the overfitting problem. The augmentation includes sequential

operations of the random crop, scaling, horizontal flipping, and color distortion. The

training input size is generated by resizing the cropped patch to a scale of 1024 ×

1024.

In its implementation, the proposed network involves several optimization set-

tings simulated in the PyTorch framework. It defines random weights in the initial

phase through end-to-end training. Then, each neuron’s weight will be updated us-

ing Stochastic Gradient Descent (SGD). It sets a momentum of 0.9 and weight decay

of 5 · 10−4. We use various learning rates at three epoch stages to optimize the train-

ing process. It uses 200 epochs with a 10−3 learning rate at the first stage, 50 epochs

with a 10−4 learning rate at the second stage, and applied 10−5 learning rate with 50

epochs at the last phase.

The training process employs 32 batch sizes to split the entire image dataset into

small groups. Moreover, it also requires a matching process that determines the

IoU (Intersection over Union) of predicted boxes and ground truth. This parameter

defines 0.5 to select a set of anchors predicted to be the best box.
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3.3 Experiments and Results

The performance of the face detector is explained in this section by investigating

each module in model analysis and evaluating the detector on the AFW (Zhu and

Ramanan, 2012), PASCAL face (Everingham et al., 2010), FDDB (Jain and Learned-

Miller, 2010), and WIDER FACE (Yang et al., 2016) dataset.

TABLE 3.1: Model analysis of each module.

Modules Proposed detector
Balanced loss X
Anchor densification X X
Transition X X X
Multi-level prediction X X X X
Shrink module X X X X X
Stem module X X X X X X
TPR on FDDB (%) 97.00 96.70 96.40 96.30 90.40 89.50 90.10
Inference time (ms) 18.87 18.86 18.20 18.10 17.62 16.93 20.42
Parameters (K) 989 989 892 888 915 827 896
Computation (MFLOPS) 195 195 166 166 158 90 111

3.3.1 Model Analysis

The ablative experiments are comprehensively conducted by describing each perfor-

mance and efficiency to quantify the ability of each block. It replaces the proposed

block with a standard module and evaluates the true positive rate (TPR). We also

measure the inference speed of each configuration model using Core i5 with 640 ×

480 resolution. This experiment utilizes the same training configuration to obtain

a fair comparison. The accuracy uses a true positive rate with 1,000 false positives

on the FDDB dataset, as shown in Table 3.1. Firstly, the experiment is examined that

removes the balanced loss by setting a constant of 1 for δ and η, respectively. This ex-

periment shows that this loss can improve TPR by 0.3% and not influence inference

time, parameters, and computational complexity.

Furthermore, it examines the anchor strategy’s impact by replacing it with the

default type. It means that only uses one anchor on each scale. This experiment

decreased TPR by 0.3% and inference time of 0.66 ms. Thirdly, the transition block

is replaced with 1 × 1 convolution. This investigation only declines 0.1% TPR but

speeds up 0.1 ms. A single detection module applies to the detector that replaces

multi-level detection. It only uses a last prediction layer and stacks all anchors in
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this layer. The multi-level detection module can significantly increase TPR by 5.9%,

reducing the time by 0.48 ms. Besides, this replacement causes a declining usage of

the floating-point operations and increases the number of parameters.

Fifthly, an experiment replaces the convolution layer with max-pooling on shrink

blocks. It confirms that the convolution operation effectively improves the TPR by

0.9%. However, it adds the time consumption by 0.69 ms. Additionally, the convo-

lutional block also significantly increases the number of parameters and operations.

The last experiment substitutes a mini-inception in the backbone with common in-

ception. The mini-inception drops the true positive rate by 0.6% while reducing the

time by 3.5 ms. The proposed inception block uses a smaller number of kernels with

a parallel configuration that is more efficient than the original.

3.3.2 Comparison with other detectors

The proposed detector is evaluated on several benchmark datasets, such as AFW,

PASCAL face, FDDB, and WIDER FACE datasets, which compare the performance

with other competitors.

AFW dataset. This dataset contains various Flickr images containing 203 pictures

with 473 labeled faces. It provides face challenges, including position, accessories,

and expression. In addition, it also covers different lighting and background varia-

tions. The proposed detector performance is compared with other commercial and

research works. Fig. 3.6 illustrates that our architecture leads the competitors. It

is better than 0.28 of FaceBoxes. Qualitative results show that multiple faces with

diverse challenges can be accurately located in the area, as shown in Fig. 3.5 (a).

PASCAL face dataset. This dataset is created by selecting from the PASCAL VOC

dataset, including 851 pictures with 1,335 annotated faces. It provides a multi-pose

face challenge with various environments and backgrounds. Fig. 3.7 illustrates that

the presented detector is leading to competitors. The accuracy is 1.02 higher than

the latest CPU detector (FaceBoxes). Fig. 3.5 (b) also presents this detector can detect

face in different illumination scenarios.

FDDB dataset. This dataset provides various faces from famous people that contain

2,845 pictures, including 5,171 labeled faces. Entire images are obtained from Ya-

hoo websites covering multi-pose, illuminance, scale, and background challenges.
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(a)

(b)

(d)

(c) 

FIGURE 3.5: Visualization of the detection results on AFW (a), PAS-
CAL face (b), FDDB (c), and WIDER FACE (d).
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FIGURE 3.6: Comparison of Average Precision (AP) on the AFW
dataset.
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FIGURE 3.7: Comparison of Average Precision (AP) on the PASCAL
face dataset.
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FIGURE 3.8: Comparison of true positive rate uses discrete ROC (Re-
ceiver Operating Characteristics) curves on the FDDB dataset.

As shown in Fig. 3.5 (c), the proposed detector can localize faces in the occlusions

challenge. In this case, the evaluation uses discrete prediction, comparing the IoU of

the predicted box and the ground truth. It establishes the score is one when the IoU

ratio is higher than 0.5 and 0 otherwise. Fig. 3.8 illustrates that the detector achieves

competitive performance with the RetinaFace-mobile version. It only differs 0.3%

below this competitor. However, the proposed detector achieves better accuracy

than FaceBoxes and DCFPN. The proposed detector achieves lower average preci-

sion than HE-ER (Hu and Ramanan, 2017) and SFD (Zhang et al., 2017), but these

detectors are the heavy model that produces an expensive computation cost. So it

can be concluded that they are not feasible for real-time performance on a CPU.

WIDER FACE dataset. This dataset provides several difficult challenges that are col-

lected from real-world scenarios. It covers unconstrained human faces with varied

scales, multiple views, occlusions, expressions, and different illumination. Gener-

ally, it is separated officially into 40% for training, 10% for validation and 50% and

testing sets. The evaluation sets provide three difficulty levels for a fair evaluation:

easy, medium, and hard. Tiny faces with occlusion are the most difficult challenge

of this subset of datasets. The visualization in Fig. 3.5 (d) shows that the proposed

detector can accurately localize the multi-facial region, even for partially covered
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faces.

(a) Easy validation (b) Easy testing

 (c) Medium validation

(e) Hard validation

(d) Medium testing

(f) Hard testing

FIGURE 3.9: Comparison of Average Precision (AP) on the WIDER
FACE dataset.

As shown in Fig. 3.9, the proposed detector achieves average precision of 0.883,

0.868, and 0.730 for easy, medium, and difficult validation sets, respectively. This

model also reaches 0.883 for easy, 0.863 for medium, and 0.717 for hard testing sets.

The proposed detector achieved more excellent performance than FaceBoxes on the

easy and medium criteria. However, this competitor is superior to the hard cate-

gory. The proposed method is not robust for identifying tiny faces in the low-layer
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features. A shallow network employs feature extraction that weakly discriminates

small essential elements. Additionally, ScaleFace (Yang et al., 2017) obtains more ac-

curate results on the medium and hard testing criteria. However, this model slowly

operates in real-time, requiring the accelerator GPU inference stage.
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Chapter 4

Facial Expression Network

In this section, the architecture of facial expression classification is explained in de-

tail by comprehensively describing each proposed module. It utilizes a convolu-

tional neural network model, which can strongly discriminate the vital elements

against trivial features. Deep learning networks are the most popular approach to

recognizing human facial expressions in an input image. It can robustly distinguish

the specific facial features given the meaningful special gesture of each predicted

expression. This architecture tends to employ deep feature maps by applying con-

volution operations with a large number of the filter. It causes heavy computational

and parameter impact. Therefore, Deep Convolutional Neural Networks operate

with large time inference and depend on expensive devices. The proposed network

implements a light backbone and attentive module to efficiently extract the inter-

est facial feature so that it supports an emotion recognizer to operate at real-time

speed on an inexpensive device. This section explains an efficient network for fast

facial emotion classification. As shown in Fig. 4.1, the general framework contains

an efficient extractor, an attention module, and a predictor.

Backbone48

48

Sequential Attention Network

Global
Representation
Module

Reconstruction
Module

Channel
Representation
Module

Reconstruction
Module

Dimension
Representation
Module

SPP
Module

Prediction of 
7 expressions

Classifier
Module

Input image

Classifier

FIGURE 4.1: The general architecture of facial expression network.
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FIGURE 4.2: Architecture of efficient backbone with transferred par-
tial feature.

4.1 Backbone module

A CNN-based architecture employs the updated filter to distinguish essential fea-

tures as a powerful feature extractor. The use of deep layers obtains high accuracy

of feature selection, but it requires expensive computational costs. It even produces a

large number of parameters. So this architecture tends to operate slowly on low-cost

hardware. Therefore, this work presents an efficient backbone to help the system

achieve fast real-time speed. VGG-13 architecture (Simonyan and Zisserman, 2014)

was developed by applying 3 × 3 convolution as the optimal filter. This architec-

ture includes five stages and applies batch normalization and rectified linear units

(ReLU) after a convolutional block. It uses five max-poolings to decline the feature

map dimension. Furthermore, the transferred partial approach is applied to VGG-13

to save the parameter and computation.

The proposed backbone offers the Efficient Partial Transfer (EPT) module to rapidly

discriminate between interesting and trivial facial components. Fig. 4.2 shows that

this module includes two blocks, such as a primary and a partial transfer block.

The 3 × 3 kernels are employed sequentially on the primary block, and maximum

pooling is employed in every stage to decrease the map size efficiently. The transfer

module divides a input map xi into two chunks [xs
0, xs

1]. Then, a sequential con-

volution extract features from a first segment, while another chunk is transferred

to the last convolutional block. The EPT backbone fuses (⊕) the two feature maps

enriching the different information frequencies, as illustrated as:
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EPT = C2(C1(xs
1))⊕ xs

0. (4.1)

Two convolutional layers (C1(.) and C2(.)) with ReLU and batch normalization

are utilized as the extractor block for core segment(xs
1) . The EPT block is inserted

in the third to fifth stages to reduce computations from using a large number of ker-

nels. It also focuses on getting the frequency level variations on mid and high-level

features that provide more complex information than low-level features. Addition-

ally, this efficient backbone module produces fewer parameters than the VGG-13

architecture. The EPT module emphasizes using an extractor in the partially input

feature map with less computational complexity than the standard block. However,

it maintains the precision of the model by combining the information from multi-

level frequencies.

4.1.1 Sequential Attention Module

The attention module enhances the medium and high-level features caused by a

shallow backbone that is not powerful to distinguish these crucial elements. It offers

a cascade structure that can select more comprehensive specific features to improve

map quality. This architecture delivers a more satisfying accuracy than the parallel

one, as shown in Table IV. The attentive block can capture interest elements and

selectively boost the intensity. It presents three sequential blocks to highlight global

and local representation. Besides, it also uses a transition module to bridge each

attention module.

Global attention module. A feature of an object tends to have a strong relationship

with other elements on a map. Convolution operation has a limited view, which

only extracts spatial-based features. Therefore, the global attention module helps

the network catch the global context of specific information, combining it with se-

lective excitation features. It powerfully filters out long dependencies to enhance the

relationship between facial features and expression. This module combines global

context (Gx) (Cao et al., 2019) and excitation modules (Ex), that can be expressed as

GAi = Gxi + Exi. (4.2)
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FIGURE 4.3: Global attention module.

Each representation module operates at the ith query position and combines each

element of the module output at the same position and coordinates. The global

representation module finds contextual information (Txi) from the input features

(xi ) with H ×W × C dimension, generating the weighted score the be illustrated as

Txi =
HW

∑
i=1

(xr ·
expWjxi

∑HW
n=1 expWjxn

), (4.3)

where xr is reshaped convolutional map (Wixi) with HW× C dimension. In order to

reconstruct the extracted element, a global attentive module also uses a bottleneck

block that involves Γ as the ReLU function and N as layer normalization. Finally,

this module fuses the representation map to the input features with addition opera-

tion, formulated as follows:

Gxi = xi ⊕ Γ(N(Wu2Γ(N(Wu1Txi)))). (4.4)

The proposed attention module employs an excitation block that merges the se-

lected feature of a simple attention and feature representation based on pooling. It
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utilizes a Global average pooling (GP) to extract the statistical information, while a

convolution generates simple attention. The excitation block is described as

Exi = xiσ(Wixi) + xiσ(Wu2Γ(Wu1GP(xi))), (4.5)

where it generates the probability weights in the two branch module using sigmoid

(σ). The fusion module increases the intensity of specific features by selectively cap-

turing essential contexts. Additionally, this combination module strengthens the

global representation of features related to each facial emotion.
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FIGURE 4.4: Channel attention module.

Channel attention module. This block captures the representative facial features

according to the input channel size, highlighting channel dependencies by produc-

ing valuable weights. It maps a set of essential features related to channel size by

assigning a high score to the valuable pixels. Those weights are applied to input

features to update unclear features. It adopts the work of (Fu et al., 2019) and im-

proves it with the bottleneck module at the end of attention, as shown in Fig. 4.4.

This module multiplies the transposed (tj) with reshaped tensor (ti) to generate the

feature mapping (C × C), which can be illustrated as

hi = xi +
C

∑
i=1

(ti ·
exp(tj · ti)

∑C
i=1 exp(tj · ti)

). (4.6)

It normalizes the weights on the channel map by using Softmax activation, which

is used to obtain the representative tensor. Then, channel-based attention is aggre-

gated with the sum of all weights with the input map (xi) to update the represented



Chapter 4. Facial Expression Network 40

features. The proposed module employs a bottleneck technique to extract and re-

construct the facial features that can be expressed as

CAi = Wv2Γ(N(Wv1hi)). (4.7)

The approach contains a convolutional series and applies a small filter in the first

layer. It aims to reduce the number of parameters by using fewer filters. In addition,

this module also plays a role in selecting the represented features. The channel rep-

resentation module combines attention and reconstruction blocks to discriminate

against specific facial features. It can increase the intensity of the relationships be-

tween elements through channel-based mapping. Each channel provides various

information of intensity. This diversity can be used as the knowledge of the model

to learn the expression characteristic.
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FIGURE 4.5: Dimension attention module.

Dimension attention module. The proposed module improves discrimination per-

formance to be more selective in estimating local facial features related to their ex-

pressions. As shown in Fig. 4.5, it raises the ability to project a long-range contex-

tual into a positional mapping. In order to reconstruct the represented features, this

implements a bottleneck block at the end of the attention module. This block is de-

scribed as

DAi = Wv2Γ(N(Wv1 pi)), (4.8)

where pi is a valuable feature represented from the dimension-wise attention, it gen-

erates a relation map with dimensions of HW × HW by multiplying between the
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reshaped (ti) and transposed tensor (tj). It describes the relationship between fea-

tures by finding the similarity score between pixel positions according to the input

dimensions. The attention module generates a weighted score by applying the Soft-

max normalization. The dimension attention module can be defined as follows:

pi = xi +
HW

∑
i=1

(
exp(ti · tj)

∑HW
i=1 exp(ti · tj)

· ti). (4.9)

The representative map aggregates a sum of the weighted and original maps to

enhance the valuable information. The proposed attention ignores the convolutional

block at the initial stage to focus on computational efficiency and parameters with-

out compromising enhancer performance. The strength of this module is to capture

the most valuable elements based on the local area to improve the model perfor-

mance. Each facial emotion has a unique characteristic. This property is an impor-

tant element for recognizing expressions. A dimension representation block focuses

on the feature characteristics and expresses a relation between elements through po-

sitional information.

Connection Module. The proposed facial expression classification needs this mod-

ule to extract represented features and bridges between the attentive modules. It

also employs a residual technique to retain previous features and use them as fusion

information. The aggregation is utilized to combine two extracted information using

element-wise addition. Additionally, It applies a bottleneck module by decreasing

the channel size at the first operation, which aims to save a number of parameters,

as shown in Fig. 4.1. To optimize the training process, it uses Leaky ReLU, dropout,

and batch normalization techniques. It also applies a feature merging at the end of

the representation module, combining it with the feature map from past attention.

The fusion map keeps the substance of the previous enhancement module by com-

prehensively learning. It also minimizes the loss of information that is caused by the

redundant operation and vanishing gradient.

4.2 Classifier Module

The classifier module plays a vital role in predicting the emotion class labels by gen-

erating prediction probabilities. The highest score is taken as a prediction result
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based on the score of each expression. The proposed module uses the Softmax clas-

sifier to obtain a multinomial distribution of seven classes. It normalizes the logit

score of the class to be probability values, where the total is one. In order to gener-

ate vector score, it utilizes Spatial Pyramid Pooling (SPP) by modifying the pooling

combination as shown in Fig. 4.6. Three adaptive pooling windows by an adjusted

stride (Pool1, Pool2, and Pool3) are employed to minimize feature loss. It produces a

pyramid map representing multiple receptive fields. The SPP-modified can be writ-

ten as:

SPP = [Fl(Pool1(xi)), Fl(Pool2(xi)), Fl(Pool3(xi))], (4.10)

where Flatten Fl(.) is applied to convert tensor maps into a 1-dimensional array.

The SPP deforms the extracted specific features and aggregates them to avert the

early cropping of essential elements. Hence, a concatenate module combines all

information from all three branches to enrich interest information and transfers it to
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the classifier stage.

4.3 Implementation Setup and Dataset Configuration

This facial expression network was simulated in the Keras framework that uses the

optimal parameter and configuration. The training stage was conducted using A

GTX 1080Ti to accelerate the process. The speed test in the inference phase uses a

main CPU with an Intel Core i5-6600 processor, @3.30GHz, RAM of 8GB without

a graphic accelerator. In order to assess the error of prediction, Categorical Cross-

Entropy loss is employed using the epsilon parameter of 10−7. The proposed module

utilizes Adam (Adaptive moment estimation) as an optimizer in the training phase.

The network was trained at a 10−4 learning rate in the starting stage. It will be

updated when the performance does not improve in 20 epochs, multiplying by 0.75.

The variation in the number of images from the used datasets applies to different

epochs and batch sizes for each benchmark. We apply 500 epochs for the FER-2013

dataset and 200 epochs for CK+, JAFFE, and KDEF datasets. The CK+ and KDEF

apply mini-batch sizes of 16, while JAFFE and FER-2013 use 8 and 4, respectively.

The proposed model was trained and evaluated on FER-2013, CK+, JAFFE, and

KDEF. FER-2013 consists of 28,709 instances in the training set, 3,589 in the validation

set (PublicTest), and 3,589 in the testing set (PrivateTest) based on a Facial Expres-

sion Recognition Challenge in the Kaggle competition. Additionally, we split 75%

for the training and 25% for the testing set on CK+, JAFFE, and KDEF datasets in

the standard category. On the other hand, it also applies 10-fold cross-validation to

compare with a regular proportion. We apply initial processing in the CK+, JAFFE,

and KDEF datasets using face detection to obtain the facial patch. It can help the

model eliminate the background noise to increase the performance.

Furthermore, cropped image from CK+ and JAFFE is resized into 64 × 64, while

the KDEF demands 48 × 48 pixels. In order to enrich the instances and avoid over-

fitting in the training phase, it applies the augmentation technique on CK+, JAFFE,

and KDEF datasets. In contrast, the FER-2013 dataset did not apply this method

because it has many images. Brightness, contrast, and horizontal flipping are uti-

lized for CK+ and JAFFE. Additionally, This method is applied that is more varied
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on the KDEF dataset, such as illuminance, color distortion, rotation, and flip trans-

formation. This dataset is knowledge for the real-case application provided with

multi-pose instances.

4.4 Experimental Results

The proposed architecture is analyzed in several ablative experiments to assess each

module’s strength. This section also explains network performance evaluation and

compares it to the other methods on the facial expression datasets.

TABLE 4.1: Comparison of efficient backbone with other networks.

Network
Num. of

parameter
Accuracy

(%)
Computational

Complexity (GFLOPS)
VGG13 9,419,207 72.47 1.02
VGG16 14,734,023 72.23 1.41
ResNet-18 11,192,647 62.89 0.06
ResNet-34 21,311,943 62.94 0.12
Proposed 5,506,231 72.47 0.80

4.4.1 Backbone Analysis

A CNN-based architecture tends to have problems when it requires implementa-

tion in real-time applications. It is because the model generates huge parameters

and high computational requirements. Hence, a proposed backbone is introduced

to rapidly extract essential features with partial transfer at particular blocks. As

shown in Table 4.1, the proposed technique generated the least number of learnable

weights. The accuracy is evaluated on the FER-2013 benchmark. Even though it has

the same performance as the VGG-13, it generates a smaller 1.7 times parameter. On

the other hand, ResNet-18 and ResNet-34 reach low performance and produce many

parameters.

The analysis of the partial transfer illustrates that this module is effectively ap-

plied to multiple blocks, as shown in Table 4.2. This module is sequentially inserted

from the back of this network without changing the structure of the convolutional

layers. Although it obtains high accuracy when not installed partial transfer, it gen-

erates 6,274,087 parameters. In addition, a backbone with two partial transfer mod-

ules obtains the lowest parameters, but it achieves lower accuracy than using three
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modules. Finally, we select three partial transfers installed on the proposed back-

bone because it obtains optimal results.

TABLE 4.2: Ablative study of transferred partial module.

Num. of
transfer layers

Num. of
parameter

Accuracy
(%)

0 6,274,087 72.50
1 5,584,007 72.47
2 5,492,295 72.33
3 5,506,231 72.47
4 5,546,579 71.75

TABLE 4.3: Model analysis of each proposed module.

Exp
EPT

module
SPP

module
Global

attention
Channel
attention

Dimension
attention

Acc
(%)

Paremeters
(M)

GFLOPS
Speed
(FPS)

1
√

72.47 5.51 0.797 80.37
2

√ √
72.97 5.57 0.797 79.43

3
√ √ √

73.50 6.18 0.807 74.45
4

√ √ √ √
73.89 6.38 0.832 70.24

5
√ √ √ √ √

74.17 6.58 0.835 69.18

4.4.2 Proposed Model Analysis

This ablation study is conducted in the same training setting, besides particular

changes to each module. Table 4.3 illustrates that the proposed module has a posi-

tive impact by increasing the accuracy. It uses the FER-2013 dataset to examine the

accuracy. Firstly, the baseline structure only applies an efficient backbone with the

softmax classifier that achieves the performance of 72.47%. In addition, it generates

5.51M parameters. Secondly, the flattened layer in the extractor module is replaced

with the SPP-modified module that improves the accuracy by 0.5% and adds 60K pa-

rameters. Thirdly, the global attention module is inserted after the backbone module

achieves 73.5% accuracy and produces 6.18M parameters.

Fourthly, it inserts a channel attention network before the SPP-modified module.

It shows improving the accuracy, parameters, and computations. Finally, the di-

mension attention module improves the network performance by 0.28% by adding

200,000 parameters. In addition, it evaluates each module’s speed by integrating

them with an LWFCPU face detector (Putro, Nguyen, and Jo, 2020). A global atten-

tion module significantly reduces the speed by 4.98 FPS. In contrast, the dimension

attention module only decreased by 1.06 FPS. Based on those results, each attention
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module can enhance the backbone performance and maintain its efficiency to avoid

a significant reduction.

TABLE 4.4: Formation analysis of proposed attention modules.

Module
Experiment

S-1 S-2 S-3 S-4 S-5 S-6 P P*
Global att. 1 1 2 3 2 3 - -
Channel att. 2 3 1 1 3 2 - -
Dimension att. 3 2 3 2 1 1 - -
Acc (%) 74.17 74.11 73.59 73.61 74.11 73.81 73.84 73.67

Input Last EPT Layer Last EPT-Global attention Layer Last EPT-Global-Channel attention Layer Last EPT-Global-Channel-Dimension attention Layer

Angry

Disgust

Fear

Happy

Sad

Surprise

Neutral

FIGURE 4.7: The heatmap visualizes the feature attention at each rep-
resentation module.

Furthermore, the formation of the attention model is investigated with different

structures and order, as illustrated in Table 4.4. S-(·) is sequential formations in sev-

eral experiments. P is a parallel arrangement by summing all elements of both maps

on the same coordinate and location. P* applies to concatenate technique. Low ac-

curacy is achieved when channel attention is installed on the top formation. Because

this block plays a role in capturing useful contextual features, it can effectively insert

after the global attention module. Besides, the parallel configurations also does not

acquire the best accuracy. In conclusion, the first series formation (global-channel-

dimension) obtained excellent performance compared to all the configurations.
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TABLE 4.5: Comparison of the proposed model with to other methods
on different datasets.

Datasets Model Accuracy (%)

FER-2013

Multi-scale CNN 72.82
SNNs (Hayale, Negi, and Mahoor, 2021) 73.00
Single MLCNN (Nguyen et al., 2019) 73.03
Hybrid CNN-SIFT aggregator 73.40
Ensemble MLCNNs (Nguyen et al., 2019) 74.09
AM-Net (Gan et al., 2020) 75.82
Proposed model 74.17

CK+

MA-Net (Gan et al., 2020) 96.28
CCRNet (Xi et al., 2021) 98.14
ExpNet+Fusion (Otberdout et al., 2020) 98.40
AM-Net (Li et al., 2020) 98.68
MGLN-GRU 99.08
Baseline+STCAM (Chen et al., 2020) 99.08
Proposed model 99.18
Proposed model (K-Fold) 99.17

JAFFE

Li et al. 91.80
DCMA-CNN 94.75
CO-CLS FER 95.31
Wang et al. 95.70
Hamester et al. 95.80
AM-Net (Li et al., 2020) 98.52
Proposed model 98.75
Proposed model (K-Fold) 98.82

KDEF

CRC 90.24
PCRC 90.71
O-FER 91.42
CCFN 91.60
Multi-Model fusion 93.42
DFSD-LDA (Palaniswamy and Suchitra, 2019) 95.06
Akhand et al., 2021 96.51
Proposed model 97.12
Proposed model (K-Fold) 97.10

Additionally, it observes the class activation map to display the attention area af-

fected by each representation module. This method utilizes GRAD-CAM (Selvaraju

et al., 2017) to visualize the crucial area containing the valuable components that are

used to predict the emotion. Fig. 4.7 shows that the dimension attentive module

increases the intensity of attention on local features (mouth, cheeks, eyes, and nose).



Chapter 4. Facial Expression Network 48

4.4.3 Evaluation on Dataset

FER-2013 dataset. This benchmark contains 35,887 gray images with 48 × 48 pixels

resolutions. It covers the basics of seven emotions: neutral, anger, sad, fear, surprise,

happy, and disgust. Moreover, the FER-2013 dataset is a challenging dataset that

provides different views, characters, and ages. It contains several invalid labels that

make it difficult for models to acquire high accuracy.

The proposed model reached a 74.17% accuracy that is lower than AM-NET (Li

et al., 2020) as a leading competitor. However, it is superior than the Ensemble ML-

CNNs (Nguyen et al., 2019) model, as illustrated in Table 4.5. To analyze in detail

the performance, it shows a confusion matrix in Fig. 4.8 (a). A "Happy" expression

achieves the highest accuracy. The model most mispredicted the "Sad" category as

the "Neutral" emotion.

(a) (b)

Predicted label

FIGURE 4.8: A comprehensive evaluation of the proposed model in
confusion matrix on (a) FER-2013 and (b) CK+ datasets.

CK+ dataset. The public dataset contains 123 subjects with 593 sequential images,

capturing the last three frames to produce 981 pictures. The proposed network ex-

plored this dataset containing seven expressions: sadness, anger, disgust, surprise,

happy, contempt, and fear. The proposed network is examined on the standard and

10-fold evaluations to obtain a fair performance comparison. The common evalua-

tion set is 25% of all total images.

The proposed model achieves 99.18% and 99.17% accuracy on standard and 10-

fold evaluation, respectively. Meanwhile, it outperforms STCAM (Chen et al., 2020)

as a leading method. The AM-NET (Li et al., 2020) also obtains lower accuracy than
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our model. Fig. 4.8 (b) shows that "anger," "disgust," and "happy." obtained perfect

accuracy in a comprehensive evaluation. On the other hand, the proposed model

is weak in predicting "contempt" because a few instances are predicted as "anger,"

"happy," and "sadness."

JAFFE dataset. The dataset contains 213 instances, and each image has a resolu-

tion of 256 × 256 pixels. It also covers the basics of seven expressions: sad, angry,

surprise, disgust, happy, neutral, and fear. The database was collected from the

Japanese woman’s face captured in a laboratory-based environment.

The proposed model reaches perfect performance when identifying the "angry,"

"fear," "neutral," "sad," and "surprise" emotions. Fig. 4.9 (a) illustrates that "disgust"

class obtains the lowest performance. However, this does not prevent our network

to achieves an excellent performance of 98.75% on the standard testing set. It also

reaches 98.82% accuracy on the 10-fold evaluation set. These results slightly outper-

formed the AM-NET model (Li et al., 2020), where this competitor reaches 98.52%

accuracy.

(a) 

Predicted label

(b) 

Predicted label

FIGURE 4.9: A comprehensive evaluation of the proposed model in
confusion matrix on (a) JAFFE and (b) KDEF datasets.

KDEF dataset. This dataset provides 4,900 RGB pictures covering seven expressions:

neutral, angry, happy, surprise, fear, sad, and disgust. It contains 70 subjects with

five different angles of the facial pose, including straight, half right, full right, half

left, and full left poses. Different facial views are the main challenge of this dataset

which only presents a partial face component.

As demonstrated in Table 4.5, our model achieves 97.12% and 96.63% accuracy
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TABLE 4.6: Evaluation of multi-pose facial expression recognition on
KDEF dataset.

Face position Accuracy (%)
Full left 96.03
Full right 95.48
Half left 98.33
Half right 97.89
Center 98.11

on the standard evaluation set and the 10-fold evaluation set, respectively. There is

not much difference in the result when performing the two kinds of evaluation. Ad-

ditionally, the model performance is superior to the DFSD-LDA (Palaniswamy and

Suchitra, 2019). Fig. 4.9 (b) describes that "happy" and "neutral" emotions obtains

the excellent accuracy. However, "fear" faces have false predictions of 8% against

other expressions.

Furthermore, the proposed model is evaluated in realistic pose variation scenar-

ios on the KDEF dataset. Table 4.6 illustrated that our model obtains the highest

accuracy at half left position. In contrast, it obtains low performance in the full right

view. Fig. 4.10 demonstrates that "fear" predicts a low true positive compared to

other categories of expressions.

(Full left pose)

Predicted label

(Full right pose)

Predicted label

(Half left pose)

Predicted label

(Half right pose)

Predicted label

(Frontal pose)

Predicted label

FIGURE 4.10: Confusion matrix of multi-pose evaluation on KDEF
datasets.
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Chapter 5

Integrated Facial Emotion

Recognition

The integration module combines several cooperated systems to estimate the loca-

tion of faces and identify their emotions. This work incorporates face detection and

expression classification modules that can run at real-time speed on inexpensive de-

vices, as illustrated in Fig. 5.1. This section explains the combination of the proposed

modules into a working system in detail. It uses a face detector discussed in Chapter

3 and a facial expression classification described in Chapter 4.

Face detection

face ROI
Seven Facial

Emotion Classes
webcam

Preprocessing 
and augmentation

Facial emotion classification network

Training of facial emotions classification 

Emotions dataset

Preprocessing 
and augmentation

Face dataset

Augmentation

Face detection network

Face detection model Facial emotion classification model
Training of face detection

Inference stage

model weights

model weights

FIGURE 5.1: Integration system of facial emotion recognizer.

The proposed detector is examined in low-cost computing devices to measure

the capacity of the vision method in practical applications. The primary tester uses

an Intel Core I5-6600 @3.3GHz CPU with 8GB RAM. In addition, this experiment

was also conducted in a Jetson Nano with a Quad-core ARM Cortex-A57 MPCore

processor, NVIDIA Maxwell 128 GPU, 4GB of RAM. Both devices run Ubuntu 18.04.3

LTS operating system and simulate all proposed modules in the Pytorch framework.

This experiment employs an RGB camera to obtain live video streams at 30 fps. It

uses various video resolutions according to the experimental needs of each module.
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The initial stage employs a face detector to localize faces from an input frame.

It separates the entire background from the detected face, which assists the emo-

tion classifier focus on the region of interest of the face. In addition, it can improve

emotion detection performance which avoids background noises. Furthermore, the

facial expression module classifies the facial area into seven emotion classes.

5.1 Runtime Efficiency of Face Detector

A Deep learning face detectors generally use additional high accelerators to boost

the processing speed model. However, this is expensive, even though the practi-

cal application demands that it run on cheap devices. Therefore, this lightweight

detector is an immediate prospect to implement on this device. The proposed face

detector produces 989,832 parameters with 0.195 GFLOPS.

The detector speed was examined using CPU-based devices at video graphic

array resolution (640 × 480 pixels). It uses a true positive rate that describes the

detection precision with a maximum of 1,000 false positives on the FDDB dataset, as

shown in Table 5.1. It applies a 0.05 confidence threshold and a 0.3 Non-Maximum

Suppression to generate the final prediction.

TABLE 5.1: Runtime efficiency compared to different face detectors
on CPU.

Detector CPU Device TPR(%) FPS on VGA
ACF Intel I7-3770 @3.40GHz 85.20 20
CasCNN Intel E5-2620 @2.00GHz 85.70 14
FaceCraft Intel 4770K @3.50GHz 90.80 10
STN Intel I7-4770K @3.50GHz 91.50 10
MTCNN (Zhang et al., 2016) N/A 94.40 16
DCFPN (Zhang et al., 2018) Intel E5-2660v3 @2.60GHz 95.40 30
FaceBoxes (Zhang et al., 2019) Intel E5-2660v3 @2.60GHz 96.50 28
FaceBoxes (Zhang et al., 2019) Intel I5-6600 @3.30GHz 96.50 39
INCEPTION V4 (Szegedy et al., 2017) Intel I5-6600 @3.30GHz 95.16 2
RetinaFace-Mobile (Deng et al., 2019) Intel I5-6600 @3.30GHz 97.26 19
Proposed Intel I5-6600 @3.30GHz 97.00 53
Proposed with six mini-inception Intel I5-6600 @3.30GHz 97.36 44

This result shows that the our detector operates at a processing speed of 53 FPS.

It is faster than FaceBoxes detector, as the latest competitor. It also outperforms the

INCEPTION V4 on an Intel I5-6600 CPU. Although the RetinaFace-mobile version

achieves high accuracy, it is 34 FPS slower than the proposed face detector. On the
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other hand, a six mini-inception version achieves superior accuracy and runs faster

than the competitor on the same device.
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FIGURE 5.2: The proposed model speed is compared with FaceBoxes
at different input resolutions.

Figure 5.2 compares the speed of the proposed detector with FaceBoxes in dif-

ferent input video sizes. It shows that competitors run slower on all resolution sizes.

The proposed detector achieves 25 FPS at HD resolution, which indicates the detec-

tor can operate in real-time at large input sizes.

TABLE 5.2: Comparison of model speed in real-time application on
the low-cost and an edge device

Devices
RAM
(GB)

Proposed
Detector

RetinaFace
mobile0.25

FaceBoxes

PC desktop
Intel Core I5-6600

8 52.86 18.67 39.00

Notebook
AMD A6-1450 224

4 10.10 2.39 8.44

Lattepanda
Intel Cherry Trail

4 8.76 1.51 8.36

Raspberry pi 3B
Broadcom BCM2837

2 2.15 0.19 1.37

Jetson Nano
NVIDIA Maxwell 128 GPU

4 34.97 11.69 30.66
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5.2 Real-time Application of Face Detector on Low-cost De-

vices

The real-world scenario challenges a computer vision method to implement in prac-

tical applications. The accuracy and processing time are crucial trade-offs for real-

time applications. In addition, practical applications demand a method to run on

low-cost devices instead of applying it on expensive devices.

The proposed detector is examined the processing speed on several low-cost and

edge devices, as presented in Table 5.2. The detectors are tested from a webcam

in 1,000 frames. The experiment demonstrates that each detector is operated on

several low-cost devices. The retail price of each hardware is not higher than 300

USD. The proposed detector can work faster than FaceBoxes and RetinaFace-mobile

on all devices with VGA resolution. Moreover, competitors are slow to operate on

Notebook, Lattepanda, and Raspberry-pi. These results can be concluded that our

detector has superior speed when implemented on low-cost devices.

Different processor size affects the speed of a CNN-based model to be able to run

fast on a device. A slow processing rate is performed on a raspberry-pi. It is caused

that a CPU in this device has a low execution rate, which discourages the compu-

tational module from operating fast. When tested on low-cost devices, our detector

needs less operation time and can operate at a reasonable rate. This architecture

generates low computation, small memory usage, and lightweight parameters by

employing fewer filters required at each convolutional block.

The visualization result presents that the proposed detector can accurately local-

ize faces of various sizes. As shown in Figure 5.3 (c), the small face does not weaken

the detector to find its location. The partial occlusion face in Figure 5.3 (b) can be

accurately detected by the proposed detector. In addition, the detector can predict

the location of faces in extreme position challenges, as presented in Figure 5.3 (a).



Chapter 5. Integrated Facial Emotion Recognition 55

(a)

(b)

(c) 

FIGURE 5.3: Visualization of the face detection results on live streams
video at VGA (a), HD (b), and Full HD (c) resolution.
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TABLE 5.3: Comparison of the integrated model speed on Intel Core
i5 CPU.

Evaluation
Model

Single MLCNN Ens. MLCNN AM-Net Proposed
Accuracy on FER-2013 (%) 73.03 74.09 75.82 74.17
Parameters (M) 20.79 92.82 24.90 6.58
GFLOPS 1.53 4.64 2.98 0.84
Model speed (FPS) 65.25 30.49 41.25 90.03
Integrated speed (FPS) 37.96 22.81 28.35 45.24

5.3 Runtime Efficiency of Facial Emotion Recognizer

A CNN-based model can smoothly work in real-time using a graphical accelerator,

but this device is expensive, whereas practical applications require it to be imple-

mented on low-cost devices. The facial expression model is designed to run fast on

a cheap device. It generates 6,578,243 learnable parameters with 0.835 Giga Floating

Points Operations (GFLOPs). To implement it in real-time applications, the pro-

posed facial expression model described in Chapter 4 was integrated with the face

detection discussed in Chapter 3. The model integration is examined its efficiency

on live stream video using a webcam.

Face detection works at the first stage to determine the facial location. It then

crops the area to obtain the region of interest. According to the input dimension of

the facial expression model, a cropped image is rescaled to 48 × 48. It then enters

the resized patch into the facial expression model. The efficiency experiments were

conducted on several low-cost devices, including the PC, a Laptop, a Notebook,

an embedded device, and an edge device. Table 5.3 shows that the proposed facial

expression network has a speed of 90.03 FPS on a CPU with a Core i5 processor. This

result shows that it is the fastest model. Although the model performance differs by

1.65% from AM-Net, the computation complexity and parameters are more efficient.

Based on these results, it has two significant benefits of the proposed network

compared to another model. Firstly, this model uses an EPT backbone to help the

integrated model rapidly operate on low-cost computing devices, supporting low

computational cost. In comparison, another competitor commonly utilized deep

CNN architecture to achieve excellent performance.

MLCNN employed the ensemble structure to fuse texture information with com-

plex features in the last stage. On the other hand, an AM-NET model applied a twin
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feature extractor and used a dense connections block that produced more than 20M

parameters. They use abundant filter channels, which generate many numbers of

operations. Therefore, both models depend on an additional accelerator to execute

parallel computing and boost speed in the inference phase.

The proposed facial expression module applies the partial transfer approach to

compress the redundant operation in the convolution process. This method reduces

the channel size of the filter at the initial layer, which can suppress the usage of many

parameters.

Secondly, this work promotes a sequential attention module that uses a cascade

structure to effectively increase the backbone performance. It comprehensively high-

lights the specific facial elements that improve the feature map quality. Global atten-

tion is applied to upgrade the global contextual information and relationship be-

tween each feature. Then, the channel and dimension attention blocks sequentially

enhance the potency of the essential elements based on channel and positional map-

ping information.

This cascade attention network gradually improves EPT output to achieve com-

petitive accuracy with the MLCNN and AM-NET. The proposed modules do not

significantly decrease integrated model speed in a real-time application. Thus, this

architecture focus on network efficiency, which does not compromise its perfor-

mance. The facial expression network allocates less memory and uses low com-

putation power, which is able to operate at a reasonable rate on low-cost devices.

5.4 Real-time Application of Face Emotion Recognizer on Low-

cost Devices

Nowadays, a robot has been widely employed in public places to serve humans. It

requires an emotion recognizer system to identify the person’s facial expressions.

Each emotion helps interaction activities by representing the response from the user.

Thus, the facial emotion method is really needed by an interactive robot to sense

a person’s expressions, and then it will be an input signal to respond to the user’s

feelings correctly. In addition, the capability of the human-robot interaction can be

increased by implementing the emotion recognizer in real-time processing speed.
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FIGURE 5.4: Visualization of detection results in the integrated sys-
tem on a live streams video.

The proposed emotion recognizer can accurately localize the face area and clas-

sify the seven basic facial expressions. The learning process builds characteristics
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FIGURE 5.5: Comparison of integrated model speed implemented on
low-cost devices.

of the training data to discriminate the interest element. The proposed model takes

facial information from KDEF as real-application detector knowledge. This dataset

covers multi-views that are more representative in real-world scenarios. Fig. 5.4

illustrates that the emotion recognizer accurately identifies a human facial expres-

sion. This result presents that this system can effectively estimate a facial emotion

on a human face. It can recognize each facial expression in multiple persons. The

visualization proves that the proposed network is acceptable as a real-time model

for supporting the human-robot interaction.

The robotics needs a vision model to execute fast and run at real-time speed.

It suppresses the delay time of all operations to boost the processing rate to work

without stuttering. Additionally, a robot usually uses low-cost devices to acquire

information from sensors and synchronize it with actuators. Accordingly, the appli-

cation of a method in an embedded device is needed to increase the capability of the

vision-based system.

The model efficiency is tested on other low-cost devices and compared with other

competitors. Fig 5.5 presents that the integrated model reaches speeds of 2, 4.41,

13.10, 45.15, 45.36, and 55.25 FPS on Lattepannda, Notebook, Jetson Nano, Core i5
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PC, Core i7 Laptop, and Core i7 PC, respectively. These devices have been widely

used in robotics, where each device is directly connected to a webcam to implement

the facial emotion recognizer by live streaming video.

The speed results demonstrate that our emotion recognizer is faster than other

methods. This experiment also integrates the competitor’s model with the proposed

face detector. Even though the integration of the proposed model operates slowly

on a Lattepanda, this device has a low clock rate. However, the proposed emotion

recognizer is more acceptable than other methods to implement in this device for

identifying a person’s facial expressions.

Another experiment was conducted on Jetson Nano as an embedded system with

a small GPU. This result showed that the speed of the ensemble model occurs out

of memory (OOM). A mini accelerator could not accommodate the competitor’s ex-

cessive memory and computational usage. Meanwhile, AM-NET only obtains 3.95

FPS, restraining real-time operating on this edge device.

This observation presents that the competitors need much more processing time

to be implemented an embedded device for classifying the expressions. Eventually,

the proposed models establish a cognitive detector to identify a human facial expres-

sion used for emotional intelligence. The proposed architectures effectively suppress

computational cost and memory usage, which affects increasing model speed. More-

over, the proposed facial emotion recognizer can run faster than other competitors,

especially execution on low-cost devices.
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Chapter 6

Conclusion

6.1 Conclusions

This work focus on an integrated facial emotion recognition system that incorpo-

rates the efficient architecture of face detector and facial expression networks. The

proposed system can robustly recognize facial emotion, even with a complex back-

ground. This integrated model can smoothly operate in real-time processing data

speed on inexpensive hardware. An entire architecture is discussed alongside the

comprehensive explanation correlated to each proposed module.

This thesis discusses an efficient CNN-based architecture on a multi-detection

face detector model in the first section. The backbone robustly discriminates the

distinctive features and rapidly predicts the multiple faces scales. According to the

experiments, this strategy improves the average precision score on all benchmarks

containing various challenges.

The high-performance and efficient face detector is designed using a light con-

volutional neural network that predicts the location of faces on several scales. A

shrink block rapidly extracts features and reduces the dimension of the feature map.

A stem module employs the mini-inception module that enriches features by rais-

ing the receptive field area. Therefore, a combination of shrink and stem modules

can deliver excellent detection performances because these modules can accurately

distinguish between facial and background features.

The pyramidal feature hierarchy is employed to avoid extra computation and

assigns the low, medium, and high layers to predict face location using multiple an-

chors. This approach can increase the detector’s efficiency by reducing additional
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operation and memory usage compared with FPN architecture. The module is di-

vided into three levels for the detection layer by estimating the face location into

three scales according to the prediction map dimension.

This proposed detector applies an anchor technique to initialize the predicted

bounding boxes. It uses a square ratio to occupy different prediction layers. In

addition, the anchor scale variation helps the detector to reduce the gap in variation

face sizes. Our face detection applies the anchor densification technique to improve

precision in the small face category.

The balancing loss and training strategy enhance prediction precision in the train-

ing stage. These methods have no impact on reducing the speed detector in the in-

ference phase. The proposed detector applies multi-boxes loss that integrates regres-

sion and classification loss by assigning it to each anchor. Augmentation techniques

and gradual learning rates help the model comprehensively learn variations in facial

features to generate robust models.

According to the experiments, each proposed module improves detector perfor-

mance by avoiding significant parameters and computational overhead. Light back-

bone with shrink and stem module maintains detector efficiency without weakening

detection performance. Multi-level detection increases the 5.9% true positive rate

without significantly reducing processing time. The proposed face detector achieves

97% average precision that outperforms other low-cost face detectors. Additionally,

the network efficiency outperforms other detectors by achieving 53 FPS on a Core i5

CPU and 35 FPS on a Jetson Nano.

For the second section, this thesis focus on classifying seven basic emotion classes.

An efficient deep learning model is designed using the EPT module to rapidly dis-

criminate between interest and trivial facial components. It splits the input features

map into two, extracts one of its parts, and combines it to enrich the information.

This module extracts a partially input map with less computational complexity than

the common block. It also keeps the performance by fusion in different frequency

features.

This facial expression model also employs a cascade attention network to capture

essential features and selectively boost the intensity. The series module consists of

three attentive modules to highlight global and local feature representation. The
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global attention module can enhance the global context features, while channel and

dimension attention modules are concentrated on the local attention features.

Furthermore, a classifier module is assigned to estimate the predicted probabil-

ity and applies SPP-modified to generate the raw vector. The SPP employs three

adaptive pooling windows to prevent the loss of essential information. This mod-

ule generates pyramid feature maps with multi-dimensions in different receptive

fields. Additionally, a construction module helps to extract represented features and

bridges all attention networks. It applies a transfer connection to retain previous

information by fusing features at different levels.

According to the experiments, the EPT model retains around 72% performance

on the FER-2013 dataset and outperforms other baseline networks. A combination

module achieves competitive accuracy of 74.17% with 6.58M parameters and 0.835

GFLOPS. The module reaches the processing speed of 90.03 FPS on a Core i5 CPU.

This result indicates that the proposed face expression model is more efficient and

faster than other competitors.

An integrated model combines face detection and facial expression classification

module to detect human facial emotion. It implements face detection in the begin-

ning process to generate regions of interest. Then, the facial expression module is

applied to the RoI to predict the seven basic emotions. In order to measure the

efficiency system, a two-stage network is tested by live streams video on low-cost

computing devices.

According to the experiments, the integration of the proposed module is faster

than other integrated modules. It achieves 2, 4.41, 13.10, 45.15, 45.36, and 55.25 FPS

on Lattenda, Notebook, Jetson Nano, Core I5 PC, Core I7 Laptop, and Core I7 PC,

respectively. The proposed system provides a reliable model that could work in

real-time and is suitable for real-world applications.

6.2 Future Works

In this thesis, the proposed system is focused on designing the architecture to im-

prove efficiency without compromising its performance. On the other hand, the loss
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function can increase the effectiveness of the training without reducing the infer-

ence speed. Therefore, the future work of this study is to explore error evaluation to

enhance prediction accuracy.

Another important aspect is a feature extractor that can be upgraded with a

transformer approach. This model has shown excellent performance in obtaining

distinctive features based on self-attention. This method can be applied with a more

efficient design and increase predictive precision, encouraging a model to be imple-

mented on mobile devices.

Furthermore, the application of real-world scenarios is the actual challenge of a

deep learning method. This emotion recognizer will be implemented on an assis-

tive robot to examine the reliability by quantifying customer satisfaction using their

expressions.
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