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ABSTRACT

This dissertation arm to theoretically develop fault diagnosis and fault-tolerant
control methods for robot manipulator systems to keep the robot operating with
good tracking performance in the presence of uncertainties and faults. The fault
diagnosis in industrial processes is a challenging task that includes fault detec-
tion, isolation, and estimation problem. Early fault detection and compensation
in the next stage, which is called fault-tolerant control, help robot manipulator
systems are still operating in a controllable region, can help to avoid events pro-
gression and reduce the number of productivity losses during abnormal events.

In this dissertation, the fault diagnosis methods are mainly developed based on
high-order sliding mode observers. Thanks to their ability not only to estimate
the lumped uncertainties and faults but also to approximate the system veloci-
ties, the requirement of tachometers in robot manipulator systems is eliminated.
In addition, the developed fault diagnosis method provides estimation informa-
tion with fast convergence speed, high precision, low chattering phenomenon,
and finite-time convergence of estimation errors.

Along with the fault diagnosis methods, fault-tolerant control schemes are de-
veloped. The proposed controllers are designed via an active fault-tolerant con-
trol method by combining the developed fault diagnosis schemes with novel
non-singular fast terminal sliding mode controllers to accommodate not only
system failures but also uncertainties. This combination provides robust fea-
tures in dealing with the lumped uncertainties and faults, increases the con-
trol performance, reduces the chattering phenomenon, eliminates velocity mea-
surement requirement, guarantees finite-time convergence, and provides faster
reaching sliding motion. Especially, both two periods of time, before and after
the convergence process takes place are carefully considered.

The stability and the finite-time convergence of the proposed controller-observer
techniques are demonstrated using the Lyapunov theory. Finally, to verify the
effectiveness of the proposed controller-observer methods, computer simula-
tions on robotic manipulator systems are performed.
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Chapter 1

Introduction

1.1 Overview of Fault Diagnosis and Fault Tolerant

Control Methods

In the industrial environment, robotic manipulators are very popular. They
have many special applications due to their ability to replace workers in difficult
and dangerous activities such as moving heavy products, assembling mechani-
cal structures, sheet metal cutting, material handling, milling, painting welding,
and roughing etc. Moreover, they can help to improve both the product quality
and quantity, thus saving the cost for manufacturers. The greater the impor-
tance of robotic manipulators in industry, the greater interest in the research
field of control for robotic manipulators, which aims to make the robot tracks
a desired trajectory with the greatest tracking accuracy [1, 2]. However, robot
manipulator systems have highly nonlinear and very complex dynamic with
coupling terms, from practical viewpoint, they are arduous or even impossible
to obtain the robot’s exact dynamics. Additionally, the payload changes, fric-
tions, and external disturbances, etc. leading to model uncertainties.

Along with modern industrial applications becoming increasingly complex, un-
known faults more frequently happen in the system especially in the condition
of long-term operation. The faults could be actuator faults, sensor faults, or
process faults. Hence, the requirement is to be able to automatically detect the
faults, compensates their effects, and completes the assigned missions even in
the existence of one or more faults with acceptable performance. Furthermore,
for reducing the weight/size and saving the cost, in some cases, manufactur-
ers remove the velocity sensors in the robot. They are big problems that have
been challenged by many researchers. Therefore, it is necessary to develop new



Chapter 1. Introduction 2

Fault diagnosis (FD) and Fault-tolerant control (FTC) methods to overcome the
aforementioned problems.

1.1.1 Fault Diagnosis methods

Generally, faults are considered according to the part of the system they affect
including sensor fault, actuator fault, and process faults. Sensor faults are the
abnormal variations in measurements, such as a systematic error abruptly af-
fecting a position sensor value. Actuator faults are the failures on a device that
influence the system dynamics, such as the bearing faults or the loss torques
in the robot manipulator systems. Process faults are changes in the inner pa-
rameters of the system that modify its dynamics, such as a load change in robot
dynamics. To allow the robot manipulators to continue their missions, the re-
quirement is to identify the unknown faults in the system before they lead to a
complete breakdown (failure). When faults have been detected and estimated,
a natural idea is to try to compensate for their effects by modifying the control
law.

FD concerns procedures for determining if a fault has occurred and prediction
the level of the fault and its consequence based on available input and output
signals. The FD process includes the following three tasks: 1) fault detection de-
termines something is going wrong in a system and their times of occurrence;
2) fault isolation determines the type and location of the fault; and 3) fault esti-
mation (or identification) is the determination the magnitude and time varying
behavior of the faults.

In the present literature, various techniques to FD have been proposed to ap-
proximate the lumped uncertainties and faults [3, 4, 5, 6, 7, 8, 9], for example,
neural network (NN) observer [5, 6], time delay estimation (TDE) [10, 11], ex-
tended state observer (ESO) [7], second-order sliding mode observer (SOSMO)
[8, 9], and third-order sliding mode observer (TOSMO) [12, 13, 14]. With the
learning ability and high accuracy estimation, the NN observer has been widely
employed [5, 6, 15]. However, the learning ability makes the system more com-
plicated and thus requires higher system configuration to use online training
technique that increases the cost of devices. the TDE technique provides good
estimation accuracy; however, it can only provide the ability to estimate the
lumped uncertainties and faults; therefore, an additional observer is needed
to estimate the system velocities [16]. It leads the system more complex and
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increases the computational time. The ESO is a simple technique for online ob-
servation, which can approximate both the velocities and the lumped uncertain-
ties and faults with quite good approximation information. Thanks to the linear
characteristic of the observer element, which can strongly deal with perturba-
tions that are very far away from the origin, the convergence speed of the ESO
is very high. However, the overshoot phenomenon at the convergence stage
reduces its application ability. On the contrary, the SOSMO is a finite-time ob-
server, which has the ability to estimate both the velocities and the lumped un-
certainties and faults without the overshoot phenomenon as in ESO. Although
providing high precision and less chattering in the estimation signal, the con-
vergence time of the SOSMO is a little slower compared to the ESO. In addition,
a lowpass filter is needed to reconstruct the estimated lumped uncertainties and
faults, which reduces its estimation accuracy. For that reason, the TOSMO that
can provide a continuous equivalent output injection, has been investigated.
Consequently, the required filtration in the SOSMO is eliminated. Compared
with the SOSMO, the TOSMO provides the estimation of lumped uncertainties
and fault with less chattering and higher estimation accuracy. Moreover, the
TOSMO maintains almost all the advantages of the SOSMO. Thanks to the supe-
rior benefits, the TOSMO has been widely applied to control uncertain systems
by many researchers [17, 18, 19]. Unfortunately, as a trade-off, its convergence
time becomes slower than that of SOSMO. Therefore, it is necessary to design
an observer which can combine the wonderful properties of both the SOSMO
and the TOSMO.

1.1.2 Fault Tolerant Control methods

FTC systems are systems that can maintain an acceptable level of control even
after the occurrence of the fault. Generally, FTC techniques are broadly classi-
fied into two types: passive FTC (PFTC) [20, 21] and active FTC (AFTC) [22, 23,
24]. In PFTC technique, a robust controller is designed to compensate for the ef-
fects of the lumped uncertainties and faults without requiring information feed-
back from a FD observer. Since the lumped uncertainties and faults’ effects im-
posed on the nominal controller of the PFTC are heavier than that of the AFTC,
the nominal controller of the PFTC requires stronger robustness against the ef-
fects of faults. On the contrary, the AFTC is constructed based on online FD
technologies. Compared to the PFTC, the AFTC accommodates higher control
performance when the fault information is approximated correctly. Therefore,
the AFTC methods are more suitable for practical applications.
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In literature, various control approaches have been developed for FTC problem
of robotic manipulators, such as proportional-integral-differential (PID) control
[25, 26], computed torque control (CTC) [27, 28], adaptive control [29, 30], NN
control [31, 32], fuzzy logic control [33, 34, 35], and sliding mode control (SMC)
[36, 37, 38]. The PID control is well-known as a simple and monotonic con-
troller, which does not require the dynamic model of the robot systems. How-
ever, this controller cannot achieve good tracking performance. The CTC is
suitable to apply to real robot system; however, its tracking accuracy tremen-
dously depends on the exactness of robot’s dynamic model. Adaptive control
is an effective method to deal with matched uncertainties; however, it is not
appropriate for the problem of mismatched uncertainties. Intelligent control
schemes are widely employed such as the neural-network control and fuzzy
control. Learning ability and good approximation of nonlinear function with
arbitrary accuracy of NN controllers make them a good choice for modeling
complex processes and compensating for mismatched uncertainties. However,
transient performance in the presence of disturbance can be degraded due to
the required online learning procedure. The fuzzy logic control method was
developed based on expert knowledge and experience; however, its main dis-
advantages are difficulties in stability analysis and comprehensive knowledge
of requirement about the system.

The SMC is one of the most powerful robust controllers which can be used in
FTC problem of robot manipulators because of its fast dynamic response and
effectiveness in rejecting the effects of the lumped uncertainties and faults [39,
40, 41]. In recent years, the SMC has been developed in a wide range of area
by many researchers due to its simple design procedure while providing high
tracking performance. It also has the ability to solve the two main crucial chal-
lenging issues in control that are stability and robustness [40, 42]. It is suitable
for various types of real systems such as DC-DC converters, motors, helicopters,
magnetic levitation, aircraft, and robot manipulators. Although providing won-
derful control properties, some problems that reduce the applicability of the
conventional SMC still exist, that are: 1) the finite-time convergence cannot be
guaranteed, 2) chattering phenomenon, 3) velocity (and acceleration) measure-
ments are required.

The terminal SMC (TSMC) has been developed by utilizing nonlinear switching
functions instead of the sliding function as in the conventional SMC; therefore,
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the finite-time convergence is guaranteed [43, 44, 45]. Compared with the con-
ventional SMC, the TSMC extends two outstanding properties, that are finite-
time convergence and achieving higher accuracy when parameters are carefully
designed. Unfortunately, the TSMC only obtains a faster convergence when sys-
tem states are near equilibrium point but slower when the system states are far
from the equilibrium point. In addition, the TSMC suffers from the singular-
ity problem. Various great research has been focused to overcome these draw-
backs. Each problem has been solved by using fast TSMC (FTSMC) [46, 47, 48]
and non-singular TSMC (NTSMC) [10, 49, 50], separately. In order to get rid of
them simultaneously, the non-singular fast TSMC (NFTSMC) is proposed [14,
51, 52, 53, 54]. This controller has outstanding control features such as singular-
ity removal, high tracking precision, finite-time convergence, and durability to
the lumped uncertainties and faults’ effects.

The chattering phenomenon is caused by the utilizing of a discontinuous term
with a big and fixed gain in reaching phase. It harms the system and thus
reduces the practical applicability of the SMC methods. To reduce this high-
frequency oscillations, the basic idea is to use an observer to approximate the
lumped uncertainties and faults and then compensates its effects in the system.
By using this method, the switching gain is now chosen smaller to deal with the
effects of the estimation error instead of the effects of the lumped uncertainties
and faults; thus, the chattering phenomenon is reduced.

1.2 Objectives of the Thesis

The main objective of this dissertation is to develop new finite-time FD and
FTC methods to deal with the lumped uncertainties and faults (LUaF) for robot
manipulator systems. The FD and FTC methods are proposed based on the
high-order sliding mode observers, the non-singular fast terminal sliding mode
control (NFTSMC) techniques, and adaptive law. The developed controller-
observer strategies fulfill the main purpose of achieving minimum tracking er-
rors, and some/all the following purposes

1. Approximating the LUaF with high accuracy and fast convergence.

2. Eliminating/Reducing the effects of the LUaF in the system thus avoid-
ing/eliminating/reducing the chattering phenomenon effects.
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3. Increasing the convergence speed of both controller and observer meth-
ods.

4. Eliminating the need for velocity measurement in the controller designing
process.

5. Eliminating the dependent on the estimation accuracy of the designed ob-
server.

6. Considering two period of times, before and after the convergence of ve-
locity estimation takes place.

7. The finite-time convergence and the stability of the controllers and ob-
servers can be confirmed by the Lyapunov theory.

1.3 Organization of the Thesis

The following of this thesis is organized as follows

In chapter 2, an AFTC tactic using a sliding mode controller-observer method
for uncertain and faulty robotic manipulators is developed. First, a finite-time
disturbance observer (DO) is proposed based on the second-order sliding mode
linear observer to approximate the LUaF. The observer offers high precision,
quick convergence, low chattering, and finite-time convergence of estimation
information. Then, the estimated signal is employed to construct an adaptive
NFTSMC (A-NFTSMC) law, in which an adaptive law is employed to approx-
imate the switching gain. This estimation helps the controller not depend on
the estimation accuracy of the proposed observer. Consequently, the combina-
tion of the proposed controller-observer approach delivers better qualities such
as increased position tracking accuracy, reducing chattering effect, providing
finite-time convergence, and robustness against the effect of the LUaF.

In chapter 3, an FTC method for robotic manipulators is proposed to deal with
the LUaF in case of lacking tachometer sensors in the system. Different from
Chapter 2, the proposed method in this chapter uses a controller-observer strat-
egy to eliminate the requirement of velocity measurement in design process.
First, the TOSMO is designed to estimate both velocity and the LUaF of the
system with high accuracy, less chattering, and finite time convergence of es-
timation errors. Based on the estimation of velocity, a novel non-singular fast
terminal sliding (NFTS) function and NFTSMC are proposed. This combina-
tion provides robust features in dealing with the LUaF, increases the control
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performance, reduces the chattering phenomenon, and guarantees fast finite-
time convergence. Especially, the two stages of time that before and after the
convergence time, are carefully analyzed.

Chapter 4 attempts to increase the control performance of the proposed algo-
rithm in Chapter 3 and generalize the designing process for second-order uncer-
tain nonlinear systems. In the chapter, the estimated velocity from the TOSMO
is applied to propose an integral NFTSMC for a class of second-order uncertain
nonlinear systems. The proposed FTC strategy has some superior properties
such as high tracking accuracy, chattering phenomenon reduction, robustness
against the effects of the LUaF, velocity measurement elimination, finite-time
convergence, and faster-reaching sliding motion. Further, the proposed method
is applied to robot manipulator systems.

In chapter 5, a novel FTC tactic based on the combination of an NFTSMC and
a novel high-speed TOSMO for robot manipulator systems using only position
measurement is proposed. In the first step, a high-speed TOSMO is first time
proposed to approximate both the system velocity and the LUaF with a faster
convergence time compared to the TOSMO. The faster convergence speed is ob-
tained thanks to the linear characteristic of the added elements. In the second
step, the NFTSMC is constructed based on a NFTS surface and the obtained in-
formation from the proposed high-speed TOSMO. Thanks to this combination,
the proposed controller-observer tactic provides excellent features such as faster
convergence time, high tracking precision, chattering phenomenon reduction,
robustness against the effects of the LUaF, and velocity requirement elimina-
tion. Especially, the proposed observer not only improves the convergence time
of the observed signal but also increases the system dynamic response.

Finally, the conclusion of this dissertation and suggestions for further develop-
ment are given in Chapter 6.
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Chapter 2

An Active Fault-Tolerant Control for
Robotic Manipulators Using
Adaptive Non-Singular Fast
Terminal Sliding Mode Control and
Disturbance Observer

In this chapter, a FTC tactic using a sliding mode controller-observer method for un-
certain and faulty robotic manipulators is proposed. First, a finite-time DO is proposed
based on the second-order sliding mode linear observer to approximate the LUaF. The
observer offers high precision, quick convergence, low chattering, and finite-time con-
vergence estimating information. Then, the estimated signal is employed to construct
an adaptive non-singular fast terminal sliding mode control law, in which an adaptive
law is employed to approximate the switching gain. This estimation helps the con-
troller automatically adapt to the LUaF. Consequently, the combination of the proposed
controller-observer approach delivers better qualities such as increased position tracking
accuracy, reducing chattering effect, providing finite-time convergence, and robustness
against the effect of the LUaF. The Lyapunov theory is employed to illustrate the robotic
system’s stability and finite-time convergence. Finally, simulations using a 2-DOF
serial robotic manipulator verify the efficacy of the proposed method.



Chapter 2. An AFTC for Robotic Manipulators Using A-NFTSMC and DO 9

2.1 Introduction

In industry, robotic manipulators are very popular. They have been employed
in many applications such as material handling, milling, painting welding, and
roughing. The greater the importance of robotic manipulators in industry, the
greater interest in the research field of control for robotic manipulators, which
aims to make the robot tracks a desired trajectory with the greatest tracking ac-
curacy [1, 2]. However, in both theory and practice, robotic manipulators are
difficult to control due to their characteristics. First, the dynamic of robotic ma-
nipulators is highly nonlinear and complicated, including the coupling effect.
Furthermore, uncertainties in robot dynamics are also caused by payload fluc-
tuations, frictions, and external disturbances, etc. Therefore, it is arduous or
even impossible to correctly identify the dynamics of robots. In some special
cases, with the longtime operation, unknown faults might happen. The faults
could be actuator faults, sensor faults, or process faults. They are big problems
that have been challenged by many researchers. A variety of approaches for
dealing with both the impact of uncertainties and faults have been presented in
the current literature. Authors in [55, 56, 57] proposed methods to estimate the
dynamics uncertainties and faults independently. However, using two distinct
observers, on the other hand, makes the methods complex, requiring resources
and time for calculation. In this study, faults are regarded as extra uncertainties,
and the overall impacts of the system’s lumped uncertainties and faults (LUaF)
are evaluated.

FTC techniques have been developed to deal with the LUaF [58, 59]. FTC tech-
niques are broadly classified into two types: PFTC [20, 21] and AFTC [22, 23,
24]. A robust controller is built in the PFTC approach to manage the LUaF with-
out the need for feedback input from a DO. Because the effects of LUaF imposed
on the typical controller of the PFTC are greater than those imposed on the no-
tional controller of the AFTC, the nominal controller of the PFTC has the need of
more resilience to eliminate the impacts of LUaF. On the contrary, the AFTC is
built using an online DO technology. Since the LUaF is appropriately estimated,
the AFTC provides better control effectiveness than the PFTC. As a result, the
AFTC techniques are more suited for industrial cases.

In literature, a lot of efforts have been given for FTC problem of robotic ma-
nipulators, such as CTC [27, 28], fuzzy logic control [60, 34], adaptive control
[29, 30], NN control [31, 32], and SMC [36, 37, 38]. Among them, the SMC is
one of the most powerful robust controllers which can be used in uncertainty
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nonlinear dynamic systems. In recent years, the SMC has been developed in
a wide range of area by many researchers due to its simple design procedure
while providing acceptable control performance. It also has the ability to solve
the two main crucial challenging issues in control that are stability and robust-
ness [40, 42]. Although providing wonderful control properties, some problems
that reduce the applicability of the conventional SMC still exist. These include
the inability to ensure finite-time convergence and the chattering phenomena,
which is the high-frequency oscillation of the control input signal.

To guarantee the finite-time convergence of the tracking error, a lot of efforts
have been paid. In [43, 44, 45], the TSMC has been developed. As compared to
the traditional SMC, the TSMC has better precision and overcomes the finite-
time convergence problem, however, as a trade-off, its convergence time is
slightly slower. In addition, the singularity problems are appeared in some spe-
cial cases. To resolve the two disadvantages, the FTSMC [48, 47, 61] and the
NTSMC [50, 49] are used. Unfortunately, the two controllers just solve the two
problems separately. In order to get rid of them simultaneously, the NFTSMC
is proposed [51, 52, 53, 14, 54]. This controller has outstanding control features
such as singularity removal, high tracking precision, finite-time convergence,
and durability to LUaF effects.

To decrease chattering caused by the adoption of a discontinuous reaching con-
trol rule with a large and fixed gain, the fundamental concept is to employ an
observer to approximate the LUaF and then compensate for its impacts on the
system. Using this technique, a smaller switching gain can be set to deal with
the impacts of the estimated error rather than the effects of the LUaF. Therefore,
the chattering phenomenon could be reduced. In the present literature, many
researchers have been focusing their efforts on building an effective observer to
estimate the LUaF [3, 4, 5, 62, 7, 8, 9], for example, NN observer [5, 62], ESO [7],
SOSMO [8, 9]. The NN observer has been frequently used due to its learning
capacity and high accuracy estimation. Nevertheless, the learning capability
complicates the system and necessitates a higher system configuration in order
to employ online training approaches, which raises the cost of equipment. The
ESO is a simple technique for online observation, which provides quite good
approximation information. Thanks to the linear characteristic of the observer
element, which can strongly deal with perturbations that are very far away from
the origin, the convergence speed of the ESO is very high. However, the over-
shoot phenomenon at the convergence stage reduces its application ability. On
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the contrary, the SOSMO has the ability to estimate the LUaF without the over-
shoot phenomenon as in ESO, however, the convergence time is a little slower.
In addition, a lowpass filter is needed to reconstruct the estimated LUaF, which
reduces its estimation accuracy.

From the motivation above, this study proposed a DO to approximate the LUaF
of robotic manipulator system with high accuracy and fast convergence. To at-
tain high positional tracking accuracy and system stability under the impacts
of the LUaF, an FTC technique combining the adaptive NFTSMC and the sug-
gested DO, named A-NFTSMC-DO, is proposed. In the controller, an adaptive
law is applied to estimate the switching gain to help the controller automati-
cally adapts with the LUaF. Therefore, the combination of proposed controller-
observer technique provides high tracking precision, fast convergence, less chat-
tering effect, and finite-time convergence. The following are the main contribu-
tions of this chapter:

• Proposing a DO to approximate the LUaF with high accuracy and fast
convergence,

• Proposing an FTC technique for improving the tracking performance of
the robot manipulator while taking to account the overall impacts of the
LUaF,

• Minimizing the phenomena of chattering in control input signals,

• Using the Lyapunov stability theory to demonstrate the system’s finite-
time stability.

The following is the structure of the research. Section 2.2 follows the introduc-
tion by presenting the dynamic equation of a serial robotic manipulator. Section
2.3 then depicts the suggested architecture of the DO. In Section 2.4, the A-
NFTSMC-DO is designed to obtain a minimal tracking error. In Section 2.5, the
simulations of the proposed algorithm are executed on a 2-DOF serial robotic
manipulator. Finally, Section 2.6 gives some conclusions.

2.2 System Modeling and Problem Formulation

The following is a description of a serial robotic manipulator with a dynamic
equation in Lagrangian form

D (q) q̈ + V (q, q̇) q̇ + G (q) + Fr (q̇) + τd = τ (2.1)
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where q, q̇, q̈ are the n × 1 vectors that represent robot joint angular positions,
velocities, and accelerations, respectively; D (q) is the n × n matrix of inertia,
which is symmetric, bounded, and positive definite; V (q, q̇) is the n × n matrix
of the Coriolis and centripetal forces; τ is the n × 1 vector of the control input
torques; G (q), Fr (q̇), and τd are the n × 1 vector of the gravitational forces,
friction, and disturbance, respectively.

The equation (2.1) can be transformed to the below form

q̈ = H (q, q̇) + D−1 (q) τ + ∆ (q, q̇) (2.2)

where H (q, q̇) = D−1 (q) [−V (q, q̇) q̇ − G (q)] and ∆ (q, q̇) = D−1 (q) [−Fr (q̇)− τd]

represents the uncertainty terms.

Faults in a system have been growing much more common in current industrial
applications as they get more sophisticated, particularly under the state of en-
during implementation. As a result, this chapter supposes that the robot system
operates under the impact of faults. In these cases, the robot dynamic equation
(2.2) can be rewritten as

q̈ = H (q, q̇) + D−1 (q) τ + ∆ (q, q̇) + Φ (q, q̇, t) (2.3)

where Φ (q, q̇, t) = φ
(
t − Tf

)
Ψ (q, q̇, t) represents the unknown faults. Tf is oc-

currence time and the term φ
(
t − Tf

)
= diag

{
φ1
(
t − Tf

)
, φ2

(
t − Tf

)
, . . . , φn

(
t − Tf

)}
denotes the time profile of faults with φi

(
t − Tf

)
=

{
0 i f t ≤ Tf

1 − e−ςi(t−Tf ) i f t ≥ Tf
,

ςi > 0 denotes the evolution rate of faults.

Remark 2.1. In robotic manipulator systems, the unknown faults can be actuator
faults, sensor faults, and process faults. In this chapter, the effects of actuator faults in
the system are considered. Therefore, the fault functions Ψ (q, q̇, t) are defined as faults
that occur at the actuator.

Basically, the robotic system (2.3) is reconstructed in state space as

ẋ1 = x2

ẋ2 = H (x) + D−1 (x1) u + ζ(x, t)
(2.4)

where x1 = q, x2 = q̇, x =
[

x1
T x2

T
]T

, u = τ, and ζ(x, t) = ∆ (q, q̇) + Φ (t)
denotes the LUaF.
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The main purpose of this study is to design an FTC scheme for the robotic ma-
nipulator such that the robot can track the desired trajectory under the effect of
the LUaF with minimal tracking error. The FTC scheme is constructed accord-
ing to the assumptions as following.

Assumption 2.1. The desired trajectory is bounded and is a twice continuously differ-
entiable function respect to time.

Assumption 2.2. The LUaF is bounded as

|ζ (x, t)| ≤ δ (2.5)

where δ is a positive constant.

2.3 Estimation scheme

2.3.1 Design of Disturbance Observer

The DO is developed to be used with the robot manipulator system (2.4) as.

˙̂x2 = H (x) + D−1 (x1) u + ζ̂

ζ̂ = k1|x2 − x̂2|1/2sign (x2 − x̂2) + p1 (x2 − x̂2) + z
ż = k2sign (x2 − x̂2) + p2 (x2 − x̂2)

(2.6)

where x̂2 is the estimator of the true state x2, and ki, pi, i = 1, 2 represent the
observer gains.

By subtracting (2.6) from (2.4), we can obtain

˙̃x2 = ζ − ζ̂

ζ̂ = k1|x̃2|1/2sign (x̃2) + p1 (x̃2) + z
ż = k2sign (x̃2) + p2 (x̃2)

(2.7)

where x̃2 = x2 − x̂2 represents the state estimation errors.

The equation (2.7) can be rewritten as

˙̃x2 = −k1|x̃2|1/2sign (x̃2)− p1 (x̃2) + z + ζ

ż = −k2sign (x̃2)− p2 (x̃2)
(2.8)
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For convenience in proving the stability of the proposed DO, in this part, we
suppose that the LUaF, ζ, of the system (2.4) is globally bounded by

|ζ| ≤ δ1|x2|1/2 + δ2 |x2| (2.9)

for some constants δ1, δ2 ≥ 0. Please note that under the condition in (2.9), the
assumption 2.2 still satisfies. Theorem 2.1. For the robotic system given in (2.4),
if the DO is designed as (2.6) and the observer gains are selected as in (2.15, 2.17),
then the system is stable and the estimation error ˙̃x2 in (2.8) will converge to zero in
finite-time. Proof of Theorem 2.1.

A suitable Lyapunov function is selected as

V(x) = 2k2 |x2|+ p2x2
2 +

1
2

z2 +
1
2

(
k1|x2|1/2sign(x2) + p1x2 − z

)2
(2.10)

The Lyapunov function (10) can be written as a quadratic form V(x) = ξTΠξ

where ξ =

 |x2|1/2sign(x2)

x2

z

, and Π = 1
2


(

4k2 + k1
2
)

k1p1 −k1

k1p1
(
2p2 + p1

2) −p1

−k1 −p1 2

.

The time derivative of the Lyapunov function is calculated as

V̇ = − 1

|x2|1/2 ξTΩ1ξ − ξTΩ2ξ + ωT
1 ξ +

1

|x2|1/2 ωT
2 ξ (2.11)

where

Ω1 =
k1

2


(

2k2 + k1
2
)

0 −k1

0
(
2p2 + 5p1

2) −3p1

−k1 −3p1 1

 ,

Ω2 = p1


(

k2 + 2k1
2
)

0 0

0
(

p2 + p1
2) −p1

0 −p1 1

 ,

ωT
1 =

[
k1

(
3p1

2
ζ

)
,
(

p1
2 + 2p2

)
ζ, − p1ζ

]
,

ωT
2 = ζ

[(
2k2 +

k2
1

2

)
0 − k1

2

]
.
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Using the bound (2.9) of the LUaF then

1

|x2|1/2 ωT
2 ξ ≤ δ1

|x2|1/2 ξT∆1ξ + δ2ξT∆1ξ (2.12)

where

∆1 =


(

2k2 +
k2

1
2

)
0 k1

4

0 0 0
k1
4 0 0

 ,

and also
ωT

1 ξ ≤ 1
|x2| 1/2 ξT∆2ξ + ξT∆3ξ (2.13)

where

∆2 =


0 0 0

0
[
k1

3p1
2 δ2 +

(
p1

2 + 2p2
)

δ1

]
0

0 0 0

 ,

∆3 =

 p1
3
2 k1δ1 0 1

2 p1δ1

0
(

p1
2 + 2p2

)
δ2

1
2 p1δ2

1
2 p1δ1

1
2 p1δ2 0

 .

The derivative of the Lyapunov function can be then written as

V̇ = − 1

|x2|1/2 ξT (Ω1 − ∆2 − δ1∆1) ξ − ξT (Ω2 − ∆3 − δ2∆1) ξ (2.14)

The term (Ω1 − ∆2 − γ1∆1) > 0 if

k1 > 2δ1

p1 > 3
4 δ2

k2 > k1
δ1k1+

1
8 δ2

1
2( 1

2 k1−δ1)

p2 >
k1

[
1
2 k1(k1+

1
2 δ1)

2
(2p1

2− 3
2 δ2 p1)+( 5

2 p1
2+ 3

2 δ2 p1)q1

]
2
(

q1− 1
2 k1(k1+

1
2 δ1)

2)
( 1

2 k1−δ1)
− 1

2 p1
2

(2.15)

where q1 = 1
4 k3

1 +
(

1
2 k1 − δ1

) (
2k2 +

1
2 k2

1

)
.

The second term in the inequality can be written as

ξT (Ω2 − ∆3 − γ3∆1) ξ = ζTΓ1ζ + xTΓ2x, (2.16)
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where

Γ1 =

 p1
((

k2 + 2k2
1
)
− 3

2 k1δ1
)
−
(

2k2 +
k2

1
2

)
δ2

− 1
2

(
p1δ1 +

1
2 k1δ2

) −1
2

(
p1δ1 +

1
2 k1δ2

)
1
2 p1

]

Γ2 =

[
p1
(

p2 + p1
2 )− (p1

2 + 2p2
)

δ2

− p1

(
p1 +

1
2 δ2

) −p1

(
p1 +

1
2 δ2

)
1
2 p1

]

This term is positive definite if

p1 > 2δ2

k2 >
(p1δ1+

1
2 k1δ2)

2

2p1(p1−2δ2)
+

3
2 δ1k1 p1−2(p1− 1

4 δ2)k2
1

(p1−2δ2)

p2 > p1
[p1(p1+3δ2)+

1
2 δ2

2]
p1−2δ2

(2.17)

One can see that it is always possible to select ki > 0, pi > 0, i = 1, 2 so that
both sets of inequalities (2.15, 2.17) are satisfied for every δi > 0, i = 1, 2.

Under the conditions in (2.15, 2.17), the derivative of the Lyapunov function in
(2.14) becomes

V̇ ≤ − 1

|x2|1/2 ξT (Ω1 − ∆2 − δ1∆1) ξ (2.18)

According to [9], it can be concluded that the system is stable, and the estima-
tion error ˙̃x2 in (2.8) will approach to zero in finite-time. Accordingly, Theorem
2.1 is clearly illustrated.

2.3.2 The LUaF Reconstruction

After the convergence time, the predicted states, x̂2, will approach the real states
after the convergence time, x2, thus, the estimation error (2.7) becomes

˙̃x2 = ζ − ζ̂ ≡ 0 (2.19)

Therefore, the estimation of the LUaF can be reconstructed as

ζ = ζ̂ = k1|x̃2|1/2sign (x̃2) + p1 (x̃2) + z
ż = k2sign (x̃2) + p2 (x̃2)

(2.20)
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Remark 2.2. Thanks to the characteristic of linear terms, the proposed DO can obtain
higher convergence speed compared to the SOSMO. This excellent property will be
confirmed in the simulation part.

Remark 2.3. As shown in (2.20), the resulting signal is made up of an integral opera-
tor; thus, the estimated information of the suggested DO may be rebuilt directly without
filtration. As a result, this observer produces a more accurate estimation signal with less
chattering than the SOSMO. In the following part, this estimation information will be
used to build the FTC technique.

2.4 Design of Controller

2.4.1 The DO-based NFTSMC

We define the position tracking and velocity errors as

e = x1 − xd

ė = x2 − ẋd
(2.21)

where xd, and ẋd are the desired trajectories and velocities, respectively.

A NFTSM function is chosen as in [63]

σ = ė +
∫

κ1|e|β1sign(e) + κ2|ė|β2sign(ė) + κ3e + κ4e3 (2.22)

where constants κ1, κ2, κ3, κ4 are positive constants and β1, β2 can be selected
as

β1 = (1 − ε, 1) , ε ∈ (0, 1)
β2 = 2β1

1+β1

(2.23)

The control law is designed as following

u = −D (x1)
(
ueq + uc + usw

)
(2.24)

ueq = H(x) + κ1|e|β1sign(e) + κ2|ė|β2sign(ė) + κ3e + κ4e3 − ẍd (2.25)

uc = ζ̂ (x, t) = k1|x̃2|1/2sign (x̃2) + p1 (x̃2) + z
ż = k2sign (x̃2) + p2 (x̃2)

(2.26)
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The switching control law, usw, is employed to compensate for the estimation
errors as follows

usw = (K + µ) sign (σ) (2.27)

where µ is a small positive constant and K denotes the switching gain, which is
bounded as K ≥ |d (x, t)| with d (x, t) = ζ (x, t)− ζ̂ (x, t) represents the estima-
tion error.

Theorem 2.2. For the uncertain and faulty robotic manipulator described in (2.4),
if the proposed control law is designed as in (2.24-2.27) and the NFTSM function is
selected as in (2.22), then the stability and finite-time convergence of the system are
guaranteed.

Proof of Theorem 2.2.

Taking the derivative of the sliding function (2.22) with respect to time, we ob-
tain

σ̇ = ë + κ1|e|β1sign(e) + κ2|ė|β2sign(ė) + κ3e + κ4e3

= ẋ2 − ẍd + κ1|e|β1sign(e) + κ2|ė|β2sign(ė) + κ3e + κ4e3

= −ẍd + H(x) + D−1 (x1) u + ζ (x, t) + κ1|e|β1sign(e)
+κ2|ė|β2sign(ė) + κ3e + κ4e3

(2.28)

Inserting the control laws (2.24 - 2.27) into (2.28) yields

σ̇ = − (K + µ) sign (σ) + d (x, t) (2.29)

A candidate Lyapunov function is chosen as

L1 =
1
2

σTσ (2.30)

Taking the derivative of the Lyapunov function (2.30) and substituting the result
from (2.29), we obtain

L̇1 = σTσ̇

= σT (− (K + µ) sign (σ) + d (x, t))
= − (K + µ) |σ|+ d (x, t) σ ≤ −µ |σ| < 0, ∀σ ̸= 0

(2.31)

Therefore, the Theorem 2.2 is successfully proven.
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Remark 2.4. The switching gain, K, is dependent on the accuracy of the observer. In
the next section, an adaptive NFTSMC will be proposed to help the controller automat-
ically adapts with the LUaF.

2.4.2 The DO-based Adaptive NFTSMC

An adaptive NFTSMC law is suggested as

u = −D (x1)
(
ueq + uc + uasw

)
(2.32)

ueq = H(x) + κ1|e|β1sign(e) + κ2|ė|β2sign(ė) + κ3e + κ4e3 − ẍd (2.33)

uc = ζ̂ (x, t) = k1|x̃2|1/2sign (x̃2) + p1 (x̃2) + z
ż = k2sign (x̃2) + p2 (x̃2)

(2.34)

uasw =
(
K̂ + µ

)
sign (σ) (2.35)

where K̂ is the estimator of the ideal switching gain, K∗, and is updated by the
following adaptive law

˙̂K = ρ |σ| (2.36)

with ρ > 0 is the adaptation gain.

Theorem 2.3. For the uncertain and faulty robotic manipulator described in (2.4), if
the proposed DO-based adaptive NFTSMC law is designed as in (2.32-2.35) and the
NFTSM function is selected as in (2.22), then the stability and finite-time convergence
of the system are guaranteed.

Proof of Theorem 2.3.

Inserting the control laws (2.32-2.35) into (2.28) yields

σ̇ = −
(
K̂ + µ

)
sign (σ) + d (x, t) (2.37)

A candidate Lyapunov function is chosen as

L2 =
1
2

σTσ +
1
2k

K̃TK̃ (2.38)

where K̃ = K̂ − K∗.

Taking the derivative of the Lyapunov function (2.38) with respect to time, we
obtain

L̇2 = σTσ̇ +
1
k

K̃T ˙̃K (2.39)
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The derivative of K̃ with respect to time is taken as

˙̃K = ˙̂K − K̇∗ = ˙̂K (2.40)

Inserting the result from (2.37) and (2.40) into (2.39) yields

L̇2 = σT (− (K̂ + µ
)

sign (σ) + d (x, t)
)
+

1
k
(
K̂ − K∗) ˙̂K (2.41)

Inserting the adaptive law (2.36) into (2.41) yields

L̇2 = σT (− (K̂ + µ
)

sign (σ) + d (x, t)
)
+ 1

k
(
K̂ − K∗) k |σ|

= −
(
K̂ + µ

)
|σ|+ d (x, t) σ +

(
K̂ − K∗) |σ|

≤ −µ |σ| < 0, ∀σ ̸= 0

(2.42)

Therefore, the Theorem 2.2 is successfully proven.

The structure of the proposed FTC strategy is described in Figure 2.1.

Remark 2.5. Generally, the sliding motion only can archive in ideal condition, thus,
the switching gain K in (2.36) keeps increasing continuously. This problem is well-
known as the “parameter drift problem”. To solve this problem, the following adaptive
law can be utilized:

˙̂K =

{
ρ |σ| , i f |σ| ≥ ε

0, else
(2.43)

where ε is a sufficiently small constant.

2.5 Numerical Simulations

Computer simulations on a 2-DOF robotic manipulator are used to show the
utility of the suggested controller-observer approach. The 2-DOF model is il-
lustrated in Fig. 2.2, and its dynamic model is described below.

Inertia term

D(q) =

[
D11 D12

D21 D22

]
where

D11 = m1r1
2 + m2(l2

1 + r2
2 + 2l1r2cos(q)) + I1 + I2

D12 = D21 = m1r2
2 + m2r2l1cos(q) + I2

D22 = m2r2
2 + I2
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FIGURE 2.1: Structure of the proposed FTC strategy.

FIGURE 2.2: Configuration of the 2-DOF robotic manipulator.
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TABLE 2.1: Parameters of the 2-link robot manipulator.

Parameters Values

m1, m2 1.5, 1.3 (kg)
l1, l2 1, 0.8 (m)
r1, r2 0.5, 0.4 (m)
I1, I2 1, 0.8 (kgNm2)

Coriolis and centripetal term

V(q, q̇) =

[
−2m2l1r2sin(q)q̇1q̇2 − m2l1r2sin(q2)q̇2

2

m2l1r2sin(q2)q̇2
1

]

Gravitational term

G(q) =

[
m1gr1 cos(q1) + m2g (l1 cos(q1) + r2 cos(q1 + q2))

m2r2g cos(q1 + q2)

]

The parameters of the 2-DOF robot are given as in Table 2.1.

All simulations in this work are carried out using MATLAB/Simulink and the
sampling time is 10−3s.

The desired trajectories of robot are assumed as

xd =

[
1.05 cos (πt/6)− 1

1.2 sin (πt/7 + π/2)− 1

]

The friction and disturbance are respectively assumed as

Fr (q̇) =

[
1.9 cos (2q̇1)

0.53 sin (q̇2 + π/3)

]

τd =

[
1.2 sin (3q1 + π/2)− cos(t)
−1.14 cos (2q2) + 0.5 sin(t)

]

The fault is assumed to occur to joint 1 at Tf = 15s and occur to joint 2 at

Ψ (q, q̇, t) =

[
−3.5q1

2 + 2.5 sin (q2) + 6.1 cos(q̇1) + 4.5q̇2 + 2 sin (2t/π)

7.5q1 + 6.2 cos (q2) + 8.3 sin(2q̇1) + 11.2q̇2 + 3.5 cos (t/π)

]
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TABLE 2.2: The values of the controller/observer’s parameters.

Controller/Observer methods Parameters Values

DO k1, k2 8, 18
p1, p2 10, 10

SMC c, δ 4, 16
NFTSMC κ1, κ2 14, 10

κ3, κ4 10, 5
β1, β2 1/2
δ 16

Adaptive method ρ, ε 0.2, 0.001

The simulation is divided into two parts. First, a comparison of the proposed
DO, the SOSMO [8], the ESO [7], and the DO in [64] is performed. Second, the
tracking performance of the proposed A-NFTSMC-DO will be compared with
the conventional SMC and the NFTSMC to show its superior control properties.

The parameters of the observer and controller are shown in the Table 2.2.

For the first part, the result of the comparison is presented in Fig. 2.3 and 2.4.
The Fig. 2.3 shows the estimation results of LUaF estimation among four ob-
servers. The Fig. 2.4 shows the estimation error at each joint. As shown in the
result, the ESO (the blue solid line) provides fast estimation result, however, the
overshoot phenomenon at the convergence stage is the main disadvantage of
the ESO. On the contrary, the SOSMO (the green solid line) provides estimation
result without the overshoot phenomenon as in ESO, however, the convergence
time is a little slower. In addition, a lowpass filter is needed to reconstruct the
estimated LUaF. In terms of estimation accuracy, both the ESO and SOSMO
provide quite good estimation result in normal operation condition, however,
when faults occur the estimation errors become larger. The proposed DO (the
red solid line) provides the LUaF estimation with a faster convergence speed
compared to the SOSMO due to the linear characteristic of the observer ele-
ments. Compared to the ESO, the proposed DO eliminates the overshoot phe-
nomenon. In addition, it achieves the highest estimation accuracy among three
observers in both before and after faults occur. Moreover, the LUaF can be re-
constructed directly without the need of a lowpass filter. Compared to the DO
in [64], the proposed DO obtains almost the same estimation accuracy, however,
the estimation speed is faster.
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FIGURE 2.3: The estimation of LUaF among four observers.

In the second part, in order to show the effectiveness of the proposed A-NFTSMC-
DO method, its control performance will be compared with the two controllers:
the conventional SMC and the NFTSMC. The results are shown in Fig. 2.5, 2.6
and 2.7. The Fig. 2.5 and 2.6 show the robot end-effector tracking and the joint
tracking error among three controllers. As in the results, the SMC provides ac-
ceptable tracking performance. However, compared to others, its tracking error
(the blue solid line) has the lowest accuracy. In addition, in terms of conver-
gence speed, the conventional SMC takes a longer time for convergence. On the
other hand, the NFTSMC (the green solid line) offers both higher tracking accu-
racy and faster convergence compared to the SMC. The proposed FTC method
(the red solid line) offers the tracking error with the same convergence speed as
the NFTSMC, meanwhile, it provides the highest tracking accuracy compared
to others. Fig. 2.7 shows the comparison of control input torque. As a result of
the LUaF compensation, the switching gain parameter of the control law is now
extremely small. Therefore, as we can see, the suggested A-NFTSMC-DO de-
livers reduced chattering control input torque. Furthermore, because of better
characteristics of the adaptive law, the suggested controller can automatically
adjust with the LUaF. The estimated value of the sliding gain is shown in Fig.
2.8.
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FIGURE 2.4: The LUaF estimation error at each joint.

FIGURE 2.5: Robot end-effector tracking.
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FIGURE 2.6: Tracking error at each joint.

FIGURE 2.7: Control input at each joint.
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FIGURE 2.8: Estimation of sliding gain.

2.6 Conclusions

In this study, an FTC strategy using an A-NFTSMC based on a DO for un-
certain and faulty robotic manipulators is proposed. The suggested observer
demonstrated its capacity to estimate the LUaF with excellent accuracy, rapid
convergence, and almost no chattering. They will then be used to compensate
for the impacts on the system, which improves the tracking performance of the
suggested FTC technique. The suggested FTC technique has advanced control
characteristics of high positioning tracking accuracy with quick finite-time con-
vergence, chattering phenomena minimization, and LUaF robustness. The use
of Lyapunov theory ensures system stability and finite-time convergence. The
efficacy of the suggested method has been confirmed by computer simulation
on a 2-DOF robot.
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Chapter 3

A Fault-Tolerant Control Using
Non-Singular Fast Terminal Sliding
Mode Control and Third-Order
Sliding Mode Observer for Robotic
Manipulators

In this chapter, a FTC method for robotic manipulators is proposed to deal with the
lumped uncertainties and faults in case of lacking tachometer sensors in the system.
First, the TOSMO is performed to approximate system velocities and the lumped un-
certainties and faults. This observer provides estimation information with high preci-
sion, low chattering phenomenon, and finite-time convergence. Then, an FTC method
is proposed based on a non-singular fast terminal switching function and the TOSMO.
This combination provides robust features in dealing with the lumped uncertainties and
faults, increases the control performance, reduces chattering phenomenon, and guaran-
tees fast finite-time convergence. Especially, this chapter considers both two periods
of time, in which before and after the convergence process takes place. The stability
and the finite-time convergence of the proposed controller-observer technique is demon-
strated using the Lyapunov theory. Finally, to verify the effectiveness of the proposed
controller-observer technique, computer simulation on a serial two-link robotic manip-
ulator is performed.



Chapter 3. A FTC Using NFTSMC and TOSMO for Robotic Manipulators 29

3.1 Introduction

In the industrial environment, robotic manipulators have many special appli-
cations due to their ability to replace workers in difficult and dangerous activ-
ities such as moving heavy products, assembling mechanical structures, sheet
metal cutting, etc. Moreover, they can help to improve both the product quality
and quantity, thus saving the cost for manufacturers. However, robotic ma-
nipulators have very complicated dynamic, from practical viewpoint, they are
arduous or even impossible to obtain the robot’s exact dynamics, leading to
model uncertainties. They are the large challenges in both theoretical and prac-
tical control. In addition, along with modern industrial applications becoming
increasingly complex, faults more frequently happen in the system especially
in the condition of long-term operation. Hence, the requirement is to be able
to automatically detect the faults, compensates their effects, and completes the
assigned missions even in the existence of one or more faults with acceptable
performance. In literature, various methods have been proposed to handle the
effects of the uncertainties and faults. In some researches, the system uncertain-
ties and faults are approximated separately [55, 56, 57, 65]. However, using two
separate observers makes the algorithms cumbersome that leads to resources
and time consuming for computation. In this chapter, the faults are treated as
additional uncertainties, thus, the total effects of the lumped uncertainties and
faults in the system are considered.

In order to deal with the lumped uncertainties and faults, FTC methods have
been developed [58, 59]. In general, the FTC tactics can be divided into two cate-
gories: PFTC [20, 21] and AFTC [22, 23]. In PFTC technique, a robust controller
is designed to compensate the faults without requiring information feedback
from a fault diagnosis observer. Since the faults’ effects imposed on the nomi-
nal controller of the PFTC are heavier than that of the AFTC, the nominal con-
troller of the PFTC requires stronger robustness against the effects of faults. On
the other hand, an AFTC is constructed based on online fault diagnosis tech-
nologies. Compared with the PFTC, the AFTC accommodates higher control
performance when the fault information is approximated correctly. Therefore,
the AFTC methods are more suitable for practical applications. In literature,
various control approaches have been developed for FTC, such as CTC [57, 27],
adaptive control [66, 67], NN control [31, 68], fuzzy logic control [34, 33, 35], and
SMC [42, 54, 69, 70, 71, 72, 13, 73], etc. Compared with others, SMC stands out
with superior control properties like fast convergence, high tracking precision,
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and robustness against the lumped uncertainties and faults. In addition, it is
pretty simple in design; therefore, the SMC has been extensively employed to
control robotic manipulator system in literature. Besides the huge advantages,
there still exists some big limitations that degrade the practical applicability of
the conventional SMC, that are: 1) the finite-time convergence cannot be guar-
anteed, 2) chattering phenomenon, 3) velocity (and acceleration) measurements
are required.

To overcome the first limitation – the finite-time convergence, the TSMC has
been developed by utilizing nonlinear switching functions instead of the linear
one [43, 74]. In addition, it can reach higher exactness by rigorously select-
ing parameters. The conventional TSMC, however, produces two major draw-
backs, that are singularity problem and slower dynamic response compared
with the conventional SMC. To overcome these limitations, the FTSMC [75, 76]
and the NTSMC [49, 77] have been proposed. However, they can only han-
dle each problem separately. In order to resolve the two problems at the same
time, the NFTSMC has been investigated. In addition, the NFTSMC has the
capability to obtain high tracking error precision and provide feature robust-
ness against the influence of the lumped uncertainties and faults; therefore, this
control algorithm has been extensively utilized by many researchers [16, 78, 72,
52]. Unfortunately, the last two limitations still remain. To eliminate the sec-
ond limitation – chattering phenomenon, which is caused by the utilizing of a
discontinuous term with a big and fixed gain in reaching phase, the basic idea
is to use an observer to approximate the lumped uncertainties and faults and
then compensates its effects in the system. By using this method, the switch-
ing gain is now chosen smaller to deal with the effects of the estimation error
instead of the effects of the lumped uncertainties and faults; thus, the chatter-
ing phenomenon is reduced. In the literature, many researchers have been paid
attention to develop an effective observer to approximate the lumped uncer-
tainties and faults such as [5, 62, 79, 80, 15, 81, 11]. With the learning ability and
high accuracy estimation, the NN observer has been widely employed [5, 62,
15]. On the other hand, the learning ability makes the system more complicated
and thus requires higher system configuration to use online training technique
that increases the cost of devices. The TDE method, in [81, 11], is a simpler tech-
nique; however, it needs the velocity measurement that not usually available in
practical. The sliding mode observer, especially, the TOSMO, in [82], has abil-
ity to estimate the lumped uncertainties and faults with high accuracy and less
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chattering. Moreover, the TOSMO provides the system velocity (and accelera-
tion) estimation with finite-time convergence. Therefore, the third limitation of
the SMC is eliminated. Thanks to the above advantages, the TOSMO has been
broadly utilized in controlling theory [17, 18, 19].

In this chapter, the TOSMO is used to approximate the velocities and the lumped
uncertainties and faults of robotic manipulator system. The obtained velocities
are employed in the system to replace the measured velocity and the estimated
uncertainties and faults are applied to reduce their effects. To achieve high po-
sition tracking precision and stability of the system, a robust control is design
based on a terminal sliding function. Especially, two periods of time that be-
fore and after the convergence process takes place, are carefully considered.
The proposed FTC strategy affords high tracking accuracy, low chattering phe-
nomenon, non-singularity, robustness against the effects of the lumped uncer-
tainties and faults, and finite-time convergence for both position tracking errors
and velocity estimation.

In this chapter, the FTC method that combines the NFTSMC and the TOSMO
is proposed for the robotic manipulator system to surpass the total effects of
the lumped uncertainties and faults. The main contributions of this chapter are
given as following:

• Proposing an NFTSM switching function based on estimated state from
TOSMO,

• Proposing an FTC method to enhance the tracking performance of the
robotic system under the total effect of the lumped uncertainties and faults,

• Reducing the chattering phenomenon in control input signals by estimat-
ing and compensating the lumped uncertainties and faults,

• Demonstrating the finite-time stability of the switching function and the
robotic system using the Lyapunov stability theory,

• Eliminating the necessary of system velocity measurement in the design
procedure,

• Considering both two periods of time, in which before and after the con-
vergence process takes place.

This chapter is structured into six parts. Next to the introduction, the prob-
lem statement is presented in Section 3.2. Then, the TOSMO is designed for the
robotic manipulator systems in Section 3.3. Section 3.4 presents the design of the
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FTC algorithm using the NFTSMC and the TOSMO. In Section 3.5, computer
simulations on a serial two-link robotic manipulator are presented to demon-
strate the effectiveness of the proposed controller-observer algorithm. Finally,
Section 3.6 gives some conclusions.

3.2 Problem Statement

3.2.1 System in Normal Operation Condition

Consider a serial n-link robotic manipulator in normal operation condition with
the dynamic equation as

M (θ) θ̈ + C
(
θ, θ̇
)

θ̇ + G (θ) + F
(
θ̇
)
+ τd(t) = τ(t) (3.1)

where θ, θ̇, θ̈ ∈ ℜn represent position, velocity, and acceleration of robot joints,
respectively. M (θ) ∈ ℜn×n, C

(
θ, θ̇
)
∈ ℜn, and G (θ) ∈ ℜn denote the inertia

matrix, the Coriolis and centripetal forces, and the gravitational force term, re-
spectively. F

(
θ̇
)
∈ ℜn is the friction vector, τ(t) ∈ ℜn denotes the control input

torque, and τd(t) ∈ ℜn represents the disturbance vector.

In realization, since the difference between the mathematical and practical model,
the model functions of the robotic manipulator can be expressed as

M (θ) = M0 (θ) + ∆M (θ) (3.2)

C
(
θ, θ̇
)
= C0

(
θ, θ̇
)
+ ∆C

(
θ, θ̇
)

(3.3)

G (θ) = G0 (θ) + ∆G (θ) (3.4)

where M0 (θ), C0
(
θ, θ̇
)
, and G0 (θ) represent the nominal model; the terms

∆M (θ), ∆C
(
θ, θ̇
)
, and ∆G (θ) are the unmodeled components.

Thus, we can rewrite the robot dynamic equation (3.1) as

M0 (θ) θ̈ + C0
(
θ, θ̇
)

θ̇ + G0 (θ) = τ(t) + Θ
(
θ, θ̇, t

)
(3.5)

where Θ
(
θ, θ̇, t

)
= −∆M (θ) − ∆C

(
θ, θ̇
)
− ∆G (θ) − F

(
θ̇
)
− τd(t) denotes the

uncertainties of the robot system.
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The equation (3.5) can be transformed to the below form

θ̈ = Υ
(
θ, θ̇, t

)
+ M0

−1 (θ) τ(t) + Π
(
θ, θ̇, t

)
(3.6)

where Π
(
θ, θ̇, t

)
= M0

−1 (θ)Θ
(
θ, θ̇, t

)
represents the uncertainty terms of the

robotic system and Υ
(
θ, θ̇, t

)
= M0

−1 (θ)
[
−C0

(
θ, θ̇
)

θ̇ − G0 (θ)
]

represents the
nominal function of the robotic system.

3.2.2 System in Fault Affected Operation Condition

Nowadays, with modern industrial applications becoming increasingly com-
plex, faults more frequently happen in a system especially in the condition of
long-term operation. Therefore, in this chapter, we assume that the robot sys-
tem works under the effect of faults. Thus, the robot dynamic (3.6) becomes

θ̈ = Υ
(
θ, θ̇, t

)
+ M0

−1 (θ) τ(t) + Π
(
θ, θ̇, t

)
+ Ψ

(
θ, θ̇, t

)
(3.7)

where Ψ
(
θ, θ̇, t

)
= ξ

(
t − Tf

)
Φ
(
θ, θ̇, t

)
represents the unknown but bounded

faults that happen at time Tf . The term ξ
(
t − Tf

)
= diag

{
ξ1
(
t − Tf

)
,

ξ2
(
t − Tf

)
, . . . , ξn

(
t − Tf

)}
represents the time profile of the unknown faults,

in which ξi
(
t − Tf

)
=

{
0 i f t ≤ Tf

1 − e−ζi(t−Tf ) i f t ≥ Tf
with ζi > 0 represent the

evolution rate, (i = 1, 2, . . . , n).

Remark 3.1. In robotic manipulator systems, faults can be actuator faults, sensor
faults, and process faults. However, this chapter focuses to solve the system with actua-
tor faults. Therefore, the fault functions Φ

(
θ, θ̇, t

)
are defined as faults which occur in

the actuator.

In this chapter, the unknown faults will be treated as additional uncertainties,
thus we consider the total effect of the lumped uncertainties and faults in the
system.

By defining x1 = θ, x2 = θ̇, x =
[

x1
T x2

T
]T

, we transfer the robot dynamic
(3.7) into the state space form as

ẋ1 = x2

ẋ2 = Υ(x, t) + M0
−1 (x1) τ(t) + D(x, t)

(3.8)

where D(x, t) = Π (x, t) + Ψ (x, t) represents the lumped uncertainties and
faults.
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The main objective of this chapter is to design a controller-observer strategy that
deals with the effects of the lumped uncertainties and faults and achieve min-
imum tracking errors. The proposed controller-observer method is designed
based on the assumptions as following:

Assumption 3.1. The lumped uncertainties and faults D(x, t) are bounded as

|D(x, t)| ≤ ∆D (3.9)

where ∆D is a known positive constant.

Assumption 3.2. There exists the time derivative of the lumped uncertainties and
faults and they are bounded as ∣∣∣∣ d

dt
D(x, t)

∣∣∣∣ ≤ ∆Ḋ (3.10)

where ∆Ḋ is a known positive constant. Note that the Assumption 3.2 is realistic and
was used in many researches [83, 84, 85].

3.3 Design of the Third-Oder Sliding Mode Observer

In this section, the TOSMO is designed to approximate the system velocities,
which is assumed unavailable because of the lacking tachometer sensors in the
system. In addition, the lumped uncertainties and faults will be reconstructed
from the estimated signal and then employed to design the control in the next
section.

3.3.1 Design of The Observer

The TOSMO is designed for the robotic system (3.8) as [42]

˙̂x1 = γ1|x1 − x̂1|2/3sign (x̃1) + x̂2
˙̂x2 = Υ (x̂, t) + M0

−1 (x1) τ(t) + γ2|x1 − x̂1|1/3sign (x1 − x̂1)− ẑ
˙̂z = −γ3sign (x1 − x̂1)

(3.11)

where x̂ is the estimator of the true state x, and γi represent the observer gains,
(i = 1, 2, 3).
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By subtracting (3.11) from (3.8), we can obtain

˙̃x1 = −γ1|x̃1|2/3sign (x̃1) + x̃2
˙̃x2 = −γ2|x̃1|1/3sign (x̃1) + D(x, t)− d (x̃, t) + ẑ
˙̂z = −γ3sign (x̃1)

(3.12)

where x̃ = x − x̂ represent the state estimation errors and d (x̃, t) = [Υ (x̂, t)
+M0

−1 (x1) τ
]
−
[
Υ (x, t) + M0

−1 (x1) τ
]
. We assume that the term d (x̃, τ, t)

and its derivative are bounded as |d (x̃, t)| ≤ ∆d and
∣∣ḋ (x̃, t)

∣∣ ≤ ∆ḋ.

The estimation errors (3.12) can be rewritten as follow

˙̃x1 = −γ1|x̃1|2/3sign (x̃1) + x̃2
˙̃x2 = −γ2|x̃1|1/3sign (x̃1) + ẑ0
˙̂z0 = −γ3sign (x̃1) + ˙̂∆ (x, t)

(3.13)

where ẑ0 = D̂ (x, t) + ẑ with D̂ (x, t) = D (x, t)− d (x̃, t).

The error dynamic (3.13) is in the standard form of robust exact second-order
differentiator; according to [86], the stable and finite-time convergence of the
differentiator has completely demonstrated. The observer gains can be selected
as γ1 = α1L1/3, γ2 = α2L2/3, and γ3 = α3L where α1 = 2, α2 = 2.12, α3 = 1.1,
and L = ∆Ḋ + ∆ḋ.

3.3.2 Uncertainties and Faults Reconstruction

After the convergence time, the estimated states (x̂1, and x̂2) will reach the true
states (x1, and x2), respectively. The estimation errors (3.13) becomes

˙̃x1 = −γ1|x̃1|2/3sign (x̃1) + x̃2 ≡ 0
˙̃x2 = −γ2|x̃1|1/3sign (x̃1) + ẑ0 ≡ 0
˙̂z0 = −γ3sign (x̃1) + ˙̂∆ (x, t) ≡ 0

(3.14)

As a result, the estimation errors of the lumped uncertainties and faults, d (x̃, t),
will become zero; therefore, the estimation of the lumped uncertainties and
faults are reconstructed as

D̂ (x, t) =
∫

γ3sign (x̃1) (3.15)
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As we can see in (3.15), the obtained signal consists of an integral operator;
hence, the estimation information of the TOSMO can be reconstructed directly
without filtration. Consequently, this observer provides estimation signal with
higher accuracy and low chattering than that of SOSMO [12]. This estimation
information will be performed to design the FTC method in the next section.

Remark 3.2. Even if in the ideal sliding motion, we can only to get the exact estimation
information after the convergence process. When employing the obtained estimation to
the system, the estimation errors which appear in transient time will affect the selecting
parameters of the controller. If we do not consider these components strictly, it will
cause incorrect in selection of control parameters and thus affect the system stability.

3.4 Controller Design

In this section, an FTC method using NFTSMC is designed to handle the ef-
fects of the lumped uncertainties and faults with low chattering phenomenon
and high tracking performance. Especially, the control technique is designed
based on the assumption that only the tachometer sensors are unavailable in
the robotic system. The analysing process is divided into two periods as follow-
ing.

3.4.1 Design of NFTSM Switching Function

The tracking errors and velocity errors are defined as following

e = x1 − xd (3.16)

ˆ̇e = x̂2 − ẋd (3.17)

where xd, ẋd represent the desired trajectories and velocities, respectively.

In order to design the control input, an NFTSM switching function based on
TOSMO is chosen as the following expression

ŝ = ˆ̇e +
2κ1

1 + exp(−µ1(|e| − ϕ))
e +

2κ2

1 + exp(µ2(|e| − ϕ))
|e|αsign (e) (3.18)

where κ1, κ2, µ1, µ2 are positive constants, 0 < α < 1 and ϕ =
(

κ2
κ1

)1/(1−α)
.
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Based on the SMC theory, when the system operates in the sliding mode, the
following constraints are satisfied:

ŝ = 0
˙̂s = 0

(3.19)

Therefore, the sliding mode dynamics can be obtained as

ˆ̇e = − 2κ1

1 + exp(−µ1(|e| − ϕ))
e − 2κ2

1 + exp(µ2(|e| − ϕ))
|e|αsign (e) (3.20)

Theorem 3.1. For the sliding mode dynamics (3.20), the origin, e, is defined as the
stable equilibrium point and the state trajectories of the dynamic system (3.20) converge
to zero in the finite-time.

Proof of Theorem 3.1

We can acquire the time derivative of the tracking errors (3.16) as

ė = ẋ1 − ẋd

= x2 − ẋd
(3.21)

According to the definition of the estimation errors in Section 3.3, the velocity
errors (3.17) can be rewritten as

ˆ̇e = x̂2 − ẋd

= x2 − ẋd − x̃2
(3.22)

After the convergence estimation errors, the estimated states, x̂2, will reach the
true states, x2. Therefore, the velocity errors (3.22) become

ˆ̇e = x2 − ẋd = ė (3.23)

Consider the Lyapunov function candidate as

V1 =
1
2

e2 (3.24)
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Differentiating the Lyapunov function (24) with respect to time and substituting
the result from (3.20), we obtain

V̇1 = eė
= − 2κ1

1+exp(−µ1(|e|−ϕ))
e2 − 2κ2

1+exp(µ2(|e|−ϕ)) |e|
α+1

< 0

(3.25)

It is shown that V1 > 0 and V̇1 < 0, hence, the origin, e, of the sliding mode
dynamic (3.20) is stable and the state trajectories e and ė converge to zero in the
finite-time. Consequently, the tracking velocity errors ˆ̇e converge to zero in the
finite-time. Therefore, the theorem 3.1 is completely demonstrated.

3.4.2 Design of FTC Method

A - Before The Convergence Time

To achieve the control objective for the robotic system (3.8), a controller-observer
technique is described in Theorem 3.2.

Theorem 3.2. For the robotic manipulator system (3.8), if the control input signal is
designed as (3.26-3.28), then the system is stable, and the tracking error converges to
zero in finite time.

The control law is designed as below

τ = −M0(x1)
(
τeq + τsw

)
(3.26)

with the equivalent control law, τeq, and the switching control law, τsw, are de-
signed as following

τeq = −ẍd + Υ(x, t) + γ2|x̃1|1/3sign (x̃1) +
∫

γ3sign(x̃1)

+ė

 2κ1
1+exp(−µ1(|e|−ϕ))

+
2κ1µ1sign(e) exp(−µ1(|e|−ϕ))

[1+exp(−µ1(|e|−ϕ))]2

+ 2κ2α
1+exp(µ2(|e|−ϕ)) |e|

α−1 − 2κ2µ2 exp(µ2(|e|−ϕ))

[1+exp(µ2(|e|−ϕ))]2
|e|α

 (3.27)

τsw = (∆d + µ)sign (ŝ) (3.28)

where µ is a small positive constant.

Proof of Theorem 3.2
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We can acquire the time derivative of the switching function (3.18) as

˙̂s =
d
dt

ˆ̇e + ė

 2κ1
1+exp(−µ1(|e|−ϕ))

+
2κ1µ1sign(e) exp(−µ1(|e|−ϕ))

[1+exp(−µ1(|e|−ϕ))]2

+ 2κ2α
1+exp(µ2(|e|−ϕ)) |e|

α−1 − 2κ2µ2 exp(µ2(|e|−ϕ))

[1+exp(µ2(|e|−ϕ))]2
|e|α

 (3.29)

Taking the time derivative of velocity errors and substituting the second equa-
tion of the TOSMO (3.11) yields

d
dt

ˆ̇e = ˙̂x2 − ẍd

= −ẍd + Υ(x̂, t) + M0
−1 (x1) τ

+γ2|x̃1|1/3sign (x̃1) +
∫

γ3sign (x̃1)

= −ẍd + Υ(x, t) + M0
−1 (x1) τ + d (x̃, t)

+γ2|x̃1|1/3sign (x̃1) +
∫

γ3sign (x̃1)

(3.30)

Substituting (3.29) into (3.30) yields

˙̂s = −ẍd + Υ(x, t) + M0
−1 (x1) τ + d (x̃, t)

+γ2|x̃1|1/3sign (x̃1) +
∫

γ3sign (x̃1)

+ė

 2κ1
1+exp(−µ1(|e|−ϕ))

+
2κ1µ1sign(e) exp(−µ1(|e|−ϕ))

[1+exp(−µ1(|e|−ϕ))]2

+ 2κ2α
1+exp(µ2(|e|−ϕ)) |e|

α−1 − 2κ2µ2 exp(µ2(|e|−ϕ))

[1+exp(µ2(|e|−ϕ))]2
|e|α

 (3.31)

Employing the control input (3.26-3.28) into (3.31), we achieve

˙̂s = −(∆d + µ)sign (ŝ) + d (x̃, t) (3.32)

Consider the Lyapunov function candidate as

V2 =
1
2

ŝT ŝ (3.33)

Differentiating the Lyapunov function (3.33) with respect to time and substitut-
ing the result from (3.32), we obtain

V̇2 = ŝT˙̂s
= ŝT (−(∆d + µ)sign (ŝ) + d (x̃, t))

= −(∆d + µ)
n
∑

i=1
|ŝi|+ d(x̃, t)T ŝ ≤ −µ

n
∑

i=1
|ŝi|

≤ −µ ∥ŝ∥ = −
√

2µV2
1/2 < 0, ∀ŝ ̸= 0

(3.34)
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According to the stability theory in [87], it can be concluded that the robotic
system (3.8) is stable and the tracking error converges to zero after finite time.
Thus, the Theorem 3.2 is completely demonstrated.

B - After The Convergence Time

In this part, we consider the control law after the convergence process. After
the convergence time, the term γ2|x̃1|1/3sign (x̃1) in the equivalent control law
(3.27) converts to zero; therefore, the control law (3.26-3.28) will become

τ = −M0(x1)
(
τeq + τsw

)
(3.35)

τeq = −ẍd + Υ(x, t) +
∫

γ3sign(x̃1)

+ė

 2κ1
1+exp(−µ1(|e|−ϕ))

+
2κ1µ1sign(e) exp(−µ1(|e|−ϕ))

[1+exp(−µ1(|e|−ϕ))]2

+ 2κ2α
1+exp(µ2(|e|−ϕ)) |e|

α−1 − 2κ2µ2 exp(µ2(|e|−ϕ))

[1+exp(µ2(|e|−ϕ))]2
|e|α

 (3.36)

τsw = (∆d + µ)sign (ŝ) (3.37)

Generally, the control law in (3.35-3.37) is employed to the system; however, the
missing of the component γ2|x̃1|1/3sign (x̃1) leads to incorrect in selecting pa-
rameters and may affect the operation of the system at the initial stage and when
faults happen. Therefore, this chapter performs the control law in (3.26-3.28)
instead of the control law in (3.35-3.37). The proposed controller-observer tech-
nique provides some superior control properties such as high tracking control
precision with finite-time convergence, faster dynamic response, low chattering
phenomenon, non-singularity, velocity measurement elimination and robust-
ness against the lumped uncertainties and faults. Its efficiency will be demon-
strated in the simulation part.

3.5 Numerical Simulations

To demonstrate the effectiveness of the proposed FTC technique, computer sim-
ulations are performed on a serial two-link robotic manipulator which is pre-
sented in Fig. 3.1. The detailed dynamic model of the two-link robot is given as
following Inertia term

M(θ) =

[
M11 M12

M21 M22

]
(3.38)
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FIGURE 3.1: Two-link robotic manipulator

where
M11 = m1lc1

2 + m2(l2
1 + lc2

2 + 2l1lc2cos(θ)) + I1 + I2

M12 = M21 = m1lc2
2 + m2lc2l1cos(θ) + I2

M22 = m2lc2
2 + I2

Coriolis and centripetal term

C(θ, θ̇) =

[
−2m2l1lc2sin(θ)θ̇1θ̇2 − m2l1lc2sin(θ2)θ̇

2
2

m2l1lc2sin(θ2)θ̇
2
1

]
(3.39)

Gravitational term

G(θ) =

[
m1glc1 cos(θ1) + m2g (l1 cos(θ1) + lc2 cos(θ1 + θ2))

m2lc2g cos(θ1 + θ2)

]
(3.40)

with the values of parameters are given in Table 3.1.
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TABLE 3.1: Parameters of the 2-link robot

Parameters Values

m1, m2 1.5, 1.3 (kg)
l1, l2 1, 0.8 (m)
lc1, lc2 0.5, 0.4 (m)
I1, I2 1, 0.8 (kgNm2)

All simulation in this chapter is accomplished by employing the MATLAB/Simulink
with the sampling time 10−3s. The desired trajectories of robot are assumed as

θd =

[
1.2 cos (t/7)− 0.7

sin (t/6 + π/2)− 0.4

]
(3.41)

The robot frictions and disturbances are assumed as

F(θ̇) =

[
1.9 cos (2q̇1)

1.05 cos (q̇2)

]
(3.42)

τd =

[
2.5 sin (t) + 0.4 cos(πt)
cos (t) + 0.6 sin (t/π)

]
(3.43)

To validate the property in handling the fault effects, two cases of faults are
assumed to impact the robot system. Firstly, simple faults Φ1 are assumed to
be occurred to joint 1 at Tf = 10s and to joint 2 at Tf = 20s. Secondly, complex
faults Φ2 are assumed to be occurred to both joints at Tf = 10s.

Φ1 =

[
−9.7 cos(πt/7+π/5)
8.2 cos(πt/5+π/4)

]
(3.44)

Φ2 =

[
−3.02θ1

2 + sin (θ2) + 6.1 cos(θ̇1) + 4.5θ̇2 + 0.7 sin (2t/π)

1.5θ1 + 3.2 cos (θ2) + 2.3 sin(2θ̇1) + 9.2θ̇2 + 0.5 cos (t/π)

]
(3.45)

The selected parameters of the controller and observer methods in the simula-
tions are shown in Table 3.2.

In the first part of simulation, a comparison of the estimation results between
the TOSMO and the SOSMO is performed. In Fig. 3.2 and Fig. 3.3, the achieved
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TABLE 3.2: Parameters of the controller/observer methods

Controller/Observer methods Parameters Values

TOSMO L 9
SMC c 2

∆d, µ 0.5, 0.01
NFTSMC β1, β2, λ, α 1.5, 0.4, 0.7, 0.3

∆d, µ 0.5, 0.01
Proposed controller µ1, µ2, α 1.2, 1.4, 0.6

∆d, µ 0.5, 0.01

velocity estimation errors when faults Φ1 and Φ2 occur, are presented, respec-
tively. The results show that the TOSMO provides the estimation information
with higher accuracy than that of the SOSMO. According to [12], the SOSMO
needs a lowpass filter to rebuild the estimated signal of the lumped uncertain-
ties and faults. This filtration process causes time delay and estimation errors,
that reduce the estimation performance of the SOSMO. Fortunately, this limita-
tion is removed in the TOSMO. The estimation results of the lumped uncertain-
ties and faults are presented from Fig. 3.4 to Fig. 3.7. In both two cases of faults,
the TOSMO provides higher estimation performance and less chattering than
that of the SOSMO. However, the time response of the TOSMO is slower. This
is also the main limitation of the TOSMO that needs to improve.

In the second part, a comparison of the proposed FTC algorithm with the con-
trol law in (3.35-3.37) and the control techniques which are designed based on
the conventional SMC (Appendix A) and the NTSMC (Appendix B) is per-
formed to demonstrate its superior control properties. The tracking position
and the tracking error at each joint when the simple faults Φ1 occur are dis-
played in Fig. 3.8 and Fig. 3.10, respectively. As in the results, the real tra-
jectories provided by the proposed FTC method track the desired trajectories
with higher accuracy than the FTC methods that are designed based on the con-
ventional SMC and the NTSMC. Compared with the control law in (3.35-3.37),
the tracking performance that provided by the proposed controller is similar
after the convergence process. However, by performing the additional term
γ2|x̃1|1/3sign (x̃1), the proposed FTC method provides faster response at the
initial stage and when faults happen. For the case of the complex faults Φ2, the
similar results are obtained and shown in the Fig. 3.9 and Fig. 3.11.

The additional term γ2|x̃1|1/3sign (x̃1) also influences to the convergence of the
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FIGURE 3.2: The velocity estimation errors are supplied by
SOSMO and TOSMO at each joint when faults Φ1 occur

switching function. As shown in the Fig. 3.12 and Fig. 3.13, the switching
function of the proposed FTC method converges to zero faster compared with
other controllers in both cases of faults. In other words, the sliding motion can
be faster reached. In term of the control input torque, the simulation results for
both cases of faults of controllers at each joint are presented in Fig. 3.14 and
Fig. 3.15, respectively. As shown in the figures, by using the proposed FTC
algorithm, the chattering phenomenon in the control inputs are reduced due to
the compensation of the estimated uncertainties and faults.

3.6 Conclusions

In this chapter, an FTC method using the NFTSMC and the TOSMO for the
robotic manipulator system is proposed. The TOSMO showed its capability to
estimate system velocities; thus, the need of tachometers in the system is elim-
inated. In addition, the obtained lumped uncertainties and faults are utilized
to compensate their effects to the system, thus the tracking performance of the
proposed controller-observer method is improved. Moreover, the two stages
of time that before and after the convergence time, are carefully analyzed. The
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FIGURE 3.3: The velocity estimation errors are supplied by
SOSMO and TOSMO at each joint when faults Φ2 occur

FIGURE 3.4: The estimation of the lumped uncertainties and faults
are supplied by SOSMO and TOSMO at each joint when faults Φ1

occur
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FIGURE 3.5: The estimation of the lumped uncertainties and faults
are supplied by SOSMO and TOSMO at each joint when faults Φ2

occur

FIGURE 3.6: The estimation errors of the lumped uncertainties and
faults are supplied by SOSMO and TOSMO at each joint when

faults Φ1 occur
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FIGURE 3.7: The estimation errors of the lumped uncertainties and
faults are supplied by SOSMO and TOSMO at each joint when

faults Φ2 occur

FIGURE 3.8: Desired trajectories and joint angles are supplied by
SMC, NTSMC, NFTSMC, and the proposed controller-observer

technique at each joint when faults Φ1 occur
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FIGURE 3.9: Desired trajectories and joint angles are supplied by
SMC, NTSMC, NFTSMC, and the proposed controller-observer

technique at each joint when faults Φ2 occur

FIGURE 3.10: Tracking errors are supplied by SMC, NTSMC,
NFTSMC, and the proposed controller-observer technique at each

joint when faults Φ1 occur
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FIGURE 3.11: Tracking errors are supplied by SMC, NTSMC,
NFTSMC, and the proposed controller-observer technique at each

joint when faults Φ2 occur

FIGURE 3.12: Switching functions are supplied by SMC, NTSMC,
NFTSMC, and the proposed controller-observer technique at each

joint when faults Φ1 occur
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FIGURE 3.13: Switching functions are supplied by SMC, NTSMC,
NFTSMC, and the proposed controller-observer technique at each

joint when faults Φ2 occur

FIGURE 3.14: Control inputs are supplied by SMC, NTSMC,
NFTSMC, and the proposed controller-observer technique at each

joint when faults Φ1 occur
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FIGURE 3.15: Control inputs are supplied by SMC, NTSMC,
NFTSMC, and the proposed controller-observer technique at each

joint when faults Φ2 occur

proposed FTC method provides advanced control features such as high posi-
tion tracking precision with fast finite-time convergence, less chattering phe-
nomenon, and robustness against the effects of the lumped uncertainties and
faults. The superior control properties of the proposed controller-observer al-
gorithm are fully demonstrated by the simulation results. Further, the proposed
method can be applied to the systems that have form of the second-order dy-
namic systems.

Appendix

A - DESIGN OF CONVENTIONAL SMC

With the position and velocity errors are described in (3.16-3.17), the conven-
tional switching function based on the TOSMO is chosen as

ŝ = ˆ̇e + ce (3.46)

where c is a positive constant.
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The control law is designed as below

τ = −M0(x1)
(
τeq + τsw

)
(3.47)

τeq = −ẍd + Υ(x, t) +
∫

γ3sign(x̃1) + cė (3.48)

τsw = (∆d + µ)sign (ŝ) (3.49)

where µ is a small positive constant.

B - DESIGN OF NTSMC

With the position and velocity errors are described in (3.16-3.17), the non-singular
terminal switching function based on TOSMO is chosen as in [88]

ŝ = ˆ̇e + β1e + β2 exp(−λt)
(

eTe
)−α

e (3.50)

where β1, β2 are positive constants, 0 < α < 1, and λ > 0.

The control law is designed as below

τ = −M0(x1)
(
τeq + τsw

)
(3.51)

τeq = −ẍd + Υ(x, t) +
∫

γ3sign(x̃1) + β1ė + β2A (3.52)

τsw = (∆d + µ)sign (ŝ) (3.53)

where µ is a small positive constant and the term A = [(−λ) exp(−λt)
(
eTe
)−αe+

(−2α) exp(−λt)
(
eTe
)−α−1 (eT ė

)
e + exp(−λt)

(
eTe
)−α ė].
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Chapter 4

A Non-Singular Fast Terminal
Sliding Mode Control Based on
Third-Order Sliding Mode Observer
For A Class of Second-Order
Uncertain Nonlinear Systems and Its
Application To Robot Manipulators

This chapter proposes a controller-observer strategy for a class of second-order uncer-
tain nonlinear systems with only available position measurement. The TOSMO is first
introduced to estimate both velocities and the lumped uncertain terms of system with
high accuracy, less chattering, and finite time convergence of estimation errors. Then,
the proposed controller-observer strategy is designed based on NFTSMC and proposed
observer. Thanks to this combination, the proposed strategy has some superior prop-
erties such as high tracking accuracy, chattering phenomenon reduction, robustness
against the effects of the lumped uncertain terms, velocity measurement elimination, fi-
nite time convergence, and faster reaching sliding motion. Especially, two period times,
before and after the convergence of the velocity estimation takes place, are considered.
The finite time stability of proposed controller-observer method is proved by using the
Lyapunov stability theory. Final, the proposed strategy is applied to robot manipula-
tor system and its effectiveness is verified by simulation results, in which a PUMA560
robot manipulator is employed.
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4.1 Introduction

In the past decades, controlling uncertain nonlinear systems have been a topic
that attracts attention from many researchers theoretically [89, 90, 91]. This topic
is also crucial in practical because almost real-world systems have nonlinear dy-
namic characteristics. Generally, the dynamic model of the system is not clearly
known because of the unknown uncertainties and/or external disturbances - in
this chapter, for more convenience and avoiding duplication, we will treat it as
the lumped uncertainties. They affect directly to the control signal thus reduce
the accuracy of the system. This problem has been a big challenge in control the-
ory. To deal with the lumped uncertainties, numerous control strategies have
been proposed by researchers, such as PID control [25, 26], adaptive control [92,
93, 94], fuzzy logic control [95, 96], NN control [97, 98], and SMC [42, 69, 70, 71,
72], etc. Among them, the SMC has been widely used in controlling uncertain
system by many researchers because of its attractive properties such as fast dy-
namic response, robustness against the lumped uncertainties and a quite simple
design procedure. It is suitable for various types of real systems such as DC-DC
converters, motors, helicopters, magnetic levitation, aircraft, and robot manip-
ulators. Besides the great benefits, the utilization of a linear sliding function in
conventional SMC causes the finite-time convergence of system state error can-
not be guaranteed. To overcome this limitation, the TSMC has been proposed, in
which nonlinear sliding functions are utilized instead of the linear sliding func-
tion in design procedure [43, 44, 74]. By carefully designing parameters, TSMC
provides higher accuracy and finite-time convergence; unfortunately, the con-
ventional TSMC generates two main limitations: 1) slower convergence time
comparing to SMC; 2) singularity problem. Various great researches have been
focused to overcome these drawbacks. Each problem has been solved by using
FTSMC [48, 47, 46] and NTSMC [50, 49, 10], separately. To handle both prob-
lems simultaneously, NFTSMC has been developed [51, 53, 71, 99, 16]. Thanks
to the superior properties of the NFTSMC such as finite-time convergence, sin-
gularity elimination, high tracking error performance, and robustness against
the lumped uncertainties, this controller has been extensively utilized to a va-
riety of systems. However, both conventional SMC and NFTSMC still utilize a
switching element in reaching phase with a big fixed sliding gain against the ef-
fects of the lumped uncertainties leads to the chattering phenomenon. It harms
the system and thus reduces the practical applicability of both control meth-
ods. On the other hand, the design procedure requires real velocity information
which is not usually available in a practical system because of saving cost and
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reducing the size of the device.

In order to reduce or eliminate the chattering phenomenon, the basic idea is
to reduce the sliding gain in the switching element. Accordingly, the lumped
uncertainties must be completely or partially estimated and applied to the con-
trol signals to compensate for its effects. Consequently, the switching element
is now used to handle the effects of the uncertainty’s estimation error instead
of the lumped uncertainties; therefore, the sliding gain will be selected smaller
than the original method to guarantee the sliding mode can be reached. As a re-
sult, the chattering phenomenon will be reduced depending on the precision of
the estimation method. In the literature, various model-based techniques have
been developed to estimate the lumped uncertainties such as TDE [16, 100], NN
observer [101, 6], SMSMO [8, 9, 102, 13], TOSMO [42, 102, 82, 12, 103]. Among
them, the TDE technique can only provide the ability to estimate unknown in-
puts; therefore, an additional observer is needed to estimate the system veloc-
ities [16]. It leads the system more complex and increases the computational
time. Thanks to the learning capability and excellent approximation, the NN
observer can supply an arbitrary accuracy of estimation information. Especially,
it can not only have the capability to approximate the lumped uncertainties but
also the system velocities. Therefore, only one observer is employed in the sys-
tem. However, the drawback of using learning techniques is that the transient
performance in the existence of external disturbance can be reduced because of
the requirement of the online learning procedure. Moreover, the complex train-
ing process of neural weights requires a large computation of the system thus
degrades the implementation ability in a practical system. Compared to others,
the SOSMO stands out due to its capability to approximate both system veloci-
ties and the lumped uncertainties with the finite-time convergence of estimation
error. Although providing high precision and less chattering in the estimation
of velocities, the equivalent output injection of SOSMO which is used to obtain
the estimation of the lumped uncertainties is a discontinuous term that causes
an undesired chattering phenomenon. Therefore, a lowpass filter is needed
to reconstruct the lumped uncertainties from the equivalent output injection.
However, it causes the estimation delay and error thus reduces the estimation
accuracy of the SOSMO. For that reason, the TOSMO which has the ability to
provide a continuous equivalent output injection, has been investigated. Con-
sequently, the required filtration in the SOSMO is eliminated. Compared with
the SOSMO, the TOSMO provides the estimation of lumped uncertainties with
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less chattering and higher estimation accuracy. Moreover, the TOSMO main-
tains almost all the advantages of the SOSMO. Thanks to the superior benefits,
the TOSMO has been widely applied to control uncertain systems by many re-
searchers [17, 18, 19]. In [17], the TOSMO has been employed to estimate sys-
tem velocities; however, the author did not consider the ability to approximate
the lumped uncertainties of the observer. In contrast, an SMC combined with
the TOSMO is presented in [18]. Unfortunately, only the estimation of lumped
uncertainties is considered to eliminate its effects. A combination of the two
algorithms above, both obtained velocities and lumped uncertainties from the
TOSMO is applied to design a conventional SMC, in [19]. However, the actual
velocity signal of the system is replaced by the estimated velocity which is after
the convergence takes place instead of the original one. This makes the con-
troller design simpler but leads to some components in the control signal not
being clearly considered. Consequently, the system is sometimes unstable due
to the incorrect selection of control parameters, especially, in the period before
the convergence occurs.

In this chapter, the TOSMO is first designed to estimate not only system veloc-
ities but also the lumped uncertainties for the class of second-order uncertain
nonlinear systems without any filtration. Based on the obtained information,
an NFTSMC is proposed for position tracking trajectory without the require-
ment of system velocities. With this control strategy, we can obtain a control
law that provides high accuracy, nonsingularity, robustness against the lumped
uncertainties, low chattering, and finite-time convergence without the need of
velocity measurement. In summary, the major contributions of this chapter are
as follow:

• Proposing a NFTSMC law based on the obtained information from the
TOSMO;

• Proving the global stability of the system when combining controller and
observer by using the Lyapunov stability theory;

• Reducing the chattering phenomenon in control output signal by compen-
sating the lumped uncertainties;

• Eliminating the requirement of velocity measurement in the system;

• Obtaining higher performance of the NFTSM controller by using higher
accuracy compensation method.
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This chapter is constructed into seven sections. After the introduction, Section
4.2 declares the problem statement. In Section 4.3, the design of the TOSMO
is presented, followed by the design method of the NFTSMC for the class of
second-order uncertain nonlinear systems is proposed in Section 4.4. The appli-
cation of the controller-observer strategy for robotic manipulators is presented
in Section 4.5. In Section 4.6, numerical simulations on a PUMA560 robot ma-
nipulator are shown to prove the effectiveness of the proposed method. Finally,
some conclusions are provided in Section 4.7.

4.2 Problem Statement

Consider the following second-order nonlinear control systems with dynamic
uncertainties and/or external disturbances as

ẋ1 = x2

ẋ2 = f (x, t) + g(x, t)u(t) + ∆(x, u, t)
(4.1)

where x1 ∈ Rn and x2 ∈ Rn, x =
[
x1

T x2
T]T denote the system state vectors,

f (x, t) ∈ Rn and g(x, t) ∈ Rn×n are given nonlinear functions, g(x, t) is invert-
ible, ∆(x, u, t) ∈ Rn presents lumped uncertainties which includes the dynamic
uncertainties and/or external disturbances, and u(x, t) ∈ Rn denotes the con-
trol input.

The main purpose of this chapter is to design a controller-observer strategy
which can eliminate the effects of the lumped uncertainties without the require-
ment of velocity measurement. This control method is designed based on the
following assumptions:

Assumption 4.1. The system states are bounded at all time.

Assumption 4.2. The lumped uncertainties ∆(x, u, t) of the system (4.1) are bounded
as

∥∆(x, u, t)∥ ≤ Λ (4.2)

where Λ is a positive constant.

Assumption 4.3. The first-time derivative lumped uncertainties ∆(x, u, t) exist and
are bounded as ∥∥∥∥ d

dt
∆(x, u, t)

∥∥∥∥ ≤ Λ̄ (4.3)

where Λ̄ is a positive constant.
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4.3 State Observer Design and Uncertainty Identifi-

cation

First, the TOSMO is introduced to estimate both system velocities and the lumped
uncertainties. Then, the estimated information will be applied to design the
control signal.

4.3.1 State Observer Design

Based on system (4.1), the TOSMO is designed as [25]

˙̂x1 = γ1|x1 − x̂1|2/3sign (x1 − x̂1) + x̂2
˙̂x2 = f (x̂, t) + g(x̂, t)u(t) + γ2|x1 − x̂1|1/3sign (x1 − x̂1)− ẑ
˙̂z = −γ3sign (x1 − x̂1)

(4.4)

where x̂ denotes the estimation of x and γi denote the observer gains. Subtract-
ing (4.1) to (4.4), we can get the estimation errors as

˙̃x1 = −γ1|x̃1|2/3sign (x̃1) + x̃2
˙̃x2 = −γ2|x̃1|1/3sign (x̃1) + ∆(x, u, t)− d (x, x̃, u, t) + ẑ
˙̂z = −γ3sign (x̃1)

(4.5)

where x̃ = x − x̂ denote the system state’s estimation errors and the estima-
tion errors of the lumped uncertainties are described as d (x, x̃, u, t) = { f (x̂, t)
+g(x̂, t)u(t)} − { f (x, t) + g(x, t)u(t)}. Based on the Assumption 1, the estima-
tion errors, d (x, x̃, u, t), are bounded as ∥d (x, x̃, u, t)∥ ≤ Ξ.

Denoting the estimation of the lumped uncertainties, ∆ (x, u, t), as ∆̂ (x, x̂, u, t) =
∆ (x, u, t)− d (x, x̃, u, t), the estimation errors (4.5) can be rewritten as follow

˙̃x1 = −γ1|x̃1|2/3sign (x̃1) + x̃2
˙̃x2 = −γ2|x̃1|1/3sign (x̃1) + ∆̂ (x, x̂, u, t) + ẑ
˙̂z = −γ3sign (x̃1)

(4.6)

Now, let define ẑ0 = ∆̂ (x, x̂, u, t) + ẑ, the system (4.6) becomes

˙̃x1 = −γ1|x̃1|2/3sign (x̃1) + x̃2
˙̃x2 = −γ2|x̃1|1/3sign (x̃1) + ẑ0
˙̂z0 = −γ3sign (x̃1) +

˙̂∆ (x, x̂, u, t)

(4.7)
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The estimation errors (4.7) is in the standard form of second-order robust exact
differentiator and its finite-time stability has successfully proved in literature
[86]. Therefore, by selecting suitable observer gains, the estimation errors, x̃1,
x̃2, and ẑ0 will converge to zero in finite time.

Remark 4.1. The observer gains of (4.4) could be selected based on [86] as γ1 = α1L1/3,
γ2 = α2L2/3, and γ3 = α3L where α1 = 2, α2 = 2.12, and α3 = 1.1 with L = Λ + Ξ.

4.3.2 Uncertainty Identification

After the convergence process, the differentiators will converge to zero. In other
words, the estimated states will achieve the real states (x̂1 = x1, x̂2 = x2) af-
ter finite time. Thus, the uncertainty estimation errors will be equal to zero,
d (x, x̃, u, t) = 0. The third equation of system (4.7) turn into

˙̂z0 = −γ3sign (x̃1) +
˙̂∆ (x, x̂, u, t) ≡ 0 (4.8)

The lumped uncertainties can be reconstructed as

∆̂ (x, x̂, u, t) =
∫

γ3sign (x̃1) (4.9)

Since the estimation of lumped uncertainties in (4.9) include integral element;
therefore, it can be reconstructed immediately from the output injection term
without requirement of lowpass filter. Thanks to this preeminent feature, the
TOSMO can provide higher estimation accuracy than that of SOSMO, which is
designed in Appendix A. Moreover, the finite time convergence of both system
velocities and the lumped uncertainties is guaranteed. The obtained lumped
uncertainties can also be utilized for fault detection and applied to the FTC.
The estimated velocities are used in the control design procedure instead of the
measured velocities in the next Section.

Remark 4.2. It is worth noting that when applying the estimation states from the
observer to the closed-loop controlling system, the exact estimation of system states
can only achieve after some transient time. In another word, there exists additional
errors in the period before the convergence occurs. These errors will affect in choosing
the parameters of the controller. If it is not carefully considered, it will lead to a wrong
selection of control parameters. Consequently, the system will be unstable in some cases.
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4.4 Design of Observer-Based NFTSMC Algorithm

In this part, a NFTSMC algorithm is proposed for the class of second-order un-
certain nonlinear systems (4.1) to handle the effect of the lumped uncertainties
with low chattering and minimum tracking errors. Especially, only position
measurements are required. The design method is expressed in the two follow-
ing steps.

4.4.1 Design of Sliding Function

The tracking errors and velocity errors are defined as

e = x1 − xd

ė = x2 − ẋd
(4.10)

wherexd, ẋd denote the desired trajectories and velocities, respectively.

A terminal sliding function is chosen as the following expression [59]

s = ė +
t
∫
0

(
κ2|ė|α2sign (ė) + κ1|e|α1sign (e)

)
dt (4.11)

where constants κ1, κ2 denote sliding gains which can be chosen such that the
polynomial κ2p + κ1 is Hurwitz and α1, α2 can be selected as

α1 = (1 − ε, 1) , ε ∈ (0, 1)
α2 = 2α1

1+α1

(4.12)

Generally, for saving the cost and reducing the weight of devices, the tachome-
ters in the devices will be cut off by manufacturers. Therefore, in this article, we
assume that only the position measurements are available in the system (4.1).
Consequently, the variables ė in sliding functions, s, in (4.11), are not available.
To achieve applicable sliding functions, we define the tracking errors and esti-
mation of velocity errors as

e = x1 − xd (4.13)

ˆ̇e = x̂2 − ẋd (4.14)



Chapter 4. A NFTSMC Based on TOSMO For A Class of Second-Order
Uncertain Nonlinear Systems and Its Application To Robot Manipulators

61

FIGURE 4.1: Block diagram of the proposed controller-observer
strategy.

With the above defining, the estimation of sliding function (4.11) can be ob-
tained as

ŝ = ˆ̇e +
t
∫
0

(
κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e)

)
dt (4.15)

4.4.2 Design of Controller

In order to obtain the control signal for the uncertain nonlinear system (4.1), an
NFTSMC based on TOSMO as described in Fig. 4.1 is proposed. The control
law is proposed as below

u = −g(x, t)−1 (ueq + usw
)

(4.16)

In (4.16), the equivalent control law, ueq, holds the trajectory of the error state
on the sliding surface, is designed as

ueq = f (x, t) + γ2|x̃1|1/3sign (x̃1)

+
∫

λ3sign(x̃1) + κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e)− ẍd

(4.17)

The switching control law, usw, is constructed to compensate for the estimation
errors as follows

usw = (Ξ + µ)sign (ŝ) (4.18)

where µ is a small positive constant.

The control design method for the system is described in Theorem below.

Theorem 4.1. Consider the class of second-order uncertain nonlinear systems given
by (4.1), if the NFTSMC input is designed as (4.16-4.18), then the origin of the sliding
function (4.15) is globally finite-time stable equilibrium point and the sliding function
(4.15) will converge to zero in finite time defined by Tr =

∥ŝ(0)∥
µ .
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Proof of Theorem 4.1

Taking the first-time derivative of the estimated sliding function (4.15) yields

˙̂s =
d
dt

ˆ̇e + κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e) (4.19)

We can obtain the first-time derivative of tracking velocity errors (4.14) as fol-
lows

d
dt

ˆ̇e = ˙̂x2 − ẍd (4.20)

Substituting the second equation of observer (4.4) into (4.20), we can get

d
dt

ˆ̇e = −ẍd + f (x̂, t) + g(x̂, t)u(t)
+γ2|x̃1|1/3sign (x̃1) +

∫
γ3sign (x̃1)

= −ẍd + f (x, t) + g(x, t)u(t) + d (x, x̃, u, t)
+γ2|x̃1|1/3sign (x̃1) +

∫
γ3sign (x̃1)

(4.21)

Substituting (4.21) into (4.20), we can obtain

˙̂s = −ẍd + f (x, t) + g(x, t)u(t) + d (x, x̃, u, t)
+γ2|x̃1|1/3sign (x̃1) +

∫
γ3sign (x̃1)

+κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e)

(4.22)

Employing the control input from (4.16) to (4.18) into (4.22) yields

˙̂s = −(Ξ + µ)sign (ŝ) + d (x, x̃, u, t) (4.23)

Define the Lyapunov function as following

V =
1
2

ŝT ŝ (4.24)

Taking the first-time derivative of Lyapunov function (4.24) and substituting the
result from (4.23) yields

V̇ = ŝT ˙̂s
= ŝT (−(Ξ + µ)sign (ŝ) + d (x, x̃, u, t))

= −(Ξ + µ)
n
∑

i=1
|ŝi|+ d(x, x̃, u, t)T ŝ ≤ −µ

n
∑

i=1
|ŝi|

≤ −µ ∥ŝ∥ = −
√

2µV1/2 < 0, ∀ŝ ̸= 0

(4.25)
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As a result, according to [87], we can conclude that the origins si = 0, i =

1, 2, ..., n of sliding function (4.15) are globally finite-time stable equilibrium
points and the sliding function will converge to zero in finite time Tr = ∥ŝ(0)∥

µ .
Theorem 4.1 is successful proved.

The proposed controller-observer method provides high position tracking ac-
curacy, non-singularity, and robustness against the lumped uncertainties, low
chattering, and finite-time convergence without the need of velocity measure-
ment. Its effectiveness will be illustrated by the simulation results.

Remark 4.3. We can see that the estimation of the lumped uncertainties term,∫
γ3sign(x̃1), which is obtained from the TOSMO (4.4), contains in the equivalent

control signal (4.17). Accordingly, in the switching control law, only a small value of
sliding gain, Ξ, is selected to compensate the effects of the lumped uncertainties’ esti-
mation errors, d (x, x̃, u, t). By using this way, the chattering is significantly reduced
in control input torque.

Remark 4.4. It is worth noting that there exists an additional component,
γ2|x̃1|1/3sign (x̃1), in the equivalent control signal (4.17) compared with the control
signal (60), in which the converged estimation velocities is used in controller design
procedure, see Appendix D. After the convergence time, this term will be equal to zero;
however, the presence of this component ensures the proper functioning of the system
when a steady state has not been established.

4.5 Application to Robot Manipulators

The controller-observer method is designed for the class of second-order uncer-
tain nonlinear systems; therefore, it can be applied to many systems which have
the same characteristic such as motors, helicopters, aircraft, and robot manip-
ulators. In this part, the proposed controller-observer strategy is employed for
tracking trajectory a serial n-link robotic manipulator with the dynamic equa-
tion is given in Lagrange form as

M (θ) θ̈ + C
(
θ, θ̇
)

θ̇ + G (θ) + F
(
θ̇
)
= τ(t) + τd(t) (4.26)

where θ, θ̇, θ̈ ∈ Rn denote position, velocity, and acceleration of robot joints,
respectively. τ(t) ∈ Rn represents the control input torque, M (θ) ∈ Rn×n rep-
resents the inertia matrix, C

(
θ, θ̇
)
∈ Rn represents the Coriolis and centripetal
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forces, G (θ) ∈ Rn represents the gravitational force term. F
(
θ̇
)
∈ Rndenotes

the friction vector, τd(t) ∈ Rn denotes the disturbance vector.

Generally, because of the different between the mathematical and practical model,
there exist uncertain component of the model of the robot manipulators as

M (θ) = M0 (θ) + ∆M (θ) (4.27)

C
(
θ, θ̇
)
= C0

(
θ, θ̇
)
+ ∆C

(
θ, θ̇
)

(4.28)

G (θ) = G0 (θ) + ∆G (θ) (4.29)

where M0 (θ), C0
(
θ, θ̇
)
, and G0 (θ) denote the nominal terms; and ∆M (θ), ∆C

(
θ, θ̇
)
,

and ∆G (θ) denote the uncertain terms. Therefore, the robot dynamic equation
(4.26) becomes

M0 (θ) θ̈ + C0
(
θ, θ̇
)

θ̇ + G0 (θ) = τ(t) + Υ
(
θ, θ̇, t

)
(4.30)

where Υ
(
θ, θ̇, t

)
= −∆M (θ)− ∆C

(
θ, θ̇
)
− ∆G (θ)− F

(
θ̇
)
+ τd(t).

The robot dynamic equation (4.30) can be converted to the below form

θ̈ = M0
−1 (θ)

[
τ(t)− C0

(
θ, θ̇
)

θ̇ − G0 (θ) + Υ
(
θ, θ̇, t

)]
(4.31)

For simply in designing, the robot dynamic (4.31) can be rewritten in state space
form as

ẋ1 = x2

ẋ2 = f ∗(x) + g∗(x)u(t) + ∆∗(x, t)
(4.32)

where x1 = θ, x2 = θ̇, x =
[

x1
T x2

T
]T

, u(t) = τ(t), f ∗(x) = M0
−1 (θ)

[
−C0

(
θ, θ̇
)

θ̇

−G0 (θ)], g∗(x) = M0
−1 (θ), and ∆∗(x, t) = M0

−1 (θ)Υ
(
θ, θ̇, t

)
.

It can be shown that the robot dynamic system (4.28) is in the same form as
(4.1). Thus, the proposed controller-observer algorithm, which are designed in
Section 4.3 and Section 4.4, can be applied directly.

4.6 Numerical Simulations

In this section, a PUMA560 robot manipulator (the last three joints are blocked)
as shown in Fig. 4.2 is used for computer simulation to demonstrate the sig-
nificance and applicability of the proposed controller-observer method. The
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FIGURE 4.2: PUMA560 robot manipulator.
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specific dynamic model with required parameter values of PUMA560 robot are
provided in [104]. In this chapter, the simulation analysis is performed by using
the MATLAB/Simulink program and the sampling time is 10−3s.

In this work, it is assumed that the desired trajectories to be tracked are

θd =

 θd1

θd2

θd3

 =

 2 cos (πt/6)− 1
3 sin (πt/7 + π/2)− 1

1.5 sin (πt/5 + π/2)− 1

 (4.33)

The initial states are chosen as θ1(0) = θ2(0) = θ3(0) = −0.5 and θ̇1(0) =

θ̇2(0) = θ̇3(0) = 0.

The dynamic uncertainties, friction, and external disturbances are assumed as

∆ =

 ∆1

∆2

∆3

 =

 −1.1q̇1 + 1.2 sin (3q1 + π/2)− cos (t)
1.65q̇2 − 2.14 cos (2q2) + 0.5 sin (t)

−0.5q̇3 + 1.3 sin (2.5q3 − π/2) + 0.7 sin (0.5t)

 (4.34)

F(θ̇) =

 F1

F2

F3

 =

 1.9 cos (2q̇1)

2.03 sin (q̇2 + π/2)− 1
1.76 cos (0.9q̇3)

 (4.35)

τd = ς
(
t − Tf

)  τd1

τd2

τd3

 = ς
(
t − Tf

)  −12.5 sin (πt/4 + π/3)
13.7 cos (πt/5 + π/2)

7.5 sin (πt/3)

 (4.36)

where Tf denotes the time of occurrence and ς
(
t − Tf

)
= diag

{
ς1
(
t − Tf

)
,

ς2
(
t − Tf

)
, . . . , ςn

(
t − Tf

)}
represents the time profile of the of the external

disturbances. With ςi
(
t − Tf

)
=

{
0 i f t ≤ Tf

1 − e−σi(t−Tf ) i f t ≥ Tf
and σi > 0 de-

note the evolution rate.

In this simulation, the external disturbances occur at Tf = 20s. The parameters
of the controllers using in this simulation are chosen as L = 9, α1 = 1/2 , α2 =

2/3 , Ξ = 1, κ1 = diag (15, 15, 15), κ2 = diag (10, 10, 10).

The simulation consists three parts. First, the estimation results of the TOSMO is
compared with that of the SOSMO - which is designed in Appendix A. Second,
the proposed NFTSM controller-observer method is compared with NFTSM
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FIGURE 4.3: Velocity estimation errors of the TOSMO compared
with the SOSMO.

controllers with and without compensating the estimation of lumped uncer-
tainties – which are designed in Appendix B, C, and D. Finally, we will compare
the proposed controller-observer strategy with the NFTSM controller with com-
pensation of obtained lumped uncertainties from TOSMO, which is designed in
Appendix D, in term of changing value of the switching gain.

For the first part of the simulation, the comparison results between the TOSMO
and the SOSMO are shown in Fig. 4.3, Fig. 4.4, and Fig. 4.5. Fig. 4.3 shows
the obtained estimation error of velocity, as we can see that the TOSMO can es-
timate the system velocity with higher precision whereas the SOSMO provides
a larger chattering in the estimation signal. In term of the estimation of lumped
uncertainties, the SOSMO requires a lowpass filter to reconstruct the estima-
tion information that is the cause of time delay reducing the precision of this
observer. On the contrary, the TOSMO can construct the lumped uncertainties
directly without the need of using lowpass filter. The simulation results of the
estimation of lumped uncertainties and estimation errors in Fig. 4.4 and Fig.
4.5 indicate that the TOSMO can obtain higher estimation accuracy than that of
the SOSMO. However, as a trade-off, the convergence time is little slower. It is
worth noting that the more accurate the estimation information, the higher the
control performance.
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FIGURE 4.4: Uncertainty estimation of the TOSMO compared with
the SOSMO.

FIGURE 4.5: Uncertainties estimation error of the TOSMO com-
pared with the SOSMO.
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FIGURE 4.6: Tracking position of the proposed controller-observer
method compared with the NFTSMC with and without uncer-

tainty compensation.

FIGURE 4.7: Tracking error of the proposed controller-observer
method compared with the NFTSMC with and without uncer-

tainty compensation.
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FIGURE 4.8: Control input of proposed controller-observer
method compared with the NFTSMC with and without uncer-

tainty compensation.

FIGURE 4.9: Position tracking error of the controller-observer con-
trol method compared with NFTSMC-TOSMO: a) Ξ = 1, b) Ξ =

0.3.
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FIGURE 4.10: Control input of the proposed controller-observer
method compared with NFTSMC-TOSMO: a) Ξ = 1, b) Ξ = 0.3.

FIGURE 4.11: Sliding function of the proposed controller-observer
method compared with NFTSMC-TOSMO: a) Ξ = 1, b) Ξ = 0.3.
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For the second part of the simulation, the comparison results among the pro-
posed controller-observer strategy in Eq. 4.16 - 4.18, the NFTSM controller with-
out the uncertainties compensation in Eq. 4.43 - 4.45, the NFTSM controller with
SOSMO compensation (NFTSMC-SOSMO) in Eq. 4.50 - 4.53, and the NFTSM
controller with TOSMO compensation (NFTSMC-TOSMO) in Eq. 4.58 - 4.61 are
presented in Fig. 4.6, Fig. 4.7 and Fig. 4.8. The tracking position and the track-
ing error among three joints are shown in Fig.4.6 and Fig. 4.7, respectively. Fig.
4.8 presents the control input of controllers among three joints. As shown in the
figures, the proposed controller-observer strategy can provide higher tracking
precision and less chattering in control input compared with others, except for
the NFTSMC-TOSMO.

In order to show the superior properties of the proposed controller-observer
strategy compared with the NFTSMC-TOSMO, we go into the third part of the
simulation in which the switching gain, Ξ, of the switching control law, usw,
is changed. The comparison of position tracking error between the proposed
control method and the NFTSMC-TOSMO is show in Fig. 4.9. The results
show that when the switching gain, Ξ = 1, the proposed controller-observer
method and the NFTSMC-TOSMO can provide almost the same position track-
ing performance. However, when reducing the switching gain Ξ to 0.3, the
NFTSMC-TOSMO provides a slower convergence time. This happened because
the switching gain, Ξ, in the proposed controller-observer strategy is only used
against the effect of the uncertainties’ estimation error whereas in the NFTSMC-
TOSMO, this gain is used to handle the effect of both the uncertainties’ estima-
tion error and its overshooting. It is worth mentioning that the smaller the
selected switching gain, Ξ, the lower the chattering in the control input signal,
which is presented in Fig. 4.10. The comparison of sliding function is illustrated
in Fig. 4.11. As we can see that the proposed controller-observer method can
provide fast convergence of sliding function for both cases. On the contrary, the
convergence of sliding function of the NFTSMC-TOSMO increases when the
value of switching gain, Ξ, is reduced. It means that the sliding mode will reach
slower.

4.7 Conclusions

This chapter has proposed an effective controller-observer method for the class
of second-order uncertain nonlinear systems. The ability to approximate sys-
tem velocities of the TOSMO eliminates the requirement of tachometer in the
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system thus the device’s cost and size can be reduced. Moreover, the obtained
lumped uncertainties with high accuracy increases the controller performance
when applying the estimated information to compensate the uncertainties’ ef-
fects. The proposed NFTSMC method provides high tracking accuracy, fast
response time, low chattering phenomenon, robustness against the lumped un-
certainties, faster reaching to the sliding motion and finite-time convergence of
the system states. The finite-time stability of both observer and controller have
been demonstrated in theory. The proposed controller-observer algorithm has
been successfully applied to robot manipulator and its effectiveness has been
verified by simulation results.

Appendix

A - DESIGN OF SOSMO

Based on system (4.1), the SOSMO is designed in [44] as

˙̂x1 = x̂2 + k1|x1 − x̂1|1/2sign (x1 − x̂1)
˙̂x2 = f (x̂, t) + g(x̂, t)u(t) + k2sign (x1 − x̂1)

(4.37)

where x̂ denotes the estimation of x and ki denote the observer gains.

By subtracting (4.1) to (4.33) we can obtain the estimation error as

˙̃x1 = −k1|x̃1|1/2sign (x̃1) + x̃2
˙̃x2 = −k2sign (x̃1) + ∆(x, u, t)− d (x, x̃, u, t)

(4.38)

where x̃ = x− x̂ and d (x, x̃, u, t) = { f (x̂, t) + g(x̂, t)u(t)}−{ f (x, t) + g(x, t)u(t)}.

After the convergence process, the differentiators will converge to zero, thus
the estimated states will reach the real states (x̂1 = x1, x̂2 = x2) and the lumped
uncertainties’ estimation will be equal to zero, d (x, x̃, u, t) = 0. The lumped
uncertainties can be reconstructed as

∆̂ (x, u, t) = k2sign (x̃1) (4.39)

As we can see, the equivalent output injection of SOSMO is the result of the
discontinuous terms k2sign (x̃1), which cause the chattering phenomenon in es-
timation signal. For that reason, a lowpass filter is required to reconstruct the
estimation of the lumped uncertainties.
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The observer gains in (4.38) could be selected based on [86] as k1 = α1L2/3, and
k2 = α2L where α1 = 2.12, and α2 = 1.1.

B - DESIGN OF NFTSMC WITHOUT UNCERTAINTIES COM-

PENSATION

The tracking errors and velocity errors as (4.10), the terminal sliding function is
selected as (4.11). The control law is designed as follows:

u = −g(x, t)−1 (ueq + usw
)

(4.40)

ueq = f (x, t) + κ2|ė|α2sign (ė) + κ1|e|α1sign (e)− ẍd (4.41)

usw = (Λ + µ) sign (s) (4.42)

After substituting the estimation of system velocities from the TOSMO (4.4), the
control law becomes

u = −g(x̂, t)−1 (ueq + usw
)

(4.43)

ueq = f (x̂, t) + κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e)− ẍd (4.44)

usw = (Λ + µ) sign (ŝ) (4.45)

The switching control law here is used to compensate for the lumped uncertain-
ties.

C - DESIGN OF NFTSMC WITH SOSMO COMPENSATION

The tracking errors and velocity errors as (4.10), the terminal sliding function is
selected as (4.11). The control law is designed as follows:

u = −g(x, t)−1 (ueq + usw + uc
)

(4.46)

ueq = f (x, t) + κ2|ė|α2sign (ė) + κ1|e|α1sign (e)− ẍd (4.47)

usw = (Ξ + µ) sign (s) (4.48)

uc = k2sign (x̃1) (4.49)

Substituting the estimation of system velocities from the SOSMO (4.37), the con-
trol law becomes

u = −g(x̂, t)−1 (ueq + usw + uc
)

(4.50)
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ueq = f (x̂, t) + κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e)− ẍd (4.51)

usw = (Ξ + µ) sign (ŝ) (4.52)

uc = k2sign (x̃1) (4.53)

The switching control law here is used to compensate for the uncertainty’s esti-
mation error of the SOSMO and the compensation element, uc, is obtained from
(4.39).

D - DESIGN OF NFTSMC WITH TOSMO COMPENSATION

The tracking errors and velocity errors as (4.10), the terminal sliding function is
selected as (4.11). The control law is designed as follows:

u = −g(x, t)−1 (ueq + usw + uc
)

(4.54)

ueq = f (x, t) + κ2|ė|α2sign (ė) + κ1|e|α1sign (e)− ẍd (4.55)

usw = (Ξ + µ) sign (s) (4.56)

uc =
∫

γ3sign (x̃1) (4.57)

Substituting the estimation of system velocities from the TOSMO (4.4), the con-
trol law becomes

u = −g(x̂, t)−1 (ueq + usw + uc
)

(4.58)

ueq = f (x̂, t) + κ2
∣∣ ˆ̇e∣∣α2sign

(
ˆ̇e
)
+ κ1|e|α1sign (e)− ẍd (4.59)

usw = (Ξ + µ) sign (ŝ) (4.60)

uc =
∫

γ3sign (x̃1) (4.61)

The switching control law here is used to compensate for the uncertainty’s esti-
mation error of the TOSMO and the compensation element, uc, is obtained from
(4.9).
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Chapter 5

A Novel High-Speed Third-Order
Sliding Mode Observer for
Fault-Tolerant Control Problem of
Robot Manipulators

In this chapter, a novel FTC tactic for robot manipulator systems using only position
measurement is proposed. The proposed algorithm is constructed based on the combi-
nation of a NFTSMC and a novel high-speed TOSMO. In the first step, the high-speed
TOSMO is first time proposed to approximate both the system velocity and the lumped
unknown input with faster convergence time comparing to the TOSMO. The faster con-
vergence speed is obtained thanks to the linear characteristic of the added elements. In
the second step, the NFTSMC is constructed based on a NFTS surface and the obtained
information from the proposed high-speed TOSMO. Thanks to this combination, the
proposed controller-observer tactic provides excellent features such as fast convergence
time, high tracking precision, chattering phenomenon reduction, robust against the ef-
fects of the lumped unknown input, and velocity requirement elimination. Especially,
the proposed observer not only improves the convergence time of observed signal but
also increases the system dynamic response. The system stability has been proved using
Lyapunov theory. Finally, to validate the efficiency of the proposed strategy, simulations
on the PUMA560 robot manipulator are performed.
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5.1 Introduction

In industry, robotic manipulators are employed widely with various applica-
tions such as material handling, milling, painting welding, and roughing. Along
with the growth of robot manipulator applications, the interest in robotic con-
trol, which has the purpose of making the robot tracks the desired trajectories to
further improve the tracking precision, has been increased [105, 106, 107]. How-
ever, robot manipulators are difficult to control in both theoretical and practical
due to some characteristics as follows. First, robot manipulator systems have
highly nonlinear and very complex dynamic with coupling terms. Addition-
ally, the payload changes, frictions, and external disturbances etc. lead to robot
dynamic uncertainty. Therefore, getting the robot’s correct dynamics is arduous
or even impossible. In some special cases, with the long-time operation, fault
can be happened when the robot is operating, which can be actuator fault or
sensor fault. Furthermore, for reducing the weight/size and saving the cost, in
some cases, manufacturers remove the velocity sensors in the robot. They are
big problems that have been challenged by many researchers. To simplify the
presentation and avoid the duplication, in this article, the dynamic uncertainty,
and unknown fault will be treated and abbreviated as lumped unknown input.

To deal with the aforementioned lumped unknown input, many control meth-
ods have been developed, such as PID control [25, 108], adaptive control [109],
fuzzy control [110], NN control [111], SMC [42, 112]. Among above controllers,
the SMC has been widely utilized in FTC problem of robot manipulators be-
cause of its effectiveness in rejecting the effects of the lumped unknown input
[40, 39, 41]. Besides, its design procedure is not complicated and quite pop-
ular in literature [37, 43, 113]. Unfortunately, conventional SMC uses a linear
sliding surface that causes the finite-time convergence cannot be guaranteed.
In order to achieve the finite-time convergence, nonlinear sliding surface is uti-
lized instead of a linear one in design process of the controller, this technique
is well-known as TSMC [45, 114]. Compared with the conventional SMC, the
TSMC extends two outstanding properties, that are finite-time convergence and
achieving higher accuracy when parameters are carefully designed. Unfortu-
nately, the TSMC only obtains a faster convergence when system states are near
equilibrium point but slower when the system states are far from the equilib-
rium point. In addition, the TSMC suffers from the singularity problem. The
two problems have been handled separately using the FTSMC [61, 46] and the
NTSMC [49, 115]. In order to solve both problems at the same time, NFTSMC
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has been developed [52, 54, 116]. Due to the excellent control features such as
providing finite-time convergence, eliminating singularity elimination, achiev-
ing high position tracking precision, and robustness against the lumped un-
known input, the NFTSMC has been applied widely in literature. However,
the same as the SMC and TSMC, utilizing a discontinuous switching element
with a big and fixed sliding gain to handle the effects of the lumped unknown
input in designing process of the NFTSMC is the root of high-frequency os-
cillations, which is so-called chattering [117]. This phenomenon harms to the
system, therefore, decreases the practical applicability of SMC. In addition, the
design procedure of NFTSMC involves the real velocity information, which is
sometimes unavailable in practical systems.

To resolve the chattering problem, the elementary idea is reducing the sliding
gain in the switching control component. In this approach, the lumped un-
known input is first completely or partially estimated. After that, the estimated
unknown input is applied in controller designing as compensator to reduce the
lumped unknown input effects. Therefore, the switching control component
is now utilized to carry out the impacts of the estimation error instead of the
lumped unknown input in original controller. As a result, the sliding gain is
chosen with a smaller value and the chattering phenomenon would be reduced.
In the literature, various techniques to fault diagnosis have been proposed to
approximate the lumped unknown input such as neural network observer [101,
6], adaptive observer [118, 119], time delay estimation [10, 11], linear extended
state observer (LESO) [120, 121], SOSMO [96], and TOSMO [14, 13, 12]. Among
them, the SOSMO and the TOSMO stands out with the capability to estimate
not only the lumped unknown input but also the velocity information; there-
fore, the requirement of the tachometer is eliminated without the need of an
additional state observer. In comparison of the above two observers, the main
advantage of the SOSMO is providing a faster approximation speed. In contrast,
the TOSMO can provide the estimation signals with higher estimation accuracy,
and less chattering without any filtration. Unfortunately, as a trade-off, its con-
vergency time becomes slower than that of SOSMO. Therefore, it is necessary
to design an observer which can combine the wonderful properties of both the
SOSMO and the TOSMO.

Motivated by all the above discussion, this chapter first proposes a novel high-
speed TOSMO for the robot manipulator systems by adding additional terms
to the original TOSMO. This observer can not only maintain the remarkable
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benefits of original TOSMO but also obtain a faster convergence time. The es-
timated velocity and unknown input are then applied to design a FTC based
on the NFTSMC. The major contributions of this chapter are summarized as
following:

• Proposing a novel high-speed TOSMO which can obtain a faster conver-
gence speed whereas maintains the high estimation accuracy of the TOSMO.

• Proposing a FTC law based on the NFTSMC and the proposed high-speed
TOSMO which handles the effects of the lumped unknown input.

• Archiving faster convergence, higher tracking accuracy, finite-time con-
vergence, non-singularity, and low chattering without velocity measure-
ment.

• Proving system finite-time stability when combining controller and ob-
server.

This chapter is organized into six parts. Following the introduction, the math-
ematical dynamics model of robot manipulators and problem formulation are
presented in Section 5.2. In Section 5.3, the design of the high-speed TOSMO
is presented, followed by the design procedure of the FTC law based on the
NFTSMC for the robot manipulators is shown in Section 5.4. To confirm the
efficiency of the proposed method, computer simulations on a PUMA560 robot
manipulator are shown in Section 5.5. Finally, Section 5.6 gives some conclu-
sions.

5.2 Mathematical dynamics model of robot manipu-

lators and problem formulation

5.2.1 Robot dynamics

Let we consider a serial n-link robotic manipulators under the effects of dy-
namic uncertainty and unknown fault as following

q̈ = M(q)−1 [τ (t)− C (q, q̇) q̇ − G (q)− Fr (q̇)− τd (t)] + Ω (q, q̇, t) (5.1)

where q, q̇, q̈ ∈ Rn correspondingly represent robot joints’ position, velocity, and
acceleration vectors; M (q) ∈ Rn×n represents the inertia matrix, which is sym-
metric and positive definite, hence, it is invertible; C (q, q̇) ∈ Rn, G (q) ∈ Rn,
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and Fr (q̇) ∈ Rn denote the Coriolis and centripetal forces, gravitational vec-
tor, and friction vector, respectively; τd(t) ∈ Rn denotes the disturbance vector;
τ(t) ∈ Rn denotes the control input signal; and Ω (q, q̇, t) = ω

(
t − Tf

)
Φ (q, q̇, t)

denotes the unknown but bounded fault with the time profile ω
(
t − Tf

)
=

diag
{

ω1
(
t − Tf

)
, ω2

(
t − Tf

)
, . . . , ωn

(
t − Tf

)}
, where ωi

(
t − Tf

)
=

{
0 i f t ≤ Tf

1 − e−ζi(t−Tf ) i f t ≥ Tf
. The unknown fault function Φ (q, q̇, t) occurs at

time Tf with evolution rate ζi > 0 , (i = 1, 2, . . . , n).

By defining u = τ(t), and x =
[

x1
T x2

T
]T

with x1 = q, x2 = q̇, we can transfer
the system (5.1) into the state space form as

ẋ1 = x2

ẋ2 = Ψ(x) + M(x1)
−1u + ∆(x, t)

(5.2)

where Ψ(x) = M(q)−1 [−C (q, q̇) q̇ − G (q)] represents the nominal model of
robot manipulators and ∆(x, t) = M(q)−1 [−Fr (q̇)− τd] +Ω (q, q̇, t) denotes the
lumped unknown but bounded dynamic uncertainty, and unknown fault.

Remark 5.1. In this chapter, the unknown fault is considered as additional dynamic
uncertainty, therefore, their total effects in the system will be carried out. We can simply
name them as the lumped unknown input.

5.2.2 Problem formulation

Let xd ∈ Rn be an expected trajectory of robot’s joint, the tracking error is de-
fined as

e = x1 − xd (5.3)

The central purpose of this chapter is divided to two parts. First, a novel high-
speed TOSMO is first time proposed to estimate both the system states and the
lumped unknown input with high precision and fast response time. Second,
based on the achieved information from the proposed observer, a FTC approach
using NFTSMC is then designed for system (5.2) to ensure that the joint posi-
tions x1 track the desired trajectory xd with high accuracy even in presence of
the lumped unknown input and absence of the velocity measurement. In ad-
dition, the controller further demonstrates effectiveness of the proposed high-
speed TOSMO. The proposed algorithm is constructed based on assumptions
as follows
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Assumption 5.1. The desired trajectory xd is a twice continuously differentiable func-
tion respect to time t.

Assumption 5.2. The lumped unknown input ∆(x, t) is bounded by a positive con-
stant ∆D as

|∆(x, t)| ≤ ∆D (5.4)

Assumption 5.3. The derivative of the lumped unknown input ∆(x, t) respect to time
is existed and bounded by a positive constant ∆Ḋ as∣∣∣∣ d

dt
∆(x, t)

∣∣∣∣ ≤ ∆Ḋ (5.5)

5.3 Design of Observer

5.3.1 High-speed third-order sliding mode observer

In this section, a novel high-speed TOSMO is proposed to approximate both
velocity and the lumped unknown input with high estimation precision. Espe-
cially, the slow convergence characteristic of the TOSMO is improved thanks to
the linear characteristic of the adding terms.

Based on the system (5.2), the novel high-speed TOSMO is proposed as follow-
ing

˙̂x1 = k1|x1 − x̂1|2/3sign (x1 − x̂1) + x̂2 + Γ (x1 − x̂1)
˙̂x2 = Ψ(x̂) + M(x1)

−1u + k2|x1 − x̂1|1/3sign (x1 − x̂1) + Γ
( ˙̂x1 − x̂2

)
− ẑ

˙̂z = −k3sign (x1 − x̂1)
(5.6)

where x̂ is the estimation of x, ki (i = 1, 2, 3) denotes the sliding gains, and Γ is
positive constant.

Theorem 5.1. For the robot manipulator system given by (5.2) with the high-speed
TOSMO (5.6), if the sliding gains of the observer is chosen as Remark 5.3, then the
proposed observer is stable and the estimation states (x̂1, x̂2) will achieve the real states
(x1, x2) in finite time.

Proof of Theorem 5.1
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By subtracting (5.6) from (5.2), we obtain the estimation errors as

˙̃x1 = −k1|x̃1|2/3sign (x̃1) + x̃2 − Γx̃1
˙̃x2 = −k2|x̃1|1/3sign (x̃1)− Γ

( ˙̂x1 − x̂2
)
+ ∆(x, t)− δ(x, x̃) + ẑ

˙̂z = −k3sign (x̃1)

(5.7)

where x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 represent the position and velocity estima-
tion errors, respectively. The estimation error δ(x, x̃) = Ψ(x̂)− Ψ(x). To facili-
tate in the next design approach, in this phase, we assume that |δ(x, x̃)| ≤ ∆δ,
and

∣∣δ̇(x, x̃)
∣∣ ≤ ∆δ̇, where ∆δ and ∆δ̇ are positive constants.

Substituting the first term of (5.6) into (5.7), we obtain

˙̃x1 = −k1|x̃1|2/3sign (x̃1) + x̃2 − Γx̃1
˙̃x2 = −k2|x̃1|1/3sign (x̃1) + ∆(x, t)− δ(x, x̃) + ẑ

−Γk1|x̃1|2/3sign (x̃1)− Γ2x̃1
˙̂z = −k3sign (x̃1)

(5.8)

By defining the new variable x̄ = x̃2 − Γx̃1, the estimation errors in (5.8) are
rewritten as

˙̃x1 = −k1|x̃1|2/3sign (x̃1) + x̄
˙̄x = −k2|x̃1|1/3sign (x̃1) + ∆(x, t)− δ(x, x̃) + ẑ

−Γk1|x̃1|2/3sign (x̃1)− Γ2x̃1

+Γk1|x̃1|2/3sign (x̃1) + Γ2x̃1 − Γx̃2︸ ︷︷ ︸
−Γ ˙̃x1

˙̂z = −k3sign (x̃1)

(5.9)

Letting ∆̂(x, t) = ∆(x, t)− δ(x, x̃) + L, the system (5.9) becomes

˙̃x1 = −k1|x̃1|2/3sign (x̃1) + x̄
˙̄x = −k2|x̃1|1/3sign (x̃1) + ∆̂(x, t) + ẑ
˙̂z = −k3sign (x̃1)

(5.10)

where L = −Γx̃2 with the assumptions are that |L| ≤ ∆L and
∣∣∣ d

dt L
∣∣∣ ≤ ∆L̇.
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By defining x̃3 = ẑ + ∆̂(x, t), the system in (5.10) can be rewritten in the same
form of the second-order sliding mode differentiator [80] as

˙̃x1 = −k1|x̃1|2/3sign (x̃1) + x̄
˙̄x = −k2|x̃1|1/3sign (x̃1) + x̃3

˙̃x3 = −k3sign (x̃1) +
˙̂∆(x, t)

(5.11)

Equation (5.11) is also well-known as the TOSMO [82]. By selecting the can-
didate Lyapunov function V0 and using the same demonstrating process as in
[82], it can be concluded that the system (5.11) is stable and the differentiators
x̃1, x̄, and x̃3 the converge to zero in finite-time. Thus, the system (5.7) is stable
and the estimation errors x̃1, x̃2 converge to zero in finite-time.

Remark 5.2. The proposed high-speed TOSMO in (5.6) is designed based on the orig-
inal TOSMO in [52]. The linear characteristics of added terms are utilized to increase
the convergence speed of estimated signals.

Remark 5.3. The observer gains of (5.6) are selected according to [80] as k1 = α1∆̄1/3,
k2 = α2∆̄2/3, and k3 = α3∆̄ where α1 = 2, α2 = 2.12, and α3 = 1.1 with ∆̄ =

∆Ḋ + ∆δ̇ + ∆L̇.

5.3.2 Unknown input identification

After the convergence time, the estimated velocity reaches the real velocity, x̂2 =

x2, thus, the term L = −Γx̃2 converges to zero. The third term of system (5.11)
becomes

˙̃x3 = −k3sign (x̃1) +
˙̂∆(x, t) ≡ 0 (5.12)

Notably, because the velocity estimation error x̃2 converges to zero, the auxiliary
unknown input term ∆̂(x, t) = ∆(x, t)− δ(x, x̃) + L converges to ∆(x, t).

The lumped unknown input terms can be rebuilt as

∆̂(x, t) =
∫

k3sign (x̃1) (5.13)

Since the estimated unknown input in (5.13) includes integral operation, the
lumped unknown input terms can be rebuilt directly from the output injection
term and the chattering of the obtained function is partially eliminated without
the need of lowpass filter. In addition, the proposed observer in (5.6) not only
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maintains the advantages of conventional TOSMO such as finite-time conver-
gence and high estimation accuracy for both velocity and the lumped unknown
input but also provides faster convergence time than that of the TOSMO. The
outstanding features of the proposed high-speed TOSMO will be verified in the
simulation part.

Remark 5.4. The obtained lumped unknown input can be used for fault detection and
fault isolation and also can be applied to the FTC to eliminate its effect to the system.
The estimated velocity can be employed to the controller design process instead of the
real measured velocity.

5.4 Design of Control Algorithm

In this section, a FTC tactic using NFTSMC algorithm is proposed to carry out
the effects of the lumped unknown input of system (5.2). In addition, in some
special cases, the tachometers in robot will be cut off by manufacturers to save
the cost and reduce the weight. For that reason, this chapter assumes that the
tachometers are not existed. The estimated velocity, x̂2, which is obtained from
the proposed observer in Section 5.3 is utilized, therefore, the requirement of
the real measured velocity is eliminated.

5.4.1 Design of non-singular fast terminal sliding surface

Let defining the estimated velocity error as

ˆ̇e = x̂2 − ẋd (5.14)

where ẋd describes the desired velocity.

A NFTS surface is selected as in [63]

ŝ = ˆ̇e +
∫

β1|e|γ1sign (e) + β2
∣∣ ˆ̇e∣∣γ2sign

(
ˆ̇e
)
+ β3e + β4e3 (5.15)

where the parameters β1, β2, β3, β4 are positive constants, and the parameters
γ1, γ2 can be selected as 0 < γ1 < 1, γ2 = 2γ1/(1 + γ1) .
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According to the SMC theory, the following conditions are satisfied when the
robot system reaches the sliding mode:

ŝ = 0
˙̂e = 0

(5.16)

Thus, the sliding mode dynamics can be acquired as

ˆ̇e = −
∫ [

β1|e|γ1sign (e) + β2
∣∣ ˆ̇e∣∣γ2sign

(
ˆ̇e
)
+ β3e + β4e3

]
(5.17)

Theorem 5.2. For the sliding mode dynamics in (5.17), the origin is defined as the
stable equilibrium point and the state trajectories converge to zero in the finite-time.

Proof of Theorem 5.2

Taking the derivative of the tracking error in (5.3) respect to time yields

ė = ẋ1 − ẋd

= x2 − ẋd
(5.18)

Based on the definition of the estimation errors in Section 5.3, the velocity error
(5.14) is rewritten as

ˆ̇e = x̂2 − ẋd

= x2 − ẋd − x̃2
(5.19)

After convergence time of the estimation errors (5.7), the estimated velocity, x̂2,
reaches the true velocity, x2. Hence, the velocity error (5.19) becomes

ˆ̇e = x2 − ẋd = ė (5.20)

The sliding mode dynamics in (5.17) becomes

ė = −
∫ [

β1|e|γ1sign (e) + β2|ė|γ2sign (ė) + β3e + β4e3
]

(5.21)

Then, the following sliding mode dynamics can be obtained

ë = −β1|e|γ1sign (e)− β2|ė|γ2sign (ė)− β3e − β4e3 (5.22)
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FIGURE 5.1: Overall structure of the proposed FTC approach

A Lyapunov function candidate is selected as

V1 =
β1

γ1 + 1
|e|γ1+1 +

1
2

ė2 +
β3

2
e2 +

β4

4
e4 (5.23)

Taking the time derivative of the Lyapunov function candidate (5.23) and sub-
stituting the result from (5.22) yields

V̇1 = β1|e|γ1sign(e)ė + ėë + β3eė + β4e3ė
= β1|e|γ1sign(e)ė + ė

(
−β1|e|γ1sign (e)− β2|ė|γ2sign (ė)− β3e − β4e3)

+β3eė + β4e3ė
= −β2|ė|γ2+1

(5.24)

From (5.23) and (5.24), it can be concluded that V1 > 0 and V̇1 < 0, therefore,
the origin of the sliding mode dynamics (5.17) is stable equilibrium point and
the state trajectories e and ˆ̇e converge to zero in finite-time. Thus, the theorem
5.2 is successfully proven.

5.4.2 Observer-based NFTSMC design

To obtain the control law for the robot manipulator system (5.2), an observer-
based NFTSMC as shown in Fig. 5.1 is proposed. The control input signal is
design as follows

u = −M (x1)
(
ueq + usw

)
(5.25)
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Here, the equivalent control law, ueq, plays the role to hold the error state vari-
ables on the sliding surface and is designed as follows:

ueq = Ψ(x) + k2|x̃1|1/3sign (x̃1) + Γ
( ˙̂x1 − x̂2

)
+
∫

k3sign(x̃1) + A − ẍd (5.26)

where A = β1|e|γ1sign (e) + β2
∣∣ ˆ̇e∣∣γ2sign

(
ˆ̇e
)
+ β3e + β4e3.

The switching control law, usw, plays the role of driving the state variables to
the sliding surface, is designed as following

usw = (∆δ + µ) sign (ŝ) (5.27)

The proposed control input is stated in the following Theorem 5.3:

Theorem 5.3. Consider the robot manipulator system given by (5.2), if the NFTSMC
is designed as (25-27), then the system (5.2) is stable. Additionally, the finite-time
convergence of tracking errors is guaranteed.

Proof of Theorem 5.3

Taking the derivative of both the sliding surface (5.15) and the tracking velocity
error (5.14) respect to time, we obtain

˙̂s =
d
dt

ˆ̇e + A (5.28)

d
dt

ˆ̇e = ˙̂x2 − ẍd (5.29)

Substituting the second term of the proposed observer (5.6) into (5.29) yields

d
dt

ˆ̇e = −ẍd + Ψ(x̂) + M(x1)
−1u + k2|x̃1|1/3sign (x̃1) + Γ

( ˙̂x1 − x̂2
)
+ ẑ

˙̂z = k3sign(x̃1)
(5.30)

Substituting (5.30) into (5.28), we obtain

˙̂s = −ẍd + Ψ(x̂) + M(x1)
−1u + k2|x̃1|1/3sign (x̃1) + Γ

( ˙̂x1 − x̂2
)
+ ẑ + A

= −ẍd + Ψ(x) + δ(x, x̃) + M(x1)
−1u + k2|x̃1|1/3sign (x̃1)

+Γ
( ˙̂x1 − x̂2

)
+ ẑ + A

˙̂z = k3sign (x̃1)
(5.31)
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Applying control input in (5.25-5.27) to (5.31) gives

˙̂s = − (∆δ + µ) sign (ŝ) + δ(x, x̃) (5.32)

Let define the Lyapunov function candidate as following

V2 =
1
2

ŝT ŝ (5.33)

With the result of (5.32), the time derivative of Lyapunov function candidate
(5.33) yields

V̇2 = ŝT ˙̂s
= ŝT (− (∆δ + µ) sign (ŝ) + δ(x, x̃))

= − (∆δ + µ)
n
∑

i=1
|ŝi|+ δ(x, x̃)T ŝ ≤ −µ

n
∑

i=1
|ŝi|

≤ −µ ∥ŝ∥ = −
√

2µV2
1/2 < 0, ∀ŝ ̸= 0

(5.34)

Remark 5.5. In equivalent control law (5.26), we can see that the estimated lumped
unknown input,

∫
k3sign(x̃1), which is obtained from the high-speed TOSMO in Eq.

(5.6), is included. Consequently, the switching control law now is utilized to handle the
effects of the estimation errors, therefore, a small value of sliding gain can be chosen. By
this way, the high-frequency chattering phenomenon will be significantly decreased in
control input signal.

Remark 5.6. In combining of observer and controller, the convergence speed of con-
troller is depended on the convergence speed of the designed observer. Therefore, the pro-
posed high-speed TOSMO not only supports in early fault detection but also helps the
controller to achieve a faster convergence speed than when combining with the TOSMO.

Remark 5.7. Although the NFTS surface is selected according to [63], the proposed
equivalent control law in (5.26) is different. Therefore, it can be considered as a contri-
bution of this chapter.

5.5 Numerical Simulations

To validate the efficiency of the suggested algorithm, in this section, we use the
PUMA560 robot manipulator with the last three joints are blocked for computer
simulation. The structure of the PUMA560 robot is shown in Fig. 5.2. The spe-
cific parameter values of the PUMA560 robot dynamic model are provided in
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FIGURE 5.2: Structure of the PUMA560 robot manipulator

[104]. In the simulation analysis, the MATLAB/Simulink program is performed
with sampling time is 10−3second.

In the simulation, the desired trajectories of the three are assumed as

qd =

 qd1

qd2

qd3

 =

 cos (πt/5)− 1
sin (πt/5 + π/2)− 1
sin (πt/5 + π/2)− 1

 (5.35)

The initial states of the robot are selected as q1(0) = q2(0) = q3(0) = −0.5 and
q̇1(0) = q̇2(0) = q̇3(0) = 0.

The friction vector and external disturbance vector are assumed as

Fr =

 Fr1

Fr2

Fr3

 =

 1.9 sin (q̇1)

2.03 sin (q̇2)

1.76 sin (q̇3)

 (5.36)
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FIGURE 5.3: Velocity estimation errors at each joint

τd =

 τd1

τd2

τd3

 =

 1.1q̇1 + 1.2 sin (3q1)

1.65q̇2 + 2.14 sin (2q2)

−3.01q̇3 + 1.3 sin (q3)

 (5.37)

The fault is assumed to occur at Tf = 10s with the fault signal is as following

Φ =

 Φ1

Φ2

Φ3

 =

 10 sin(q1q2) + 3.7 cos (q̇1q2) + 5.2 cos (q̇1q̇2)

15 sin(q1q2) + 3.6 cos (q̇1q2) + 2.7 cos (q̇1q̇2)

0

 (5.38)

The parameters of the controllers and observers are selected as follows: γ1 =

1/2 , γ2 = 2/3 , β1 = diag (15, 15, 15), β2 = diag (10, 10, 10), β3 = diag (10, 10, 10),
β4 = diag (5, 5, 5), ∆δ = 0.5, ∆̄ = 22, and Γ = 5.

The simulation consists of two parts. First, the estimation results of the pro-
posed high-speed TOSMO are compared with that of the TOSMO and the SOSMO
which are designed as in [52]. Second, the proposed FTC technique is compared
with three controllers: 1) NFTSMC without compensation; 2) NFTSMC with
SOSMO compensation (NFTSMC-SOSMO); 3) NFTSMC with TOSMO compen-
sation (NFTSMC-TOSMO).
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FIGURE 5.4: Lumped unknown input estimation

FIGURE 5.5: Lumped unknown input estimation errors at each
joint
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FIGURE 5.6: Comparison of tracking errors among controllers

FIGURE 5.7: Comparison of control input torque among con-
trollers
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In the first part, the comparison results among three observers are shown in Fig.
5.3 to Fig. 5.5. The obtained velocity estimation errors are shown in Fig. 5.3.
As in the results, the SOSMO (green solid line) provides a faster estimation of
velocity compared to the TOSMO (blue solid line). In contrast, the TOSMO pro-
vides velocity estimation with higher precision, and less chattering compared
to the SOSMO. The red solid line in the figure shows the estimation results of
the high-speed TOSMO. It is easy to see that the estimated information of high-
speed TOSMO maintains the higher precision, and less chattering characteris-
tic of the TOSMO while the convergence speed is significantly increased and
matches the speed of the SOSMO. The faster velocity estimation will help the
controller reaches a faster convergence time. In terms of the lumped unknown
input estimation, the results are shown in Fig. 5.4 and Fig. 5.5. As shown in
the results, the SOSMO provides estimation information with lower accuracy
compared the TOSMO and the proposed high-speed TOSMO due to the time
delay when using lowpass filter to reconstruct the estimation signal. On the
contrary, the TOSMO and the high-speed TOSMO can reconstruct the lumped
unknown input directly without any filtration. However, the convergence time
of the TOSMO is little slower. The same as in the velocity estimation results, the
lumped unknown input estimation results of the high-speed TOSMO can main-
tain the high estimation performance of the TOSMO and reaches convergence
speed of the SOSMO. It is worth mentioning that the faster estimation speed
helps in early fault detection, thus, reduces the robot failure rate.

In the second part, the comparison results among four controllers are shown
in Fig. 5.6 and Fig. 5.7. The Fig. 5.6 shows the results of tracking error at
each joint. As in the figure, in terms of tracking performance, the NFTSMC
without compensation (green solid line) and the NFTSMC-SOSMO (black dash
line) provide quite good tracking precision. However, with a better approxi-
mation information, the NFTSMC-TOSMO (blue solid line) and the proposed
FTC strategy (red solid line) provides higher control performance. The two
controllers provide almost the same tracking accuracy due to the estimation
accuracy of the TOSMO and the high-speed TOSMO are not much difference.
In terms of convergence speed, the NFTSMC without compensation and the
NFTSMC-TOSMO converge simultaneously because they use the same velocity
signal in design process. According to the effect of the velocity signal, the pro-
posed FTC strategy converges faster the above two controllers and almost the
same with the NFTSMC-SOSMO. Therefore, it can be concluded that the pro-
posed high-speed TOSMO not only obtains the faster estimation information
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but also helps the designed controller achieves better control performance. The
comparison of control input torque is shown in Fig. 5.7. As in the figure, the
control input of the NFTSMC without compensation is under the effect of the
chattering phenomenon because of using large sliding gain. After compensa-
tion, the sliding gain can be chosen with smaller value, therefore, the chattering
phenomenon in control inputs of the NFTSMC-SOSMO, the NFTSMC-TOSMO,
and the proposed FTC are significantly reduced.

5.6 Conclusions

This chapter proposed a novel FTC strategy for robot manipulator systems
using only position measurement. Thanks to the linear characteristic of the
added elements, the proposed high-speed TOSMO can estimate both the veloc-
ity signal and the lumped unknown input with faster convergence time compar-
ing to the TOSMO. The obtained information from observer is combined with
NFTSMC in designing the FTC. The proposed controller-observer tactic pro-
vides excellent properties such as fast convergence time, high position track-
ing precision, finite-time convergence, chattering phenomenon reduction, ro-
bust against the effects of the lumped unknown input, and velocity require-
ment elimination. The faster convergence characteristic of the observer also im-
proves the convergence speed of the designed controller. The system stability
and finite-time convergence have been proved using Lyapunov stability theory.
Finally, the efficiency of the proposed algorithm is validated by simulations on
the PUMA560 robot manipulator.
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Chapter 6

Conclusion and Future Works

6.1 Conclusions

In this dissertation, the finite-time controller-observer strategies have been de-
veloped for uncertain and faulty robotic manipulators. The FTC techniques are
mainly developed based on the NFTSMC with excellent characteristics such as
fast convergence time, high position tracking precision, finite-time convergence,
robust against the effects of the LUaF. The FD methods are developed based on
the high-order sliding mode observers with the ability to provide the signal
estimation with excellent accuracy, rapid convergence, and almost no chatter-
ing. The results in the thesis have been derived based on Lyapunov theory and
finite-time control theory. The control performance of the closed-loop systems
has been explicitly analyzed.

The Chapter 2 presents an FTC strategy using an A-NFTSMC based on a DO
for uncertain and faulty robotic manipulators. The proposed DO demonstrated
its capacity to estimate the LUaF with excellent accuracy, rapid convergence,
and almost no chattering. The suggested FTC technique has advanced con-
trol characteristics of high positioning tracking accuracy with quick finite-time
convergence, chattering phenomena minimization, and LUaF robustness. Es-
pecially, applying the adaptive law helps the FTC algorithm not depend on the
estimation accuracy of the observer. However, the proposed controller-observer
algorithm still requires velocity measurement in the designing process.

The Chapter 3 proposes a novel sliding function is proposed by combining
the NFTSMC and the TOSMO for the robotic manipulator system. The abil-
ity to approximate system velocities of the TOSMO eliminates the requirement
of tachometers in the system. This ability eliminates the aforementioned dis-
advantage of the proposed algorithm in Chapter 2. Especially, two stages of



Chapter 6. Conclusion and Future Works 96

time that before and after the convergence time, are carefully analyzed. The ob-
tained LUaF from the TOSMO are utilized to compensate for their effects on the
system. The novelty in designing improves the convergence speed of the FTC
method. Further, the tracking performance of the proposed controller-observer
method is improved.

The Chapter 4 proposes an effective FTC method for the class of second-order
uncertain nonlinear systems. To improve the convergence speed of the pro-
posed method in Chapter 3, the estimated velocity from the TOSMO is ap-
plied to propose an integral NFTSMC. In addition, the obtained LUaF from
the TOSMO with high accuracy is applied to the FTC to compensate for their
effects. Therefore, the control performance of the FTC method is increased. The
proposed controller-observer algorithm has been successfully applied to robot
manipulators.

In Chapter 5, the novel high-speed TOSMO is proposed by combining the high
estimation accuracy ability of the TOSMO and the fast convergence characteris-
tic of the linear elements. The high-speed TOSMO can estimate both the velocity
signal and the LUaF with a faster convergence time compared to the TOSMO.
The obtained information from the observer is combined with NFTSMC in de-
signing the FTC. The faster convergence characteristic of the observer also im-
proves the convergence speed of the designed controller.

6.2 Future works

The FD and FTC methods are very important for the application of modern
robotic manipulator systems. Although the valuable FD and FTC methods are
developed in this thesis, the research works still need to be studied in the future.
Therefore, some possible future studies are suggested as follows.

1. In this thesis, the developed FD and FTC methods are finite-time conver-
gence. Designing fixed-time controller-observer algorithms are promising
and challenging.

2. Applying optimization methods for determining the optimal coefficients
of observers and controllers. This is a promising approach to obtain the
best tracking performance of the FTC algorithms.
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3. Designing FTC algorithms by combining the sliding mode observer and
computed torque control. This is a promising approach to increase track-
ing performance and to make it easier to apply the algorithm to real-time
operating systems.

4. Along with the development of hardware, the computation ability of robotic
systems has been increased significantly. Therefore, we can apply compli-
cated algorithms to real-time operating systems. The deep neural network
(DNN) with multiple non-linear hidden layers inside has its own poten-
tial power in the control system and signal processing to approximate the
nonlinear systems.

5. The developed FD methods in this thesis are model-based approaches.
The signal-based approaches using vibration signals and current signals
are promising and challenging.



98

Publications

SCI(E) Journals

1. Nguyen, Van-Cuong, Anh-Tuan Vo, and Hee-Jun Kang. "A non-singular
fast terminal sliding mode control based on third-order sliding mode ob-
server for a class of second-order uncertain nonlinear systems and its ap-
plication to robot manipulators." IEEE Access 8 (2020): 78109-78120. (SCIE)

2. Nguyen, Van-Cuong, Anh-Tuan Vo, and Hee-Jun Kang. "A finite-time
fault-tolerant control using non-singular fast terminal sliding mode con-
trol and third-order sliding mode observer for robotic manipulators." IEEE
Access 9 (2021): 31225-31235. (SCIE)

3. Nguyen, Van-Cuong, Phu-Nguyen Le, and Hee-Jun Kang. "An Active
Fault-Tolerant Control for Robotic Manipulators Using Adaptive Non-
Singular Fast Terminal Sliding Mode Control and Disturbance Observer."
Actuators. Vol. 10. No. 12. (2021). (SCIE)

4. Nguyen, Van-Cuong, Hoang, D. T., Tran, X. T., Van, M., and Kang, H.
J. "A Bearing Fault Diagnosis Method Using Multi-Branch Deep Neural
Network." Machines 9.12 (2021): 345. (SCIE)

5. Nguyen, Van-Cuong, and Kang, H. J. "A Novel High-Speed Third-Order
Sliding Mode Observer for Fault-Tolerant Control Problem of Robot Ma-
nipulators." IEEE Access. (Under review)

Conference Papers

1. Nguyen, Van-Cuong, and Hee-Jun Kang. "A Robust Fault Diagnosis for
the Robot Manipulator using Third Order Sliding Mode Linear Observer."
12th International Forum on Strategic Technology (IFOST), pp.58, 2017.

2. Nguyen, Van-Cuong, Anh-Tuan Vo, and Hee-Jun Kang. "A Fault Tolerant
Control for Robot Manipulators Using a Neural Network Observer and



Chapter 6. Conclusion and Future Works 99

a Third-Order Sliding Mode Observer." 21st International Conference on
Mechatronics Technology (ICMT 2017), pp. 56-61, 2017.

3. Vo, Anh Tuan, Hee-Jun Kang, and Nguyen, Van-Cuong. "An output feed-
back tracking control based on neural sliding mode and high order sliding
mode observer." 2017 10th International Conference on Human System In-
teractions (HSI). IEEE, 2017.

4. Nguyen, Van-Cuong, Anh-Tuan Vo, and Hee-Jun Kang. "Continuous PID
sliding mode control based on neural third order sliding mode observer
for robotic manipulators." International conference on intelligent comput-
ing. Springer, Cham, 2019.

5. Nguyen, Van-Cuong, and Hee-Jun Kang. "A fault tolerant control for
robotic manipulators using adaptive non-singular fast terminal sliding
mode control based on neural third order sliding mode observer." Inter-
national Conference on Intelligent Computing. Springer, Cham, 2020.

6. Nguyen, Van-Cuong, Phu-Nguyen Le, and Hee-Jun Kang. "Model-Free
Continuous Fuzzy Terminal Sliding Mode Control for Second-Order Non-
linear Systems." International Conference on Intelligent Computing. Springer,
Cham, 2021.

7. Nguyen, Van-Cuong, Hee-Jun Kang, Anh-Tuan Vo, and Thanh-Nguyen
Truong. "An Adaptive Supper Twisting Algorithm-based Terminal Slid-
ing Mode Control for Robotic Manipulators." ICROS 2021, pp. 7-9, 2021.

8. Vo, Anh Tuan, Hee-Jun Kang, Thanh Nguyen Truong, and Nguyen, Van-
Cuong. "A New Tracking Control Method of Maglev Systems." ICROS
2021, pp. 40-43, 2021.

9. Truong, Thanh-Nguyen, Hee-Jun Kang, Anh Tuan Vo, and Nguyen, Van-
Cuong. "A Disturbance Observer-Based Control for Robotic Manipula-
tors." ICROS 2021, pp. 3-6, 2021.



100

Bibliography

[1] Dechao Chen, Yunong Zhang, and Shuai Li. “Tracking control of robot
manipulators with unknown models: A jacobian-matrix-adaption method”.
In: IEEE Transactions on Industrial Informatics 14.7 (2017), pp. 3044–3053.

[2] Long Jin et al. “Robot manipulator control using neural networks: A sur-
vey”. In: Neurocomputing 285 (2018), pp. 23–34.

[3] Meng Zhou et al. “Zonotoptic fault estimation for discrete-time LPV sys-
tems with bounded parametric uncertainty”. In: IEEE Transactions on In-
telligent Transportation Systems 21.2 (2019), pp. 690–700.

[4] Hamed Kazemi and Alireza Yazdizadeh. “Optimal state estimation and
fault diagnosis for a class of nonlinear systems”. In: IEEE/CAA Journal of
Automatica Sinica (2017).

[5] Iván Salgado and Isaac Chairez. “Adaptive unknown input estimation
by sliding modes and differential neural network observer”. In: IEEE
Transactions on Neural Networks and Learning Systems 29.8 (2018), pp. 3499–
3509. ISSN: 21622388. DOI: 10.1109/TNNLS.2017.2730847. URL: https:
//ieeexplore.ieee.org/abstract/document/8010905/.

[6] Farzaneh Abdollahi, H Ali Talebi, and Rajnikant V Patel. “Stable identi-
fication of nonlinear systems using neural networks: Theory and experi-
ments”. In: IEEE/ASME Transactions On Mechatronics 11.4 (2006), pp. 488–
495.

[7] Quang Dan Le and Hee-Jun Kang. “Implementation of Fault-Tolerant
Control for a Robot Manipulator Based on Synchronous Sliding Mode
Control”. In: Applied Sciences 10.7 (2020), p. 2534.

[8] Jorge Davila, Leonid Fridman, and Arie Levant. “Second-order sliding-
mode observer for mechanical systems”. In: IEEE transactions on auto-
matic control 50.11 (2005), pp. 1785–1789.

[9] Jaime A Moreno and Marisol Osorio. “A Lyapunov approach to second-
order sliding mode controllers and observers”. In: 2008 47th IEEE confer-
ence on decision and control. IEEE. 2008, pp. 2856–2861.

https://doi.org/10.1109/TNNLS.2017.2730847
https://ieeexplore.ieee.org/abstract/document/8010905/
https://ieeexplore.ieee.org/abstract/document/8010905/


Bibliography 101

[10] Maolin Jin, Jinoh Lee, and Kyung Kwan Ahn. “Continuous nonsingular
terminal sliding-mode control of shape memory alloy actuators using
time delay estimation”. In: IEEE/ASME Transactions on Mechatronics 20.2
(2014), pp. 899–909.

[11] Mien Van, Shuzhi Sam Ge, and Hongliang Ren. “Finite Time Fault Tol-
erant Control for Robot Manipulators Using Time Delay Estimation and
Continuous Nonsingular Fast Terminal Sliding Mode Control”. In: IEEE
Transactions on Cybernetics 47.7 (2017), pp. 1681–1693. ISSN: 21682267.
DOI: 10.1109/TCYB.2016.2555307. URL: https://ieeexplore.ieee.
org/abstract/document/7462227/.

[12] Mien Van et al. “Output feedback tracking control of uncertain robot
manipulators via higher-order sliding-mode observer and fuzzy com-
pensator”. In: Journal of Mechanical Science and Technology 27.8 (2013),
pp. 2487–2496.

[13] Anh Tuan Vo, Hee-Jun Kang, and Van-Cuong Nguyen. “An output feed-
back tracking control based on neural sliding mode and high order slid-
ing mode observer”. In: 2017 10th International Conference on Human Sys-
tem Interactions (HSI). IEEE. 2017, pp. 161–165.

[14] Van-Cuong Nguyen, Anh-Tuan Vo, and Hee-Jun Kang. “A Finite-Time
Fault-Tolerant Control Using Non-Singular Fast Terminal Sliding Mode
Control and Third-Order Sliding Mode Observer for Robotic Manipula-
tors”. In: IEEE Access 9 (2021), pp. 31225–31235.

[15] Qikun Shen et al. “Novel neural networks-based fault tolerant control
scheme with fault alarm”. In: IEEE Transactions on Cybernetics 44.11 (2014),
pp. 2190–2201. ISSN: 21682267. DOI: 10.1109/TCYB.2014.2303131. URL:
https://ieeexplore.ieee.org/abstract/document/6849489/.

[16] Mien Van, Shuzhi Sam Ge, and Hongliang Ren. “Finite time fault toler-
ant control for robot manipulators using time delay estimation and con-
tinuous nonsingular fast terminal sliding mode control”. In: IEEE trans-
actions on cybernetics 47.7 (2016), pp. 1681–1693.

[17] Qingsong Xu. “Continuous integral terminal third-order sliding mode
motion control for piezoelectric nanopositioning system”. In: IEEE/ASME
Transactions on Mechatronics 22.4 (2017), pp. 1828–1838.

[18] Xuan-Toa Tran et al. “Attitude stabilization of flapping micro-air vehi-
cles via an observer-based sliding mode control method”. In: Aerospace
Science and Technology 76 (2018), pp. 386–393.

https://doi.org/10.1109/TCYB.2016.2555307
https://ieeexplore.ieee.org/abstract/document/7462227/
https://ieeexplore.ieee.org/abstract/document/7462227/
https://doi.org/10.1109/TCYB.2014.2303131
https://ieeexplore.ieee.org/abstract/document/6849489/


Bibliography 102

[19] Mien Van, Pasquale Franciosa, and Dariusz Ceglarek. “Fault diagnosis
and fault-tolerant control of uncertain robot manipulators using high-
order sliding mode”. In: Mathematical Problems in Engineering 2016 (2016).

[20] Mouhacine Benosman and K-Y Lum. “Passive actuators’ fault-tolerant
control for affine nonlinear systems”. In: IEEE Transactions on Control Sys-
tems Technology 18.1 (2009), pp. 152–163.

[21] Jovan D Stefanovski. “Passive fault tolerant perfect tracking with addi-
tive faults”. In: Automatica 87 (2018), pp. 432–436.

[22] Iman Sadeghzadeh et al. “Active fault tolerant control of a quadrotor
uav based on gainscheduled pid control”. In: 2012 25th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE). IEEE. 2012,
pp. 1–4.

[23] Qiang Shen et al. “Active fault-tolerant control system design for space-
craft attitude maneuvers with actuator saturation and faults”. In: IEEE
Transactions on Industrial Electronics 66.5 (2018), pp. 3763–3772.

[24] Anh Tuan Vo and Hee-Jun Kang. “A novel fault-tolerant control method
for robot manipulators based on non-singular fast terminal sliding mode
control and disturbance observer”. In: IEEE Access 8 (2020), pp. 109388–
109400.

[25] Yongduan Song, Xiucai Huang, and Changyun Wen. “Robust adaptive
fault-tolerant PID control of MIMO nonlinear systems with unknown
control direction”. In: IEEE Transactions on Industrial Electronics 64.6 (2017),
pp. 4876–4884.

[26] Jinke Zhang and Lei Guo. “Theory and design of PID controller for non-
linear uncertain systems”. In: IEEE Control Systems Letters 3.3 (2019), pp. 643–
648.

[27] Bo Zhao and Yuanchun Li. “Local joint information based active fault
tolerant control for reconfigurable manipulator”. In: Nonlinear dynamics
77.3 (2014), pp. 859–876.

[28] Alain Codourey. “Dynamic modeling of parallel robots for computed-
torque control implementation”. In: The International Journal of Robotics
Research 17.12 (1998), pp. 1325–1336.

[29] Mingming Li et al. “Adaptive control of robotic manipulators with uni-
fied motion constraints”. In: IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems 47.1 (2016), pp. 184–194.



Bibliography 103

[30] Yuxiang Wu et al. “Adaptive neural network control of uncertain robotic
manipulators with external disturbance and time-varying output con-
straints”. In: Neurocomputing 323 (2019), pp. 108–116.

[31] Fujin Luan et al. “Adaptive neural network control for robotic manipu-
lators with guaranteed finite-time convergence”. In: Neurocomputing 337
(2019), pp. 153–164. ISSN: 18728286. DOI: 10.1016/j.neucom.2019.01.
063. URL: https://www.sciencedirect.com/science/article/pii/
S0925231219300906.

[32] Liangyong Wang, Tianyou Chai, and Lianfei Zhai. “Neural-network-based
terminal sliding-mode control of robotic manipulators including actua-
tor dynamics”. In: IEEE Transactions on Industrial Electronics 56.9 (2009),
pp. 3296–3304.

[33] M Roopaei and M. Zolghadri Jahromi. “Chattering-free fuzzy sliding
mode control in MIMO uncertain systems”. In: Nonlinear Analysis, The-
ory, Methods and Applications 71.10 (2009), pp. 4430–4437. ISSN: 0362546X.
DOI: 10.1016/j.na.2009.02.132. URL: https://www.sciencedirect.
com/science/article/pii/S0362546X09004143.

[34] Song Ling, Huanqing Wang, and Peter X. Liu. “Adaptive fuzzy dynamic
surface control of flexible-joint robot systems with input saturation”.
In: IEEE/CAA Journal of Automatica Sinica 6.1 (2019), pp. 97–106. ISSN:
23299274. DOI: 10.1109/JAS.2019.1911330. URL: https://ieeexplore.
ieee.org/abstract/document/8600792/.

[35] Mien Van, Xuan Phu Do, and Michalis Mavrovouniotis. “Self-tuning fuzzy
PID-nonsingular fast terminal sliding mode control for robust fault toler-
ant control of robot manipulators”. In: ISA Transactions 96 (2020), pp. 60–
68. ISSN: 00190578. DOI: 10.1016/j.isatra.2019.06.017. URL: https:
//www.sciencedirect.com/science/article/pii/S0019057819302782.

[36] Quang Phuc Ha, David C Rye, and Hugh F Durrant-Whyte. “Fuzzy
moving sliding mode control with application to robotic manipulators”.
In: Automatica 35.4 (1999), pp. 607–616.

[37] Shuanghe Yu et al. “Continuous finite-time control for robotic manipula-
tors with terminal sliding mode”. In: Automatica 41.11 (2005), pp. 1957–
1964.

[38] Shuping He and Jun Song. “Finite-time sliding mode control design for
a class of uncertain conic nonlinear systems”. In: IEEE/CAA Journal of
Automatica Sinica 4.4 (2017), pp. 809–816.

https://doi.org/10.1016/j.neucom.2019.01.063
https://doi.org/10.1016/j.neucom.2019.01.063
https://www.sciencedirect.com/science/article/pii/S0925231219300906
https://www.sciencedirect.com/science/article/pii/S0925231219300906
https://doi.org/10.1016/j.na.2009.02.132
https://www.sciencedirect.com/science/article/pii/S0362546X09004143
https://www.sciencedirect.com/science/article/pii/S0362546X09004143
https://doi.org/10.1109/JAS.2019.1911330
https://ieeexplore.ieee.org/abstract/document/8600792/
https://ieeexplore.ieee.org/abstract/document/8600792/
https://doi.org/10.1016/j.isatra.2019.06.017
https://www.sciencedirect.com/science/article/pii/S0019057819302782
https://www.sciencedirect.com/science/article/pii/S0019057819302782


Bibliography 104

[39] Christopher Edwards and Sarah Spurgeon. Sliding mode control: theory
and applications. Crc Press, 1998.

[40] Vadim I Utkin. Sliding modes in control and optimization. Springer Science
& Business Media, 2013.

[41] Halim Alwi and Christopher Edwards. “Fault detection and fault-tolerant
control of a civil aircraft using a sliding-mode-based scheme”. In: IEEE
Transactions on Control Systems Technology 16.3 (2008), pp. 499–510.

[42] Van-Cuong Nguyen, Anh-Tuan Vo, and Hee-Jun Kang. “Continuous PID
Sliding Mode Control Based on Neural Third Order Sliding Mode Ob-
server for Robotic Manipulators”. In: International Conference on Intelli-
gent Computing. Springer. 2019, pp. 167–178.

[43] Man Zhihong, Andrew P Paplinski, and Hong Ren Wu. “A robust MIMO
terminal sliding mode control scheme for rigid robotic manipulators”.
In: IEEE transactions on automatic control 39.12 (1994), pp. 2464–2469.

[44] Hai Wang et al. “Design and implementation of adaptive terminal sliding-
mode control on a steer-by-wire equipped road vehicle”. In: IEEE Trans-
actions on Industrial Electronics 63.9 (2016), pp. 5774–5785.

[45] Van-Cuong Nguyen, Phu-Nguyen Le, and Hee-Jun Kang. “Model-Free
Continuous Fuzzy Terminal Sliding Mode Control for Second-Order Non-
linear Systems”. In: International Conference on Intelligent Computing. Springer.
2021, pp. 245–258.

[46] Saleh Mobayen. “Fast terminal sliding mode controller design for non-
linear second-order systems with time-varying uncertainties”. In: Com-
plexity 21.2 (2015), pp. 239–244.

[47] Cesar U Solis, Julio B Clempner, and Alexander S Poznyak. “Fast ter-
minal sliding-mode control with an integral filter applied to a Van Der
Pol oscillator”. In: IEEE Transactions on Industrial Electronics 64.7 (2017),
pp. 5622–5628.

[48] Tarek Madani, Boubaker Daachi, and Karim Djouani. “Modular-controller-
design-based fast terminal sliding mode for articulated exoskeleton sys-
tems”. In: IEEE Transactions on Control Systems Technology 25.3 (2016),
pp. 1133–1140.

[49] Chuan-Kai Lin. “Nonsingular terminal sliding mode control of robot
manipulators using fuzzy wavelet networks”. In: IEEE Transactions on
Fuzzy Systems 14.6 (2006), pp. 849–859.



Bibliography 105

[50] Samira Eshghi and Renuganth Varatharajoo. “Nonsingular terminal slid-
ing mode control technique for attitude tracking problem of a small satel-
lite with combined energy and attitude control system (CEACS)”. In:
Aerospace science and technology 76 (2018), pp. 14–26.

[51] Mien Van, Michalis Mavrovouniotis, and Shuzhi Sam Ge. “An adaptive
backstepping nonsingular fast terminal sliding mode control for robust
fault tolerant control of robot manipulators”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems 49.7 (2018), pp. 1448–1458.

[52] Van-Cuong Nguyen, Anh-Tuan Vo, and Hee-Jun Kang. “A Non-singular
Fast Terminal Sliding Mode Control Based on Third-Order Sliding Mode
Observer for a Class of Second-Order Uncertain Nonlinear Systems and
Its Application to Robot Manipulators”. In: IEEE Access (2020).

[53] Vo Anh Tuan and Hee-Jun Kang. “A new finite time control solution for
robotic manipulators based on nonsingular fast terminal sliding vari-
ables and the adaptive super-twisting scheme”. In: Journal of Computa-
tional and Nonlinear Dynamics 14.3 (2019).

[54] Van-Cuong Nguyen and Hee-Jun Kang. “A Fault Tolerant Control for
Robotic Manipulators Using Adaptive Non-singular Fast Terminal Slid-
ing Mode Control Based on Neural Third Order Sliding Mode Observer”.
In: International Conference on Intelligent Computing. Springer. 2020, pp. 202–
212.

[55] Mohammad Hossein Hamedani et al. “Recurrent Fuzzy Wavelet Neu-
ral Network Variable Impedance Control of Robotic Manipulators with
Fuzzy Gain Dynamic Surface in an Unknown Varied Environment”. In:
Fuzzy Sets and Systems (2020).

[56] S N Huang, Kok Kiong Tan, and Tong Heng Lee. “Automated fault de-
tection and diagnosis in mechanical systems”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37.6 (2007),
pp. 1360–1364.

[57] Mien Van et al. “A robust fault diagnosis and accommodation scheme
for robot manipulators”. In: International Journal of Control, Automation
and Systems 11.2 (2013), pp. 377–388.

[58] Youmin Zhang and Jin Jiang. “Bibliographical review on reconfigurable
fault-tolerant control systems”. In: Annual reviews in control 32.2 (2008),
pp. 229–252.



Bibliography 106

[59] Chengxi Zhang et al. “Fault-Tolerant Attitude Stabilization for Space-
craft with Low-Frequency Actuator Updates: An Integral-Type Event-
Triggered Approach”. In: IEEE Transactions on Aerospace and Electronic
Systems (2020).

[60] Chenguang Yang et al. “Finite-time convergence adaptive fuzzy control
for dual-arm robot with unknown kinematics and dynamics”. In: IEEE
Transactions on Fuzzy Systems 27.3 (2018), pp. 574–588.

[61] Thanh Nguyen Truong, Anh Tuan Vo, and Hee-Jun Kang. “Implementa-
tion of an Adaptive Neural Terminal Sliding Mode for Tracking Control
of Magnetic Levitation Systems”. In: IEEE Access 8 (2020), pp. 206931–
206941.

[62] F. Abdollahi, H. A. Talebi, and R. V. Patel. “A stable neural network ob-
server with application to flexible-joint manipulators”. In: ICONIP 2002
- Proceedings of the 9th International Conference on Neural Information Pro-
cessing: Computational Intelligence for the E-Age 4 (2002), pp. 1910–1914.
DOI: 10.1109/ICONIP.2002.1199006. URL: https://ieeexplore.ieee.
org/abstract/document/1593697/.

[63] Xuan-Toa Tran and Hee-Jun Kang. “A Novel Adaptive Finite-Time Con-
trol Method for a Class of Uncertain Nonlinear Systems”. In: INTERNA-
TIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFAC-
TURING 16.13 (2015), pp. 2647–2654. DOI: 10.1007/s12541-015-0339-
z. URL: https://link.springer.com/article/10.1007/s12541-015-
0339-z.

[64] Zhenyu Gao and Ge Guo. “Fixed-time sliding mode formation control
of AUVs based on a disturbance observer”. In: IEEE/CAA Journal of Au-
tomatica Sinica 7.2 (2020), pp. 539–545.

[65] Arun T Vemuri and Marios M Polycarpou. “Neural-network-based ro-
bust fault diagnosis in robotic systems”. In: IEEE Transactions on neural
networks 8.6 (1997), pp. 1410–1420.

[66] Luis Angel Castañeda, Alberto Luviano-Juárez, and Isaac Chairez. “Ro-
bust Trajectory Tracking of a Delta Robot Through Adaptive Active Dis-
turbance Rejection Control”. In: IEEE Transactions on Control Systems Tech-
nology 23.4 (2015), pp. 1387–1398. ISSN: 10636536. DOI: 10.1109/TCST.
2014.2367313. URL: https://ieeexplore.ieee.org/abstract/document/
6960100/.

[67] Huanqing Wang, Wen Bai, and Peter Xiaoping Liu. “Finite-time adap-
tive fault-tolerant control for nonlinear systems with multiple faults”.

https://doi.org/10.1109/ICONIP.2002.1199006
https://ieeexplore.ieee.org/abstract/document/1593697/
https://ieeexplore.ieee.org/abstract/document/1593697/
https://doi.org/10.1007/s12541-015-0339-z
https://doi.org/10.1007/s12541-015-0339-z
https://link.springer.com/article/10.1007/s12541-015-0339-z
https://link.springer.com/article/10.1007/s12541-015-0339-z
https://doi.org/10.1109/TCST.2014.2367313
https://doi.org/10.1109/TCST.2014.2367313
https://ieeexplore.ieee.org/abstract/document/6960100/
https://ieeexplore.ieee.org/abstract/document/6960100/


Bibliography 107

In: IEEE/CAA Journal of Automatica Sinica 6.6 (2019), pp. 1417–1427. ISSN:
23299274. DOI: 10.1109/JAS.2019.1911765. URL: https://ieeexplore.
ieee.org/abstract/document/8894752/.

[68] Wei He et al. “Adaptive neural network control of a robotic manipulator
with unknown backlash-like hysteresis”. In: IET Control Theory & Appli-
cations 11.4 (2016), pp. 567–575.

[69] Mou Chen and Wen-Hua Chen. “Sliding mode control for a class of
uncertain nonlinear system based on disturbance observer”. In: Interna-
tional Journal of Adaptive Control and Signal Processing 24.1 (2010), pp. 51–
64.

[70] Xuan-Toa Tran and Hee-Jun Kang. “Adaptive hybrid high-order termi-
nal sliding mode control of MIMO uncertain nonlinear systems and its
application to robot manipulators”. In: International Journal of Precision
Engineering and Manufacturing 16.2 (2015), pp. 255–266.

[71] Mien Van. “An enhanced robust fault tolerant control based on an adap-
tive fuzzy PID-nonsingular fast terminal sliding mode control for uncer-
tain nonlinear systems”. In: IEEE/ASME Transactions on Mechatronics 23.3
(2018), pp. 1362–1371.

[72] Anh Tuan Vo and Hee-Jun Kang. “An adaptive neural non-singular fast-
terminal sliding-mode control for industrial robotic manipulators”. In:
Applied Sciences 8.12 (2018), p. 2562.

[73] Zhiqiang Ma, Zhengxiong Liu, and Panfeng Huang. “Fractional-order
Control for Uncertain Teleoperated Cyber-physical System with Actua-
tor Fault”. In: IEEE/ASME Transactions on Mechatronics (2020).

[74] Yuqiang Wu, Xinghuo Yu, and Zhihong Man. “Terminal sliding mode
control design for uncertain dynamic systems”. In: Systems & Control Let-
ters 34.5 (1998), pp. 281–287.

[75] Xinghuo Yu and Man Zhihong. “Fast terminal sliding-mode control de-
sign for nonlinear dynamical systems”. In: IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 49.2 (2002), pp. 261–
264.

[76] Shuanghe Yu, Xinghuo Yu, and Russel Stonier. “Continuous finite-time
control for robotic manipulators with terminal sliding modes”. In: Pro-
ceedings of the 6th International Conference on Information Fusion, FUSION
2003. Vol. 2. 2003, pp. 1433–1440. ISBN: 0972184449. DOI: 10.1109/ICIF.
2003.177408. URL: https://www.sciencedirect.com/science/article/
pii/S000510980500227X.

https://doi.org/10.1109/JAS.2019.1911765
https://ieeexplore.ieee.org/abstract/document/8894752/
https://ieeexplore.ieee.org/abstract/document/8894752/
https://doi.org/10.1109/ICIF.2003.177408
https://doi.org/10.1109/ICIF.2003.177408
https://www.sciencedirect.com/science/article/pii/S000510980500227X
https://www.sciencedirect.com/science/article/pii/S000510980500227X


Bibliography 108

[77] Yong Feng, Xinghuo Yu, and Zhihong Man. “Non-singular terminal slid-
ing mode control of rigid manipulators”. In: Automatica 38.12 (2002),
pp. 2159–2167. ISSN: 00051098. DOI: 10.1016/S0005-1098(02)00147-
4. URL: https : / / www . sciencedirect . com / science / article / pii /
S0005109802001474.

[78] Sendren Sheng Dong Xu, Chih Chiang Chen, and Zheng Lun Wu. “Study
of nonsingular fast terminal sliding-mode fault-tolerant control”. In: IEEE
Transactions on Industrial Electronics 62.6 (2015), pp. 3906–3913. ISSN: 02780046.
DOI: 10.1109/TIE.2015.2399397. URL: https://ieeexplore.ieee.org/
abstract/document/7031407/.

[79] Xiaoyuan Zhu et al. “Cloud-based shaft torque estimation for electric
vehicle equipped with integrated motor-transmission system”. In: Me-
chanical Systems and Signal Processing 99 (2018), pp. 647–660.

[80] Xiaoyuan Zhu and Wei Li. “Takagi–Sugeno fuzzy model based shaft
torque estimation for integrated motor–transmission system”. In: ISA
transactions 93 (2019), pp. 14–22.

[81] Jaemin Baek et al. “A widely adaptive time-delayed control and its appli-
cation to robot manipulators”. In: IEEE Transactions on Industrial Electron-
ics 66.7 (2019), pp. 5332–5342. ISSN: 02780046. DOI: 10.1109/TIE.2018.
2869347. URL: https://ieeexplore.ieee.org/abstract/document/
8464677/.

[82] Fernando A Ortiz-Ricardez, Tonámetl Sánchez, and Jaime A Moreno.
“Smooth Lyapunov function and gain design for a second order differ-
entiator”. In: 2015 54th IEEE Conference on Decision and Control (CDC).
IEEE. 2015, pp. 5402–5407.

[83] Yong Feng, Fengling Han, and Xinghuo Yu. “Chattering free full-order
sliding-mode control”. In: Automatica 50.4 (2014), pp. 1310–1314. ISSN:
00051098. DOI: 10 . 1016 / j . automatica . 2014 . 01 . 004. URL: https :
//www.sciencedirect.com/science/article/pii/S0005109814000375.

[84] Mien Van, Shuzhi Sam Ge, and Hongliang Ren. “Robust fault-tolerant
control for a class of second-order nonlinear systems using an adaptive
third-order sliding mode control”. In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 47.2 (2016), pp. 221–228.

[85] Xuan-Toa Tran and Hee-Jun Kang. “Continuous adaptive finite-time mod-
ified function projective lag synchronization of uncertain hyperchaotic
systems”. In: Transactions of the Institute of Measurement and Control 40.3
(2018), pp. 853–860.

https://doi.org/10.1016/S0005-1098(02)00147-4
https://doi.org/10.1016/S0005-1098(02)00147-4
https://www.sciencedirect.com/science/article/pii/S0005109802001474
https://www.sciencedirect.com/science/article/pii/S0005109802001474
https://doi.org/10.1109/TIE.2015.2399397
https://ieeexplore.ieee.org/abstract/document/7031407/
https://ieeexplore.ieee.org/abstract/document/7031407/
https://doi.org/10.1109/TIE.2018.2869347
https://doi.org/10.1109/TIE.2018.2869347
https://ieeexplore.ieee.org/abstract/document/8464677/
https://ieeexplore.ieee.org/abstract/document/8464677/
https://doi.org/10.1016/j.automatica.2014.01.004
https://www.sciencedirect.com/science/article/pii/S0005109814000375
https://www.sciencedirect.com/science/article/pii/S0005109814000375


Bibliography 109

[86] Arie Levant. “Higher-order sliding modes, differentiation and output-
feedback control”. In: International journal of Control 76.9-10 (2003), pp. 924–
941.

[87] Sanjay P Bhat and Dennis S Bernstein. “Finite-time stability of continu-
ous autonomous systems”. In: SIAM Journal on Control and Optimization
38.3 (2000), pp. 751–766.

[88] Minh-Duc Tran and Hee-Jun Kang. “Nonsingular terminal sliding mode
control of uncertain second-order nonlinear systems”. In: Mathematical
Problems in Engineering 2015 (2015).

[89] Youyi Wang, Lihua Xie, and Carlos E De Souza. “Robust control of a class
of uncertain nonlinear systems”. In: Systems & control letters 19.2 (1992),
pp. 139–149.

[90] Bin Xian et al. “A continuous asymptotic tracking control strategy for
uncertain nonlinear systems”. In: IEEE Transactions on Automatic Control
49.7 (2004), pp. 1206–1211.

[91] Marcelo C M Teixeira and Stanislaw H Zak. “Stabilizing controller de-
sign for uncertain nonlinear systems using fuzzy models”. In: IEEE Trans-
actions on Fuzzy systems 7.2 (1999), pp. 133–142.

[92] Jing Zhou, Changyun Wen, and Ying Zhang. “Adaptive backstepping
control of a class of uncertain nonlinear systems with unknown backlash-
like hysteresis”. In: IEEE transactions on Automatic Control 49.10 (2004),
pp. 1751–1759.

[93] Changyun Wen et al. “Robust adaptive control of uncertain nonlinear
systems in the presence of input saturation and external disturbance”.
In: IEEE Transactions on Automatic Control 56.7 (2011), pp. 1672–1678.

[94] Wenxiang Deng, Jianyong Yao, and Dawei Ma. “Adaptive control of in-
put delayed uncertain nonlinear systems with time-varying output con-
straints”. In: IEEE Access 5 (2017), pp. 15271–15282.

[95] Hak-Keung Lam, F H Frank Leung, and Peter Kwong-Shun Tam. “Sta-
ble and robust fuzzy control for uncertain nonlinear systems”. In: IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
30.6 (2000), pp. 825–840.

[96] Mien Van, Hee-Jun Kang, and Young-Soo Suh. “A novel neural second-
order sliding mode observer for robust fault diagnosis in robot manipu-
lators”. In: International Journal of Precision Engineering and Manufacturing
14.3 (2013), pp. 397–406.



Bibliography 110

[97] Liangyong Wang, Tianyou Chai, and Chunyu Yang. “Neural-network-
based contouring control for robotic manipulators in operational space”.
In: IEEE Transactions on Control Systems Technology 20.4 (2011), pp. 1073–
1080.

[98] Anh Tuan Vo and Hee-Jun Kang. “Adaptive neural integral full-order
terminal sliding mode control for an uncertain nonlinear system”. In:
IEEE Access 7 (2019), pp. 42238–42246.

[99] Liang Yang and Jianying Yang. “Nonsingular fast terminal sliding-mode
control for nonlinear dynamical systems”. In: International Journal of Ro-
bust and Nonlinear Control 21.16 (2011), pp. 1865–1879.

[100] Maolin Jin, Sang Hoon Kang, and Pyung Hun Chang. “Robust compliant
motion control of robot with nonlinear friction using time-delay estima-
tion”. In: IEEE Transactions on Industrial Electronics 55.1 (2008), pp. 258–
269.

[101] Qi Zhou et al. “Observer-based adaptive neural network control for non-
linear stochastic systems with time delay”. In: IEEE Transactions on Neu-
ral Networks and Learning Systems 24.1 (2012), pp. 71–80.

[102] Asif Chalanga et al. “Implementation of super-twisting control: Super-
twisting and higher order sliding-mode observer-based approaches”. In:
IEEE Transactions on Industrial Electronics 63.6 (2016), pp. 3677–3685.

[103] Hocine Imine et al. “Rollover risk prediction of heavy vehicle using high-
order sliding-mode observer: Experimental results”. In: IEEE Transac-
tions on Vehicular Technology 63.6 (2013), pp. 2533–2543.

[104] Brian Armstrong, Oussama Khatib, and Joel Burdick. “The explicit dy-
namic model and inertial parameters of the PUMA 560 arm”. In: Proceed-
ings. 1986 IEEE international conference on robotics and automation. Vol. 3.
IEEE. 1986, pp. 510–518.

[105] Shuang Zhang et al. “Adaptive neural control for robotic manipulators
with output constraints and uncertainties”. In: IEEE transactions on neural
networks and learning systems 29.11 (2018), pp. 5554–5564.

[106] Emil Madsen et al. “Adaptive feedforward control of a collaborative
industrial robot manipulator using a novel extension of the General-
ized Maxwell-Slip friction model”. In: Mechanism and Machine Theory 155
(2021), p. 104109.

[107] Julian Nubert et al. “Safe and fast tracking on a robot manipulator: Ro-
bust mpc and neural network control”. In: IEEE Robotics and Automation
Letters 5.2 (2020), pp. 3050–3057.



Bibliography 111

[108] Naji Alibeji and Nitin Sharma. “A PID-Type Robust Input Delay Com-
pensation Method for Uncertain Euler–Lagrange Systems”. In: IEEE Trans-
actions on Control Systems Technology 25.6 (2017), pp. 2235–2242.

[109] Jean-Jacques E Slotine, Weiping Li, and Others. Applied nonlinear control.
Vol. 199. 1. Prentice hall Englewood Cliffs, NJ, 1991.

[110] Hua O Wang, Kazuo Tanaka, and Michael F Griffin. “An approach to
fuzzy control of nonlinear systems: Stability and design issues”. In: IEEE
transactions on fuzzy systems 4.1 (1996), pp. 14–23.

[111] Yongduan Song and Junxia Guo. “Neuro-adaptive fault-tolerant track-
ing control of Lagrange systems pursuing targets with unknown trajec-
tory”. In: IEEE Transactions on Industrial Electronics 64.5 (2017), pp. 3913–
3920.

[112] D. S. Broomhead and David Lowe. “Multivariable functional interpola-
tion and adaptive networks”. In: Complex Systems 2 (1988), pp. 321–355.

[113] Shafiqul Islam and Xiaoping P Liu. “Robust sliding mode control for
robot manipulators”. In: IEEE Transactions on industrial electronics 58.6
(2010), pp. 2444–2453.

[114] Qingsong Xu. “Piezoelectric nanopositioning control using second-order
discrete-time terminal sliding-mode strategy”. In: IEEE Transactions on
industrial electronics 62.12 (2015), pp. 7738–7748.

[115] Saeed Zaare and Mohammad Reza Soltanpour. “Continuous fuzzy non-
singular terminal sliding mode control of flexible joints robot manipula-
tors based on nonlinear finite time observer in the presence of matched
and mismatched uncertainties”. In: Journal of the Franklin Institute 357.11
(2020), pp. 6539–6570.

[116] Mien Van, Xuan Phu Do, and Michalis Mavrovouniotis. “Self-tuning fuzzy
PID-nonsingular fast terminal sliding mode control for robust fault toler-
ant control of robot manipulators”. In: ISA Transactions 96 (2020), pp. 60–
68. ISSN: 00190578. DOI: 10.1016/j.isatra.2019.06.017. URL: https:
//www.sciencedirect.com/science/article/pii/S0019057819302782.

[117] Vadim Utkin, Jürgen Guldner, and Jingxin Shi. Sliding mode control in
electro-mechanical systems. CRC press, 2009.

[118] DONG Ya-Li and M E I Sheng-Wei. “Adaptive observer for a class of
nonlinear systems”. In: Acta Automatica Sinica 33.10 (2007), pp. 1081–
1084.

https://doi.org/10.1016/j.isatra.2019.06.017
https://www.sciencedirect.com/science/article/pii/S0019057819302782
https://www.sciencedirect.com/science/article/pii/S0019057819302782


Bibliography 112

[119] Bin Jiang, Marcel Staroswiecki, and Vincent Cocquempot. “Fault diagno-
sis based on adaptive observer for a class of non-linear systems with un-
known parameters”. In: International Journal of Control 77.4 (2004), pp. 367–
383.

[120] Xingjian Wang et al. “Linear extended state observer-based motion syn-
chronization control for hybrid actuation system of more electric air-
craft”. In: Sensors 17.11 (2017), p. 2444.

[121] Amir Saleki and Mohammad Mehdi Fateh. “Model-free control of elec-
trically driven robot manipulators using an extended state observer”. In:
Computers & Electrical Engineering 87 (2020), p. 106768.


	1 Introduction
	1.1 Overview of Fault Diagnosis and Fault Tolerant Control Methods
	1.1.1 Fault Diagnosis methods
	1.1.2 Fault Tolerant Control methods  

	1.2 Objectives of the Thesis 
	1.3 Organization of the Thesis

	2 An AFTC for Robotic Manipulators Using A-NFTSMC and DO
	2.1 Introduction  
	2.2 System Modeling and Problem Formulation  
	2.3 Estimation scheme 
	2.3.1 Design of Disturbance Observer  
	2.3.2 The LUaF Reconstruction

	2.4 Design of Controller 
	2.4.1 The DO-based NFTSMC
	2.4.2 The DO-based Adaptive NFTSMC  

	2.5 Numerical Simulations 
	2.6 Conclusions  

	3 A FTC Using NFTSMC and TOSMO for Robotic Manipulators
	3.1 Introduction  
	3.2 Problem Statement 
	3.2.1 System in Normal Operation Condition 
	3.2.2 System in Fault Affected Operation Condition 

	3.3 Design of the Third-Oder Sliding Mode Observer 
	3.3.1 Design of The Observer
	3.3.2 Uncertainties and Faults Reconstruction 

	3.4 Controller Design 
	3.4.1 Design of NFTSM Switching Function  
	3.4.2 Design of FTC Method
	A - Before The Convergence Time  
	B - After The Convergence Time  


	3.5 Numerical Simulations 
	3.6 Conclusions  

	4 A NFTSMC Based on TOSMO For A Class of Second-Order Uncertain Nonlinear Systems and Its Application To Robot Manipulators
	4.1 Introduction  
	4.2 Problem Statement 
	4.3 State Observer Design and Uncertainty Identifcation 
	4.3.1 State Observer Design
	4.3.2 Uncertainty Identifcation

	4.4 Design of Observer-Based NFTSMC Algorithm
	4.4.1 Design of Sliding Function
	4.4.2 Design of Controller

	4.5 Application to Robot Manipulators
	4.6 Numerical Simulations 
	4.7 Conclusions  

	5 A Novel High-Speed TOSMO for FTC Problem of Robot Manipulators
	5.1 Introduction  
	5.2 Mathematical dynamics model of robot manipulators and problem formulation 
	5.2.1 Robot dynamics 
	5.2.2 Problem formulation

	5.3 Design of Observer 
	5.3.1 High-speed third-order sliding mode observer
	5.3.2 Unknown input identifcation

	5.4 Design of Control Algorithm
	5.4.1 Design of non-singular fast terminal sliding surface
	5.4.2 Observer-based NFTSMC design  

	5.5 Numerical Simulations 
	5.6 Conclusions  

	6 Conclusion and Future Works
	6.1 Conclusions  
	6.2 Future works  

	Publications


<startpage>19
1 Introduction 1
 1.1 Overview of Fault Diagnosis and Fault Tolerant Control Methods 1
  1.1.1 Fault Diagnosis methods 2
  1.1.2 Fault Tolerant Control methods   3
 1.2 Objectives of the Thesis  5
 1.3 Organization of the Thesis 6
2 An AFTC for Robotic Manipulators Using A-NFTSMC and DO 8
 2.1 Introduction   9
 2.2 System Modeling and Problem Formulation   11
 2.3 Estimation scheme  13
  2.3.1 Design of Disturbance Observer   13
  2.3.2 The LUaF Reconstruction 16
 2.4 Design of Controller  17
  2.4.1 The DO-based NFTSMC 17
  2.4.2 The DO-based Adaptive NFTSMC   19
 2.5 Numerical Simulations  20
 2.6 Conclusions   27
3 A FTC Using NFTSMC and TOSMO for Robotic Manipulators 28
 3.1 Introduction   29
 3.2 Problem Statement  32
  3.2.1 System in Normal Operation Condition  32
  3.2.2 System in Fault Affected Operation Condition  33
 3.3 Design of the Third-Oder Sliding Mode Observer  34
  3.3.1 Design of The Observer 34
  3.3.2 Uncertainties and Faults Reconstruction  35
 3.4 Controller Design  36
  3.4.1 Design of NFTSM Switching Function   36
  3.4.2 Design of FTC Method 38
   A - Before The Convergence Time   38
   B - After The Convergence Time   40
 3.5 Numerical Simulations  40
 3.6 Conclusions   44
4 A NFTSMC Based on TOSMO For A Class of Second-Order Uncertain Nonlinear Systems and Its Application To Robot Manipulators 53
 4.1 Introduction   54
 4.2 Problem Statement  57
 4.3 State Observer Design and Uncertainty Identifcation  58
  4.3.1 State Observer Design 58
  4.3.2 Uncertainty Identifcation 59
 4.4 Design of Observer-Based NFTSMC Algorithm 60
  4.4.1 Design of Sliding Function 60
  4.4.2 Design of Controller 61
 4.5 Application to Robot Manipulators 63
 4.6 Numerical Simulations  64
 4.7 Conclusions   72
5 A Novel High-Speed TOSMO for FTC Problem of Robot Manipulators 76
 5.1 Introduction   77
 5.2 Mathematical dynamics model of robot manipulators and problem formulation  79
  5.2.1 Robot dynamics  79
  5.2.2 Problem formulation 80
 5.3 Design of Observer  81
  5.3.1 High-speed third-order sliding mode observer 81
  5.3.2 Unknown input identifcation 83
 5.4 Design of Control Algorithm 84
  5.4.1 Design of non-singular fast terminal sliding surface 84
  5.4.2 Observer-based NFTSMC design   86
 5.5 Numerical Simulations  88
 5.6 Conclusions   94
6 Conclusion and Future Works 95
 6.1 Conclusions   95
 6.2 Future works   96
Publications 98
</body>

