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Abstract

With advances in Micro-Electro-Mechanical Systems (MEMS) technology, inertial sensors

have become smaller, cheaper, and are commonly integrated into wearable smart devices,

in which their applications have many benefits for our daily lives. They are used in a wide

range of applications in human gait analysis, sports training, and healthcare applications.

Besides, human movement measurement is an interesting and active topic in sports and

medical applications, as it can help people to evaluate physical activities and sports in

the daily living environment. Therefore, we focus on the methods for human movement

measurement using wearable inertial sensors which are attached to the pedestrian’s waist.

In this dissertation, the inertial navigation algorithm and deep learning approach for

human movement measurement using wearable inertial sensors are proposed to obtain the

kinematic and temporal gait parameters. The kinematic parameters, which include the at-

titude, position, and velocity of the human body, are estimated using the inertial navigation

algorithm based on the smoothing algorithm. The temporal gait parameters, such as step

length and walking distance, are computed by double integrating acceleration. However,

low-cost inertial sensors always have noise and bias that lead to the integration error over

time, the algorithm is not possible to estimate the kinematic and temporal gait parameters

accurately even for a short distance. Therefore, a known distance straight-line walking tra-

jectory constraint and a constant speed constraint are imposed in the smoothing algorithm.

These constraints reduce the accumulation of the integration error even for long walking

distances. If the pedestrian walks with a complex walking path or very long distance, the

smoothing algorithm needs a very long computation time and large memory requirement



to obtain the kinematic and temporal gait parameters, such as the walking trajectory and

step length. To tackle this problem, the deep learning-based regression model is proposed

to estimate the walking step length and pedestrian traveled distance. The conditional gen-

erative adversarial network (CGAN) is used to obtain the step length prediction model,

which is trained with a small number of training data. The proposed smoothing algorithm

is leveraged to compute the walking step length used as the reference label data in the

training stage. Then the step length prediction model is used to estimate walking distance

when the testing dataset is obtained.

Through the experiments, the proposed smoothing algorithm and deep learning-based

step length prediction model can be applied for human movement measurement in real

applications with considerable accuracy.

Thesis Supervisor: Young Soo Suh
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

Human movement measurement is defined as any procedure for obtaining quantitative infor-

mation involving the measurement of biomechanical variables, such as spatial-temporal gait,

kinematic, and kinetic parameters [1, 2]. These biomechanical parameters are crucial for

many applications in human motion analysis such as healthcare applications, human motion

monitoring, and activity recognition [3]. Therefore, the measurement of human movement

is an interesting and active topic in medicine and sports research [4], as it can help people

to evaluate physical activities and sports in their daily lives. There are various methods

to perform the human movement measurement. In particular, human movement measure-

ment supported by highly accurate specialized systems, ambulatory systems or wearable

sensors has a great potential in the healthcare areas, personal navigation systems, sports,

and entertainment.

Specialized systems, including optical measurement systems such as (Vicon Motion Sys-

tems Ltd., Oxford, UK) or mat pressure measurement systems such as GAITRite (CIR

Systems Inc., NJ, USA), have high accuracy when operating in controlled environments.

These systems use several fixed cameras calibrated or pressure sensors and correlated in

a specific place to obtain the gait parameters. Ambulatory systems, such as Kinect (Mi-

crosoft Corporation, WA, USA) using 3D cameras to capture human motion, are installed

in a relatively uncontrolled environment and have limited observation. These systems have

a restricted range of operation and are intended for mainly use in indoor environments. In

contrast, human movement measurement using wearable sensors has the advantage of being

1



Chapter 1. Introduction

portable and suitable for both indoor and outdoor environments. This presents that it is

flexible to measure specific biomechanical variables or movement patterns when the sensor

is attached to the human body.

The measurement of human movements in the daily environment provides valuable and

complementary information to that obtained in laboratory tests. However, it is extremely

difficult to go beyond the laboratory and obtain accurate measurements of human physical

activity in the daily living environment [5]. As an alternative to laboratory tests, wearable

inertial sensor systems are important to reach a larger population than current systems

for movement measurement can do. Therefore, the human movement measurement using

wearable inertial sensors has been developed during the last decade, and there are several

methods to estimate the gait parameters, such as cadence [6, 7], step speed [8, 9], step length

[10–13], and walking distance [14–16]. With the recent advances in the Internet of Things

(IoT) and machine learning, wearable inertial sensors-based methods have been proposed

by using machine learning and deep learning approaches to provide an accurate and reliable

motion estimation for pedestrians [17–22]. Starting from these motivations, this dissertation

studies the methods of using wearable inertial sensors and deep learning techniques to

obtain biomechanical parameters of the pedestrians in the daily living environment. More

precisely, the kinematics of human motion and spatial gait parameters, including step length

and walking distance, are specifically considered in this dissertation.

1.2 Wearable Inertial Sensors and Applications

Inertial sensors are composed of accelerometers, gyroscopes, and sometimes magnetometers,

which are one of the most important members of the Micro-Electro-Mechanical Systems

(MEMS) family and are combined together as an inertial sensor, or inertial measurement

unit (IMU). An inertial sensor measures and reports the specific 3D acceleration, angular

rate or 3D rate of turn, and magnetic field of an object to which it is attached [23]. It

is often integrated into inertial navigation systems (INS) which use the raw or calibrated

IMU measurements to calculate the orientation, velocity (direction and speed of movement),

and position of a moving object such as an unmanned aerial vehicle (UAV) or autonomous

vehicle.

With advances in MEMS technology, an inertial sensor has a small size, lightweight,

2



Chapter 1. Introduction

low power consumption, and low cost which is widely used in many application fields such

as drones, mobile robots, and pedestrian navigation systems. Also, it is embedded into

wearable smart devices including smartphones, smartwatches, smart bands, smart glasses,

and even equipped smart shoes. This presents that it has great potential to conduct the

guidance of behavior analysis and monitor human locomotion activities. Among them, the

step length estimation (SLE) is an interesting topic that attracted the attention of many

researchers since this information is utilized in various applications, such as pedestrian

positioning, human gait analysis [24, 25], sports training, and healthcare applications [26,

27]. The usage of IMU can be applied for SLE in various environments without spatial

limitations or requiring infrastructure. This is the biggest advantage of wearable inertial

sensors as compared with the other tracking systems such as Vicon, Microsoft Kinect, or

GAITRite systems.

Figure 1-1: Inertial sensor placements on the human body.

SLE methods have been summarized in the review of Diez et al. [11] and Vezocnik et

al. [12]. They analyze the advantages and disadvantages of SLE methods and evaluate

each method. In the review of Diez et al. [11], they compare different SLE methods

depending on the body parts, where a sensor is attached to any body location, such as foot,

3



Chapter 1. Introduction

shank, pocket, wrist, waist, chest, or head (see Fig. 1-1). These SLE methods are divided

into two approaches: one is the direct method, where the step length is computed by the

integration of acceleration, and the other is the indirect method, where a SLE model is

used to determine the step length. The indirect SLE methods have been proposed, mostly

based on biomechanical models and statistical regression methods or deep learning methods.

Each type of the SLE method has its strengths, weaknesses, and suitable application cases

of each technique. The direct SLE methods do not need any models and do not require

individual calibration stages. However, the noise and bias of inertial sensors always lead to

the integration of error over time that affects the step length errors. Due to this reason, the

method is feasible for human gait analysis through short walking distance or needs several

assumptions and heuristics, such as zero velocity updating (ZUPT) for a foot-mounted

IMU case [28–30], to reduce the errors for longer walking distance. In contrast, the indirect

SLE methods are suitable and flexible for many application cases, such as pedestrian dead-

reckoning (PDR) [31–33], with different sensor placements, but they require a calibration

process or previous training stage with different users and speeds. The purpose of this

dissertation is based on the combination of the direct and indirect methods to estimate

accurate walking step length for the pedestrians without a laboratory calibration procedure.

1.3 Wearable Sensors-based Deep Learning Approaches

Deep learning is a subset of machine learning techniques, which is based on artificial neu-

ral networks (ANN) with feature learning. There are many deep learning architectures,

such as deep neural networks (DNN), deep reinforcement learning (RL), recurrent neural

networks (RNN), convolutional neural networks (CNN), and generative adversarial net-

works (GAN). The deep learning approaches have been applied in various field applications

including computer vision, prediction, semantic analysis, natural language processing, in-

formation retrieval, and customer relationship management [34]. With the development

of deep learning applications, the integration of deep learning and wearable inertial sen-

sors is an interesting topic, which has attracted the attention of researchers in sports and

medical applications, especially in human movement analysis including activity recogni-

tion and pedestrian inertial navigation. There are mainly three categories of deep learning

approaches to obtain the biomechanical variables based on the availability of labels: su-

4
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pervised learning [17, 18, 20–22, 35], semi-supervised learning [36–38], and unsupervised

learning [39, 40]. In supervised learning methods, the training data is labeled and the re-

sponse variable is qualitative data for classification tasks or regression tasks. The CNN is

applied to recognize different human activities in daily life, which uses a single accelerom-

eter [17] or inertial sensors [18]. In [35], human activity recognition based on bidirectional

long short-term memory (BLSTM) is proposed that uses times series collected from a waist-

worn smartphone (with the accelerometer and gyroscope embedded on the phone). In [20],

a CNN-based speed estimation method is suggested to obtain the speed from the IMU data,

which the speed prediction is used in a functioning inertial navigation system (INS) to help

constrain the movement. A deep learning-based inertial navigation system is proposed to

learn and reconstruct pedestrian trajectories from raw IMU data [21], where the CNN ar-

chitecture is used with 5 convolutional layers and one fully-connected layer. Another work

in [22] presented a deep learning approach for step length estimation. The authors applied

a family of deep learning-based approaches to regress the step length, which is used for

the pedestrian indoor dead reckoning. Generally, the supervised methods achieve high per-

formance; however, they need a large number of labeled training data which limits their

applicability. In contrast, unsupervised learning methods do not require any labeled train-

ing data, which are based on variational autoencoders (VAE) and generative adversarial

networks (GAN). They are commonly used in various applications including clustering,

dimensionality reduction, and anomaly detection. In [39], the VAE is applied to classify

human activities using a large number of datasets from wrist-mounted sensor data, where

the ground truth of activities has not been used in the training process. Similarly, the GAN

approach is proposed for human activity recognition in [40], which has used acceleration

recordings from hand, chest, and ankle sensor placements. Semi-supervised learning meth-

ods combine supervised and unsupervised learning, which leverage a small amount of labeled

data with a large amount of unlabeled data during training to tune the performance of un-

supervised learning. In [36], the authors combine the supervised CNN and unsupervised

CNN-encoder-decoder to perform semi-supervised learning for human activity recognition.

The semi-supervised CNNs learn with limited labeled data and large-scale unlabeled data

from the raw sensor data. Likewise, a deep LSTM is presented to recognize accurate hu-

man activities with smartphone inertial sensors [37]. On other hand, a deep learning-based

pedestrian dead reckoning is proposed in [38]. The authors used the smartphone sensors

5
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and WiFi fusion for estimating the relative position of the user, where the CNN is applied

to predict the local displacement and user activity, and a semi-supervised learning approach

is based on VAE to build an accurate predictor for the WiFi-based positioning. Then, they

apply a Kalman filter to correct for the drift of PDR using WiFi that provides a prediction

of the user’s absolute position each time a WiFi scan is received. However, the above deep

learning approaches usually require a large number of training datasets (labeled datasets

for supervised learning, unlabeled datasets for unsupervised learning, or both labeled and

unlabeled for semi-supervised learning) to train the better fit model. Therefore, this disser-

tation aims to focus on a step length estimation model that uses supervised learning with

a small number of training datasets to obtain accurately walking step length and walking

distance.

1.4 Contributions

The dissertation presents the human movement measurement methods using wearable in-

ertial sensors which are attached to the human body, such as the foot or waist. The sensor

placement is closely related to the inertial sensor data that exhibits characteristic signal

patterns when the pedestrian is moving. Based on the principle of the walking pattern for

the waist-mounted inertial sensor cases, we propose the step length estimation methods for

human movement measurement that can achieve outstanding performance go beyond the

boundaries of the laboratory, and obtain accurate measurements of walking step length and

also walking distance. In summary, the contributions of this research are as follows:

• We address the problem of the existing basic inertial navigation algorithms in human

motion tracking and identify the motivation of this study.

• We propose a walking step length estimation using the constrained optimization-based

smoothing algorithm, which is applicable for various users and walking speed levels.

We impose a known distance straight-line walking trajectory constraint and a constant

speed constraint to the optimization problem.

• We propose a step detection method that the magnitude of the acceleration data is

applied to quickly and accurately detect the number of walking steps and step events

when inertial sensors are attached to the waist.

6
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• We propose a new regression approach based on deep learning in which the conditional

generative adversarial network (CGAN) is used for estimating the walking step length

and walking distance. We leverage the smoothing algorithm to estimate the walking

step length used as the reference label data in the training stage.

• We conduct indoor and outdoor experiments to evaluate the performance of the pro-

posed method. In addition to excellent estimation accuracy, the proposed method

focuses on supervised learning with reduced training dataset size.

1.5 Thesis Organization

The rest of the dissertation is organized as follows. In Chapter 2, a human motion tracking

using a standard smoothing-based inertial navigation algorithm is introduced. This motion

tracking method is used to estimate the attitude, position, and velocity of the body system

where an inertial sensor is attached. Chapter 3 proposes the smoothing algorithm based on

constrained optimization for walking step length estimation. The algorithm uses an inertial

sensor attached to the waist of the user and the walking distance is assumed to be known. In

Chapter 4, a novel regression approach based on deep learning is proposed to estimate the

walking distance using waist-mounted inertial sensors. Chapter 5 shows the experimental

results to evaluate the performances of the proposed methods. Finally, Chapter 6 presents

the conclusions and future directions for the dissertation.

7



Chapter 2

Human Motion Tracking using

Inertial Navigation Algorithms

An inertial navigation algorithm plays an important role in pedestrian navigation systems.

In this chapter, a standard smoothing-based inertial navigation algorithm is described to

estimate the attitude (expressed using the quaternion), position, and velocity of the human

body from the wearable inertial sensor data (including accelerometers and gyroscopes).

Two coordinate frames are used in this chapter: the body coordinate frame and the

navigation coordinate frame. The three axes of the body coordinate frame coincide with

the three axes of the IMU. The 𝑧 axis of the navigation coordinate frame coincides with the

local gravitational direction. The choice of the 𝑥 and 𝑦 axes of the navigation coordinate

frame can be arbitrarily chosen. The notation [𝑝]𝑛 ([𝑝]𝑏) is used to denote that a vector 𝑝

is represented in the navigation (body) coordinate frame.

The position is defined by [𝑟]𝑛 ∈ 𝑅3, which is the origin of the body coordinate frame

expressed in the navigation coordinate frame. Similarly, the velocity and the acceleration

are denoted by [𝑣]𝑛 ∈ 𝑅3 and [𝑎]𝑛 ∈ 𝑅3, respectively. The attitude is represented using a

quaternion 𝑞 ∈ 𝑅4, which represents the rotation relationship between the navigation coor-

dinate frame and the body coordinate frame. The directional cosine matrix corresponding

to quaternion 𝑞 is denoted by 𝐶(𝑞) ∈ 𝑆𝑂(3).

8



Chapter 2. Human Motion Tracking using Inertial Navigation Algorithms

The accelerometer output 𝑦𝑎 ∈ 𝑅3 and the gyroscope output 𝑦𝑔 ∈ 𝑅3 are given by

𝑦𝑎 = 𝐶(𝑞)𝑔 + 𝑎𝑏 + 𝑛𝑎,

𝑦𝑔 = 𝜔 + 𝑛𝑔,
(2.1)

where 𝜔 ∈ 𝑅3 is the angular velocity, 𝑎𝑏 ∈ 𝑅3 is the external acceleration (acceleration

related to the movement, excluding the gravitational acceleration) expressed in the body

coordinate frame, and 𝑛𝑎 ∈ 𝑅3 and 𝑛𝑔 ∈ 𝑅3 are sensor noises. The vector 𝑔 is the local

gravitational acceleration vector. It is assumed that 𝑔 is known, which can be computed

using the formula in [41]. The sensor biases are assumed to be estimated separately using

calibration algorithms [42, 43].

Let 𝑇 denote the sampling period of a sensor. For a continuous time signal 𝑦(𝑡), the dis-

crete value is denoted by 𝑦𝑘 = 𝑦(𝑘𝑇 ). The discrete sensor noise 𝑛𝑎,𝑘 and 𝑛𝑔,𝑘 are assumed

to be white Gaussian sensor noises, whose covariances are given by

𝑅𝑎 = E
{︁

𝑛𝑎,𝑘𝑛′
𝑎,𝑘

}︁
= 𝑟𝑎𝐼3 ∈ 𝑅3×3,

𝑅𝑔 = E
{︁

𝑛𝑔,𝑘𝑛′
𝑔,𝑘

}︁
= 𝑟𝑔𝐼3 ∈ 𝑅3×3,

(2.2)

where 𝑟𝑎 > 0 and 𝑟𝑔 > 0 are scalar constants.

Due to the high sensor noise level of low-cost inertial sensors and unknown biases,

an inertial navigation algorithm without external reference measurement can estimate the

human body’s motion only for a few seconds. To overcome this problem, several assumptions

and heuristics are used to reduce the accumulation of integration error. For example, the

zero velocity updating (ZUPT) has been used for a foot-mounted inertial sensor case: the

integration errors are reset when the foot is on the ground during walking. Because there

are almost periodic zero velocity intervals as the foot touches the ground. When the sensor

is attached to other body parts such as the wrist, pocket, and waist, there are no zero

velocity intervals during continuous walking. Therefore, the assumptions and constraints

need to apply to the inertial navigation algorithm for these sensor placements. In this

chapter, our goal is to apply the standard smoothing-based inertial navigation algorithm

for a foot-mounted inertial sensor case or other body positions-attached sensor cases if the

walking period is only a few seconds (that is, a few walking steps).

To use the zero velocity updating in the inertial navigation algorithm, a simple zero-

9



Chapter 2. Human Motion Tracking using Inertial Navigation Algorithms

velocity detection algorithm in [44] is applied to determine the zero velocity intervals when a

person is not moving (that is, a person stands still for a few seconds before and after walking)

or the foot is on the ground during walking (only for a foot-mounted sensor case). Let 𝑍𝑚

be a set of all discrete-time indices belonging to the zero velocity intervals. The discrete-

time index 𝑘 is assumed to belong to a zero velocity interval if the following conditions are

satisfied:
‖𝑦𝑔,𝑖‖ ≤ 𝐵𝑔, 𝑘 − 𝑁𝑔

2 ≤ 𝑖 ≤ 𝑘 + 𝑁𝑔

2

‖𝑦𝑎,𝑖 − 𝑦𝑎,𝑖−1‖ ≤ 𝐵𝑎, 𝑘 − 𝑁𝑎
2 ≤ 𝑖 ≤ 𝑘 + 𝑁𝑎

2

(2.3)

where 𝐵𝑔 and 𝐵𝑎 are threshold parameters for zero velocity interval detection. 𝑁𝑔 and 𝑁𝑎

are even integer numbers. These parameters are designed based on the placement of an

inertial sensor attached to the body.

2.1 Standard Inertial Navigation using an Indirect Kalman

Filter

In this section, 𝑞, 𝑟, and 𝑣 are estimated using a standard inertial navigation algorithm with

an indirect Kalman filter.

The basic equations for inertial navigation are given as follows [45]:

𝑞 = 1
2Ω(𝜔)𝑞,

𝑣̇𝑛 = 𝑎𝑛 = 𝐶 ′(𝑞)𝑎𝑏,

𝑟̇𝑛 = 𝑣𝑛,

(2.4)

where symbol Ω is defined by

Ω(𝜔) =

⎡⎢⎣ 0 𝜔′

𝜔 −[𝜔×]

⎤⎥⎦ ,

and [𝜔×] ∈ 𝑅3×3 denotes the skew symmetric matrix of 𝜔:

[𝜔×] =

⎡⎢⎢⎢⎢⎢⎣
0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0

⎤⎥⎥⎥⎥⎥⎦ .

10
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Let 𝑞𝐾𝐹,𝑘, 𝑟𝐾𝐹,𝑘, and 𝑣𝐾𝐹,𝑘 be the estimated values of 𝑞, 𝑟 and 𝑣 using (2.4), where 𝜔

and 𝑎𝑏 are replaced by 𝑦𝑔 and 𝑦𝑎 − 𝐶(𝑞)𝑔:

˙̂𝑞 = 1
2Ω(𝑦𝑔)𝑞,

˙̂𝑣 = 𝐶 ′(𝑞)𝑦𝑎 − 𝑔,

˙̂𝑟 = 𝑣.

(2.5)

For later use, we define a function 𝑓𝑘, which represents a numerical integration of (2.5)

from 𝑘𝑇 to (𝑘 + 1)𝑇 :

⎡⎢⎢⎢⎢⎢⎣
𝑞𝐾𝐹,𝑘+1

𝑟𝐾𝐹,𝑘+1

𝑣𝐾𝐹,𝑘+1

⎤⎥⎥⎥⎥⎥⎦ = 𝑓𝑘

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
𝑞𝐾𝐹,𝑘

𝑟𝐾𝐹,𝑘

𝑣𝐾𝐹,𝑘

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎣ 𝑛𝑔,𝑘

𝑛𝑎,𝑘

⎤⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ . (2.6)

𝑞𝐾𝐹,𝑘, 𝑟𝐾𝐹,𝑘 and 𝑣𝐾𝐹,𝑘 denote the estimation errors in 𝑞𝐾𝐹,𝑘, 𝑟𝐾𝐹,𝑘, and 𝑣𝐾𝐹,𝑘, which

are defined by
𝑞𝐾𝐹,𝑘 ≜ [03×1 𝐼3](𝑞*

𝐾𝐹,𝑘 ⊗ 𝑞𝑘),

𝑟𝐾𝐹,𝑘 ≜ 𝑟𝑘 − 𝑟𝐾𝐹,𝑘,

𝑣𝐾𝐹,𝑘 ≜ 𝑣𝑘 − 𝑣𝐾𝐹,𝑘,

(2.7)

where ⊗ is the quaternion multiplication and 𝑞* denotes the quaternion conjugate of a

quaternion 𝑞.

The state of an indirect Kalman filter is defined by

𝑋𝐾𝐹,𝑘 ≜

⎡⎢⎢⎢⎢⎢⎣
𝑞𝐾𝐹,𝑘

𝑟𝐾𝐹,𝑘

𝑣𝐾𝐹,𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9. (2.8)

The dynamic equation of 𝑋𝐾𝐹,𝑘 is given by (see [44] for details):

𝑋𝐾𝐹,𝑘+1 = Φ𝑘𝑋𝐾𝐹,𝑘 + 𝑤𝑘, (2.9)
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where

Φ𝑘 = 𝑒𝐴𝑘𝑇 ≈ 𝐼9 + 𝐴𝑘𝑇 + 1
2𝐴2

𝑘𝑇 2, 𝐴𝑘 =

⎡⎢⎢⎢⎢⎢⎣
[−𝑦𝑔,𝑘×] 03×3 03×3

03×3 03×3 𝐼3

−2𝐶(𝑞𝐾𝐹,𝑘)′[𝑦𝑎,𝑘×] 03×3 03×3

⎤⎥⎥⎥⎥⎥⎦ . (2.10)

The process noise 𝑤𝑘 is the zero mean white Gaussian noise with

𝑄𝑘 = E{𝑤𝑘𝑤′
𝑘} =

∫︁ 𝑇

0
𝑒𝐴𝑘𝑟

⎡⎢⎢⎢⎢⎢⎣
0.25𝑅𝑔 03×3 03×3

03×3 10−6𝐼3 03×3

03×3 03×3 𝑅𝑎

⎤⎥⎥⎥⎥⎥⎦ 𝑒𝐴′
𝑘𝑟𝑑𝑟.

During the zero velocity intervals, the zero velocity updating is applied to reduce the

cumulative error and the following measurement equation is used:

03×1 − 𝑣𝐾𝐹,𝑘 =
[︂

03×3 03×3 𝐼3

]︂
𝑋𝐾𝐹,𝑘 + 𝑛𝑣, (2.11)

where 𝑛𝑣 is a fictitious measurement noise representing a Gaussian white noise with the noise

covariance 𝑅𝑣. The 𝑧 axis value of 𝑟𝐾𝐹 is almost the same in the zero velocity intervals

when a person is not moving or the foot is on the ground (only for a foot-mounted sensor

case). Thus, the following 𝑧 axis measurement equation is also used:

0 − 𝑟𝐾𝐹,𝑘,𝑧 =
[︂

01×3 0 0 1 01×3

]︂
𝑋𝐾𝐹,𝑘 + 𝑛𝑟,𝑧, (2.12)

where 𝑛𝑟,𝑧 is the vertical position measurement noise whose noise covariance is 𝑅𝑟,𝑧.

2.2 Optimization-based Smoothing for Inertial Navigation

Algorithm

To further reduce the estimation errors of the Kalman filter, the smoothing algorithm in [44]

is applied in which the estimation problem is expressed as a quadratic optimization. Let 𝑍𝑚

be the set of discrete-time indices when the measurement is available. The measurement

equation is given by

𝑧𝑘 = 𝐻𝑘𝑋𝑘 + 𝑛𝑘, 𝑘 ∈ 𝑍𝑚, (2.13)
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where 𝐻𝑘 is the measurement matrix, and 𝑛𝑘 is the measurement noise whose covariance

matrix is 𝑅𝑘.

Let 𝑞𝑆𝑀,𝑘, 𝑟𝑆𝑀,𝑘, and 𝑣𝑆𝑀,𝑘 be the smoothed estimations of the quaternion, position,

and velocity, respectively. The estimation errors in 𝑞𝑆𝑀 , 𝑟𝑆𝑀 , and 𝑣𝑆𝑀 are estimated using

the smoothing algorithm. The estimation errors are defined as follows:

𝑋𝑆𝑀,𝑘 =

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑆𝑀,𝑘

𝑟𝑆𝑀,𝑘

𝑣𝑆𝑀,𝑘

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
[03×1 𝐼3](𝑞*

𝐾𝐹,𝑘 ⊗ 𝑞𝑘)

𝑟𝑘 − 𝑟𝐾𝐹,𝑘

𝑣𝑘 − 𝑣𝐾𝐹,𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9, (2.14)

where 𝑞𝑆𝑀,𝑘, 𝑟𝑆𝑀,𝑘, and 𝑣𝑆𝑀,𝑘 denote the estimation errors of 𝑞𝑆𝑀,𝑘, 𝑟𝑆𝑀,𝑘, and 𝑣𝑆𝑀,𝑘,

respectively.

Since 𝑞𝑆𝑀,𝑘, 𝑟𝑆𝑀,𝑘, and 𝑣𝑆𝑀,𝑘 are time-dependent variables. The equation for these

variables is given by

𝜁𝑘 + 𝑋𝑆𝑀,𝑘+1 = Φ𝑘𝑋𝑆𝑀,𝑘 + 𝑤𝑘, (2.15)

where Φ𝑘 is defined in (2.10) and:

𝜁𝑘 =

⎡⎢⎢⎢⎢⎢⎣
[03×1 𝐼3](𝑞*

𝑓𝑘
⊗ 𝑞𝐾𝐹,𝑘+1)

𝑟𝐾𝐹,𝑘+1 − 𝑟𝑓𝑘

𝑣𝐾𝐹,𝑘+1 − 𝑣𝑓𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9, (2.16)

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑓𝑘

𝑟𝑓𝑘

𝑣𝑓𝑘

⎤⎥⎥⎥⎥⎥⎦ = 𝑓𝑘

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
𝑞𝐾𝐹,𝑘

𝑟𝐾𝐹,𝑘

𝑣𝐾𝐹,𝑘

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎣ 𝑛𝑔,𝑘

𝑛𝑎,𝑘

⎤⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ . (2.17)

To explain the derivation of (2.15), we compute 𝜁𝑘 + 𝑋𝑆𝑀,𝑘+1 from (2.14), (2.16), and

(2.17):

𝜁𝑘 + 𝑋𝑆𝑀,𝑘+1 =

⎡⎢⎢⎢⎢⎢⎣
[03×1 𝐼3](𝑞*

𝑓𝑘
⊗ 𝑞𝑘+1)

𝑟𝑘+1 − 𝑟𝑓𝑘

𝑣𝑘+1 − 𝑣𝑓𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9. (2.18)

From (2.18), 𝜁𝑘 + 𝑋𝑆𝑀,𝑘+1 denotes the estimation errors of 𝑓𝑘 in (2.17). Thus, (2.15)

represents how the estimation error evolves after the integration (2.17).
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The smoothing problem to estimate 𝑋𝑆𝑀,𝑘 can be formulated as a quadratic optimiza-

tion problem using the method in [46]. Let an optimization variable 𝑋̃ is defined by

𝑋̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋𝑆𝑀,1

𝑋𝑆𝑀,2
...

𝑋𝑆𝑀,𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ 𝑅9𝑁 .

The smoothing problem can be formulated as the following optimization problem:

𝐽(𝑋̃) = 1
2

𝑁−1∑︁
𝑘=1

𝑤′
𝑘𝑄−1

𝑘 𝑤𝑘 + 1
2

∑︁
𝑘∈𝑍𝑚

(𝑧𝑘 − 𝐻𝑘𝑋𝑆𝑀,𝑘)′𝑅−1
𝑘 (𝑧𝑘 − 𝐻𝑘𝑋𝑆𝑀,𝑘)

+ 1
2(𝑋𝑆𝑀,1 − 𝑋𝑖𝑛𝑖𝑡)′𝑃 −1

𝑋𝑖𝑛𝑖𝑡
(𝑋𝑆𝑀,1 − 𝑋𝑖𝑛𝑖𝑡), (2.19)

where 𝑋𝑖𝑛𝑖𝑡 is the initial estimate of 𝑋𝐾𝐹,1 and 𝑃𝑋𝑖𝑛𝑖𝑡 ∈ 𝑅9×9 > 0 is the initial estimation

error covariance.

By inserting (2.15) into (2.19) to remove the variable 𝑤𝑘, we have:

𝐽(𝑋̃) = 1
2

𝑁−1∑︁
𝑘=1

(𝜁𝑘 + 𝑋𝑆𝑀,𝑘+1 − Φ𝑘𝑋𝑆𝑀,𝑘)′𝑄−1
𝑘 (𝜁𝑘 + 𝑋𝑆𝑀,𝑘+1 − Φ𝑘𝑋𝑆𝑀,𝑘)

+ 1
2

∑︁
𝑘∈𝑍𝑚

(𝑧𝑘 − 𝐻𝑘𝑋𝑆𝑀,𝑘)′𝑅−1
𝑘 (𝑧𝑘 − 𝐻𝑘𝑋𝑆𝑀,𝑘)

+ 1
2(𝑋𝑆𝑀,1 − 𝑋𝑖𝑛𝑖𝑡)′𝑃 −1

𝑋𝑖𝑛𝑖𝑡
(𝑋𝑆𝑀,1 − 𝑋𝑖𝑛𝑖𝑡). (2.20)

We can easily see that (2.20) is a quadratic function of 𝑋̃ ∈ 𝑅9×𝑁 , the matrix form of

the optimization is given by

min
𝑋̃

𝐽(𝑋̃) = 1
2𝑋̃ ′𝑀1𝑋̃ + 𝑀 ′

2𝑋̃ + 𝑀3, (2.21)

where 𝑀1 ∈ 𝑅9𝑁×9𝑁 , 𝑀2 ∈ 𝑅9𝑁×1, and 𝑀3 ∈ 𝑅 can be computed from (2.20). Since (2.21)

is a quadratic function of 𝑋̃, it can be computed efficiently using the quadratic optimization

method in [47]. Minimizing (2.21) will provide a set of estimation errors. From these values,

𝑞𝑆𝑀 , 𝑟𝑆𝑀 , and 𝑣𝑆𝑀 are updated using the relationship (2.14).
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2.3 Chapter Summary

An inertial navigation algorithm using the Kalman filter is a simple method but still provides

a good quality of estimation for human motion tracking. Besides, the Kalman filter is a

recursive algorithm that allows its real-time execution without requiring the history of

observations or past estimates.

The smoothing-based inertial navigation algorithm uses a different approach for esti-

mating the motion. In the optimization-based smoothing algorithm, all the data are used

together to estimate each state at each sampling time. The advantage of this method pro-

vides more accurate motion estimation than other filter-based algorithms. However, the

smoothing algorithm is more complicated than the Kalman filter and all the data are used,

the method requires a high computation cost that is not feasible for real-time applications.

Depending on the purpose of motion estimation, an appropriate inertial navigation

algorithm is chosen. Another limitation of the algorithm is the accumulation of integration

errors when applying low-cost inertial sensors-based human motion tracking for a longer

distance or period. To reduce these errors, several assumptions and heuristics, such as zero

velocity updating (ZUPT), have been used for a foot-mounted sensor case. When the foot

is on the ground during walking, the ZUPT algorithm is applied to reset the integration

errors. Unlike the foot-mounted sensor case, there are no zero velocity intervals during

continuous walking when the sensor is placed on the waist, wrist, or pocket area. To solve

this issue, the smoothing algorithm based on constrained optimization will be presented in

the next chapter.
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Chapter 3

Walking Step Length Estimation

using Smoothing Algorithm

Accurate walking step length estimation plays a vital role in some application fields such

as gait analysis for patients [48] or elderly people [49], and human motion analysis [3].

These applications help predict the quality of life as well as in clinical diagnosis and medical

treatment of diseases affecting the ability to walk. The walking speed and step length are the

two most popular and mutual influencing parameters to analyze and characterize the human

gait. The effects of walking speed on stability control of the step length are investigated

[50]. Besides, the walking step length estimation is one of the important components of the

pedestrian dead reckoning (PDR) algorithm [31–33], and the accuracy of PDR localization

depends on the accurate step length estimation.

This chapter presents a new constrained optimization-based smoothing algorithm for

walking step length estimation using waist-mounted inertial sensors, where the total walking

distance is known. The walking trajectory is estimated by double integrating acceleration.

Due to sensor noises, the walking step length estimation accuracy degrades as the walking

distance becomes longer. To tackle this problem, we introduce a known distance straight-line

walking trajectory constraint and a constant speed constraint to the smoothing algorithm.

These constraints reduce the walking step estimation accuracy degradation even for long

walking distance. The proposed smoothing algorithm can be applied to generate training

data for walking step length estimation without requiring spatial infrastructure.
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3.1 Related Work

Various methods for estimating walking step length can be used depending on the measure-

ment devices. Among them, the visual motion tracking systems such as Vicon [51] are widely

used, measure accurately but are costly. The 3D cameras such as Microsoft Kinect can be

used as an alternative low-cost motion camera [52, 53]. Mat pressure measurement systems

such as the GAITRite provide spatial parameters of gait through a walkway embedded with

pressure sensors [54]. However, these systems are unsuitable for a long distance and outside

of the laboratory environment due to their high implementation costs and limited walking

ranges.

To estimate the walking step length using inertial sensors, there are two kinds of ap-

proaches [11]: direct approaches and indirect approaches. Direct approaches use the accel-

eration double integration, whereas indirect approaches apply the relationship between the

step length and gait models or the prediction of statistical methods. In theory, the best

method for estimating walking step length is based on the acceleration double integration

since it does not need any models and does not require training data or individual cali-

bration stages. However, low-cost inertial sensors always have noise and bias that lead to

integration error over time. Due to this reason, several assumptions and heuristics are used

to reduce error accumulation. For example, the zero velocity updates (ZUPT) have been

used for a foot-mounted sensor case: the integration errors are reset when the foot is on

the ground during walking [28–30]. When the sensor is attached to the other body parts

(such as the wrist, pocket, and waist), there are no zero velocity intervals during continuous

walking. Therefore, indirect approaches are used to replace direct methods for these cases.

Many indirect approaches have been proposed, mainly based on symmetrical gait mod-

els, such as empirical relationships [55, 56] and inverted pendulum models [57, 58], or sta-

tistical regression methods, such as step frequency-based models [59–62], acceleration-based

models [63, 64], angle-based models [65, 66], and multiparameter models [33, 67]. The com-

mon point of these methods is a requirement for a calibration process. This process depends

on a relationship between gait characteristics or sensor information and the step length as

a training stage. Recently, machine learning and deep learning approaches are proposed to

estimate the step length accurately [22, 68, 69]. The stacked autoencoders are proposed

to estimate the step length based on the smartphone sensors, including accelerometers and
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gyroscopes [68]. In [69], the authors present a combined long short-term memory (LSTM)

and denoising autoencoders to estimate a pedestrian’s stride length. Another approach

for step length estimation is proposed by applying a one-dimensional convolutional neural

network in [22].

The training process always requires the ground truth length of each step. There are

two ways to obtain the ground truth. The first way is based on the known total walking

distance and then dividing this total distance by the total number of walking steps [59].

Although the number of walking steps is accurate, the walking step length accuracy is not

guaranteed. The other way uses an additional device such as an optical motion capture

system [65]. This method provides more accurate references. However, this method makes

the training process more complicated, and expensive. The purpose of this chapter is to

provide a simple method based on the double integration of the acceleration to obtain

walking step length, which does not require spatial infrastructure.

In this chapter, we propose a new constrained optimization-based smoothing algorithm

for the walking step length estimation using waist-mounted inertial sensors, where the

total walking distance is known. The smoothing algorithm is formulated as a quadratic

optimization problem, where the constraints are used to improve the walking trajectory

accuracy. Two main constraints are used in the proposed algorithm: a known distance

straight-line walking trajectory constraint and a constant speed constraint. In our work,

we assume that a person walks along a straight path at a constant speed. A velocity peak

detection and data rejection algorithm are proposed to determine the maximum peaks of

the velocity and suitable walking data. These data are applied to the proposed smoothing

algorithm for obtaining the pedestrian trajectory. Then, the step length estimation method

is used to estimate walking step length when the step indexes are identified.

3.2 Problem Formulation

In this chapter, we consider a walking scenario, in which a person walks along a straight line

(see Fig. 3-1). An inertial sensor unit (including accelerometers and gyroscopes) is attached

to the user’s waist. The length of the line is assumed to be known (𝐿).

At the start line, a person stands still for a few seconds before starting to walk and then

completes the desired straight path. Note that the person stands still once he arrives at
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Figure 3-1: Straight-line walking environment (top view).

the finish line. Thus there are zero velocity intervals before and after walking, which makes

it easier to separate the walking interval (see Fig. 3-2). The set of discrete-time indices

belonging to zero velocity intervals is denoted by 𝑆𝑧𝑒𝑟𝑜 = {1, · · · , 𝑁1, 𝑁4, · · · , 𝑁}. The set

of discrete-time indices belonging to the moving (walking) interval is denoted by 𝑆𝑚𝑜𝑣𝑖𝑛𝑔 =

{𝑁2, · · · , 𝑁3}.

Figure 3-2: Zero velocity and moving intervals.

The goal of this chapter is to estimate the walking step length by double integrating

acceleration. Due to sensor noises in low-cost inertial sensors, it is not possible to estimate

the walking step length accurately even for a short distance. We propose a walking step

length estimation algorithm using the fact that a person is walking in a straight line with

a known distance.

Two coordinate systems are used: the body coordinate system and the world coordinate

system. The three axes of the body coordinate system coincide with the three axes of

the inertial sensor unit. The world coordinate system is a local geographic frame, where

the 𝑧-axis coincides with the local gravitation direction (up direction). The 𝑥-axis of the

world coordinate system coincides with the line in Fig. 3-1. In the world coordinate system,

the gravitation vector is denoted by 𝑔 =
[︂

0 0 𝑔

]︂′
∈ 𝑅3, where 𝑔 is the magnitude of
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gravitation. A rotation matrix 𝐶𝑏
𝑤 is used to represent the rotation relationship between

the body coordinate system and the world coordinate system.

The sensor outputs (accelerometers 𝑦𝑎 ∈ 𝑅3 and gyroscopes 𝑦𝑔 ∈ 𝑅3) are modeled as

follows:
𝑦𝑎 = 𝑎𝑏 + 𝐶𝑏

𝑤(𝑡)𝑔 + 𝑣𝑎(𝑡),

𝑦𝑔 = 𝜔(𝑡) + 𝑣𝑔(𝑡),
(3.1)

where 𝑎𝑏 ∈ 𝑅3 is the external acceleration expressed in the body coordinate frame, 𝜔 ∈ 𝑅3

is the body angular velocity, and 𝑣𝑎 ∈ 𝑅3 and 𝑣𝑔 ∈ 𝑅3 are white Gaussian sensor noises.

The noise covariances are given by

E{𝑣𝑎(𝑡)𝑣𝑎(𝑠)′} = 𝑟𝑎𝛿(𝑡 − 𝑠)𝐼3,

E{𝑣𝑔(𝑡)𝑣𝑔(𝑠)′} = 𝑟𝑔𝛿(𝑡 − 𝑠)𝐼3.
(3.2)

where 𝑟𝑎 > 0 and 𝑟𝑔 > 0 are scalar constants of the sensor noise covariances, and 𝛿 is

the Dirac’s impulse function. Sensor biases are assumed to be removed using a separate

calibration algorithm [42, 43].

3.3 Algorithm Description

In this section, the proposed algorithm with a straight-line walking constraint is presented.

A robust smoother based on a constant speed constraint is then explained, and finally, the

step length estimation method is performed to compute the walking step length.

3.3.1 Proposed Algorithm with a Straight-line Walking Constraint

In this subsection, the proposed algorithm consists of three steps. The first step is to detect

zero velocity intervals (standing still events before and after walking). The second step is

to generate an initial walking trajectory based on a smoothing algorithm with zero velocity

constraints. Then, the third step is to apply the constraint of known walking distance for

a smoothing algorithm to reduce further the estimation errors of the previous method.

Zero velocity detection

When a person stands still for a few seconds before and after walking, the zero velocity

intervals are easily detected. There are many zero velocity interval detection algorithms [70].
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Among them, the zero velocity detection algorithm is applied based on the accelerometer

magnitude and gyroscope norm. The discrete index 𝑘 is determined to belong to the zero

velocity interval if the following condition is satisfied:

𝛼𝑎 (⃦⃦ 𝑦𝑎,𝑖

⃦⃦
− 𝑔)2 + 𝛼𝑔

⃦⃦
𝑦𝑔,𝑖

⃦⃦2 ≤ 𝛼𝑧𝑒𝑟𝑜, 𝑘 − 𝑀𝑧𝑒𝑟𝑜 ≤ 𝑖 ≤ 𝑘 + 𝑀𝑧𝑒𝑟𝑜, (3.3)

where 𝛼𝑎 and 𝛼𝑔 are the weighting factors of the acceleration and gyroscope norms, re-

spectively. 𝛼𝑧𝑒𝑟𝑜 is a threshold parameter and 𝑀𝑧𝑒𝑟𝑜 is a specified window length for zero

velocity interval detection.

Smoothing Algorithm with Zero Velocity Constraints

In the second step, a smoother with zero velocity constraint is used to generate a walking

trajectory. Recall that the 𝑥-axis of the world coordinate system coincides with the walking

direction (the straight line in Fig. 3-1). Since the initial walking direction cannot be known

without a heading sensor, an initial walking trajectory is generated with an arbitrary initial

heading. Any smoothing algorithms can be used in this step to generate an initial trajectory

[44, 71, 72], where the estimated position, velocity, and quaternion are denoted by 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑘 ∈

𝑅3, 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑘 ∈ 𝑅3 and 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑘 ∈ 𝑅4, respectively.

From the fact that the origin of the world coordinate system coincides with the starting

point of the person, the initial condition constraint at 𝑘 = 1 is given by

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙,1

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,1

𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙,1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑡𝑟𝑖𝑎𝑑

03×1

03×1

⎤⎥⎥⎥⎥⎥⎦ , (3.4)

where the initial attitude 𝑞𝑡𝑟𝑖𝑎𝑑 is computed from the accelerometer data using the TRIAD

algorithm [73] for the following two vector equations:

𝑦𝑎,1 = 𝐶(𝑞𝑡𝑟𝑖𝑎𝑑)

⎡⎢⎢⎢⎢⎢⎣
0

0

𝑔

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎦ = 𝐶(𝑞𝑡𝑟𝑖𝑎𝑑)

⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎦ . (3.5)

Note that the heading is arbitrarily chosen in the second equation of (3.5): the world
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coordinate 𝑥-axis is chosen in the direction of the body coordinate 𝑥-axis. The heading is

later adjusted so that the world coordinate 𝑥 direction coincides with the walking direction.

The initial estimation error covariance 𝑃1 is given by

𝑃1 =

⎡⎢⎢⎢⎢⎢⎣
𝑃𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 03×3 03×3

03×3 𝑠𝑖𝑛𝑖𝑡,𝑟𝐼3 03×3

03×3 03×3 𝑠𝑖𝑛𝑖𝑡,𝑣𝐼3

⎤⎥⎥⎥⎥⎥⎦ ,

where the initial attitude error covariance 𝑃𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 ∈ 𝑅3×3 is computed by the method in

[74, Chapter 5.5] for two equations of (3.5). We note that the multiplicative quaternion

error model is used [75], where the quaternion error is represented by a three-dimensional

vector. The covariances 𝑠𝑖𝑛𝑖𝑡,𝑟𝐼3 and 𝑠𝑖𝑛𝑖𝑡,𝑣𝐼3 can be considered as design parameters, whose

𝑠𝑖𝑛𝑖𝑡,𝑟 and 𝑠𝑖𝑛𝑖𝑡,𝑣 are the initial noise values of the position and velocity, respectively (see

Table 3.1).

The inverse of initial attitude error covariance 𝑃 −1
𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 is used in the smoothing algo-

rithm and computed by the TRIAD information matrix as follows [74, Chapter 5.5]:

𝑃 −1
𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 = 1

𝑟𝑎
(𝐼3 − 𝑏1𝑏′

1) + 1
𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔

(𝑏2 × 𝑏×)(𝑏2 × 𝑏×)′,

𝑏1 = 𝐶(𝑞𝑡𝑟𝑖𝑎𝑑)

⎡⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎦ , 𝑏2 = 𝐶(𝑞𝑡𝑟𝑖𝑎𝑑)

⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎦ ,

𝑏× = 𝑏1 × 𝑏2
‖𝑏1 × 𝑏2‖

.

Normally 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 > 0 denotes the heading noise covariance, which represents how ac-

curate the heading sensor. In this initial estimation, 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 does not play such a role;

𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 is a design parameter in Section 3.3.1.

The constraint for the first-zero velocity interval at 𝑘 = {2, · · · , 𝑁1} ∈ 𝑆𝑧𝑒𝑟𝑜 is defined

by

𝑣𝑘 = 03×1 + 𝑛𝑖𝑛𝑖𝑡2,𝑘, (3.6)

E{𝑛𝑖𝑛𝑖𝑡2,𝑘𝑛′
𝑖𝑛𝑖𝑡2,𝑘} = 𝑠𝑖𝑛𝑖𝑡2,𝑣𝐼3,

where 𝑠𝑖𝑛𝑖𝑡2,𝑣 is the velocity measurement noise at the first zero-velocity interval.
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The last zero-velocity interval (𝑁4 ≤ 𝑘 ≤ 𝑁 − 1) is constrained as follows:

⎡⎢⎣ 𝑟𝑘,𝑧

𝑣𝑘

⎤⎥⎦ =

⎡⎢⎣ 0

03×1

⎤⎥⎦ + 𝑛𝑓𝑖𝑛𝑎𝑙,𝑘, (3.7)

E{𝑛𝑓𝑖𝑛𝑎𝑙,𝑘𝑛′
𝑓𝑖𝑛𝑎𝑙,𝑘} =

⎡⎢⎣ 𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑧 01×3

03×1 𝑠𝑓𝑖𝑛𝑎𝑙,𝑣𝐼3

⎤⎥⎦ ,

where 𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑧 and 𝑠𝑓𝑖𝑛𝑎𝑙,𝑣 are the measurement noises of the vertical position and velocity

at the final zero-velocity interval, respectively.

Figure 3-3: Line approximation of the walking direction.

Assume that the initial walking trajectory is obtained by using the smoothing algorithm

with constraints (3.4), (3.6), and (3.7). Then the initial yaw angle is adjusted so that

the world coordinate 𝑥-axis coincides with the walking direction. The initial trajectory is

approximated by a line (see Fig. 3-3), where the following line equation is used:

𝑎𝑥 + 𝑏𝑦 = 0 (3.8)

subject to

𝑎2 + 𝑏2 = 1. (3.9)

Since the position accuracy degrades as the time index 𝑘 increases, the initial 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

estimated positions are used to find the line parameters 𝑎 and 𝑏 as the following:

min
𝑎,𝑏

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙∑︁
𝑖=2

⃦⃦⃦
𝑤𝑖(𝑎𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑥,𝑖 + 𝑏𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑦,𝑖)

⃦⃦⃦2
(3.10)
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subject to the constraint (3.9). The weighting factor 𝑤𝑖 is simply chosen 𝑤𝑖 = 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑖

so that more weights are given on smaller 𝑘 reflecting the fact that the position accuracy

degrades as 𝑘 increases.

Let 𝐷 ∈ 𝑅(𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙−1)×2 be defined by

𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤2𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑥,2 𝑤2𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑦,2

𝑤3𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑥,3 𝑤2𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑦,3
...

...

𝑤𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑥,𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑤2𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑦,𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then (3.10) can be expressed as follows:

min
𝑎,𝑏

||𝐷

⎡⎢⎣ 𝑎

𝑏

⎤⎥⎦ ||2. (3.11)

It is known that the minimizing solution to (3.11) is given by

⎡⎢⎣ 𝑎

𝑏

⎤⎥⎦ = the last column vector of 𝑉 , (3.12)

where 𝐷 = 𝑈Σ𝑉 ′ is the singular value decomposition of 𝐷.

Since the line equation provides two directions (both ends of line from the origin), the

walking direction is chosen from 𝑃 ∈ 𝑅2, which is 𝑥 and 𝑦 elements of 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙
. Let

𝑃 ∈ 𝑅2 be the orthogonal projection point to the line from 𝑃 (see Fig. 3-3). Because the

orthogonal direction of the line is
[︂

𝑎 𝑏

]︂′
, 𝑃 is given by

𝑃 = 𝑃 + 𝑐

⎡⎢⎣ 𝑎

𝑏

⎤⎥⎦ . (3.13)

The constant 𝑐 can be determined from the fact 𝑃 should be on the line:

[︂
𝑎 𝑏

]︂
𝑃 = 0. (3.14)

24



Chapter 3. Walking Step Length Estimation using Smoothing Algorithm

From (3.13) and (3.14), 𝑐 is given by

𝑐 = −
[︂

𝑎 𝑏

]︂
𝑃 . (3.15)

Let 𝛾𝑟𝑜𝑡 be defined by

𝛾𝑟𝑜𝑡 = atan2
(︁
𝑃𝑥, 𝑃𝑦

)︁
. (3.16)

Now the line becomes the 𝑥-axis of the new world coordinate system: if we rotate the

new world coordinate system by 𝛾𝑟𝑜𝑡 along the 𝑧-axis, we obtain the old world coordinate

system. Let 𝑞𝛾𝑟𝑜𝑡 and 𝐶𝛾𝑟𝑜𝑡 be defined by

𝑞𝛾𝑟𝑜𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos 𝛾𝑟𝑜𝑡

2

0

0

− sin 𝛾𝑟𝑜𝑡

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐶𝛾𝑟𝑜𝑡 = 𝐶(𝑞𝛾𝑟𝑜𝑡) =

⎡⎢⎢⎢⎢⎢⎣
cos 𝛾𝑟𝑜𝑡 − sin 𝛾𝑟𝑜𝑡 0

sin 𝛾𝑟𝑜𝑡 cos 𝛾𝑟𝑜𝑡 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Let 𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑, 𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑 and 𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑 denote the position, velocity and quaternion in the new

world coordinate. They can be computed as follows:

𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝐶𝛾𝑟𝑜𝑡𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙,

𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝐶𝛾𝑟𝑜𝑡𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙,

𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑞𝛾𝑟𝑜𝑡 ⊗ 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙,

(3.17)

where ⊗ denotes the quaternion multiplication.

Smoothing Algorithm with Known Distance Straight-line Walking Trajectory

Constraint

After the rotation (3.17), the walking direction approximately coincides with the world 𝑥-

axis (see Fig. 3-3). The next step is to apply the known distance straight-line constraint so

that the walking trajectory becomes like the right-hand side of Fig. 3-4.

Let 𝑟𝑆𝑀,𝑘 ∈ 𝑅3, 𝑣𝑆𝑀,𝑘 ∈ 𝑅3 and 𝑞𝑆𝑀,𝑘 ∈ 𝑅4 denote the known distance straight-

line constraint imposed estimations of the position, velocity, and quaternion, respectively.

These values are computed from 𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑, 𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑 and 𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑 by imposing the known distance

straight-line constraint. The estimation errors in 𝑞𝑆𝑀 , 𝑟𝑆𝑀 and 𝑣𝑆𝑀 are estimated using
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Figure 3-4: Walking trajectory with known total distance constraint.

the proposed smoothing algorithm. The estimation errors are defined as follows:

𝑋𝑘 =

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑘

𝑟𝑘

𝑣𝑘

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
[03×1 𝐼3](𝑞*

𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘 ⊗ 𝑞𝑘)

𝑟𝑘 − 𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘

𝑣𝑘 − 𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9, (3.18)

where 𝑞𝑘 ∈ 𝑅3, 𝑟𝑘 ∈ 𝑅3 and 𝑣𝑘 ∈ 𝑅3 denote the estimation errors of 𝑞𝑆𝑀,𝑘, 𝑟𝑆𝑀,𝑘 and 𝑣𝑆𝑀,𝑘,

respectively. In (3.18), 𝑞* denotes the quaternion conjugate of a quaternion 𝑞.

Let the function 𝑓𝑘 be the numerical integration of the quaternion, position, and velocity

equations for inertial navigation from 𝑘𝑇 to (𝑘+1)𝑇 , where 𝑇 is the sensor sampling period.

The function 𝑓𝑘 is defined as follows [44]:

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑓𝑘

𝑟𝑓𝑘

𝑣𝑓𝑘

⎤⎥⎥⎥⎥⎥⎦ = 𝑓𝑘

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘

𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘

𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎣ 𝑣𝑔,𝑘

𝑣𝑎,𝑘

⎤⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ . (3.19)

Since 𝑞𝑘, 𝑟𝑘 and 𝑣𝑘 are time-dependent variables. The equation for these variables is

given by

𝜁𝑘 + 𝑋𝑘+1 = Φ𝑘𝑋𝑘 + 𝑤𝑘, (3.20)

where 𝜁𝑘 is defined by

𝜁𝑘 =

⎡⎢⎢⎢⎢⎢⎣
[03×1 𝐼3](𝑞*

𝑓𝑘
⊗ 𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘+1)

𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘+1 − 𝑟𝑓𝑘

𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘+1 − 𝑣𝑓𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9, (3.21)
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and Φ𝑘 are given by [44]:

Φ𝑘 = 𝑒𝐴𝑘𝑇 ≈ 𝐼9 + 𝐴𝑘𝑇 + 1
2!𝐴

2
𝑘𝑇 2, 𝐴𝑘 =

⎡⎢⎢⎢⎢⎢⎣
[−𝑦𝑔,𝑘×] 03×3 03×3

03×3 03×3 𝐼3

−2𝐶(𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑,𝑘)′[𝑦𝑎,𝑘×] 03×3 03×3

⎤⎥⎥⎥⎥⎥⎦ .

The process noise 𝑤𝑘 is the zero mean white Gaussian noise with

𝑄𝑘 = E{𝑤𝑘𝑤′
𝑘} =

∫︁ 𝑇

0
𝑒𝐴𝑘𝑟

⎡⎢⎢⎢⎢⎢⎣
0.25𝑟𝑔𝐼3 03×3 03×3

03×3 10−6𝐼3 03×3

03×3 03×3 𝑟𝑎𝐼3

⎤⎥⎥⎥⎥⎥⎦ 𝑒𝐴′
𝑘𝑟𝑑𝑟.

To explain the derivation of (3.20), we compute 𝜁𝑘 +𝑋𝑘+1 from (3.18), (3.19) and (3.21):

𝜁𝑘 + 𝑋𝑘+1 =

⎡⎢⎢⎢⎢⎢⎣
[03×1 𝐼3](𝑞*

𝑓𝑘
⊗ 𝑞𝑘+1)

𝑟𝑘+1 − 𝑟𝑓𝑘

𝑣𝑘+1 − 𝑣𝑓𝑘

⎤⎥⎥⎥⎥⎥⎦ ∈ 𝑅9. (3.22)

From (3.22), 𝜁𝑘 + 𝑋𝑘+1 denotes the estimation errors of the function 𝑓𝑘 in (3.19). Thus,

(3.20) represents how the estimation error evolves after the integration (3.19).

The smoothing problem to estimate 𝑋𝑘 can be formulated as a quadratic optimization

problem using the method in [44, 46]. Let the optimization variable 𝑋̃ be defined by

𝑋̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋1

𝑋2
...

𝑋𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ 𝑅9×𝑁 . (3.23)

The smoothing problem is formulated as the following optimization problem (see [44, 46]

for details):

𝐽(𝑋̃) = 1
2

𝑁−1∑︁
𝑘=1

(𝜁𝑘 + 𝑋𝑘+1 − Φ𝑘𝑋𝑘)′𝑄−1
𝑘 (𝜁𝑘 + 𝑋𝑘+1 − Φ𝑘𝑋𝑘) + (constraint terms). (3.24)

The main advantage of formulating the smoothing problem as an optimization problem
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is that constraints are easily included in the optimization problem. See [44] as to how the

constraint terms (such as (3.4), (3.6) and (3.7)) are formulated in (3.24). The following

constraints are used in the smoothing algorithm. The first and second constraints are

applied in the same way as the conditions of (3.4) and (3.6). Except that the initial

quaternion used in this algorithm is 𝑞𝑆𝑀,1 = 𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑,1. Also, the inverse of initial attitude

error covariance 𝑃 −1
𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 is computed by the information matrix with 𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑,1 and 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔,

where 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 is a parameter determining how the whole trajectory is rotated during the

optimization. If 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 is small, the straight-line constraint is satisfied without rotating

(see the left of Fig. 3-5). If 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 is large, the walking trajectory (𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑) is rotated

during the optimization (see the right of Fig. 3-5).

Figure 3-5: 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 parameter (left: 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 small, right: 𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 large).

Since the walking trajectory is assumed as the straight line and in the direction of the

𝑥-axis. Thus the 𝑦-axis position is almost zero during the moving interval. The third

constraint for this interval (𝑘 ∈ 𝑆𝑚𝑜𝑣𝑖𝑛𝑔) is used as the following constraint:

𝑟𝑘,𝑦 = 0 + 𝑛𝑚𝑜𝑣𝑖𝑛𝑔,𝑘, (3.25)

E{𝑛𝑚𝑜𝑣𝑖𝑛𝑔,𝑘𝑛′
𝑚𝑜𝑣𝑖𝑛𝑔,𝑘} = 𝑠𝑚𝑜𝑣𝑖𝑛𝑔,𝑟𝑦 ,

where 𝑠𝑚𝑜𝑣𝑖𝑛𝑔,𝑟𝑦 is an optimization parameter. If 𝑠𝑚𝑜𝑣𝑖𝑛𝑔,𝑟𝑦 is very small, the estimated

walking trajectory becomes an exact line, while in practice there is a small 𝑦-axis fluctuation

during walking. If 𝑠𝑚𝑜𝑣𝑖𝑛𝑔,𝑟𝑦 is very large, there could be a large fluctuation in the estimated

trajectory, which is contradictory to the assumption that a person is walking along a line.

We note that a person walks along a straight path with a known distance. Therefore, we

use the known walking distance (𝐿) for the final zero-velocity interval. The last condition
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is imposed as an additional constraint of (3.7) and defined as follows:

⎡⎢⎣ 𝑟𝑘,𝑥

𝑟𝑘,𝑦

⎤⎥⎦ =

⎡⎢⎣ 𝐿

0

⎤⎥⎦ + 𝑛𝑓𝑖𝑛𝑎𝑙2,𝑘, (3.26)

E{𝑛𝑓𝑖𝑛𝑎𝑙2,𝑘𝑛′
𝑓𝑖𝑛𝑎𝑙2,𝑘} =

⎡⎢⎣ 𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑥 0

0 𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑦

⎤⎥⎦ ,

where 𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑥 and 𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑦 is the 𝑥-axis and 𝑦-axis position measurement noises at the final

zero-velocity interval, respectively.

After computing the optimization problem of 𝑋̃ using the smoothing algorithm com-

bined with the constraint of a known distance straight-line walking trajectory, the estimation

values of 𝑞𝑆𝑀 , 𝑟𝑆𝑀 , and 𝑣𝑆𝑀 are updated.

3.3.2 Robust Smoother based on a Constant Speed Constraint

For a short walking distance, the optimization algorithm in Section 3.3.1 provides a relatively

accurate estimation. For a long walking distance, the estimation accuracy rapidly degrades

due to sensor noises. To reduce this performance degradation, a new constraint is introduced

in this subsection. During walking, a person is assumed to walk at a constant speed. One

difficulty in using this assumption is that a human walking speed is like a sinusoidal form (see

Fig. 3-6) even during constant walking speed. Thus, we cannot simply use the constraint

that 𝑣𝑟𝑥 = constant. In this subsection, we use the constraint that the walking speed is

constant at the double stance phase of each gait cycle.

Velocity Peak Detection

Based on the principles of a walking model for waist-mounted inertial sensors [58, 76],

the double stance phase occurs when the waist position reaches the lowest point. In a gait

cycle, the bottom position of the waist corresponds to the highest peak of the velocity norm,

which corresponds to a double stance phase. In this chapter, the velocity norm is computed

from three axes of the estimated velocity (𝑣𝑆𝑀 ), which is obtained by using the smoothing

algorithm in Section 3.3.1. The maximum peak at the discrete-time 𝑘 is determined using

Algorithm 1.

An example of a velocity peak detection algorithm for walking along a straight-line
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Algorithm 1 Velocity peak detection algorithm
Input: Velocity norm 𝑉𝑛𝑜𝑟𝑚, threshold value 𝛿𝑡ℎ, window size parameters 𝑀𝑠𝑖𝑧𝑒 and 𝑊𝑠𝑖𝑧𝑒.
Output: Maximum peak index 𝑝.

1: Compute the length 𝑁 from the length of 𝑉𝑛𝑜𝑟𝑚.
2: for 𝑚 = 𝑀𝑠𝑖𝑧𝑒 + 1 to 𝑁 − 𝑀𝑠𝑖𝑧𝑒 do
3: Compute the average filter on the velocity norm

𝑉𝑛𝑜𝑟𝑚,𝑚 = 1
2𝑀𝑠𝑖𝑧𝑒 + 1

𝑚+𝑀𝑠𝑖𝑧𝑒∑︁
𝑘=𝑚−𝑀𝑠𝑖𝑧𝑒

𝑉𝑛𝑜𝑟𝑚,𝑘.

4: end for
5: Compute 𝑦 = 𝑉𝑛𝑜𝑟𝑚 − 𝑉𝑛𝑜𝑟𝑚.
6: for discrete-time 𝑘 from 𝑘 = 𝑊𝑠𝑖𝑧𝑒 + 1 to 𝑁 − 𝑊𝑠𝑖𝑧𝑒 do
7: if (𝑦𝑘 > 𝛿𝑡ℎ) and 𝑦𝑘 ≥ max (𝑦𝑘−𝑊𝑠𝑖𝑧𝑒

: 𝑦𝑘−1) and 𝑦𝑘 ≥ max (𝑦𝑘+1 : 𝑦𝑘+𝑊𝑠𝑖𝑧𝑒
) then

8: 𝑝 = 𝑝 ∪ {𝑘}.
9: end if

10: end for
11: return 𝑝

corridor (20 meters) at regular speed is shown in Fig. 3-6. The figure above shows the

standard velocity norm and the filtered average velocity norm. The difference between

these velocities is described with the solid blue line in the figure below, while the red circles

represent the maximum peaks. Furthermore, Fig. 3-7 illustrates that the highest peaks of the

difference velocity norm correspond to the maximum peaks of the acceleration norm. These

peaks represent the double stance phase during walking.
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Figure 3-6: A velocity peak detection algorithm for 20 m walking distance at regular speed.
Double stance events are identified based on the maximum peaks of the velocity norm.
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Figure 3-7: Relationship of the maximum peaks between the acceleration norm and the
difference velocity norm. Double stance events are identified based on the maximum peaks
of the velocity norm.

Data Rejection Algorithm

Before applying a constant speed constraint, we need some guarantee that a person is

walking at a constant speed. For example, a person may not walk at a constant speed even

if he is instructed to walk at a constant speed.

To reject the walking data with varying walking speeds, we propose a simple criterion

to determine whether a person is walking at a constant speed. The velocity equation for

inertial navigation is given as follows (sensor noises are omitted):

𝑣𝑡𝑖+1 ≈ 𝑣𝑡𝑖 +
∫︁ 𝑡𝑖+1

𝑡𝑖

(𝐶𝑤
𝑏 (𝑡)𝑦𝑎 − 𝑔)𝑑𝑡, (3.27)

where 𝑡𝑖
(︀
1 ≤ 𝑖 ≤ 𝑁𝑝

)︀
denotes the time index of the maximum peak and 𝑁𝑝 is the number

of detected peaks.

Since 𝑔 is a constant, the following equation is obtained:

𝑣𝑡𝑖+1 − 𝑣𝑡𝑖 ≈ Δ𝑣𝑡𝑖
𝑡𝑖+1 − 𝑔(𝑡𝑖+1 − 𝑡𝑖), (3.28)

where

Δ𝑣𝑡𝑖
𝑡𝑖+1 =

∫︁ 𝑡𝑖+1

𝑡𝑖

𝐶𝑤
𝑏 (𝑡)𝑦𝑎𝑑𝑡.
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The rotation matrix 𝐶𝑤
𝑏 is computed from the quaternion 𝑞𝑆𝑀 , which is estimated

using the smoothing algorithm in 3.3.1. Since the moving speed between the left and right

steps (that is, two consecutive maximum peaks of the velocity norm) may not be the

same, the velocity difference at 𝑡𝑖 and 𝑡𝑖+2 is used to detect whether the walking speed

is constant or not. From (3.28), Δ𝑣𝑡𝑖
𝑡𝑖+2 − 𝑔(𝑡𝑖+2 − 𝑡𝑖) ≈ 0 implies 𝑣𝑡𝑖+2 − 𝑣𝑡𝑖 ≈ 0. That is,

Δ𝑣𝑡𝑖
𝑡𝑖+2 −𝑔(𝑡𝑖+2−𝑡𝑖) value can be used to determine whether a person is walking at a constant

speed. However, the computation of Δ𝑣𝑡𝑖
𝑡𝑖+2 requires 𝐶𝑤

𝑏 (𝑡) whose accurate computation may

not be possible. Thus, the following function is used instead:

𝑓(𝑡𝑖, 𝑡𝑖+2) = ||Δ𝑣𝑡𝑖
𝑡𝑖+2 || − 𝑔(𝑡𝑖+2 − 𝑡𝑖), (3.29)

where the exact initial attitude is not required for the computation of ||Δ𝑣𝑡𝑖
𝑡𝑖+2 ||.

In this chapter, a constant walking speed assumption is invalidated if

|𝑓(𝑡𝑖, 𝑡𝑖+2)| > 𝜀𝑡ℎ, (3.30)

where 𝜀𝑡ℎ is a small threshold value.

Figure 3-8: An example of |𝑓(𝑡𝑖, 𝑡𝑖+2)| for 20 m walking at the mixed speed levels.

An example of |𝑓(𝑡𝑖, 𝑡𝑖+2)| when a person walks along a 20 m straight line at the mixed

walking speeds as shown in Fig. 3-8. We can see that |𝑓(𝑡𝑖, 𝑡𝑖+2)| is larger than a threshold

value if the walking speed changes. Thus, the data rejection algorithm is used to obtain the
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suitable walking data for the proposed smoothing algorithm.

Constant Speed Constraint

Once we have the walking data at a constant speed, the next step is to apply the constant

speed constraint to optimize the smoothing problem. We assume that a person is advised

to walk at three different self-paced constant walking speeds: slow, normal, and fast.

Using the peak detection method in Section 3.3.2, we obtain the maximum peaks of

the velocity norm. Since the walking speed is not constant during initial accelerating and

final decelerating intervals, two maximum peaks of these steps are not used for the constant

speed constraint. Let 𝑝𝑖
(︀
2 ≤ 𝑖 ≤ 𝑁𝑝 − 1

)︀
be indices of maximum peaks. When the maximum

peaks 𝑝𝑖 are detected, the additional constraints are imposed as follows:

𝑣𝑝𝑖,𝑥 = 𝑣𝑚𝑜𝑣𝑖𝑛𝑔 + 𝑛𝑝𝑒𝑎𝑘,𝑝𝑖
, (3.31)

E{𝑛𝑝𝑒𝑎𝑘,𝑝𝑖
𝑛′

𝑝𝑒𝑎𝑘,𝑝𝑖
} = 𝑠𝑝𝑒𝑎𝑘,

where 𝑣𝑚𝑜𝑣𝑖𝑛𝑔 is an average speed of all maximum peaks corresponding to 𝑥-axis velocity,

which is estimated by the constrained optimization based on the constant speed assump-

tion. 𝑠𝑝𝑒𝑎𝑘 is a design parameter for the proposed algorithm. If the 𝑠𝑝𝑒𝑎𝑘 value is large,

the difference between two consecutive maximum peaks of 𝑥-axis velocity is allowed to be

large. Conversely, this difference is almost zero when the 𝑠𝑝𝑒𝑎𝑘 value is very small.

In the smoothing problem, 𝑣𝑚𝑜𝑣𝑖𝑛𝑔 is added in the optimization variable in (3.23). Thus,

a new optimization variable 𝑋̃𝑜𝑝𝑡 has become as follows:

𝑋̃𝑜𝑝𝑡 =

⎡⎢⎣ 𝑋̃

𝑣𝑚𝑜𝑣𝑖𝑛𝑔

⎤⎥⎦ ∈ 𝑅9×𝑁+1. (3.32)

Also, the following term is added in (3.24):

1
𝑠𝑝𝑒𝑎𝑘

(︀
𝑣𝑝𝑖,𝑥 − 𝑣𝑚𝑜𝑣𝑖𝑛𝑔

)︀2
. (3.33)

The final walking trajectory 𝑟𝑓𝑖𝑛𝑎𝑙 is obtained by imposing the constraint (3.31) (in

addition to the existing constraints) to the rotated initial estimations of 𝑞𝑟𝑜𝑡𝑎𝑡𝑒𝑑, 𝑟𝑟𝑜𝑡𝑎𝑡𝑒𝑑,

and 𝑣𝑟𝑜𝑡𝑎𝑡𝑒𝑑, which are estimated by the smoothing algorithm in Section 3.3.1.
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3.3.3 Walking Trajectory-based Step Length Estimation

After obtaining the final walking trajectory, a step length estimation method is applied to

compute the walking step length when the step indexes are detected. Each walking step is

identified by two consecutive minimum peaks of the filtered acceleration norm. These min-

imum peaks at the discrete-time 𝑘 can be determined if the following condition is satisfied:

(𝑦𝑎,𝑘 < 𝛿𝑚𝑖𝑛) and 𝑦𝑎,𝑘 ≤ min (𝑦𝑎,𝑘−𝑤𝑠𝑖𝑧𝑒
: 𝑦𝑎,𝑘−1) and 𝑦𝑎,𝑘 ≤ min (𝑦𝑎,𝑘+1 : 𝑦𝑎,𝑘+𝑤𝑠𝑖𝑧𝑒

), (3.34)

where 𝑦𝑎 is the filtered acceleration norm using the zero-phase filter with a normalized cutoff

frequency of 0.2𝜋 radians/sample, 𝛿𝑚𝑖𝑛 is the minimum threshold value, and 𝑤𝑠𝑖𝑧𝑒 is the

window length.
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Figure 3-9: The proposed smoothing algorithm-based walking step length estimation frame-
work.
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Let 𝑟 ∈ 𝑅2 be the 𝑥-axis and 𝑦-axis positions of the final walking trajectory, which is

estimated by the proposed smoothing algorithm. Since the 𝑧-axis position is not used in the

walking step length estimation, this information is omitted. The walking step length SL𝑠 is

computed as follows:

SL𝑠 =
⃦⃦
𝑟𝐸𝑛𝑑𝑠 − 𝑟𝑆𝑡𝑎𝑟𝑡𝑠

⃦⃦
, (3.35)

where 𝑆𝑡𝑎𝑟𝑡𝑠 and 𝐸𝑛𝑑𝑠 are the starting and ending indices of the 𝑠-th walking step, respec-

tively.

An overview of the proposed smoothing algorithm-based walking step length estimation

is shown in Fig. 3-9. Also, the parameters used in the proposed algorithm are given in Table

3.1.

Table 3.1: Parameters used in the proposed smoothing algorithm.

Parameters Symbol Values Related Equations

Velocity peak
detection

𝛿𝑡ℎ 0.05
Algorithm 1𝑀𝑠𝑖𝑧𝑒 50

𝑊𝑠𝑖𝑧𝑒 25

Sensor noise 𝑟𝑎 0.005 m/s2
Equation (3.2)

𝑟𝑔 0.001 rad/s

Zero velocity
detection

𝛼𝑎, 𝛼𝑔 1
Equation (3.3)𝛼𝑧𝑒𝑟𝑜 0.1

𝑀𝑧𝑒𝑟𝑜 40

Step detection 𝛿𝑚𝑖𝑛 9.65 m/s2
Equation (3.34)

𝑤𝑠𝑖𝑧𝑒 30

Measurement
noise

𝑠ℎ𝑒𝑎𝑑𝑖𝑛𝑔 0.0076 rad
𝑠𝑖𝑛𝑖𝑡,𝑟 0.0001 m
𝑠𝑖𝑛𝑖𝑡,𝑣 0.0001 m/s

𝑠𝑖𝑛𝑖𝑡,2,𝑣 0.001 m/s
𝑠𝑚𝑜𝑣𝑖𝑛𝑔,𝑟𝑦 0.01 m
𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑥 0.0004 m
𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑦 0.0025 m
𝑠𝑓𝑖𝑛𝑎𝑙,𝑟𝑧 0.0009 m
𝑠𝑓𝑖𝑛𝑎𝑙,𝑣 0.0001 m/s
𝑠𝑝𝑒𝑎𝑘 0.04 m/s
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3.4 Chapter Summary

This chapter has proposed a smoothing algorithm-based approach to estimate the walking

step length using waist-mounted inertial sensors. In our method, the walking trajectory

was estimated by using the smoothing algorithm with known total walking distance. The

constrained optimization problems including a known distance straight-line walking trajec-

tory constraint and a constant speed constraint are used for the smoothing problem. Then

the walking step length was computed based on the pedestrian trajectory and the detected

walking step indexes.

Walking speed and step length estimations are important in the health care context

and the personal navigation system. Using the proposed smoothing algorithm, a walking

speed can be estimated without requiring a sophisticated measurement device. For example,

elderly people can measure their walking speed accurately without visiting the clinic. Since

the walking speed is closely related to the health condition, the walking speed information

can be used to remotely evaluate the health condition. In the personal navigation system

with a wearable inertial sensor, a person-dependent calibration procedure is required to

relate the inertial sensor output and walking step length. The proposed smoothing algorithm

can be used in this calibration procedure by providing accurate walking step length. In

the next chapter, the deep learning-based regression model is applied for estimating the

pedestrian traveled distance, where the proposed smoothing algorithm is used to obtain the

walking step length as the reference label data in the training stage.
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Deep Learning-based Approach for

Walking Distance Estimation

Wearable inertial sensors-based walking distance estimation is one of the important param-

eters in various areas such as pedestrian navigation systems [77], healthcare context [26],

and sports training [78]. Besides, walking step length is a vital component in these appli-

cations, and plays a key role in walking distance estimation accuracy. Besides, the accurate

walking distance and average speed can be used to calculate the total energy expenditure in

our daily life [79]. It can help to evaluate the health condition as well as avoid overtraining

that affects the ability to exercise. Various approaches with additional equipment such as

pedometers or global positioning systems (GPS) have been used to estimate the walking

distance. These methods only provide the total distance traveled and average walking speed

without step parameters. Moreover, the GPS only works in an outdoor environment. On

the other hand, an approach using inertial sensors mounted on the pedestrian’s body pro-

vides step information and also the walking distance. This approach has flexible usage and

does not require special infrastructure.

This chapter introduces a novel regression approach based on deep learning for estimat-

ing the walking distance using inertial sensors attached to the pedestrian’s waist. Walking

step length can be estimated by using supervised learning. However, supervised learning

commonly requires a large amount of labeled training data to achieve better performance. To

tackle this issue, we propose the walking step length estimation method based on condi-

tional generative adversarial network (CGAN) used as a regression model. The CGAN-
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based regression model consists of a generator model for a step length regression task and

a discriminator model for a classification task. Step segmentation is performed to extract

acceleration amplitude data into step segments. These data are applied as additional input

for both generator and discriminator. The generator model aims to generate walking step

length as a label, while the discriminator model aims to classify an input label as either

real or generated. Then, the step length prediction model using the CGAN-based regression

approach is applied to calculate the walking distance.

4.1 Related Work

In the literature on the step length estimation method, several approaches using inertial

sensors have been presented [11, 12]. These step length methods are divided into two

ways: direct methods using the acceleration double integration, and indirect methods using

gait walking models or statistical prediction techniques. In theory, the direct method is

one of the best methods for walking step length estimation. Because this method does

not require any gait model and also does not need personalized calibration or training

procedures. Nonetheless, the noise and bias in the low-cost inertial sensors lead to the

accumulation of integration errors over time. Thus, to reduce this accumulation error,

several assumptions and heuristics have been used in different body-worn sensor cases [80–

82]. For a foot-mounted inertial sensor case [80, 81], zero velocity updates (ZUPT) are used

to reset integration errors when the foot is on the ground during movement. In contrast,

there are almost no zero velocity intervals in one continuous movement when the sensor is

mounted on other parts of the body like the pocket, waist, and wrist. Therefore, indirect

methods are used to solve problems in these cases when direct methods are not suitable.

Many indirect methods that are classified according to the gait walking model or sta-

tistical regression method, have been proposed for walking step length estimation. The

method based on the gait model is to define walking step length expressions using biome-

chanical models [83, 84], empirical relationships [55, 56, 85], and inverted pendulum models

[58, 86, 87]. Another approach is the statistical regression method that uses the relation-

ship between step length and sensor information. There are two main ways of regression

methods: parametric and non-parametric models. The most common and straightforward

way for parametric models is the linear regression method. This method is used to describe
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the linear regression between the step length and walking characteristic features. These fea-

tures are obtained from the inertial sensor data, which is divided into four groups according

to their walking information: step frequency [59, 61], acceleration-based feature [63, 64],

angle-based feature [65, 66], and multiparameter [14, 88]. Non-parametric models are flexi-

ble methods that provide a good fit for the training process. These models generally achieve

more accurate predictions than parametric ones [11], but they require a large number of

labeled training datasets and need to find the best configuration of hyperparameters for

models.

Recently, various methods based on non-parametric models have been proposed to obtain

accurate step length estimation using deep learning approach [22, 68, 89–92]. Hannink et al.

[89] proposed the stride length estimation using deep convolutional neural networks (CNN)

for foot-mounted inertial sensor data. Diaz et al. [90] proposed a deep neural network

(DNN) to estimate step length and step width using six features, which are extracted from

the inertial sensors attached to five positions of the body. This method has comparable

results with the CNN model used in [89], but it needs fewer features and parameters than

the CNN model in the training stage. In [68], the stacked autoencoders were presented to the

step length estimation using accelerometers and gyroscopes from the smartphone sensors.

Similarly, in [91], the long short-term memory (LSTM) network and denoising autoencoders

were proposed to measure stride length. These methods based on the deep learning approach

are called supervised learning, which trains a model from training datasets with their step

lengths used as labels. Besides, Sui et al. [92] proposed self-supervised learning using

the CNN model to predict the stride length of running and walking. This method trains

a pretext task for a large unlabeled dataset using self-supervised learning and then uses

supervised learning to train a downstream task with small labeled datasets. However, the

above supervised and self-supervised learning methods usually require a large amount of

training data (labeled dataset for supervised learning, both labeled and unlabeled datasets

for self-supervised learning) to train the better fit model. The aim of this chapter is to

provide a step length prediction model that uses supervised deep learning with a small

number of training data to estimate the walking distance accurately.

In this chapter, we propose a regression method based on a conditional generative ad-

versarial network (CGAN) for walking distance estimation. Mirza et al. [93] proposed the

CGAN, which is extended version of generative adversarial network (GAN) in [94]. The
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CGAN takes auxiliary information as additional input that is fed to both the generator and

discriminator of the CGAN model. The CGAN has been applied in various fields, including

image-to-image translation [95], face aging [96], clinical diagnosis [97], text recognition [98],

and sensor data generation [99, 100]. In [101], the step length and direction are estimated

using GAN, where domain (sensor position) invariant features and transformation of sensor

data to other domains are proposed. Compared with [101], the proposed method focuses on

accurate step length estimation with reduced training dataset size. Aggarwal et al. [102]

used the CGAN as a regression model to synthetic datasets sampled from heteroscedastic

and multi-modal distributions, and then compared this model with conventional regression

models on some real-world datasets. They have shown that this model can be competitive

with other regression models. From this motivation, we develop a CGAN-based regression

method that aims to generate walking step length and then compute pedestrian distance

traveled. To the best of our knowledge, a CGAN-based regression approach to obtain the

step length prediction model is a novel approach. In our work, we leverage the smoothing

algorithm based on a constrained optimization in the previous chapter to estimate walking

step length at various speed levels using inertial sensors attached to the waist. The con-

strained optimization-based smoothing algorithm is only applied for the training process, in

which the total distance traveled is known. Thus, the estimated step lengths are collected

as labels for the training datasets. The CGAN-based regression model is built using a deep

neural network (DNN), which includes a generator model for a step length regression task

and a discriminator model for a classification task. The acceleration amplitude data is ex-

tracted from the accelerometer output into each step segment, which is used as additional

input for both the generator and discriminator. The step length prediction model is then

used to compute walking distance when the testing dataset is obtained.

4.2 System Overview

4.2.1 System Architecture

The pedestrian uses the inertial sensor unit consisting of accelerometers and gyroscopes

attached to the waist. Fig. 4-1 illustrates the system architecture of our method, mainly in-

cluding three parts: data preprocessing, conditional generative adversarial network (CGAN),

and walking distance estimation.
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Figure 4-1: System architecture of the proposed walking distance estimation method.

In our approach, data preprocessing is firstly applied to generate the walking sensor data

and ground truth data of the step length, which is obtained using a smoothing algorithm for

a waist-mounted sensor case. Subsequently, we use a regression approach based on CGAN

to obtain the step length prediction model. The CGAN consists of a generator model and

a discriminator model. These two models are trained together. Then, a composite CGAN

model using both two models is applied to train and update the weights of the generator via

the discriminator’s classification. Finally, the walking distance is estimated by accumulating

every estimated step length, which is obtained using a step length prediction model.

4.2.2 Sensor System

Fig. 4-2 illustrates the overview system of the waist-mounted inertial sensor unit. It con-

sists of a consumer-grade Xsens MTi-1 sensor unit, a micro secure digital (microSD) card

slot, and a Nordic nRF51822 microcontroller built-in Bluetooth Low Energy (BLE). The

wearable sensor module has a dimension of 40 mm × 30 mm × 10 mm. We use a velcro strip

to mount the sensor module on the pedestrian’s waist. The inertial sensor data is collected

with a sampling rate of 100 Hz and saved to a microSD card for post-processing. Table 4.1
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describes the detailed specifications of inertial sensor unit.

Figure 4-2: Overview system of the waist-mounted inertial sensor unit.

Table 4.1: Xsens MTi-1 sensor specifications.

Specification Accelerometers Gyroscopes
Full range ± 16 g ± 2000 ∘/s
Bandwidth 324 Hz 255 Hz

Noise density 120 𝜇/
√

Hz 0.007 ∘/s/
√

Hz
Sampling rate 100 Hz 100 Hz

4.3 Algorithm Description

In this section, we first present data preprocessing for deep learning. A regression method

based on a conditional generative adversarial network (CGAN) is then described. Finally,

the walking distance is estimated using the step length prediction model.

4.3.1 Data Preprocessing

Step Detection

An essential part of the walking step length estimation method is to determine step events.

The acceleration data exhibits a periodic pattern when the pedestrian is moving. To elim-
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inate the effect of the sensor’s orientation when setting the sensor placement, we use the

amplitude of the acceleration data to detect the walking step events.

Let 𝑎𝑐𝑐𝑘 be the acceleration amplitude at the discrete-time 𝑘 after the gravitational

acceleration subtracted, which is given by

𝑎𝑐𝑐𝑘 =
√︁

𝑎𝑐𝑐2
𝑥,𝑘 + 𝑎𝑐𝑐2

𝑦,𝑘 + 𝑎𝑐𝑐2
𝑧,𝑘 − 𝑔, (4.1)

where 𝑎𝑐𝑐𝑥, 𝑎𝑐𝑐𝑦, and 𝑎𝑐𝑐𝑧 are the components of acceleration along the 𝑥-axis, 𝑦-axis, and

𝑧-axis in the sensor coordinate system, respectively, and 𝑔 is the magnitude of gravitation.

In (4.1), the gravitational acceleration magnitude 𝑔 is subtracted so that 𝑎𝑐𝑐𝑘 is zero when

there is no motion.

Algorithm 2 Step detection method algorithm
Input: Filtered acceleration amplitude 𝑎̄, threshold value 𝛿𝑡ℎ = 0.5, window length 𝑤 = 25.
Output: Step time index 𝑡.

1: Compute the length 𝑁 from the length of 𝑎̄.
2: //Find the maximum peak index (𝑃):
3: for discrete-time 𝑘 from 𝑘 = 𝑤 + 1 to 𝑁 − 𝑤 do
4: if (𝑎̄𝑘 > 𝛿𝑡ℎ) and 𝑎̄𝑘 ≥ max (𝑎̄𝑘−𝑤 : 𝑎̄𝑘−1) and 𝑎̄𝑘 ≥ max (𝑎̄𝑘+1 : 𝑎̄𝑘+𝑤) then
5: 𝑃 = 𝑃 ∪ {𝑘}.
6: end if
7: end for
8: //Find the zero-crossing point (𝑍):
9: for each moment 𝑘 of 𝑁 do

10: if 𝑎̄𝑘−1 < 0 and 𝑎̄𝑘 ≥ 0 then
11: 𝑍𝑘 = 𝑍𝑘 ∪ {1}.
12: else
13: 𝑍𝑘 = 𝑍𝑘 ∪ {0}.
14: end if
15: end for
16: //Find the step time index (𝑡):
17: Compute the number of peaks 𝑁𝑃 from the length of 𝑃 .
18: for each moment 𝑖 of 𝑁𝑃 do
19: 𝑗 = 𝑃𝑖 − 1.
20: while 𝑍𝑗 = 0 do
21: 𝑗 = 𝑗 − 1.
22: end while
23: 𝑡 = 𝑡 ∪ {𝑗}.
24: end for
25: return 𝑡

According to the principle of the walking pattern for the waist-mounted inertial sensors
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case [58], the highest peak (maximum peak) of the acceleration amplitude corresponds to

the lowest position of the waist during a gait cycle (double stance phase). Following a

description of gait events in [86], the instant of foot contact with the ground is detected

when the downward slope of the acceleration signal passing through the zero. Therefore, two

consecutive zero points of the acceleration amplitude data are used to determine a walking

step event. To accurately obtain the walking steps, the step detection method combines the

maximum peak detection with zero-crossing detection.

In order to remove noise and low-frequency acceleration signals, we use a moving average

filter on the acceleration amplitude. The filtered acceleration amplitude (𝑎̄) is calculated as

follows:

𝑎̄𝑛 = 1
2𝑊𝑠𝑖𝑧𝑒 + 1

𝑛+𝑊𝑠𝑖𝑧𝑒∑︁
𝑘=𝑛−𝑊𝑠𝑖𝑧𝑒

𝑎𝑐𝑐𝑘, (4.2)

where 𝑊𝑠𝑖𝑧𝑒 is the window size, and 𝑛 is the sampling point, 𝑛 = {𝑊𝑠𝑖𝑧𝑒 +1, · · · , 𝑁 −𝑊𝑠𝑖𝑧𝑒}

where 𝑁 is the length of the acceleration data. In this study, the acceleration amplitude sig-

nal is filtered with a 15-point moving average filter (that is, 𝑊𝑠𝑖𝑧𝑒 = 7) to reduce noise. Then,

the step time index is detected using Algorithm 2. The values of parameters for the step

detection method are determined through experimental analysis. These parameter values

are applicable for various users and walking speed levels.

An example of a step detection method for walking along a 20-m straight path corridor at

normal speed is illustrated in Fig. 4-3. The solid blue line represents the filtered acceleration

amplitude, while the red circles indicate the maximum peaks of the filtered acceleration

amplitude, and the black diamonds indicate the zero-crossing points. Each step segment is

identified by two consecutive zero-crossing points.

Smoothing Algorithm-Based Walking Step Length Estimation

For the training process, supervised learning requires collecting the ground truth length of

each walking step used as the label data. There are commonly two ways to obtain the ground

truth of step length. The first way is based on the known traveling distance and then divides

this measurement by the number of steps walked [68]. The other one uses more additional

devices to extract the walking step length such as a foot-mounted inertial sensor [91] or

an optical measurement system [92]. This method can present more accurate reference

results. However, the training stage is more complicated and the investigation cost for
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Figure 4-3: The filtered acceleration amplitude during normal speed is represented by the
solid blue line, walking step time indexes are detected by two consecutive zero-crossing
points of the filtered acceleration amplitude.

additional devices, such as an optical measurement system, could be expensive. Therefore,

to obtain the labeled data, we use the constrained optimization-based smoothing algorithm

in the previous chapter to estimate walking step length at various speeds, in which the total

distance traveled is known.

The proposed smoothing algorithm-based walking step estimation consists of three parts

as follows: 1) a smoothing algorithm with a straight-line walking constraint containing

the zero velocity constraints (that is, a pedestrian is standing still events before and after

walking) and the known distance straight-line walking trajectory constraint, which is applied

to generate initial trajectory and then reduce its estimation errors; 2) a robust smoother

based on the constant speed assumption, which is used to improve the accuracy of the

walking trajectory by imposing the constraint at the double stance phase during moving

interval; and 3) a step length estimation method that is used to calculate the length of

each step as the step time indexes are determined. Hence, the walking step length SL𝑠 is

estimated as follows:

SL𝑠 =
⃦⃦⃦
𝑟𝑡𝑠+1 − 𝑟𝑡𝑠

⃦⃦⃦
, (4.3)

where 𝑟 ∈ 𝑅2 represents the position along the 𝑥-axis and 𝑦-axis of the pedestrian trajectory,
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𝑡𝑠 and 𝑡𝑠+1 are the starting and ending time indices of 𝑠-th walking step, respectively, which

are determined using Algorithm 2.

Step Segmentation and Normalization

Once the walking step events are determined, the step segmentation is performed to ex-

tract the acceleration amplitude data into step segments. For the training dataset, each

step segment is labeled with the corresponding ground truth of step length. To obtain a

good quality of the dataset, we remove the initial and final step segments in each training

data. Besides, to avoid false step detection, we remove the step segment if the estimated

walking step length is less than 0.4 m or greater than 1 m. Then, each step data will be

zero padded to a fixed size of 150 samples per step. This number of samples is enough to

cover the length of one step for different walking speeds. Fig. 4-4 illustrates the amplitude

of the acceleration data examples with various speeds after zero padding.
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Figure 4-4: The acceleration amplitude data of the same subject with different walking
speeds.

Finally, the normalization is applied to the acceleration amplitude in the dataset to

avoid an imbalanced input data scale. The acceleration amplitude data is divided with their

maximum value so that all values of data are within the range of [−1, 1]. In our dataset, the

maximum value of the acceleration amplitude data is 15 m/s2, which is used to normalize

the training and testing datasets.
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4.3.2 Regression Approach based on Conditional Generative Adversarial

Network (CGAN)

This section presents a CGAN-based regression approach for the walking step length pre-

diction task. Suppose we are given a training dataset {(𝑥𝑖, 𝑦𝑖)}𝑀
𝑖=1 with 𝑀 samples, where

𝑥𝑖 ∈ 𝑅(1×150) are the preprocessed acceleration data input and 𝑦𝑖 ∈ 𝑅 is the target out-

put. In the regression method, we consider that an output value 𝑦 is given by the model

function 𝑓(𝑥) with additive Gaussian noise, can be defined as [102]:

𝑦 = 𝑓(𝑥, 𝑧), (4.4)

where 𝑧 ∼ 𝑁(0, 𝜎2) is a zero-mean Gaussian random noise with variance 𝜎2 and 𝑓(·) is

modeled using deep neural networks.

Step Length 
Regression

Regression
Layer

Generator

Random Noise

Sensor Data

Real/Fake
Classification

Classification
Layer

Discriminator

Sensor Data

Labels

Generated
Labels

 Generator Model - Step Length Prediction Task

Discriminator Model - Real/Generated Classification Task

Figure 4-5: Framework architecture of the CGAN model.

Fig. 4-5 illustrates the framework architecture of the CGAN model, which consists of a

generator model (𝐺) and a discriminator model (𝐷). The generator model aims to generate a

continuous label distribution 𝐺(𝑥, 𝑧) due to the given sensor information and random noise,

while the discriminator model aims to classify an input label 𝑦 or 𝐺(𝑥, 𝑧) with output a

probability 𝐷(𝑥, 𝑦) or 𝐷(𝑥, 𝐺(𝑥, 𝑧)) to indicate whether it is real (the label drawn from the

dataset) or fake (generated).
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Generator Model for Step Length Regression Task

In the generator model, a deep neural network (DNN) regression is used for a step length

prediction task. The preprocessed acceleration data (𝑥) and the random noise (𝑧) are com-

bined as inputs for this model, where the standard normal distribution 𝑁(0, 1) is used to

generate random noise. The network architecture and parameters of the generator model

are presented in Fig. 4-6. In the generator, we use a dense layer to transform the dimen-

sion of random noise, reduce the sequence of sensor data to the desired feature dimensions,

and then these feature vectors are merged by a concatenate layer. Subsequently, four fully

connected layers are finalized for the regression task. Besides, the hidden dense layers use a

scaled exponential linear unit (SeLU) as the activation function, which solves the vanishing

and exploding gradients problem in neural networks [103]. Also, the LeCun normal initial-

ization is applied for each hidden layer’s weights, which best fits for the SeLU activation

function. The linear activation function is used for the output prediction layer. Since the

CGAN model is 𝐺(𝑥, 𝑧) distributions, it can generate samples of label 𝑦 (that is, walking

step length) for each given sensor data 𝑥.
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input:

output:
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output:

(None, 16)

(None, 1)

SeLU

SeLU

SeLU

Figure 4-6: Architecture and parameters of the generator model.
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Discriminator Model for Classification Task

The discriminator model takes the given acceleration data (𝑥) and the true label (𝑦)

from the training dataset or the generated label 𝐺(𝑥, 𝑧) that is output by the generator

model. They are fed to the deep neural network with the same network structure as the

generator model. However, the discriminator model is designed for the binary classification

task. Therefore, the output layer uses a sigmoid activation function to classify a binary class

label as real or fake (generated). Fig. 4-7 illustrates the network architecture and parameters

of the discriminator model.
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Acc_Input: Dense
input:

output:

(None, 150)
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Label_Input: Dense
input:

output:

(None, 1)
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(None, 128)

Dense_1: Dense
input:

output:

(None, 128)

(None, 32)

Dense_2: Dense
input:

output:

(None, 32)

(None, 16)

Dense_3: Dense
input:

output:

(None, 16)

(None, 8)

Classification: Dense
input:

output:

(None, 8)

(None, 1)

SeLU

SeLU
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Figure 4-7: Architecture and parameters of the discriminator model.

Training Process of the CGAN Model

When the generator model and discriminator model are completely built on the deep neural

networks, the CGAN model combines both of these models to train and update the param-

eter weights of the generator based on the backpropagation of the discriminator. During

training, the generator and the discriminator are trained simultaneously. The discriminator

tries to distinguish generated labels from real labels, while the generator tries to generate

labels that look real enough to mislead the discriminator. Hence, the CGAN training pro-

cess can be formulated as a minimum-maximum optimization problem with the objective
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function 𝑉 (𝜃𝐺, 𝜃𝐷), where 𝜃𝐺 and 𝜃𝐷 are parameters of 𝐺 and 𝐷, respectively [93]:

min
𝜃𝐺

max
𝜃𝐷

𝑉 (𝜃𝐺, 𝜃𝐷) = E𝑥,𝑦∼𝑝(𝑥,𝑦)[log 𝐷(𝑥, 𝑦)]+E𝑥∼𝑝(𝑥,𝑦),𝑧∼𝑝(𝑧)[log(1−𝐷(𝑥, 𝐺(𝑥, 𝑧)))], (4.5)

where 𝑝(𝑥, 𝑦) is the true data distribution, and 𝐷(𝑥, 𝑦) is the probability that 𝑦 with the

given sensor data 𝑥 is a real data. Besides, 𝑝(𝑧) is a prior noise distribution of 𝑧, and

𝐷(𝑥, 𝐺(𝑥, 𝑧)) is the probability that the labels are generated from the generator model. At

the beginning of the learning process, the discriminator can tell the generated labels from

the real labels because they are distinctly different from the training data. Therefore, the

log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))) function saturates for large values. However, when the generator is

well-trained after a while, the log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))) function will be minimized.

Algorithm 3 CGAN-based regression training algorithm
Input: Training dataset with labels: {(𝑥𝑖, 𝑦𝑖)}𝑀

𝑖=1 with 𝑀 samples, epochs = 1000, batch
size 𝑚 = 𝑀

2 , Adam hyperparameters: 𝛼 = 10−4, 𝛽1 = 0.5, 𝛽2 = 0.999.
Output: Trained CGAN-based regression model

1: Build the generator and discriminator networks.
2: for number of training iterations do
3: //Train the discriminator:
4: Sample a batch size of 𝑚 training samples with labels {(𝑥𝑖, 𝑦𝑖)}𝑚

𝑖=1 from the real
dataset.

5: Sample a batch size of 𝑚 noise samples {𝑧𝑖}𝑚
𝑖=1 from the prior noise distribution.

6: Generate a batch size of 𝑚 generated labels {𝐺(𝑥𝑖, 𝑧𝑖)}𝑚
𝑖=1 using the generator model.

7: Update parameters of the discriminator model (𝐷) by ascending its stochastic gradi-
ent using Adam optimizer:

∇𝜃𝐷

1
𝑚

𝑚∑︁
𝑖=1

[log 𝐷(𝑥𝑖, 𝑦𝑖) + log 𝐷(1 − (𝑥𝑖, 𝐺(𝑥𝑖, 𝑧𝑖)))].

8: //Train the generator:
9: Sample a batch size of 𝑚 training samples without labels {𝑥𝑖}𝑚

𝑖=1 from the real dataset.

10: Sample a batch size of 𝑚 noise samples {𝑧𝑖}𝑚
𝑖=1 from the prior noise distribution.

11: Update parameters of the generator model (𝐺) by descending its stochastic gradient
using Adam optimizer:

∇𝜃𝐺

1
𝑚

𝑚∑︁
𝑖=1

log 𝐷(1 − (𝑥𝑖, 𝐺(𝑥𝑖, 𝑧𝑖))).

12: end for
13: return Trained 𝐺 model and 𝐷 model.
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For the training process, we use the Adam optimizer [104] in the generator and dis-

criminator, which has faster convergence than other stochastic optimization methods. The

different learning rates (𝛼) and decay rates (𝜆) are tuned to obtain the best performance. Be-

sides, we train the CGAN model for 1000 epochs with different batch sizes. Through the

experiment (see the details in the studies of Section 5.2.1), we found a learning rate of

10−4, a momentum of 0.5, and a batch size with half of the training dataset size for both

the generator and discriminator to work uniformly well. Also, the performance is improved

as the decay rate is set to 10−4 for the generator and 0 for the discriminator. The discrimina-

tor model adopts binary cross-entropy as a classification loss function. The overall training

procedure of the regression approach based on the CGAN model is shown in Algorithm 3.

4.3.3 Walking Distance Estimation using CGAN-based Regression Model

Walking Distance Estimation

Once the CGAN model is completely built and trained, the step length prediction model

is obtained from the trained generator model. Then, this model is performed to generate

the length of each step when the testing dataset is obtained, but not including labels. In

the testing data, we detect the start and end moving events using a simple zero-velocity

detection. They are combined with the step events to obtain the overall step segments of

the testing dataset. For the CGAN-based regression approach, the walking step length can

be generated with 100 samples for each preprocessed acceleration data. We take the mean

of the generated samples to be the estimated value of walking step length (𝐿̂).

Finally, we compute the total walking distance (𝐷𝑒𝑠𝑡) by accumulating the length of

each step as follows:

𝐷𝑒𝑠𝑡 =
𝑁𝑠∑︁
𝑠=1

𝐿̂𝑠 (4.6)

where 𝐿̂𝑠 represents the estimated step length of the 𝑠-th walking step and 𝑁𝑠 is the total

number of walking steps in the testing experiment.

Performance Evaluation Approach

In this work, we perform a stop criterion for the CGAN training to prevent over-fitting.

This method automatically stops training when the performance of the CGAN model does

not improve on a validation dataset within 100 epochs. Besides, we apply the repeated
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random subsampling validation with 30 iterations to evaluate the performance of the walk-

ing distance estimation using the CGAN-based regression model. This method splits the

training dataset randomly into training and validation datasets for each subject separately.

To ensure the balanced training data distribution with three walking speed levels: slow,

normal, and fast, the data of each speed level are classified using the k-means clustering

algorithm [105] for the estimated walking speeds of each subject. The estimated speeds are

obtained by using the constrained optimization-based smoothing algorithm. In our work,

the k-means clustering algorithm is carried out using MATLAB R2019b to obtain three

clusters of speed data. The results of walking distance estimation are then averaged over

the number of iterations. Also, we use the walking distance relative error and root mean

square error to verify the performance of the proposed walking distance estimation method.

The walking distance relative error (RE) is computed as follows:

RE = |𝐷𝑒𝑠𝑡 − 𝐷𝑡𝑟𝑢𝑒|
𝐷𝑡𝑟𝑢𝑒

× 100%, (4.7)

where 𝐷𝑒𝑠𝑡 and 𝐷𝑡𝑟𝑢𝑒 represent the estimated and actual walking distances, respectively.

The root mean square error (RMSE) is calculated by the following equation:

RMSE =

√︃∑︀𝑊
𝑖=1(𝐷𝑒𝑠𝑡,𝑖 − 𝐷𝑡𝑟𝑢𝑒,𝑖)2

𝑊
, (4.8)

where 𝑊 is the total number of testing data for all subjects, and 𝐷𝑒𝑠𝑡,𝑖 and 𝐷𝑡𝑟𝑢𝑒,𝑖 represent

the estimated and actual walking distances of the 𝑖-th testing data, respectively.

4.4 Chapter Summary

This chapter presented a supervised deep learning-based approach for estimating walking

distance using waist-mounted inertial sensors. To solve supervised learning with a small

number of labeled training data, the CGAN-based regression approach was proposed, which

was comprised of a generator model for a step length regression task and a discriminator

model for a classification task. The step segments were extracted from the acceleration

amplitude data. These data were applied as additional input for both the generator and

discriminator. For the training stage, the ground truth of walking step length was estimated

by using the constrained optimization-based smoothing algorithm. The training datasets
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were obtained from the extracted step segments and the corresponding ground truth of step

length. Once the CGAN-based step length prediction model was completely trained. Then,

the walking distance was estimated based on the step length prediction model when the

testing data was obtained.

The accuracy of smoothing algorithm-based walking step length estimation will directly

affect the performance of the CGAN-based step length prediction model, which is used as

the label data for the training stage. In the next chapter, indoor and outdoor experiments

will be performed to demonstrate the performances of smoothing algorithm-based walking

step length estimation and deep learning-based walking distance estimation.
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Chapter 5

Experimental and Results

5.1 Performance of Smoothing Algorithm-based Human Mo-

tion Estimation

To verify the performance of the proposed smoothing algorithm-based human motion esti-

mation, two experiments are performed in this section. In the first experiment (see Section

5.1.1), a distance sensor system is installed to measure the pedestrian trajectory, which

is used as the reference ground truth. In the second experiment (see Section 5.1.2), five

healthy volunteers are recruited to obtain the 20-m walking data for three different speeds

(slow, normal, and fast speed levels). This experiment is done to compare the walking

step length estimation with the ground truth of each step length. The experiment system

consists of an inertial sensor unit (Xsens MTi-1 sensor unit) mounted on the user’s waist

with a 100 Hz sampling frequency.

5.1.1 Walking Trajectory Estimation Validation Experiment

In this experiment, a person walked along a 20 m straight-line corridor with three different

speed levels (slow, normal, and fast). Each walking speed is repeated three times (that is,

a total of 9 times walking). Meanwhile, the movement of the user’s waist is tracked using

a distance sensor system. The experiment setup is shown in Fig. 5-1. The distance sensor

system consists of a Nordic nRF51-DK board supporting Bluetooth low energy (BLE), an

Arduino Uno board, and two Lidar-lite v3 modules. Besides, the inertial sensor is embedded

with an nRF51822 microcontroller (built-in BLE). We use a laptop with an nRF51 USB
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Dongle to control two systems simultaneously interface via the UART terminal. The Uno

board collects the distance data from two Lidar modules using an I2C communication

protocol. Two Lidar-lite v3 modules are mounted side by side (horizontal to each other) in

the distance sensor system, and the average of two sensors is used as the true trajectory of

the waist. Since the waist position is moved back and forth in the direction of the 𝑦-axis

during walking, while the coordinate system of the distance sensor is fixed and the direction

of laser light coincides with the 𝑥-axis of the world coordinate system. The specifications of

a Lidar-lite v3 module are shown in Table 5.1. Both the inertial sensor and distance sensor

are collected at a 100 Hz sampling frequency.

Figure 5-1: Experiment setup for the walking trajectory estimation validation.

Table 5.1: Lidar-lite v3 specifications.

Specification Measurement

Range 40 m
Resolution ± 1 cm

Accuracy < 5 m ± 2.5 cm

Accuracy ≥ 5 m
± 10 cm

Mean ± 1% of distance maximum
Sampling rate 100 Hz

To evaluate the walking trajectory estimation using the proposed smoothing algorithm,

we compare both the estimations of the position and velocity with the Lidar-based references

in this experiment. Firstly, the estimated positions of a pedestrian using the smoothing

algorithm without and with the constant speed assumption are compared with the reference
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position. This reference is measured from the distance of the sensor system to the user’s

waist when obtaining the walking data.
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(b) 𝑥-axis position errors.

Figure 5-2: Comparison the estimated positions with the reference ground-truth.

An example for the comparison results of the two proposed methods with the reference

position is illustrated in Fig. 5-2. Fig. 5-2a shows the results of 𝑥-axis position estimation

using two proposed methods and the reference method. We can see that these methods give

the accuracy of the final position estimation (after 20 s). However, the estimated position

using the smoothing algorithm without the assumption is not accurate during a moving

interval (see the values from 2.5 to 20 s). Thus, this method result is not good enough

for the walking step length estimation. Meanwhile, the proposed smoothing algorithm is
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a significant improvement, which gives the result almost similar to the reference position.

We also show the comparison errors of 𝑥-axis position estimation using two methods in

Fig. 5-2b. The figure shows that the proposed smoothing algorithm gives smaller errors

when the constraints are imposed. As can be seen, most of the position errors are less than

0.1 m.

We compare the estimated velocity results of a pedestrian using the two proposed meth-

ods with the reference velocity. This velocity is calculated from the derivative of eighth-order

spline approximation [106] of Lidar distance data.

(a) 𝑥-axis velocity.

(b) 𝑥-axis velocity errors.

Figure 5-3: Comparison the estimated velocities with the reference ground-truth.

To illustrate the estimated velocity comparison of the example in Fig. 5-2, we show the
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comparison results of 𝑥-axis velocity estimation using the two methods with the reference

velocity in Fig. 5-3. Fig. 5-3a shows that the smoothing algorithm without the assumption

gives inaccurate results in the middle of the moving interval. Since there is no constraint

for the velocity, it is difficult to avoid the larger error in this interval. In contrast, the

proposed smoothing algorithm using the constant speed assumption has the trajectory of

𝑥-axis velocity almost similar to the reference velocity. However, the velocity peaks be-

tween the two methods have a bit different. This is probably diving into the fact that the

reference velocity is estimated from the numerical derivation of Lidar distance data. Since

the spline function is a low-pass filter whose bandwidth depends on the control parameters,

the reference velocity is a low-pass filtered result. Fig.5-3b shows the comparison errors

of 𝑥-axis velocity estimation using two methods. We can see that the proposed smoothing

algorithm with the assumption is better than without the assumption.

Table 5.2: RMSE of the estimated position and velocity using the proposed algorithm
without and with constant speed assumption.

Walking ID
Position RMSE (m) Velocity RMSE (m/s)
Without

assumption
With

assumption
Without

assumption
With

assumption

1 0.4099 0.0793 0.1310 0.1047
2 0.3356 0.0560 0.1410 0.1007
3 0.3490 0.1505 0.1520 0.1257
4 0.3534 0.0748 0.1915 0.1576
5 0.2714 0.1017 0.1777 0.1441
6 0.2949 0.0832 0.1243 0.1115
7 0.4103 0.0801 0.2079 0.1308
8 0.2517 0.0524 0.1734 0.1209
9 0.4179 0.1121 0.2273 0.1344

Mean 0.3438 0.0878 0.1696 0.1256

Finally, we compare the root mean square errors (RMSE) of 𝑥-axis position and velocity

estimations for different walking data, which are given in Table 5.2. These walking data

are numbered from 1 to 9 (walking ID = {1-3}: slow speed, {4-6}: normal speed, and

{7-9}: fast speed). As we can see, the estimation errors using the proposed algorithm with

a constant speed assumption are significantly smaller than those without the assumption.

Although the walking speed is assumed to be zero at the beginning and the final, the
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speed estimation during the moving interval could be very large. The constraint prevents

this divergence. Thus the position and velocity estimation errors are further reduced by

imposing the constant speed constraint. The averages of the position and velocity RMSEs

using the proposed algorithm with the assumption are 0.0878 m and 0.1256 m/s respectively,

which are better than the smoothing algorithm without the assumption.

5.1.2 Walking Step Length Estimation Validation

In this experiment, five healthy volunteers are asked to walk along a 20 m straight-line

corridor (15 times) at three different speeds: slow (5 times), normal (5 times), and fast (5

times). Each participant chooses a preferred walking speed level to conduct the experiment.

To evaluate the walking step length estimation accuracy, the average step length is used

as the ground truth of each step length. This average step length is computed by the total

walking distance divided by the total number of walking steps. The walking step length

estimation error between the proposed method and the average step length is computed.

Fig. 5-4 shows the mean relative error (MRE), mean absolute error (MAE), and RMSE of

each subject for three walking speed levels. We can see that the performance metrics of

each subject have small errors. The averages of MAE and RMSE for three walking speed

levels are almost similar and smaller than 0.05 m.

Figure 5-4: Performance metrics (MRE, MAE, and RMSE) of the proposed method-based
walking step length estimation.
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We compare the estimation errors of walking step length using the smoothing algorithm

without and with constant speed assumption as shown in Fig. 5-5. This figure shows the

comparison errors of five subjects using two methods for three walking speed levels. We

can see that both methods tend to give better results when increasing walking speed. This

is due to the shorter walking time for fast walking. If the walking time is shorter, the

integration error becomes smaller and the estimation performance improves. The proposed

smoothing algorithm with the constant speed assumption gives smaller errors than with-

out the assumption. The average MAEs of five subjects using this method are 0.0301 m,

0.0184 m, and 0.0183 m corresponding to slow, normal, and fast speed cases, respectively.

Likewise, the average RMSEs for three walking speed levels are 0.0377 m, 0.0241 m, and

0.0251 m, respectively. Furthermore, the average of MRE is 0.6801% for all walking data.

Therefore, these results demonstrate the usefulness of the walking step length estimation of

our proposed method.

Figure 5-5: Comparison of walking step length estimation errors using the smoothing algo-
rithm without and with constant speed assumption at different speed levels.

60



Chapter 5. Experimental and Results

5.2 Performance of Deep Learning-based Walking Distance

Estimation

In this section, the data preprocessing is carried out using MATLAB R2019b to obtain

the training and testing datasets. The CGAN-based regression model is then implemented

and trained using TensorFlow 2.3.0 [107] for the walking distance estimation method. To

verify the performance of the deep learning-based walking distance estimation method, two

experiments are performed. The first experiment is to evaluate the estimation accuracy of

walking distance using the CGAN-based regression model. The effectiveness of hyperparam-

eter tuning is also considered. In this experiment, we recruited twenty healthy volunteers

whose information is shown in Table 5.3. To compare the proposed method with other state-

of-the-art methods, an extensive rectangular test in the outdoor environment is performed

in the second experiment.

Table 5.3: Twenty subjects information.

User Gender/Age Height/Weight User Gender/Age Height/Weight

1 M/33 170/72 11 M/30 168/68
2 M/30 160/51 12 F/26 156/45
3 M/28 170/78 13 M/33 168/59
4 M/31 171/77 14 F/27 153/60
5 M/27 170/69 15 F/26 162/48
6 F/29 152/47 16 M/36 160/66
7 F/26 154/45 17 M/27 180/75
8 M/28 170/65 18 M/33 158/72
9 M/25 167/63 19 M/27 172/74
10 M/32 174/76 20 M/33 165/65

M: Male, F: Female; height in (cm) and weight in (kg).

5.2.1 Walking Distance Estimation Validation

In this experiment, twenty participants were asked to collect data using the inertial sensors

attached to the waist (see Fig. 5-6). To obtain the labeled datasets for the training stage,

participants walked along a straight path corridor of 20 m length in three various speed

levels such as slow, normal, and fast. Each walking speed level was repeated five times (a

total of 15 times walking). For collecting the testing data, participants were then asked to
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walk along a straight path of 80 m length at mixed walking speed levels repeated twice.

The participants choose their preferred speeds to perform the experiments. To guarantee

that the participants walk along a straight path within the actual walking distance, we

draw a straight line with a ruler, and then they complete the experiments on this line.

Each participant is advised to walk a straight line and if not he/she will be asked to walk

again. Table 5.4 shows the detailed descriptions of the training and testing data from 20

participants.

Inertial sensor
module

START

Figure 5-6: Experimental setup: an inertial sensor module is mounted on the user’s waist
(left) and an indoor environment is designed to collect the training and testing data (right).

Table 5.4: Descriptions of collected data from twenty subjects.

Usage Walking speed Length (m)
Number of

walking data
Number of

step segments

Training
data

Slow 20 100 3156
Normal 20 100 2988

Fast 20 100 2390
Testing

data
Mixed 80 40 4896

Effect of Different Hyperparameter Tuning Methods

We consider the hyperparameter tuning for the proposed method to obtain the best per-

formance. The hyperparameters are searched and selected for the generator model (𝐺) and

discriminator model (𝐷) as given in Table 5.5. To investigate the effect of different hyperpa-
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rameters on the CGAN-based regression model, we compare the performance of the walking

distance estimation with different hyperparameters such as learning rates and decay rates

for Adam optimizer, or batch sizes and dimensions of noise for the training procedure.

Table 5.5: Hyperparameter tuning for generator and discriminator models.

Hyperparameter Search Range
Selected Value

Generator Discriminator

Optimizer {SGD, RMSprop, Adam} Adam Adam
Learning rate, 𝛼 {10−4, 2 × 10−4, 10−3, 2 × 10−3} 10−4 10−4

Momentum, 𝛽1 {0.5, 0.9} 0.5 0.5
Decay rate, 𝜆 {0, 10−4, 10−3, 10−2} 10−4 0
Batch size, 𝑚

(ratio to size of
training dataset)

{1/10, 1/5, 1/4, 1/3, 1/2, 1} 1/2 1/2

Noise
distribution

{Normal, Uniform} Normal -

Dimension of
noise, 𝑧

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 1 -

In our work, the CGAN-based regression approach is trained with two training datasets

to obtain the step length prediction models: one is using the training datasets of all subjects

to train a general model, which is called a universal model; the other is using the individual

training dataset to train a personal model for each subject, which is called a personalized

model. In this subsection, we only use the training dataset of each subject with 300 step

segments to obtain the personalized model. The performance comparison between these

two models will be presented later.

Fig. 5-7 illustrates the RMSE of the proposed method in different learning rates (𝛼) and

decay rates (𝜆). For the graph above of Fig. 5-7, we tune the Adam optimizer with different

learning rates of {10−4, 2 × 10−4, 10−3, 2 × 10−3} for the generator and discriminator. Also,

the decay rate and batch size are set to 0 and 100, respectively. Other hyperparameters are

chosen as default values in Table 5.5. Similar to the graph below of Fig. 5-7, the decay rates

of {0, 10−4, 10−3, 10−2} are tuned, and other hyperparameters are fixed with learning rate

of 10−4 and batch size of 100. As can be seen, the average of RMSE values is the smallest

when the learning rate is set to 10−4 for both the generator and discriminator. Besides,

the RMSE values are improved as the decay rates are suitably selected. If the decay rate
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is used with the values of 10−4 for the generator and 0 for the discriminator, the average

RMSE is the smallest.

Figure 5-7: RMSE of the proposed method in different learning rates (top) and decay rates
(bottom). The first and second rows of the 𝑥-axis data label represent the value of the
learning rate (𝛼) and decay rate (𝜆), respectively, for the generator (𝐺) and discriminator
(𝐷).

Figure 5-8: RMSE of the proposed method in different batch sizes (top) and dimensions
of the noise (bottom). Batch size is set to ratio {1/10, 1/5, 1/4, 1/3, 1/2, 1} of the training
dataset size, which is used with 300 step segments.

Next, we study the effect of different batch sizes and dimensions of noise on the proposed

method. The batch size is determined by the size of the training dataset. Interestingly, the
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RMSE values are smaller when the batch sizes are increased as shown in Fig. 5-8. However,

when the batch size is equal to the size of training data (also called batch gradient descent),

the RMSE does not change significantly. Besides, Fig. 5-8 shows that the RMSE does not

improve as we increase the dimension of noise from 1 to 10. From these results, we choose

the hyperparameters as given in Table 5.5.

Usefulness of Different Amounts of Training Data Used

To demonstrate the performance of the proposed method with a small amount of training

data, we use the repeated random subsampling with 30 iterations to split the training

dataset randomly into training and validation data for each subject separately. The training

data are split incrementally from 10 to 100 percent of the dataset and ensured a balanced

data distribution with three walking speed levels. These data are applied to train the

CGAN-based regression model. Then, the testing dataset is used to estimate the pedestrian

walking distance.

Figure 5-9: Walking distance estimation error using different amounts of training data used.
The red squares and length of error bars indicate the mean and standard deviation of the
estimated walking distance for all subjects, respectively.

Fig. 5-9 illustrates the error bars of the walking distance estimation with different

amounts of training data used. The average value and standard deviation of the esti-

mated walking distance for all subjects are represented by the red square shapes and the
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length of error bars, respectively. Besides, the error bar graph is shown as a curve with the

number of samples used. The figure shows that the proposed method achieves small errors

with a small number of samples since the error gradually converges as the ratio reaches 30

to 40 percent. Also, it just improves slightly as more samples are used. This implies that

the regression model is well-trained when the training dataset is sufficient with 5 walking

data (33.33% of 15 walking data).

Walking Distance Estimation Accuracy

In this subsection, firstly, we compare the regression approach based on our CGAN model

with a basic deep neural network (DNN) model. The basic DNN model is built in the layers

and adopts the hyperparameter tuning method in the same way as the generator model.

The hyperparameters of the basic DNN model are used for the Adam optimizer with the

learning rate (𝛼) of 10−4, the momentum (𝛽1) of 0.9, the decay rate (𝜆) of 10−3, and batch

size with one-third of the training dataset size. Besides, the basic model uses the mean

squared error as a loss function instead of binary cross-entropy. For the training process,

we take the number of training data to be in {30, 60, 120, 240, 300} samples.

The comparison results of 80 m walking distance estimation using our CGAN model

and a basic DNN model are given in Table 5.6. In Table 5.6, the average values, standard

deviation (STD), mean relative error (MRE), and RMSE over 30 repeated random subsam-

pling are computed from the estimated walking distances of 20 subjects. We can see that

the results of the proposed method using the CGAN model are always more accurate than

those using the basic DNN model. This implies that our method using supervised learn-

ing with a CGAN-based regression model is a better way to solve the supervised learning

on a small number of training data. When the number of training data is very small (30

samples), the CGAN model has significantly better than the basic DNN model, where the

MRE values are 1.11% and 1.43%, respectively. Besides, with the increase in training data

size greater than 120 samples, the estimation accuracy of both the basic DNN and CGAN

models has little improvement. When the training data are used with 300 samples, the

MRE and RMSE using the CGAN model are 0.74% and 0.75 m, respectively, which are

smaller than the proposed method using fewer samples.

Subsequently, we compare the performance of the proposed method with the DNN

model using different features. This DNN model is comprised of four fully connected layers,
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Table 5.6: Performance comparison of walking distance estimation using basic DNN and
CGAN models.

Training dataset size
(number of step segments)

Evaluation metrics Model
Basic DNN CGAN

30
Average ± STD (m) 80.06 ± 1.49 79.86 ± 1.12

MRE (%) 1.43 1.11
RMSE (m) 1.49 1.13

60
Average ± STD (m) 80.05 ± 1.35 79.86 ± 0.99

MRE (%) 1.28 0.97
RMSE (m) 1.35 1.00

120
Average ± STD (m) 80.12 ± 1.28 79.90 ± 0.84

MRE (%) 1.20 0.82
RMSE (m) 1.29 0.84

240
Average ± STD (m) 80.16 ± 1.25 79.89 ± 0.76

MRE (%) 1.14 0.75
RMSE (m) 1.26 0.77

300
Average ± STD (m) 80.15 ± 1.23 79.86 ± 0.74

MRE (%) 1.12 0.74
RMSE (m) 1.24 0.75

Figure 5-10: Comparison of RMSE between different regression methods.

where the network has three hidden layers of five neurons each and one output layer. The

activation function for each layer and hyperparameters are used in the same way as the basic

DNN model. The learning rate of Adam optimizer is set to 𝛼 = 10−3 instead of 𝛼 = 10−4

67



Chapter 5. Experimental and Results

as the basic DNN model. The input of the DNN model is two feature vectors extracted

from the acceleration data. One feature vector includes 8 common features: the mean,

median, standard deviation, skewness, kurtosis, energy, zero-crossing rate, and maximum

peak in the frequency domain. Another feature vector includes 15 features: step frequency,

maximum and minimum values, range, variance, and two high-order features proposed by

Weinberg [55] and Kim et al. [56], in addition to the 8 common features. Fig. 5-10 illustrates

the performance comparison of the walking distance estimation using different regression

methods. As can be seen, the proposed method using the CGAN-based regression model

achieves better results than the basic DNN model and the DNN model with commonly-used

features. As we increase the number of features, the accuracy of the estimation results using

the DNN model can be improved. However, it needs a complicated feature selection method

to obtain better performance.

Finally, we compare the usefulness of the walking distance estimation using the universal

and personalized models. Recall that a combination data of 20 subjects is used to train

the universal model. Fig. 5-11 illustrates the estimation errors of 20 subjects using the

proposed method with two models. We can see that the results using the universal model

give larger errors than those using the personalized model. These large errors are probably

due to differences in pedestrians’ characteristics and their step lengths.

Figure 5-11: Comparison of RE using the universal and personalized models.

68



Chapter 5. Experimental and Results

5.2.2 Comparison With Other Conventional Methods

To verify the performance of the proposed walking distance method, we conduct an extended

experiment in the outdoor environment. Five of the twenty participants were chosen to walk

along the path of a rectangular football field, in which the acceleration data is collected for

the testing dataset. Each participant was asked to walk three times around the football field

at three various walking speed levels (such as slow, normal, and fast), which is illustrated in

Fig. 5-12. This walking data is repeated twice. The total walking distance of three rounds

on the field is 1281.42 m.

Figure 5-12: Walking along the path of a rectangular on the football field.

We compare the performance of our method using the personalized model with the

conventional methods, including an empirical relationship proposed by Weinberg [55], the

linear regression between step length and walking features proposed by Shin et al. [14]

and Guo et al. [63], and other methods based on deep learning such as the DNN model

proposed by Diaz et al. [90] and the CNN model proposed by Hannink et al. [89]. These

methods are implemented in the same training and testing datasets as our method with 30-

repeated random subsampling validation. Besides, for a fair comparison, we also apply the

preprocessed sensor data to the CNN model presented in [89] and the basic DNN model built

in the same way as the generator model. The hyperparameter tuning method in Section 5.2.1

is applied in the CNN model. We use the Adam optimizer with the learning rate of 10−4,

the momentum of 0.9, the decay rate of 10−3, and batch size with one-third of the training

dataset size. Also, all weights are initialized by the truncated normal distribution with the

standard deviation of 0.01, and biases are initialized from 0.01 on each layer of the CNN

model.
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Table 5.7 shows the comparison results of walking distance estimation using our method

with other conventional methods, in which the average values, STD, MRE, and RMSE over

30 repeated random subsampling are computed from the estimated walking distances of

5 subjects. As shown in Table 5.7, the MRE and RMSE using the CGAN model with

different training data sizes give the smallest errors compared to the estimation errors of

other methods. We can see the proposed method using the training data size from 120 to 300

samples achieve an accurate estimation with an average error of 0.88% (11.28 m). Among

these conventional methods, when the amount of training data is increased from 30 to 300

samples, the CNN model performs better than other methods. This is because the CNN

model uses a large number of parameters for the training stage. Besides, the DNN model

of our method and the DNN model presented in [90] can give comparable results with the

CNN model but both DNN models need fewer numbers of parameters. On the other hand,

when we increase the training data size, the estimation results using the commonly-used

methods, consisting of the Weinberg model [55], the linear model presented by Shin et al.

[14] and Guo et al. [63], have little improvement. In summary, these results prove that the

proposed method using the CGAN-based regression model effectively achieves the walking

distance estimation accuracy with a small number of training data and outperforms other

conventional methods.

To compare the computational complexity of the proposed method with other state-of-

the-art methods, we compute the total number of parameters and the computation time

for the training and testing phases. In the CGAN model, the total number of parameters

is 20673 for the generator model and 14593 for the discriminator model. The proposed

method was implemented in Python and conducted on a personal computer equipped with

an Intel Core i7-8700 CPU at 3.20 GHz and a memory of Samsung DDR4 16 GB. Table. 5.8

shows the total number of parameters and the total computation time of the training and

testing phases of 5 subjects for different neural network models on the training and testing

datasets. The training dataset size is used with 300 step segments for each subject. Also,

the testing data is collected from the total number of walking data of 5 subjects (the average

of total step segments for each subject is about 1908 steps per testing dataset). Since the

CGAN model takes time to train both the generator model and discriminator model in

parallel, the training time of the proposed method for 5 subjects is about 399.01 s (≈79.80

s per subject), which is more than other neural network models. Once the CGAN model is
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trained, the running time of prediction is quite fast (0.52 s for 10 testing datasets), which

is comparable to other DNN models and is less than the CNN model.

Table 5.8: Comparison of computational complexity.

Method Testing data
Total

parameters
Training
time (s)

Testing
time (s)

DNN proposed by
Diaz et al. [90]

19085 step
segments

from
5 subjects

57 46.15 0.55

CNN proposed by
Hannik et al. [89]

1541153 289.18 1.93

Basic DNN 12289 57.85 0.56

CGAN
35266

(20673 + 14593)
399.01 0.52

5.3 Chapter Summary

In this chapter, the performance results of the smoothing algorithm-based human motion es-

timation and the deep learning-based walking distance estimation have been shown. Indoor

and outdoor experiments were performed to evaluate the different proposed methods.

For the smoothing algorithm-based human motion estimation, two experiments in an

indoor environment were done to evaluate the proposed algorithm. The first experiment

showed the results of 20 m walking trajectory estimation using the smoothing algorithm.

The accuracy of x-axis position and velocity estimations were also validated. The second

experiment verified the walking step length estimation accuracy of our proposed algorithm.

The walking data were obtained from five subjects for three walking speed levels (slow,

normal, and fast speeds). The average RMSE of five subjects’ overall walking data was 0.03

m. Also, the performance of walking step length estimation was an average of 99.32%. Be-

sides, the proposed smoothing algorithm with the constant speed assumption was compared

with the smoothing algorithm without the assumption, where it was shown the proposed

algorithm with the assumption was superior to those without the assumption.

For the deep learning-based walking distance estimation, two experiments were carried

out to verify the performance of the proposed method, which consists of an 80 m straight

path corridor and a rectangular path on the football field with a total distance of 1281.42
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m. The experimental results demonstrated that the proposed method using small labeled

datasets achieved an average accuracy of 99.23% for straight paths and 99.12% for rect-

angular paths. The effectiveness of different hyperparameters and different amounts of

training data used for the CGAN-based regression model were studied, including learning

rates and decay rates for Adam optimizer, or batch size and dimensions of noise for the

training process. Besides, the performance of the proposed method was compared with

the state-of-the-art methods, where the comparison results showed the proposed method

outperformed existing commonly-used methods.
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Conclusions and Future Work

6.1 Conclusions

In this dissertation, we study the inertial navigation algorithm and deep learning approach

for human movement measurement using wearable inertial sensors, where the sensor is

mounted on the position of the human body. The wearable inertial sensors-based human

movement measurement method is focused in two ways. Firstly, with the achievements

of applying pedestrian navigation systems in practice, we are motivated to develop an in-

ertial navigation algorithm using the optimization-based smoothing algorithm for human

motion tracking, where the assumptions and constraints are imposed to reduce the accumu-

lation of integration errors. Secondly, a popular deep learning-based approach that uses the

CGAN-based regression model to generate the length of walking steps for the walking dis-

tance estimation method, where the constrained optimization-based smoothing algorithm

is applied to obtain the ground truth of step length used as the label data in the training

process.

Chapter 2 introduces the standard smoothing-based inertial navigation algorithm for

human motion tracking with wearable inertial sensor data. We apply an indirect Kalman

filter and the optimization-based smoothing algorithm for human motion tracking. These

methods use the inertial sensor data including accelerometer and gyroscope outputs to

estimate the attitude, velocity, and position of the human body that combine zero velocity

updating (ZUPT) to reduce the accumulation of errors. Due to a limitation of the algorithms

for low-cost inertial sensors-based human motion tracking in a long distance or period, we

propose a constrained optimization-based smoothing algorithm to improve the accuracy of
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human motion estimation in Chapter 3, where the inertial sensor is attached to the waist

and the total walking distance is known. Two main constraints are used in the proposed

smoothing algorithm: a known distance straight-line walking trajectory constraint and a

constant speed constraint.

After developing the smoothing algorithm for estimating the walking step length used

in the training stage, we propose a deep learning approach with a CGAN-based regression

model for walking distance estimation in Chapter 4. The CGAN-based regression model is

built using a deep neural network (DNN), which consists of a generator model for a step

length regression task and a discriminator model for a classification task. The acceleration

amplitude data is extracted from the accelerometer output into each step segment, which is

used as additional input for both the generator and discriminator. The step length predic-

tion model is then used to compute walking distance when the testing dataset is obtained.

To evaluate the performances of smoothing algorithm-based walking step length estima-

tion and deep learning-based walking distance estimation, indoor and outdoor experiments

are performed in Chapter 5. According to the evaluation results, the proposed smooth-

ing algorithm for walking trajectory and step length estimation gives small errors. Also,

the proposed algorithm shows better performance than the standard smoothing algorithm

without the constant speed constraint. Besides, the performance results of deep learning-

based walking distance estimation demonstrate that the proposed method outperforms the

existing commonly-used methods. Therefore, we conclude that the proposed methods are

highly suitable for human movement measurement using wearable inertial sensors.

6.2 Future Work

The accuracy of the smoothing algorithm-based walking step length estimation is the key

issue of the deep learning-based walking distance estimation, which is used as the reference

label for the training stage. However, the approach requires a user to walk along a straight

path with a known traveling distance at a constant speed. Besides, the proposed methods

are used in an offline manner.

In future research, we will investigate how to automatically obtain the training dataset

and train a deep learning-based step length estimation model during daily normal walking,

then predict the user’s step length and walking distance in real-time applications.
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