
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

Doctor of Philosophy 

 

 

 

 

Routing Protocols in Opportunistic Mobile Social Networks 

Based on Human Behavior Pattern Detection 

 

 

 

 

 

 

 

The Graduate School of the University of Ulsan 

Department of Electrical, Electronic and Computer Engineering 

DUONG VAN ANH DAT 

  



 

Routing Protocols in Opportunistic Mobile Social Networks 

Based on Human Behavior Pattern Detection 

 

Supervisor: Prof. Seokhoon Yoon 

 

 

A Dissertation 

  

Submitted to  

the Graduate School of the University of Ulsan 

In partial Fulfillment of the Requirements 

for the Degree of 

 

Doctor of Philosophy 

 

by   

Duong Van Anh Dat 

 

Department of Electrical, Electronic and Computer Engineering 

University of Ulsan, Korea 

June 2022 

 



 

 

  



 

 

 

 

 

Dedicated to 

My beloved wife, son, parents, parents-in-law, sisters, and brothers, … 



Acknowledgments

First, I would like to express my heartfelt gratitude to my advisor, Prof. Seokhoon Yoon

of the Department of Electrical, Electronic and Computer Engineering, University of Ulsan,

for his excellent guidance and support throughout my studies. As a result of his critical

comments and suggestions, I have learned how to do successful research and have accumu-

lated a wealth of valuable knowledge. Without his advice and guidance, none of my work

would have been possible.

Additionally, I would like to express my gratitude to the committee members for review-

ing my thesis and providing insightful comments that assisted me in improving the quality

of my thesis.

I would like to thank my parents, parents-in-law, sisters, brothers, and friends for their

encouragement and inspiration during the period of my studies. I also thank my research

colleagues in the Advanced Mobile Networks and Intelligence Systems Laboratory, who

always give me useful comments and fun memories.

Last but not least, I thank my beloved wife and son for their endless love, patience, and

support during my stay at the University of Ulsan.

1



Abstract

With the increasing number of smart device users, a network architecture called opportunis-

tic mobile social network (OMSN) is gaining attention. OMSNs have been used in a variety

of applications, such as environmental monitoring, intelligent transportation systems, and

public safety. However, routing in OMSNs is a challenging problem due to the frequent

disconnection between nodes and the absence of paths from the source to the destination.

It results in a complex topology and a low packet transmission success rate. Therefore,

this thesis studies routing protocols in OMSNs. Specifically, a human mobility model that

generates human movements is first designed. Then, a temporal social interaction-based

routing protocol is developed, and the proposed human mobility model is used to validate

the performance of this routing protocol. Finally, we extend our work by studying a hu-

man location prediction model and proposing a human location prediction-based routing

protocol.

First, human movement patterns are important for validating the performance of routing

protocols. Several traces of human movements in real life have been collected. However,

collecting data about human movements is costly and time-consuming. Moreover, multiple

traces are demanded to test various network scenarios. As a result, a lot of synthetic mod-

els of human movement have been proposed. Nevertheless, most of the proposed models

were often based on random generation, and cannot produce realistic human movements.

Although there have been a few models that tried to capture the characteristics of human

movement in real life, those models still cannot reflect realistic human movements due to

a lack of consideration for social context among people. To address those limitations, we

propose a novel human mobility model called the social relationship−aware human mobility

model (SRMM), which considers social context as well as the characteristics of human move-

ment (e.g., flights, inter-contact times, and pause times following the truncated power-law

distribution). SRMM partitions people into social groups by exploiting information from a

social graph. Then, the movements of people are determined by considering the distances

and social relationships.

In the second part of this work, we design a routing algorithm called the temporal social

interactions-based routing protocol (TSIRP) for solving challenges in OMSNs. First, we

focus on the temporal context of social interactions. Specifically, at a certain time of the day,

a person usually interacts with specific people (e.g., workers usually meet co-workers during
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working hours; students usually meet their classmates during class). Based on temporal

social interactions between nodes, potential forwarding metrics are proposed and calculated

for each time of the day to make forwarding decisions. Second, we propose a new scheme

to control the message spreading rate, which allows achieving a balance between delivery

latency and overhead ratio. In addition, an analytical model is also designed using an

absorbing Markov chain to estimate the performance of TSIRP. SRMM is used to generate

human movements for evaluating the performance of TSIRP.

In the third part of this work, a specific scenario for transmitting data in urban sensor

networks is studied and a human location prediction-based routing protocol (HLPRP) is

proposed for this network model. Specifically, a human location prediction (HLP) model is

designed to estimate the location of mobile nodes. The proposed HLP model is based on a

recurrent neural network with long short-term memory cells. The movement history of each

person is used in the HLP model to predict their future locations. Then, using predicted

location information from the HLP model, packet delivery predictability is obtained. Packet

delivery predictability represents the possibility that a node will deliver a packet to its

destination and is used to select optimal relay nodes to maximize the packet delivery ratio,

minimize the packet delivery cost, and reduce delivery latency. In addition, the proposed

routing protocol also considers social strength for relay selection.

Simulations on a synthetic map and a real road map are considered to evaluate SRMM.

The results of SRMM are compared with a real trace and other synthetic mobility models.

The obtained results indicate that SRMM is consistently better at reflecting both human

movement characteristics and social relationships. Then, using the generated human move-

ments from SRMM, we conduct experiments with different parameters to validate TSIRP.

Simulations on real traces (e.g., UB datasets) are used to evaluate HLPRP. The evaluated

results show that TSIRP and HLPRP can achieve better performance than existing routing

protocols.
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Chapter 1

Introduction

1.1 Human Movement Pattern

Human movement patterns greatly affect the performance of various wireless networks, such

as opportunistic mobile social networks (OMSNs), which rely on human movement for pair-

wise contacts between two communicating devices. Therefore, in order to fully validate such

networks, various realistic human movement patterns should be considered. Unfortunately,

collecting real-life human movements in various situations is highly time consuming and

costly, and it may be infeasible at a very large scale (e.g., citywide or countrywide). That

leads to a limited number of available real traces. Therefore, synthetic models for human

movement generation are mostly used.

As a result, a lot of synthetic models have been proposed. For instance, the Markovian

waypoint model [1] and the random direction model [2] have been used for a long time. A

major disadvantage of those models is that they are based on purely random generation of

human movement. Thus, the context in real life (e.g., people usually visit their friends, and

the places people visit are related over days) were not considered. That causes significant

disagreement between the output of mobility models and human movements in the real

world.

Recently, several studies have seriously analyzed real human movement traces and found

interesting human movement characteristics where flights, inter-contact times (ICTs), and

pause times follow truncated power-law distributions [3,4]. Inspired by these studies, a few

mobility models, such as the self-similar least action walk (SLAW) [5] and the working day

movement model [6], studied to capture human movement characteristics. However, such

models did not consider the social context among people. Therefore, they could not fully
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Chapter 1. Introduction

reflect human movement in real life.

Social relationships among people are an interesting way to construct mobility models

(e.g., community-based mobility model (CMM) [7], home-cell community-based mobility

model (HCMM) [8]). Such models consider social context. For example, people prefer to

visit places where many of their friends are staying. However, those models did not take into

account human movement characteristics, such as flights, ICTs, the radius of gyration, and

pause time distributions. Additionally, selecting the destinations of people is only affected

by their social ties without considering important contexts (e.g., in real life, the places an

individual visits during different day trips are correlated, and people tend to visit nearby

places). For those reasons, such models could not reflect realistic human movement.

To reflect realistic human movement, a mobility model needs to consider both human

movement characteristics and the social context between people.

1.2 Proposed Human Mobility Model

In order to address the limitations in existing models and reflect realistic human movements,

we propose a novel human mobility model called the social relationship−aware human mobil-

ity model (SRMM), which takes into account social relationships among people and human

movement characteristics.

Specifically, SRMM considers the characteristics of human movements in terms of flights,

ICTs, the radius of gyration, and pause-time distributions. A flight is defined as a Euclidean

distance between two consecutive spots visited by an individual. Spots are the geographic

positions in which a person stays for longer than a certain amount of time. Studies have

shown that the distribution of flights follows truncated power-law distributions [3, 4]. ICT

represents the time elapsed between two successive contacts for a given pair of people.

Freeman investigated real-life human movements and reported that the ICTs of people in

real life can be reproduced in truncated power-law distributions [9]. The next characteristic

is the radius of gyration, which indicates the spatial extent of a person’s trajectory during

an observation period. According to work by Gonzalez et al. [3], the radius of gyration

can also be modeled by truncated power-law distributions. Finally, pause time (the sojourn

time of a person in one spot) was analyzed [4, 10]. The obtained results demonstrated that

pause times during movement have truncated power-law distributions. SRMM captures the

truncated power-law distributions of flights, ICTs, the radius of gyration, and pause times.

In SRMM, the social characteristics of humans are also considered. Our model takes
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Chapter 1. Introduction

a social graph as input, which represents the relationships among people, followed by a

clustering algorithm that partitions people into social groups. Each social group represents

a community in the real world, such as a family, a class, or a football team. Then, spots to

be visited by people are generated and grouped into places, i.e., a place (e.g., a mall) consists

of multiple spots (e.g., clothing stores, the cafeteria, and restrooms). We use the observation

that people in the same community usually visit similar places. For instance, the members

of a football team often visit the same places, such as the stadium, the canteen, and the

dressing rooms. SRMM chooses a group of frequently visited places for a social group. As a

result, the people in a social group will have the same frequently visited places. Then, each

person chooses frequently visited spots from frequently visited places.

Our model also considers scenarios where people sometimes visit a new place (different

from places other members in the same social group visited) by adding randomly visited

spots for each person at the beginning of each day. The frequently visited spots and the

randomly visited spots for a person are defined as candidate spots.

During daily trips, each person selects destinations from his/her candidate spots. To

select destinations, human movement properties and social relationships are considered.

In SRMM, a person selects a destination based on the distance from the person’s current

location and the number of social acquaintances they have (i.e., people from the same

social group) in those places. Specifically, a place that is a shorter distance away and that

accommodates a larger number of social acquaintances has a higher probability of being

visited. The detailed description of SRMM will be presented in Chapter 3.

1.3 Routing Protocol in Opportunistic Mobile Social Networks

In recent years, because of the evolution of mobile communication technologies, people can

easily access a lot of useful information through smart devices such as smartphones and

tablets, which gradually became an integrated part of people’s daily life. This strongly

promoted the development of opportunistic mobile social networks (OMSNs) [11–13], which

consist of human-carried mobile devices that exchange data with each other via short-range

wireless communications. The major advantage of OMSNs is that it requires a low cost

and does not rely on any infrastructure. In the application of opportunistic mobile social

networks [14, 15], user experience is the most important. However, the connection between

nodes is intermittent due to nodes’ mobility in OMSNs, and delivering messages becomes a

challenging issue. Therefore, a lot of routing protocols have been proposed to address this
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Chapter 1. Introduction

issue.

A lot of routing protocols for transferring data between nodes in OMSNs have been

studied [16–22]. For example, several routing methods use the flooding strategy [16, 17].

However, with the flooding strategy, messages are immediately spread when there are con-

tacts between nodes. As a result, those routing protocols consume a lot of resources and

have a high network overhead ratio. To minimize overhead, the number of replications was

limited in [18]. Nevertheless, this routing protocol did not take into account optimal relay

selection. Therefore, low mobility nodes can be selected to forward messages, resulting in a

low packet delivery ratio and long delivery latency. In [19–21], nodes that recently encoun-

tered the destination are preferred for selection as relay nodes. However, in a real context,

two individuals may often meet in the present moment, but their next meeting may occur

in the distant future. For example, family members frequently interact in the morning but

do not meet until the evening. As a result, the optimal relay nodes may not be chosen, and

those routing protocols may not achieve high network performance.

To address limitations in the existing routing protocols in relay selection, which causes

high delivery cost (𝐷𝐶), a long packet delivery latency (𝑃𝐷𝐿), and a low packet delivery

ratio (𝑃𝐷𝑅), we first design a routing algorithm based on the temporal social interactions.

Then, we propose a routing protocol based on human location prediction.

1.4 Proposed Routing Protocols

1.4.1 Temporal Social Interactions-Based Routing Protocol

In this section, we introduce the temporal social interactions-based routing protocol (TSIRP).

TSIRP is considered with general scenarios for exchanging messages between nodes in OM-

SNs. Under TSIRP, the movement history of the nodes is looked at, and temporal social

interactions are used to get possible forwarding metrics (PFMs). These metrics are then

used to choose relay nodes. Specifically, for each time of day, the chances that two nodes will

meet are estimated based on information from the past when they met each other. Then,

based on the encounter probabilities and inter-contact time between nodes, three PFMs are

determined, which are the expected delivery delay, the number of time slots to satisfy the

meeting probability condition, and the mean value of inter-contact time.

Moreover, under TSIRP, the message spreading rate is controlled based on the state

of the message in order to achieve a balance between 𝑃𝐷𝐿 and 𝐷𝐶. Specifically, when
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a message has just been generated, it should be quickly spread to increase the number of

copies in the network, which leads to lower latency. After the message has spread enough,

the message spreading rate should be decreased to reduce 𝐷𝐶. Based on the forwarding

token and the residual lifetime of the message, in our work, a metric called the spreading

rate control value is proposed to adjust the message spreading rate. Specifically, when the

forwarding token is large (i.e., only a few copies are in the network) and the residual lifetime

of a message is long, the message is quickly forwarded to neighboring nodes via broadcast

without performing relay selection. When the forwarding token is low (i.e., sufficient copies

are in the network) and the residual lifetime of the message is short, the node only forwards

the message to selected relay nodes, i.e., the message spreading rate is decreased. Chapter

4 will describe TSIRP in details.

1.4.2 Human Location Prediction-Based Routing Protocol

In this section, we first introduce a network model based on OMSNs, and then the human

location prediction-based routing protocol (HLPRP) that is proposed for routing messages

in this network is briefly summarized.

Specifically, mobile crowdsensing (MCS)-based urban sensor networks are considered.

This model includes a server center, edge nodes, sensors, and mobile users. It can be used in

a variety of urban-sensing applications, such as environmental monitoring [23,24], intelligent

transportation systems [25,26], and public safety [27]. Mobile users collect data using sensors

in their smart devices. Sensors are deployed in certain places to capture data such as air

pollution, radioactivity, noise level, and humidity. Edge nodes are placed in particular

locations to gather and preprocess data from sensors and mobile users. Then, edge nodes

send processed data to the server center, where it is used for a variety of applications.

The server center communicates with edge nodes using an infrastructure-based wired or

wireless network. For communication between other components (i.e., edge nodes, sensors,

and mobile users), the wireless interfaces (e.g., Bluetooth 5.0) are used without the need for

an infrastructure network. The primary benefit of this network is that it is cost-effective.

However, that requires an effective routing protocol to transfer data between edge nodes,

sensors, and mobile users.

In this thesis, we also propose a human location prediction (HLP)-based relay selection

model that uses a recurrent neural network (RNN) with long short-term memory (LSTM)

cells [28]. RNNs have emerged as a potential model for processing sequential data in a
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variety of applications, such as time-series prediction, video tagging, speed recognition,

and generating image descriptions. However, RNNs suffer from both gradient vanishing

and gradient explosion problems with long sequences of input. Therefore, we use LSTMs to

overcome the problem. A RNN with LSTM cells contains states that enable them to process

variable-length sequences of input. In other words, those states are capable of capturing

historical information from an arbitrary length of the context window. In the proposed

HLP model, the movement histories of mobile users in current and previous time slots (e.g.,

mobile users’ identities, mobile users’ positions, the time slot of the day, the day of the week)

are used to predict their positions in the next several time slots with high accuracy. Note

that edge nodes are deployed in specific locations in MCS-based urban sensor networks, and

packet destinations are among the edge nodes. Packet delivery predictability is calculated

based on the probability that a mobile node will visit an edge node’s position. A mobile

node with a high probability of meeting an edge node during a certain time slot has a high

value for packet delivery predictability to that edge node. Packet delivery predictability

represents the possibility that a node will deliver a packet to its destination.

In addition, the social relationships between nodes are taken into account based on

their movement histories. Two nodes have high social strength if they interact frequently

over a long period of time. Finally, the human location prediction-based routing protocol

(HLPRP) for mobile crowdsensing-based urban sensor networks is designed based on a HLP-

based relay selection and social strengths between nodes. More specifically, the proposed

routing algorithm has two phases. When a packet is generated, the proposed forwarding

algorithm quickly spreads a limited number of copies of the packet throughout the network

in the first phase. Then, optimal relay nodes are selected to forward the packet based on

packet delivery predictability and social strength in the second phase. The details of HLPRP

are presented in Chapter 5.

1.5 Thesis Organization

The rest of this dissertation is organized as follows. First, Chapter 2 discusses related works.

Then, Chapter 3 describes SRMM in more detail. Chapter 4 discusses TSIRP in more detail.

The detailed description of HLPRP is presented in Chapter 5. Finally, in Chapter 6, we

conclude this work by summarizing our contributions and discussing future work.
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Related Works

2.1 Human Mobility Model

2.1.1 Real Mobility Traces

Real human movements are mostly recorded from opportunistic contacts between people

using wireless devices in small areas, such as offices, conferences, and campuses. In recent

years, several real traces have been collected [29–34]. Rhee et al. [29] used Garmin GPS

60CSx handheld receivers to collect human movements from five different sites (i.e., campuses

of North Carolina State University, Korea Advanced Institute of Science and Technology,

New York City, Disney World, and the North Carolina state fair). McNett and Voelker,

[30] used 300 wireless handheld PDAs running Windows CE to record WiFi access point

information over 11 weeks. Scott et al. [31] released a dataset that included five trace sets

of Bluetooth sightings by groups of people carrying iMote devices. In Sensible DTU [32],

1, 000 smartphones were distributed to participants who volunteered for the study. Custom

software is installed on each smartphone to record useful data (e.g., location, Bluetooth

scans, WiFi scans). Olgu et al [33] collected the locations of 39 employees in an IT call

center at Chicago from March 23rd, 2007 to April 17, 2007. In [34], the data of 35 students

(15 students participate and they detected also 20 external devices) are gathered for 7 days

on the campus of the University of Calabria.

However, the collection of human movements in real life is infeasible on a very large

scale and is not flexible enough for configuring a network. It also takes a lot of resources,

such as time, money, and human effort. These reasons have resulted in a limited number of

available real traces. As a result, numerous synthetic models were studied to overcome the

limitations. To make movements that are similar to how people move in real life, the model
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needs to take into account things like pause times, flights, the radius of gyration, and ICTs

and link them to the social relationships of people.

2.1.2 Synthetic Mobility Models

In early works, most mobility models were based on pure random generation of movements

[1,2]. In the Markovian waypoint mobility model [1], people randomly selected destinations

and pause times. The random direction model [2] randomly chooses directions of human

movements. Most parameters are based on random generation without consideration of

social relationships and human movement characteristics. Therefore, such models lack the

regular patterns shown in daily human walks.

There are several mobility models based on human movement characteristics [5,6,35–39].

For instance, in SWIM [38], the human movement characteristics are considered and the

truncated power-law distribution of ICTs is produced. In SLAW [5], spots are generated

in the area and grouped into places. Then, each person selects a list of places and picks

several spots in these places to visit. Selection of destinations is based on distance from the

person to those spots. A spot with at a shorter distance has a higher probability of being

selected. SLAW produced truncated power-law distributions of flights, ICTs, and pause

times. In SMOOTH [35], them park mobility model [36] , and urban context aware mobility

model [37], they also considered truncated power-law distributions of flights, ICTs, and pause

times, whereas in the working day movement model [6], contact time and ICT distributions

closely followed the ones found in traces from real-world measurement experiments. Royer

et al. [39] analyzed national household travel survey data [40] to generate streets, avenues,

and addresses in the simulation area. At the beginning of the trip, each person has an

agenda that covers all day-long activities for the person. Each item on the agenda indicates

when, where, and what activity the person is going to participate in. However, these models

lacked consideration for the social context in human movement. Therefore, they could not

completely approximate realistic human movements.

Inspired by social context, several mobility models were studied [7, 8, 41–43]. At first,

studies were based on simple contexts, as done in CMM [7] and HCMM [8]. In CMM,

the simulation area is divided into a number of sub-areas, and people are grouped into

communities by using social relationship information. Then, each community is randomly

associated with a sub-area. The attractiveness of each sub-area is determined by the current

number of people in that area. HCMM retains the social model in CMM and improves on
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it by adding a new concept: the home cell of each person. Specifically, the attractiveness

of the home cell to home cell owners is maintained. In CMM and HCMM, selection of

destinations is only affected by social relationships, which lack many regular patterns of

human movements in real life (e.g., people are attracted by popular places and prefer visiting

nearby places). In the sociological orbit aware location approximation and routing mobility

model (ORBIT) [41], places are randomly generated in the given area, and then each person

is assigned to a subset of places. A person moves around the assigned places and selects

the next destination at random. As a result, the visited places for different people are

not correlated, and visited places for people in real life are not considered to reproduced.

Therefore, realistic human movement patterns cannot be presented.

In order to more accurately approximate the social context, in the sociological interaction

mobility for population simulation model [42], a person’s decision to move to a place is

separated into two modes. The socialize mode is the movement toward acquaintances, and

the isolate mode is intended for an escape from undesired situations. In particular, if the

number of individuals in a person’s current location is within a preset comfort range, the

person will feel comfortable in this place and will be in socialize mode. By contrast, if the

number of individuals in that place exceeds the comfort range, the person will be in isolate

mode. Yang et al. [43] proposed a mobility model in which a person can belong to overlapping

communities and a difference of communities in each time period. Then, each community

is randomly associated with a set of places, and people randomly select destinations to

visit from associated places. Those models do well in capturing the social characteristics of

people. Unfortunately, they still have limitations due to a lack of consideration for human

movement characteristics.

Our human mobility model addresses the limitations in the existing models. It reproduce

characteristics of human movement (i.e., the distributions of flights, ICTs, radii of gyrations,

and pause times all follow power-law distributions), and reflect the social context of human

movement.

2.2 Routing Protocol

2.2.1 Flooding-based Routing Protocols

The flooding technique was used in a number of routing protocols [16, 17]. Under those

routing protocols, messages are spread throughout the network as widely as possible. There
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is a high𝐷𝐶 because nodes continually replicate messages for newly found contacts that have

not yet processed a copy of the messages. To reduce 𝐷𝐶, several studies [18,44,45] restricted

the number of times a message was replicated. However, a method to quickly spread copies

of packets throughout the networks was not considered in those protocols. Moreover, those

other routing protocols did not take into account the importance of selecting optimal relay

nodes. As a result, messages could be forwarded to nodes that rarely interact with the

destination. That results in a low 𝑃𝐷𝑅 and high latency. To overcome this issue in our

routing protocols, a method to quickly spread replications throughout the network and the

selection optimal relay nodes are considered.

2.2.2 Position-based Routing Protocols

Several studies have been proposed based on the physical positions of nodes [46–49]. Specif-

ically, the physical distances between nodes are used to select a node for forwarding. A

node with a shorter distance to the destination is preferred as a relay node. However, the

distances between nodes do not much affect the probability that a node will encounter the

destination in the future. Therefore, the possibility of delivering messages to the destina-

tion is low. Unlike those studies, TSIRP analyzes the social interactions between nodes to

estimate the probability that a node will encounter the destination in the future, whereas

HLPRP uses a human location prediction model based on a RNN to estimate whether a

node will meet or not meet the destination in the future.

2.2.3 Social-based Routing Protocols

A number of routing protocols have been inspired by social interaction between nodes

[21, 50–55]. For instance, in [50], nodes are divided into communities, and packets were

only forwarded to nodes belonging to the destination’s community. In the BUBBLE Rap

routing protocol [51], network communities were determined by 𝐾-clique algorithm. The

local ranking of a node refers to the node’s betweenness centrality in its community, whereas

the global ranking refers to the node’s betweenness centrality with all other nodes in the

network. A message is routed to nodes that have a higher ranking. Until a node in the

destination’s community is found, global ranking is used. After that, local ranking is used.

Under the social energy–based routing (SEBAR) routing protocol [52], a social metric based

on node encounters (called social energy) is presented. A node that frequently encounters

other nodes has higher social energy. The forwarding strategy is similar to the bubble rap
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routing protocol [51]. The social energy of a node in the network and the social energy

of a node in its community are used as the global ranking and the local ranking, respec-

tively. In [21], a community-based opportunistic routing protocol (CORP) is proposed. The

network communities are determined and a communication probability value between two

communities is defined. A community has a high community probability with another com-

munity if nodes in the community frequently meet nodes in the other community. Then,

if the source and the destination are in the same community, a node with high delivery

predictability and high energy is selected as a relay; otherwise, nodes in the destination’s

community and nodes in the communities, which have higher community probabilities with

the destination community, are selected. However, forming communities is challenging in

those routing protocols since a node must have all the information on all other nodes.

In [53–55], relay selection was based on centrality metrics. Specifically, packets were routed

to nodes with a greater centrality value. Nevertheless, forwarding a large number of mes-

sages to central nodes results in congested traffic and long delays around those nodes. To

resolve those issues, TSIRP focuses on social interactions between nodes with the destination

and HLPRP focuses on probability of meeting the destination, instead of using centrality

measurements. In other words, a relay node is more specifically chosen in our proposed

routing protocols. Based on that, traffic congestion and delays can be avoided.

2.2.4 Encounter History-based Routing Protocols

Based on nodes’ encounter histories, a number of routing protocols were proposed [19, 20,

56–59]. In [20, 56], delivery predictability was proposed based on encounter history. This

value indicates how likely a node will be able to send a message to the destination. If a node

encounters another node with a higher value for delivery predictability to the destination, the

node replicates the message. Under [19,57–60], delivery predictability was also used for relay

selection. Furthermore, those protocols control and limit the number of replications to reduce

𝐷𝐶. These routing protocols’ metrics (e.g., delivery predictability) could represent how

frequently two nodes have interacted in the recent past. However, they cannot estimate when

the two nodes will encounter each other in the future. Two nodes may interact frequently

in the present, but their next contact may happen in the distant future. For example, two

students frequently meet each other in the morning when they attend the same class but

do not meet again until the next morning. Therefore, the delivery predictability might be

high at present, but the two nodes might not meet in the near future. As a result, optimal
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relay nodes might not be selected, and the routing protocols are unable to achieve high

performance.

In [61], the social network is detected from the history of encounters between nodes. In

the detected social network (DSN), the link between two nodes exists if they encounter each

other. The degree centrality of nodes is obtained on the DSN graph. Moreover, the friendship

information between nodes on online social networking websites, such as Facebook, LinkedIn

is used to calculate tie strength between two nodes. The tie strength between two nodes is

the number of online social networks where they are friends. The interest of nodes is also

collected and used to form an interest network where there is a link between two nodes if

they have at least one common interest. The number of common neighbors over the total

neighbor of two nodes in the interest network is considered as the link predictor between

them. Based on the degree centrality, the tie strength, and the link predictor, a metric is

proposed for relay selection. A node with a higher value of relay selection metric is preferred

to become a relay node. In [62], the history of encounters is also used to obtain DSN graphs

for each time slot of a day, in which the weight of links is the number of contacts between

nodes in a time slot. In addition, they define a dynamic online social network (DOSN), in

which there is a link between two nodes if they are online friends (e.g., Facebook friends)

and the weight between two nodes is calculated based on common interest and the number

of encounters between them in a time slot. Two nodes with a lot of common interest and

a larger number of encounters have a stronger weight. From the DSN graph and DOSN

graph, weighted degree centralities are obtained for nodes. Based on those weighted degree

centralities, the temporal fused degree centrality is proposed. A node with high values of

weighted degree centralities has a high value of the temporal fused degree centrality. The

forwarding strategy is based on the bubble rap routing protocol [51] with the temporal fused

degree centrality, which is used as the ranking of nodes. Under those protocols, to determine

network communities, a node needs to know information about all the other nodes in the

network. That is difficult. The friendship information on online social networking websites

and the interest of nodes are helpful information for routing. However, in a large network

size such as urban sensor networks, it is also hard to require a node to know the interest of

all other nodes and share their personal information with other nodes. Moreover, when the

centrality measurements such as degree centrality are used for relay selection, central nodes

are preferred to be selected as relay nodes. It may be effective when the network traffic is

low. However, for the high network traffic, forwarding a lot of messages to central nodes
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leads to long delays and congested traffic around those nodes.
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Social Relationship-Aware Human

Mobility Model

3.1 Preliminaries

In this section, the terms used in the human mobility model are presented. First, Kullback-

Leibler (KL) divergence [63], Kolmogorov-Smirnov (K-S) test [64], and weighted mean rel-

ative difference (WMRD) [65], which measure the similarity between two distributions, is

described. Then, the model selection criteria (i.e., the Akaike information criterion [66] and

the Bayesian information criterion [66]) are considered.

3.1.1 Kullback–Leibler Divergence

In order to measure how a probability distribution diverges from another distribution, Kull-

back et al. [63] introduced KL divergence. This value can show the directed divergence and

can measure the distance between two probability distributions. A lower value for KL di-

vergence indicates that two distributions are more similar. Let 𝑃 and 𝑄 be two probability

distributions. The KL divergence of 𝑄 from 𝑃 is denoted as 𝐷𝐾𝐿(𝑃 ||𝑄).

For discrete probability distributions 𝑃 (𝑖) and 𝑄(𝑖), 𝐷𝐾𝐿(𝑃 ||𝑄) is defined as follows [67]:

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑖

𝑃 (𝑖)log
𝑃 (𝑖)

𝑄(𝑖)
(3.1)

In practice, it may incur a log of zero. To avoid this, all probabilities have a small positive

constant added.
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3.1.2 Kolmogorov-Smirnov Test

Two-sample K-S test [64] is used to measure the similarity between two distributions of two

data samples. Let 𝑋 and 𝑌 be the two given data samples. The cumulative distribution

function of 𝑋 and 𝑌 are denoted as 𝐹𝑥(𝑖) and 𝐹𝑦(𝑖), respectively. 𝐻 denotes the K-S

statistic. 𝐻 is defined as:

𝐻 = 𝑚𝑎𝑥𝑖|𝐹𝑥(𝑖)− 𝐹𝑦(𝑖)| (3.2)

ℎ0 is a null hypothesis that data sample 𝑋 and data sample 𝑌 come from the same distri-

bution. 𝜇 defines a significance level. For a given 𝜇 value, a critical value can be obtained

from a table in [64]. Let 𝐻𝜇 be the critical value for level 𝜇. If 𝐻 ≤ 𝐻𝜇, ℎ0 is accepted

at significance level 𝜇. The maximum value of significance level 𝜇, which still satisfies the

condition 𝐻 ≤ 𝐻𝜇, is defined as 𝑃 value. In other words, if 𝜇 ≤ 𝑃 , ℎ0 is accepted. 𝑃 value

can show the possibility that two samples come from the same distribution. A higher 𝑃

value means that distributions of two data samples are more similar.

3.1.3 Weighted Mean Relative Difference

Weighted mean relative difference (WMRD) [65] is used to compare the difference between

two probability distributions. Let 𝑃 and 𝑄 be two probability distributions. WMRD be-

tween 𝑃 and 𝑄 is defined as follow:

𝑊𝑀𝑅𝐷 =

∑︀
𝑖 |𝑃 (𝑖)−𝑄(𝑖)|∑︀
𝑖

𝑃 (𝑖) +𝑄(𝑖)

2

(3.3)

WMRD value presents the difference between two probability distributions. A higher

WMRD value means that two probability distributions are more different. In other words,

two probability distributions are more similar if WMRD between them is low.

3.1.4 Model Selection Criteria

We assume that there are a given dataset and a set of models. Then, model selection criteria

can be used to find the best model to match the given dataset. In this paper, we use the

Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

To calculate AIC and BIC, maximum likelihood estimation (MLE) [68] is used first to

find an estimator that maximizes the likehood function [68]. Let 𝐷 be the given data set.

A model has probability distribution 𝑓 by unknown parameter 𝜆, which could be a vector.
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𝐿(𝜆|𝐷) denotes the likehood function of the model with data 𝐷. 𝐿(𝜆|𝐷) is defined as:

𝐿(𝜆|𝐷) =
∏︁
𝑖∈𝐷

𝑓(𝑖|𝜆) (3.4)

MLE finds an estimator 𝜆̂ that maximizes the likelihood function.

� AIC is the model selection criterion established by a relationship between KL diver-

gence and MLE. The quality of the models is estimated by AIC values. A lower AIC

value indicates that the model is a better fit to the given data. Let us define the

number of estimated parameters to be 𝑛𝜆. The AIC is calculated as:

𝐴𝐼𝐶 = −2log(𝐿(𝜆̂|𝐷)) + 2𝑛𝜆 (3.5)

� BIC is another model selection criterion based on information theory but set within

Bayesian context. The model with the lowest BIC is preferred. Let 𝑛𝐷 be the number

of data samples in 𝐷. BIC is defined as:

𝐵𝐼𝐶 = −2log(𝐿(𝜆̂|𝐷)) + 𝑛𝜆log(𝑛𝐷) (3.6)

3.2 The Proposed Human Mobility Model

In this section, the model for SRMM is presented. Then, SRMM is described in four phases.

In phase 1, people are partitioned into social groups by using information from a social

graph. In phase 2, we describe how spots are generated and grouped into places. The

candidate places and the candidate spots are selected in phase 3. Finally, in phase 4, the

destination spots for people are determined.

3.2.1 Model

In our problem, human movements are reproduced in a considered area. In this area, we

assume there is a set of places, S𝑃 = {𝑃𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝑃 }, where 𝑛𝑃 is the number of places.

Each place, 𝑃𝑖, consists of multiple spots. Let the set of spots in the considered area be

S𝑠 = {𝑠𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝑠}, where 𝑛𝑠 is the number of spots. In other words, place 𝑃𝑖 is an area

(e.g., mall, park, or hotel) that includes a set of spots. A spot, 𝑠𝑖, is a staying point on the

map, such as a clothing store in a mall, or a bench in a park.
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Among all people, social relationships exist that affect human movements. We partition

people into social groups that represent realistic communities, such as groups of friends,

families, and football teams. Each group includes people, who have close relationships. In

the considered area, we denote the set of people as S𝑢 = {𝑢𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝑢} and the set of

social groups as S𝐺 = {𝐺𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝐺}, where 𝑛𝑢 and 𝑛𝐺 are the number of people and

the number of groups, respectively. Several regular patterns are usually present in human

movements. For example, people tend to visit their friends and visit popular places where

there are many spots. Each individual prefers to visit certain places, rather than other

places.

Table 3.1: Definitions of sets.

Notation Meaning

S𝑃 = {𝑃𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝑃 } The set of places

S𝑠 = {𝑠𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝑠} The set of spots

S𝑢 = {𝑢𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝑢} The set of people

S𝐺 = {𝐺𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝐺} The set of social groups

S𝑢𝐹𝑃 The set of frequently visited places for person 𝑢

S𝑢𝐹𝑆 The set of frequently visited spots for person 𝑢

S𝑢𝑅𝑃 The set of randomly visited places for person 𝑢

S𝑢𝑅𝑆 The set of randomly visited spots for person 𝑢

S𝑢𝐶𝑃 = S𝑢𝐹𝑃 ∪ S𝑢𝑅𝑃 The set of candidate places for person 𝑢

S𝑢𝐶𝑆 = S𝑢𝐹𝑆 ∪ S𝑢𝑅𝑆 The set of candidate spots for person 𝑢

3.2.2 Phase 1: Human Grouping

In this phase, a clustering algorithm is utilized to detect social groups in a social graph,

which is provided as input.

The social graph illustrates the strengths of closeness among people. The strength of

social closeness between two people is assumed to be in the range [0,1]. Figure 3-1 shows an

example of a social graph with 10 people (𝑢1, 𝑢2, ..., 𝑢10). The strength between 𝑢1 and 𝑢2
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Figure 3-1: The social graph

equals 0.79, whereas the strength between 𝑢5 and 𝑢10 equals 0.05. There is no connection

link between 𝑢5 and 𝑢8. This implies that the strength is 0. The social graph can also be

presented as a matrix where the entries are the closeness strengths among the people.

For detection of social groups in the input social graph, we use a spectral clustering

algorithm [69]. The spectral clustering algorithm is simple to implement in practice and

usually outperforms traditional algorithms such as the K-means algorithm [70]. Recall

that 𝑛𝐺 is the number of social groups, and 𝑛𝑢 is the number of people. By using the

spectral clustering algorithm, people who have strong relationships will be grouped in a

social group. From 𝑛𝑢 people, 𝑛𝐺 social groups are generated. Specifically, the spectral

clustering algorithm utilizes the social matrix and 𝑛𝐺 as the inputs. Based on the social

matrix, a Laplacian matrix is constructed by using a symmetric normalized technique [71].

After that, we calculate the set of eigenvectors for the Laplacian matrix. Then, people

are represented in a lower-dimensional space, R𝑛𝑢×𝑛𝐺 , which is formed by the first 𝑛𝐺

eigenvectors that correspond to the 𝑛𝐺 lowest eigenvalues. At the final step of the spectral

clustering algorithm, the K-means algorithm is used on this data space to obtain social

group set S𝐺 = {𝐺𝑖|1 ⩽ 𝑖 ⩽ 𝑛𝐺}. Each social group 𝐺𝑖 includes a set of people.

Figure 3-2: The social groups

An example of the clustering result is shown in Figure 3-2. We obtain social group set
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S𝐺 = {𝐺1, 𝐺2, 𝐺3} from the social graph, where 𝐺1 includes 𝑢1, 𝑢2, 𝑢3; 𝐺2 includes 𝑢4, 𝑢5,

𝑢6, 𝑢7; and 𝐺3 includes 𝑢8, 𝑢9, 𝑢10.

3.2.3 Phase 2: Generation of Spots

In this phase, spots in S𝑠 are generated in the area and then grouped into places. Lee et

al. [72] reported that visited spots of human in real life can be reproduced as fractal spots.

This means that people always tend to gather in popular places, which conforms to contexts

in real life, such as homes, parks, schools, and workplaces. In order to generate fractal spots,

SRMM utilizes the bursty spot model (BSM) [72]. From real trace data [29], the real-spot

distribution for New York City is shown in Figure 3-3(a), and an example of a synthetic

map obtained by using BSM is displayed in Figure 3-3(b). As shown in the figures, the

dispersion of spots on the synthetic map is similar to the real map.
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(a) New York City real map.
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(b) The synthetic map generated by BSM.

Figure 3-3: The dispersions of spots on the map.

After generating a synthetic map with fractal spots, the set of places, S𝑃 = {𝑃𝑖|1 ⩽

𝑖 ⩽ 𝑛𝑃 }, is formed by grouping spots in circles with radius 𝑟 in meters. For example, in

order to form place 𝑃𝑖, a spot is selected as the center of place 𝑃𝑖. To select the center spot,

spots are considered one by one in increasing order of X-coordinates of spots. In the case

that X-coordinates of spots are equal, spots in increasing order of Y-coordinates of spots

are considered. If a spot does not belong to any places, it will be selected as the center spot

of place 𝑃𝑖. Then, spots, which are within a radius of 𝑟 meters from the center spot and do

not belong to any places, will be grouped into place 𝑃𝑖. In this way, place 𝑃𝑖 includes a set
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of spots within a range of 𝑟 meters. The selection of 𝑟 value is based on the transmission

range of wireless personal area networks.

3.2.4 Phase 3: Selection of Candidate Places and Candidate Spots

In this phase, each social group is associated with a set of places. The associated places are

called frequently visited places. Then, each person in the same social group selects a set of

spots from their frequently visited places to obtain their frequently visited spots. Let 𝐺 be

a social group in S𝐺 and 𝑢 be a person in 𝐺. The set of frequently visited places and the

set of frequently visited spots for person 𝑢 are denoted as S𝑢𝐹𝑃 and S𝑢𝐹𝑆 , respectively.

In addition, at the beginning of each day trip, each person newly selects another place

as a randomly visited place, then picks several spots in this place as randomly visited spots.

Let S𝑢𝑅𝑃 = {𝑅𝑃 𝑢} be the set of randomly visited places for person 𝑢, where 𝑅𝑃 𝑢 is the

randomly visited place of person 𝑢. The set of randomly visited spots of person 𝑢 is denoted

S𝑢𝑅𝑆 .

On a day trip, S𝑢𝐶𝑃 = S𝑢𝐹𝑃 ∪ S𝑢𝑅𝑃 is the set of candidate places for person 𝑢, and

S𝑢𝐶𝑆 = S𝑢𝐹𝑆 ∪ S𝑢𝑅𝑆 is the set of candidate spots for person 𝑢.

The operation of this phase is presented in three steps as follows:

� Step 1: Selecting frequently visited places

People in a social group often visit the same places. That is a common context in real

life. For example, a group of friends usually visits the same mall, park, and restaurant.

In SRMM, each social group is associated with several places called frequently visited

places. Accordingly, people in the same social group have the same frequently visited

places. We define random variable x as the number of frequently visited places selected

for a social group. Let 𝐴 be a place in S𝑃 , and 𝑛𝐴
𝑠 denotes the number of spots in place

𝐴. Let 𝑃𝐺,𝐴 be the probability that social group 𝐺 selects place 𝐴 as a frequently

visited place. 𝑃𝐺,𝐴 is calculated as:

𝑃𝐺,𝐴 =
(𝑛𝐴

𝑠 )
𝜃∑︀

𝑖∈S𝑃 (𝑛
𝑖
𝑠)

𝜃
(3.7)

where 𝜃 (𝜃 > 0) is a parameter that adjusts the effect of the number of spots in selecting

frequently visited places. Eq. (3.7) indicates that a place with more spots has a higher

probability of being selected. That agrees with the context in real life whereby most

people prefer visiting popular places with more popularly visited points, rather than
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unpopular places. A higher 𝜃 also implies that several places with more spots will

be frequently selected by social groups. In contrast, a lower 𝜃 value will reduce the

possibility that different social groups will select the same frequently visited places.

� Step 2: Selecting frequently visited spots

We define random variable y (0 ≤y≤ 100%) as a percentage value. After obtaining

the set of frequently visited places (S𝑢𝐹𝑃 ), person 𝑢 randomly picks y percent of the

spots from each place in S𝑢𝐹𝑃 as frequently visited spots (where person 𝑢 usually visits

during day trips).

� Step 3: Selecting a randomly visited place and randomly visited spots on a day trip

In order to match the context of real life (on a day trip, a person visits not only

frequently visited spots but additional spots, on occasion), this step randomly selects

a new place and new spots at the beginning of each day.

First, social group 𝐺 randomly selects a number of new places. The number of new

places is denoted as z. Then, person 𝑢 randomly chooses a place from the z newly

selected places as the randomly visited place (𝑅𝑃 𝑢), and picks y percent of the spots

in 𝑅𝑃 𝑢 to obtain randomly visited spots.

Figure 3-4: Candidate places and candidate spots for person 𝑢.

The values of random variables x, y, and z in this phase are assumed to follow truncated
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normalized distributions. The distributions of these random variables can be adjusted to

reflect various situations in real life. For example, people living in an urban area have more

visited places and visited spots than people living in a mountain area.

Now, the candidate places and the candidate spots are obtained. An example of chosen

places and spots for person 𝑢 is shown in Figure 3-4.

3.2.5 Phase 4: Selection of the Destination Spots

In this step, person 𝑢 first randomly chooses a spot in 𝑆𝑢
𝐹𝑆 as the home spot. Each day

person 𝑢 starts the trip from this spot. The home spot for person 𝑢 is denoted as ℎ𝑢. Then,

from S𝑢𝐶𝑃 obtained in phase 3, person 𝑢 selects a place to visit. Let 𝑆𝑃 𝑢 denote the selected

place. Finally, person 𝑢 selects a destination spot from the candidate spots in place 𝑆𝑃 𝑢.

Now, the process for selecting the destination spot of person 𝑢 is presented in detail.

This process comprises two steps.

� Step 1: Person 𝑢 selects place 𝑆𝑃 𝑢 from set S𝑢𝐶𝑃 to visit

Based on the assumption that people usually prefer visiting nearby places rather than

faraway places, and they are also attracted to places where many of their friends are

visiting, SRMM considers two components (the distances from the places to person 𝑢’s

current location, and the social relationships of person 𝑢) while selecting place 𝑆𝑃 𝑢

from set S𝑢𝐶𝑃 .

Let 𝑖 be an arbitrary place in S𝑢𝐶𝑃 . In order to obtain the probability that person 𝑢

visits place 𝑖, two probability components are used.

First, we consider the probability related to distance. Let 𝑑𝑢,𝑖 denote the distance

from person 𝑢 to place 𝑖. 𝑃𝐷
𝑢,𝑖 denotes the probability of selection related to distance.

This probability is calculated as:

𝑃𝐷
𝑢,𝑖 =

(︂
1

𝑑𝑢,𝑖 + 𝑐𝑑

)︂𝛼

∑︀
𝑗∈S𝑢𝐶𝑃

(︂
1

𝑑𝑢,𝑗 + 𝑐𝑑

)︂𝛼 (3.8)

where an adjustment parameter, 𝛼 (𝛼 > 0), modifies the effect of the distance. In

order to avoid situations where the distance from person 𝑢 to a place is 0, we use a

small constant, 𝑐𝑑 > 0. Eq. (3.8) implies that a place within a shorter distance has a

higher value for 𝑃𝐷
𝑢,𝑖.
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Secondly, we consider the probability of selection related to social relationships. Recall

that person 𝑢 belongs to group 𝐺. Let 𝑛𝐺,𝑖
𝑢 be the number of people, who are currently

visiting place 𝑖 and belong to group 𝐺. We define 𝑃𝑆
𝑢,𝑖 as the probability of selection

related to social relationships. 𝑃𝑆
𝑢,𝑖 is calculated as:

𝑃𝑆
𝑢,𝑖 =

(𝑛𝐺,𝑖
𝑢 + 𝑐𝑠)

𝛽∑︀
𝑗∈S𝑢𝐶𝑃

(𝑛𝐺,𝑗
𝑢 + 𝑐𝑠)𝛽

(3.9)

where parameter 𝛽 (𝛽 > 0) adjusts the effect of social relationships, and a small

constant, 𝑐𝑠 > 0, is used to avoid a result where 𝑛𝐺,𝑖
𝑢 = 0. Eq. (3.9) indicates that a

place with many friends of person 𝑢 has a higher value for 𝑃𝑆
𝑢,𝑖.

Finally, we define 𝑃𝐷𝑆
𝑢,𝑖 as the probability that person 𝑢 chooses to visit place 𝑖. 𝑃𝐷𝑆

𝑢,𝑖

is calculated by combining two components, 𝑃𝐷
𝑢,𝑖 and 𝑃𝑆

𝑢,𝑖, as follows:

𝑃𝐷𝑆
𝑢,𝑖 = 𝜌× 𝑃𝐷

𝑢,𝑖 + (1− 𝜌)× 𝑃𝑆
𝑢,𝑖

(3.10)

where a tunable parameter, 𝜌 ∈ [0, 1], modifies the balance between distance and social

relationship.

� Step 2: Person 𝑢 selects a destination spot in 𝑆𝑃 𝑢

Let C𝑢
𝑆𝑃 denote the set of candidate spots that are in place 𝑆𝑃 𝑢 for person 𝑢. In this

step, person 𝑢 selects a spot in C𝑢
𝑆𝑃 as the destination spot. Let 𝑠 be a spot in C𝑢

𝑆𝑃 ,

and let 𝑙𝑢,𝑠 be the distance from person 𝑢 to spot 𝑠. 𝑃𝑢,𝑠 denotes the probability that

person 𝑢 selects spot 𝑠 as the destination spot. This probability is calculated as:

𝑃𝑢,𝑠 =

(︂
1

𝑙𝑢,𝑠

)︂𝛾

∑︀
𝑗∈C𝑢

𝑆𝑃

(︂
1

𝑙𝑢,𝑗

)︂𝛾 (3.11)

where adjustment parameter 𝛾 (𝛾 > 0) is used to adjust the effect of the distance. Eq.

(3.11) indicates that spots near person 𝑢 have higher probability values, which also

agrees with the real-life context.

In SRMM, everyday person 𝑢 is assumed to move from 7:00 to 19:00 (i.e., 12 hours per

day). On a day trip, person 𝑢 starts moving from home spot ℎ𝑢 and comes back to home

spot ℎ𝑢 at 𝑡𝑐, i.e., 𝑡𝑐 is the homecoming time of person 𝑢. The value of 𝑡𝑐 is assumed to
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follow a truncated normalized distribution.

3.3 Evaluation Results and Discussion

In this work, Matlab was used to validate the proposed social relationship−aware human

mobility model. We take into account human movement characteristics and social relation-

ships of the mobility model. First, KL divergence, K-S test, WMRD are used to show how

well the human movement characteristics generated by the mobility model match a real

trace. Then, to validate the fitting of the human movement characteristics with truncated

power-law distributions, AIC and BIC values are used. Finally, a new performance metric

(the same social group ratio) is used to evaluate the reflection of social relationships. The

results obtained with SRMM are compared with the results from SLAW [5], CMM [7], and

ORBIT [41].

3.3.1 Simulation Setup

Let 𝑇 denote simulation time. As many as movements of 100 people for 𝑇 = 200 h are

generated. According to results shown in [73], the movement speed of people is set to

follow a truncated normalized distribution 𝑁(4.6, 12) km/h. The communicating nodes’

transmission range is set to 100 m, which is the typical transmission range for Bluetooth

Low Energy. For grouping spots into places, the radius 𝑟 is also set to 100 m. In this work,

it is assumed that two people encounter each other when they are within transmission range

for 30 s.

For x, y, and z, we use 𝑁(7, 22), 𝑁(20, 52), and 𝑁(3, 12), respectively. Homecoming

time 𝑡𝑐 is set to follow 𝑁(18, 0.52). This means that the time to come back to home spot

of people is randomly chosen from 17:30 to 18:30. To obtain social graphs in real life, a list

of survey questions (e.g., where people usually come? where are the favorite places? and

what are the favorite activities of people?) needs to be collected and analyzed to evaluate

social strengths between people. In this work, we simply model social matrix 𝑀𝑛𝑢,𝑝 in

which 𝑛𝑢 is the number of people in the area, 𝑝 is the probability that two people have a

social connection, and the strengths of the social links follow a uniform distribution within

a range of values from 0 to 1. In this simulation, we use social matrix 𝑀100,0.2. The sojourn

distribution used in SRMM follows a truncated power-law distribution with a range of values

from 0.5 to 700 min.
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In addition, SLAW, CMM, and ORBIT models are also examined to compare them with

our model. Common parameters, such as the area of simulation, the transmission range, the

number of people, and the simulation time, use the same values in all models. In SLAW, the

value of the constant 𝑎 in least-action trip planning [5] is set to 1.5 (the best value shown

in SLAW). The number of hubs in the ORBIT model follows the number of places in our

model. In CMM, the simulation area is presented by as a grid; we set the size of each square

on the grid to 100𝑚 × 100𝑚, and we set the number of social groups to the same value as

our model. Otherwise, we use the input parameters described in their studies. Details of

the simulation parameters can be found in Table 3.2.

Table 3.2: Simulation parameters.

Parameter Value

Radius of places (𝑟) 100 m

Number of people (𝑛𝑢) 100

Simulation time (𝑇 ) 200 h

Speed of people 𝑁(4.6, 12) km/h

Transmission range 100 m

Social matrix 𝑀100,0.2

Number of social groups (𝑛𝐺) 10

Number of frequently visited places (x) 𝑁(7, 22)

Percentage value of spots picked from candidate places (y) 𝑁(20, 52)

Number of new places selected by a group at the beginning of each day (z) 𝑁(3, 12)

Homecoming time (𝑡𝑐) 𝑁(18, 0.52)

3.3.2 Synthetic Map

In this section, the simulation area is established to approximate the measurement sites

of the New York City trace from Rhee et al. [29]. The area’s size is 24𝑘𝑚 × 24𝑘𝑚, and

the number of spots, 𝑛𝑠, is 1, 120. The parameters for generating spots with the BSM are

calculated in the same way used by Lee et al. [5].
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3.3.2.1 Verifying the Human Movement Characteristics

In SRMM, the pause-time distribution was already set to follow a truncated power-law dis-

tribution with a range of values from 0.5 to 700 min. Thus, this section verifies other human

movement characteristics (i.e., the distributions of flights, the radii of gyration, and ICTs).

First, KL divergence, K-S test, WMRD are used to validate our model with the real trace.

Several studies analyzed real traces, and showed that the distributions of flights, radii of

gyration, and ICTs in real traces follow truncated power-law distributions [3,4,9]. Therefore,

AIC and BIC between a truncated power-law distribution and an exponential distribution

over human characteristics are compared to show whether the human characteristics follow

truncated power-law distributions or not.

3.3.2.1.1 Flight

We first consider the flight distribution with various parameter values for SRMM. Figure 3-

5 shows KL divergence between the real trace flight distribution and the synthetic ones

generated by SRMM using various parameter values. A lower value for KL divergence

implies that generated flight lengths are a better fit to the real trace.

In Figure 3-5a, KL divergence with various values for 𝛼 is presented. In general, KL

divergence decreases when 𝛼 increases from 0.8 to 1.6, and increases when 𝛼 increases from

1.6 to 2.0. The values for KL divergence show that SRMMmatches the real flight distribution

well, especially when 𝛼 is equal to 1.6.

Figure 3-5b shows the effect of 𝛽 on KL divergence. Overall, the flight distributions are

close to the real flight, and when 𝛽 = 1.6, the flight distribution is a better fit to the real

flights than the others.

KL divergence with various values of 𝜌 is shown in Figure 3-5c. In general, KL divergence

values decrease when 𝜌 increases from 0.4 to 0.8. When 𝜌 = 0.8, the flight distribution is

the closest approximation to the real one. When 𝜌 = 1 (i.e., the social relationships between

people are not considered), the KL divergence value is larger than KL divergence in case

𝜌 = 0.8. This indicates that to obtain flights that match the real flights well, the social

relationship is important, and it should be considered.

Figure 3-5d displays the KL divergence values with various values of 𝛾. As shown in the

figure, we obtain the best result for KL divergence when 𝛾 = 0.8.

In Figure 3-5e, KL divergence with various values of 𝜃 is presented. As shown in the
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results from KL divergence, all synthetic flights fit closely to the real one. when 𝜃 = 0.8,

the flight distribution is a better fit to the real flights than the others.
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(a) Various 𝛼 values (𝛽 = 1.6, 𝜌 =

0.8, 𝛾 = 0.8, 𝜃 = 0.8).
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(b) Various 𝛽 values (𝛼 =

1.6, 𝜌 = 0.8, 𝛾 = 0.8, 𝜃 = 0.8).
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(c) Various 𝜌 values (𝛼 = 1.6, 𝛽 =

1.6, 𝛾 = 0.8, 𝜃 = 0.8).
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(d) Various 𝛾 values (𝛼 =

1.6, 𝛽 = 1.6, 𝜌 = 0.8, 𝛾 = 0.8, 𝜃 =

0.8).
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(e) Various 𝜃 values (𝛼 =

1.6, 𝛽 = 1.6, 𝜌 = 0.8, 𝛾 = 0.8).

Figure 3-5: KL divergence between the real trace flight distribution and the synthetic ones
generated by SRMM using various values for the parameters.

Following results of KL divergence in Figure 3-5, the values of 𝛼, 𝛽, 𝜌, 𝛾, and 𝜃 in SRMM

are set to 1.6, 1.6, 0.8, 0.8, and 0.8, respectively.

Now, we verify our flight distribution with results from other models. The flight distribu-

tions obtained from various models are shown in Figure 3-6a, and the closeness of the flight

distributions in synthetic models to real flights is shown by values in Table 3.3. A model

with a lower value for KL divergence and WMRD, and a higher value for 𝑃 value of K-S

test implies that the model is a better fit to the real trace. From the figure and the values

shown in Table 3.3, it is clear that SRMM most closely matches the real flight distribution.

For example, KL divergence with SRMM is 0.0325, whereas SLAW and CMM are 0.0625

and 0.3205, respectively. SRMM also obtained the lowest value for WMRD (i.e., 0.7716)
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(b) The radius of gyration distri-
butions.
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(c) ICT distributions.

Figure 3-6: Human movement characteristics for various models with the synthetic map

and the highest value of 𝑃 value of K-S test (i.e., 1.01×10−24). The flight distribution with

SLAW is also close to the real trace. In ORBIT and CMM, the spots were not generated

by using fractal spots, and the distance was not considered when choosing the destinations.

These are the main reasons for a large difference between these models and the real trace.

Table 3.3: KL divergence, 𝑃 value of K-S test, and WMRD between the real trace distribu-
tions and the distributions generated by the synthetic models.

SRMM SLAW CMM ORBIT

Flight Radius of

Gyration

Flight Radius of

Gyration

Flight Radius of

Gyration

Flight Radius of

Gyration

KL divergence 0.0325 0.5211 0.0625 0.6627 0.3205 0.6921 0.2985 0.7223

WMRD 0.7716 1.9260 0.9868 1.9900 1.8420 2.0000 1.6658 2.0000

𝑃 value of K-S test 1.01× 10−24 0.5180 8.88× 10−119 4.63× 10−16 0 2.23× 10−24 0 3.02× 10−26

To check whether the generated flight distributions follow truncated power-law distri-

butions, Table 3.4 shows AIC and BIC results between a truncated power-law distribution

and an exponential distribution. As shown in Table 3.4, the flight distribution generated by

SRMM is closer to a truncated power-law distribution than to an exponential distribution.

The results also indicate that flight distributions generated by other models approximate

truncated power-law distributions.
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Table 3.4: Results from AIC and BIC of the New York City trace (NYC) and various
synthetic models with the synthetic map (the truncated power-law distribution (Pow), the
exponential distribution (Exp), the radius of gyration (RoG)).

SRMM SLAW CMM ORBIT NYC

Flight RoG ICT Flight RoG ICT Flight RoG ICT Flight RoG ICT Flight RoG ICT

Selected model

by AIC

Pow Pow Pow Pow Pow Pow Pow Pow Pow Pow Pow Exp Pow Pow N/A

Selected model

by BIC

Pow Pow Pow Pow Pow Pow Pow Pow Pow Pow Pow Exp Pow Pow N/A

3.3.2.1.2 The radius of gyration

To validate the real radius of gyration, Figure 3-6b shows the radius of gyration distributions

for the various models, and Table 3.3 presents the KL divergence between the real radius

of gyration distribution and distributions generated by the synthetic models. As shown

in Figure 3-6b and Table 3.3, the radius of gyration distribution generated by SRMM is

closest to the distribution extracted from the real trace. Specifically, the radius of gyration

generated by SRMM obtains the lowest values for KL divergence (i.e., 0.5211) and WMRD

(i.e., 1.9260), and the highest value of 𝑃 value of K-S test (i.e., 0.5180).

Table 3.4 presents the results of AIC and BIC between a truncated power-law distribution

and an exponential distribution over the radius of gyration of the New York City trace and

various synthetic models. AIC and BIC results indicate that the radius of gyration produced

by SRMM is closer to a truncated power-law distribution than an exponential distribution.

3.3.2.1.3 Inter-contact time

There is no available contact information in the real trace [29,30]; hence, only ICT distribu-

tions from synthetic models are shown in Figure 3-6c. The ICT distribution generated by

SRMM is close to the ICT distribution of SLAW.

To validate the truncated power-law distribution, the distributions in Figure 3-6c are

also verified with AIC and BIC. The results from AIC and BIC are provided in Table 3.4.

As can be seen in the table, ICT distributions generated by SRMM, SLAW, and CMM fit

better to power-law distributions, whereas the ICTs of ORBIT fit better to an exponential

distribution. The ICTs of CMM are usually a very long time since people can move to any

of the places without periodicity, so the chances of two people meeting again after the first

encounter are much lower. In ORBIT, each person randomly chooses a list of places and
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then randomly picks a place in that list to visit. Thus, two people rarely encounter each

other, and the ICTs of ORBIT are also very long times.

3.3.2.2 Verifying Social Relationships

In this section, we evaluate how well the mobility models reflect social relationships. First,

we define the same social group ratio (SSGR), and we describe how to calculate this value.

Then, the obtained results for the same social group ratio are presented.

3.3.2.2.1 The same social group ratio

Mobility models and corresponding output mobility traces should reflect social relationships

embedded in the input social graph. Please note that from a mobility trace of a mobility

model, a social graph can also be obtained based on encounter rates between people (i.e.,

people, who have high encounter rates, will have strong relationships). A mobility model well

reflects social relationships in the input social graph if the social graph obtained from the

mobility trace of the model is similar to the input social graph. To determine the similarity

between those two social graphs, social groups, which are obtained from those social graphs,

are compared. People in a social group have strong social relationships. Therefore, if social

groups in two social graphs are similar, two social graphs should be similar. To compare

social groups in two social graphs, a new performance metric, called the same social group

ratio (SSGR), is defined. Specifically, a set of social groups, S𝐺, is obtained by using

information from the input social graph. Based on the mobility trace generated by the

mobility model, we also obtain a social graph and another set of social groups. Let this set

be S𝑠𝑦𝑛𝐺 . Then, for each group in S𝐺, we select a corresponding group from S𝑠𝑦𝑛𝐺 to form a

pair of groups. Please note that each group is only assigned to one pair, and pairs of groups

are determined to maximize the number of common people in those pairs. The ratio of the

total number of common people in all pairs to the total number of people in the network is

defined as the same social group ratio. A high value for SSGR indicates that the mobility

model highly reflects the social relationship. For example, S𝐺 = {𝐺1, 𝐺2, 𝐺3}. Group 𝐺1

consists of 𝑢1, 𝑢2, and 𝑢3; 𝑢4 and 𝑢5 belong to group 𝐺2; group 𝐺3 includes 𝑢6 and 𝑢7.

For S𝑠𝑦𝑛𝐺 = {𝐺′
1, 𝐺

′
2, 𝐺

′
3}; 𝑢1, 𝑢2, and 𝑢4 belong to group 𝐺′

1; group 𝐺′
2 includes 𝑢3 and

𝑢5; group 𝐺′
3 consists of 𝑢6 and 𝑢7. Based on maximizing the common people in pairs of

groups, groups (𝐺1, 𝐺2, 𝐺3) in S𝐺 correspond to groups (𝐺′
1, 𝐺

′
2, 𝐺

′
3) in S𝑠𝑦𝑛𝐺 , respectively.

Specifically, the pair (𝐺1, 𝐺
′
1) has two common members, 𝑢1 and 𝑢2. The pair (𝐺2, 𝐺

′
2) has
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one common member, 𝑢5, while 𝑢6 and 𝑢7 are two common members in the pair (𝐺3, 𝐺
′
3).

The total for the common members is 5. We obtain SSGR = 0.83.

To calculate SSGR values for synthetic models, we performed the following process.

� First, we find the social group set, S𝐺. Set S𝐺 is extracted from the social matrix during

phase 1 in SRMM. For a fair comparison in SRMM, SLAW, CMM, and ORBIT, the

same social group set is used.

� Secondly, to determine set S𝑠𝑦𝑛𝐺 , we analyze the synthetic trace of each model to obtain

a matrix of encounter rates (𝐸𝑅). The values in the 𝐸𝑅 matrix are the number of

times people encounter each other over the total simulation time. Suppose 𝑚 and 𝑛

denote two arbitrary people. 𝐸𝑚,𝑛 denotes the number of encounters between 𝑚 and

𝑛 during simulation time 𝑇 . Let 𝑏𝐸𝑅(𝑚,𝑛) be the encounter rate between 𝑚 and 𝑛.

Then, 𝑏𝐸𝑅(𝑚,𝑛) is calculated as:

𝑏𝐸𝑅(𝑚,𝑛) =
𝐸𝑚,𝑛

𝑇
(3.12)

In reality, people who have strong relationships tend to meet each other frequently [74,

75]. Thus, a higher value in the 𝐸𝑅 matrix can represent a stronger relationship

between people. Then, the 𝐸𝑅 matrix is used by the spectral clustering algorithm to

obtain social group set S𝑠𝑦𝑛𝐺 . The values in the 𝐸𝑅 matrix are normalized to within

the range [0,1] before the matrix is used in spectral clustering.

� Finally, we compare S𝐺 and S𝑠𝑦𝑛𝐺 to obtain the SSGR value.

3.3.2.2.2 The results of the same social group ratio

SSGR values from various models are shown in Figure 3-7. As can be seen in the figure, the

results obtained from CMM and SRMM are higher than from SLAW and ORBIT because

only CMM and SRMM consider social relationships between people. SRMM takes into

account many social contexts, whereas CMM considers only a few, which leads to the higher

SSGR with SRMM. Specifically, in CMM model, the destination can be selected from all

places in the network. There are no set of frequently visited places for the people in a social

group and no set of candidate places as in our model. Therefore, people in a social group

have a low possibility to encounter in a wide area. That leads to a lower value of SSGR.
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Figure 3-7: The same social group ratio values from various models with the synthetic map.

Because the number of social groups (𝑛𝐺) in the area is not considered in SLAW and

ORBIT, that does not affect human movements in that models. Therefore, Figure 3-8 only

displays SSGR with different 𝑛𝐺 values in CMM and SRMM. In general, SSGR values

decrease when 𝑛𝐺 increases. People in CMM may visit different places in the network, so

increasing 𝑛𝐺 leads to a significant decrease in the probability that people will visit the places

their social friends are visiting. Therefore, when 𝑛𝐺 is a higher value, SSGR from CMM is

lower and close to the SSGR values from ORBIT and SLAW. In contrast, in SRMM, people

in the same social group have the same frequently visited places and usually encounter each

other. Thus, we still obtain a high value of SSGR from SRMM.
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Figure 3-8: The same social group ratio values for SRMM and CMM from various 𝑛𝐺 values.
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3.3.3 Real Road Map

In this section, to obtain more realistic human movements, the mobility models are consid-

ered on the real road map. For generating spots on the map, the bursty spot model is also

used. First, spots are normally generated, and then spots are mapped to the nearest point

on the nearest road on the map.

In this simulation, we use the real road map of Helsinki downtown [76]. The size of this

map is 8.3 km × 7.31 km and the number of generated spots, 𝑛𝑠, is set to 978. Figure 3-9

shows generated spots on the real road map of Helsinki downtown.

Figure 3-9: Generated spots on the real road map of Helsinki downtown.

In the mobility models, to move between two spots on the real road map, the shortest

path between two spots is used. This path is obtained by using Dijkstra’s algorithm [77].

3.3.3.1 Verifying the Human Movement Characteristics

In this section, the distributions of flights, ICTs, and the radius of gyration are presented.

AIC and BIC criteria are also used to verify that flights, inter-contact time, and the radius of

gyration follow truncated power-law distributions. There are no available real mobility traces

on the real road map of Helsinki downtown. Therefore, the KL divergence for comparing

the synthetic models with real traces is not collected.

42



Chapter 3. Social Relationship-Aware Human Mobility Model

3.3.3.1.1 Flight

To validate the flight distribution, Figure 3-10a presents flight distributions from various

models on the real road map. As can be seen in the figure, most of the flights from CMM

and ORBIT are long flights. Flights generated by SRMM and SLAW are similar and more

natural than the flights from CMM and ORBIT. Table 3.5 shows AIC and BIC results

between a truncated power-law distribution and an exponential distribution. From the

figure and the values shown in Table 3.5, it is clear that the flight distributions from SRMM,

SLAW, and CMM fit better to power-law distributions, whereas the flights of ORBIT fits

better to an exponential distribution.
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Figure 3-10: Human movement characteristics for various models with the real road map

Table 3.5: Results from AIC and BIC of various synthetic models with the real road map
of Helsinki downtown.

SRMM SLAW CMM ORBIT

Flight RoG ICT Flight RoG ICT Flight RoG ICT Flight RoG ICT

Selected model

by AIC

Pow Pow Pow Pow Pow Pow Pow Pow Pow Exp Pow Pow

Selected model

by BIC

Pow Pow Pow Pow Pow Pow Pow Pow Pow Exp Pow Pow

3.3.3.1.2 The radius of gyration

To check whether the generated radius of gyration distributions follow a truncated power-

law distribution, the radius of gyration distributions from various models are shown in

Figure 3-10b and Table 3.5 presents the results of AIC and BIC between a truncated power-
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law distribution and an exponential distribution over the radius of gyration. As shown in

Figure 3-10b, the radius of gyration from SRMM is lower than those from other models.

AIC and BIC results indicate that the radius of gyration generated by SRMM and all other

models are closer to truncated power-law distributions than exponential distributions.

3.3.3.1.3 Inter-contact time

Figure 3-10c shows the ICT distributions from various mobility models. As shown in the

figure, ICTs generated by SRMM are shorter than ICTs from other models since in our model,

people in the same social group tend to frequently meet. Please note that the results of AIC

and BIC are provided in Table 3.5. AIC and BIC results indicate that ICT distributions

generated by SRMM, SLAW, CMM, and ORBIT fit better to power-law distributions than

exponential distributions.

3.3.3.2 Verifying Social Relationships

In this subsection, the same social group ratio is obtained to verify that the mobility model

can embody social relationships. Figure 3-11 presents SSGR values from various models. As

can be seen in the figure, SSGR from CMM is slightly higher than from SLAW and ORBIT.

The best result of SSGR is obtained from SRMM (i.e., 0.78), which indicates that social

contexts between people are well embedded into our mobility model.
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Figure 3-11: The same social group ratio values from various models with the real road map.

3.4 Chapter Summary

In this Chapter, we proposed a novel human mobility model to address the limitations of

existing human mobility models. The human mobility model is important for validating
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the network performance of routing protocols in OMSNs. Our proposed model takes into

account the characteristics of human movement and the social context in human movement.

Specifically, SRMM captures flights, the radius of gyration, ICTs, and pause times for realis-

tic human movement. Then, many real contexts are considered in our model. For example,

people prefer visiting nearby locations and are attracted to popular places. In the same social

group, people usually tend to visit each other, and have the same frequently visited places.

By reproducing real contexts, SRMM reflects social relationships in human movement. To

validate human movement characteristics, SRMM is considered on the synthetic map and

the real road map. The results were compared with real human movements in a New York

City trace and in other models (SLAW, CMM, and ORBIT). At first, KL divergence was

used to show how well models match real traces. Then, AIC and BIC were used to evaluate

the fit with truncated power-law distributions of human movement characteristics. Finally,

we defined the same social group ratio to validate the reflection of social relationships in hu-

man mobility models. The experiment results indicate that human movements from SRMM

are more closely approximate real human movement characteristics, and clearly reflect the

social relationships among people when we compare with other models.
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Temporal Social Interactions-Based

Routing Protocol

4.1 The Network Model and Problem Definition

In this section, first, the network model is present. Then, the problem definition is discussed.

Figure 4-1: The network model.

Figure 4-1 shows the network model. A city-wide network is considered. Specifically,

𝑁 nodes move in a city area. Those nodes communicate and exchange messages with each

other via wireless interfaces (e.g., Bluetooth 5.0) when they come within the communication

range of each other without infrastructures. Messages in this network can be of different

data types, such as text, images, and video. This network model can achieve the quick and

low-cost deployment, which is suitable for emergency situations such as natural disaster and

military conflicts.
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This work addresses the problem of how to effectively route messages between mobile

nodes. Selection of relay nodes is an important issue. The movement history of nodes is

collected over 𝐷 days. In the movement history, the positions of the nodes are recorded.

Each day is divided into time slots. Two nodes are considered as encountering each other

when they are within transmission range for 30 seconds. Let denote the movement history

information as 𝑀 . Each packet includes three attributes: source, destination, time to live

(𝑇𝑇𝐿). 𝑇𝑇𝐿 is a time value in seconds that limits the lifetime of the packet in the network.

After 𝑇𝑇𝐿 expires, the packet is dropped. Our work considers the network performance in

terms of𝐷𝐶, 𝑃𝐷𝐿, and 𝑃𝐷𝑅. 𝐷𝐶 is calculated by dividing the total number of replications

by the total number of messages generated. 𝑃𝐷𝐿 is the time it takes for messages to be

delivered from sources to destinations. 𝑃𝐷𝑅 measures the number of messages delivered to

their intended destinations divided by the total number of messages. Node 𝑢 wants to send

a message to edge node 𝑣. Let S𝑁𝐵
𝑢 denote the set of neighboring nodes of node 𝑢. The

objective is to choose relay nodes in S𝑁𝐵
𝑢 to maximize 𝑃𝐷𝑅 and minimize 𝑃𝐷𝐿 and 𝐷𝐶,

given 𝑀 with the constrain 𝑇𝑇𝐿.

4.2 TSIRP routing protocol

In this section, we first describe the potential forwarding metrics, and how to calculate them.

Then, the spreading rate control value is discussed. Finally, the TSIRP forwarding scheme

is described.

4.2.1 Potential Forwarding Metric

In this work, movement history is analyzed to obtain potential forwarding metrics (PFMs),

which are used for relay selection. A node with a lower PFM value is preferred as a relay node.

Based on the inter-contact time, the expected delivery delay, and the meeting probability

condition, three PFMs are proposed.

4.2.1.1 The mean value of inter-contact time (𝐼𝐶𝑇 )

The inter-contact time (ICT) represents the elapsed time between two successive contacts

for a given pair of nodes. Let 𝑢 and 𝑣 denote two arbitrary nodes in the network. The mean

value of ICTs between node 𝑢 and node 𝑣 is denoted 𝐼𝐶𝑇 𝑢,𝑣. Let 𝜂 be the number of ICT

samples between node 𝑢 and node 𝑣 obtained from the movement history. For example,
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suppose that in the movement history, node 𝑢 and node 𝑣 encounter three times. We will

obtain two ICT samples (i.e. 𝜂 = 2). The elapsed time between the first encounter and the

second encounter is the first sample of ICT. The elapsed time between the second encounter

and the third encounter is the second sample of ICT. The 𝑖𝑡ℎ ICT sample is denoted 𝐼𝐶𝑇 𝑖
𝑢,𝑣.

𝐼𝐶𝑇 𝑢,𝑣 is calculated as follows:

𝐼𝐶𝑇 𝑢,𝑣 =

∑︀𝜂
𝑖=1 𝐼𝐶𝑇 𝑖

𝑢,𝑣

𝜂
(4.1)

A low value of 𝐼𝐶𝑇 𝑢,𝑣 means that node 𝑢 frequently meets node 𝑣. Therefore, the node

that has the lower mean value for inter-contact time with the destination is preferred as a

relay node. 𝐼𝐶𝑇 𝑢,𝑣 is used as a potential forwarding metric.

4.2.1.2 The expected delivery delay (ED)

Note that the movement history of nodes is collected over D days, and one day in the

movement history is divided into 36 time slots. To determine whether two nodes encounter

each other or not in a time slot, the encounter state is used. Let 𝑒𝑢,𝑣𝑑,𝑖 denote the encounter

state between node 𝑢 and node 𝑣 in time slot 𝑖 of day 𝑑, such that 𝑒𝑢,𝑣𝑑,𝑖 equals 1 if node 𝑢

encounters node 𝑣 in time slot 𝑖 of day 𝑑; otherwise, 𝑒𝑢,𝑣𝑑,𝑖 is zero.

We define 𝑃 𝑢,𝑣
𝑖 as the probability that node 𝑢 meets node 𝑣 in time slot 𝑖 of a new day.

Based on the social interactions between two people at a certain time, 𝑃 𝑢,𝑣
𝑖 is estimated as

follows:

𝑃 𝑢,𝑣
𝑖 =

1

𝐷

𝐷∑︁
𝑑=1

𝑒𝑢,𝑣𝑑,𝑖 (4.2)

Equation (4.2) indicates that if node 𝑢 has frequently encountered node 𝑣 in time slot 𝑖 in

the past, 𝑃 𝑢,𝑣
𝑖 will have a large value (i.e., node 𝑢 has a high possibility to encounter node

𝑣 in time slot 𝑖 in the future).

In time slot, 𝑡, the expected delivery delay between node 𝑢 and node 𝑣 within 𝑘 time

slots is denoted as 𝐸𝐷𝑢,𝑣
𝑡 . 𝐸𝐷𝑢,𝑣

𝑡 is the estimated latency to deliver packets from node 𝑢

to node 𝑣. In other words, 𝐸𝐷𝑢,𝑣
𝑡 is the expected duration from the time slot 𝑡 to the time

when node 𝑢 encounters node 𝑣. This value is obtained as follows:

𝐸𝐷𝑢,𝑣
𝑡 =

𝑡+𝑘∑︁
𝑖=𝑡+1

((𝑖− 𝑡)× 𝑃 𝑢,𝑣
𝑖 ×

𝑖−1∏︁
𝑗=𝑡+1

(1− 𝑃 𝑢,𝑣
𝑗 )) (4.3)
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where (𝑖 − 𝑡) is 𝑃𝐷𝐿 if node 𝑢 and node 𝑣 encounter at time slot 𝑖. 𝑃 𝑢,𝑣
𝑖 is the estimated

probability that node 𝑢 encounters node 𝑣 at time slot 𝑖.
∏︀𝑖−1

𝑗=𝑡+1(1−𝑃 𝑢,𝑣
𝑗 ) is the estimated

probability that node 𝑢 and node 𝑣 have not encountered (and hence have not delivered

packets) before time slot 𝑖. Based on those two probabilities, the probability that node 𝑢

delivers a packet to node 𝑣 in time slot 𝑖, and has not delivered the packet to node 𝑣 in

previous time slots (i.e., time slot 𝑡 + 1 to time slot 𝑖 − 1) is calculated, and then 𝐸𝐷𝑢,𝑣
𝑡

is obtained. The expected delivery delay within 𝑘 time slots of the two nodes is used as a

potential forwarding metric. A node with a lower expected delivery delay to the destination

is the better forwarder

4.2.1.3 The number of time slots to satisfy the meeting probability condition

(𝑥̂)

In current time slot, 𝑡, 𝑃 𝑢,𝑣(𝑥) denotes the probability that node 𝑢 meets node 𝑣 during 𝑥

time slots, 𝑃 𝑢,𝑣(𝑥) is calculated as:

𝑃 𝑢,𝑣(𝑥) = 1−
𝑡+𝑥∏︁
𝑖=𝑡

(1− 𝑃 𝑢,𝑣
𝑖 ) (4.4)

Given a required meeting probability, 𝜗, we find the minimum value of 𝑥 that satisfies

the condition 𝑃 𝑢,𝑣(𝑥) ≥ 𝜗. Let 𝑥̂ be the minimum value of 𝑥 that satisfies the meeting

probability condition:

𝑥̂ = {min(𝑥)|𝑃 𝑢,𝑣(𝑥) ≥ 𝜗} (4.5)

𝑥̂ is used as a potential forwarding metric. A lower value for 𝑥̂ means the required meeting

probability between the two nodes can be obtained in a shorter time. Thus, a node is

selected as the relay node if it has a lower value of 𝑥̂ with the destination.

4.2.2 Spreading Rate Control Value

In this subsection, the forwarding token for packets is discussed first. Then, we propose a

spreading rate control value to control the message spreading rate.

In TSIRP, the number of replications is limited by using a forwarding token. When a

node generates a packet, it also assigns a forwarding token for the packet in a similar way to

spray-and-wait [18]. The initial value of the forwarding token is 𝐶. When a node replicates

a packet, it also appends half of the current token value to the copy of the packet. When
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the token value is less than or equal to 1, the node stops spreading the packet and waits

until meeting the destination.

Now, we describe the proposed spreading rate control value based on the forwarding

token value and the residual lifetime of a packet. Suppose that node 𝑢 wants to send packet

𝑝 to node 𝑣. The current forwarding token value for packet 𝑝 at node 𝑢 is denoted 𝑐𝑢𝑝 . When

node 𝑢 tries to replicate packet 𝑝 to its neighbor, 𝑐𝑝𝑢 is checked. If 𝑐𝑝𝑢 ≤ 1, node 𝑢 stops

spreading the packet and waits until meeting the destination; otherwise, relay selection is

performed and the spreading rate control value is used.

Let 𝑡𝑝 be the residual lifetime of packet 𝑝. The spreading rate control value for packet 𝑝

of node 𝑢 is denoted as 𝑆𝐶𝑢
𝑝 . 𝑆𝐶

𝑢
𝑝 is calculated as follows:

𝑆𝐶𝑢
𝑝 (𝑐

𝑝
𝑢, 𝑡𝑝) = 𝑒

−[𝜒×
𝑐𝑝𝑢
𝐶

+(1−𝜒)×(
𝑡𝑝

𝑇𝑇𝐿
)]

(4.6)

where a tunable parameter, 𝜒 ∈ [0, 1], modifies the balance between the residual lifetime and

the forwarding token. From Equation (4.6), we see that 𝑆𝐶𝑢
𝑝 ∈ [1/𝑒, 1) and higher values of

𝑡𝑝 and 𝑐𝑢𝑝 lead to a lower value for 𝑆𝐶𝑢
𝑝 .

The spreading rate control value is used in the forwarding scheme to control the message

spreading rate. Specifically, a low value of 𝑆𝐶𝑢
𝑝 means that packet 𝑝 has just been generated

(i.e., the residual lifetime of the packet is long), and the token value for forwarding it is

large. Therefore, packet 𝑝 should quickly spread through the network. When the packet is

spread wide enough (i.e., 𝑆𝐶𝑢
𝑝 is large), the rate for spreading the packet should be reduced

to decrease 𝐷𝐶.

Let 𝜅 (𝜅 ∈ [1/𝑒, 1]) denote the threshold value for the spreading rate control. When

1/𝑒 ≤ 𝑆𝐶𝑢
𝑝 ≤ 𝜅, node 𝑢 replicates packet 𝑝 to all neighbor nodes without considering any

metrics. That increases the rate for spreading packet 𝑝. If 𝑆𝐶𝑢
𝑝 > 𝜅, relay nodes are selected

and node 𝑢 only replicates packet 𝑝 to those relay nodes, which reduces the rate for spreading

packet 𝑝.

4.2.3 Forwarding Algorithm

The proposed forwarding scheme based on PFMs and the spreading rate control value is

presented in Algorithm 1. The notations in the algorithm are defined in Table 4.1.

Suppose that a person (node 𝑢) wants to share a photo (packet 𝑝) with a friend (node 𝑣)

by interfacing with an application. The routing for the message is processed in the network
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Algorithm 1 The forwarding scheme

1: Node 𝑢 wants to send packet 𝑝 to node 𝑣
Input: S𝑁𝐵

𝑢 = {𝑛𝑖|1 ≤ 𝑖 ≤ 𝑛𝑁𝐵
𝑢 }, 𝑆𝐶𝑢

𝑝 , 𝜅, 𝑃𝐹𝑀𝑢,𝑣, 𝐶𝐷(𝑢), 𝑡𝑝, 𝑑𝑡, 𝑐
𝑝
𝑢

2: Initialize 𝑖 = 1;
3: while 𝑖 ≤ 𝑛𝑁𝐵

𝑢 and 𝑐𝑝𝑢 > 1 do
4: if 1

𝑒 ≤ 𝑆𝐶𝑢
𝑝 ≤ 𝜅 then

5: Node 𝑛𝑖 is selected as a relay node for packet 𝑝
6: else if 𝑃𝐹𝑀𝑛𝑖,𝑣 < 𝑃𝐹𝑀𝑢,𝑣 then

7: Node 𝑛𝑖 is selected as a relay node for packet 𝑝
8: else if 𝑇𝑇𝐿− 𝑡𝑝 > 𝑑𝑡 and 𝐶𝐷(𝑛𝑖) > 𝐶𝐷(𝑢) then
9: Node 𝑛𝑖 is selected as a relay node for packet 𝑝
10: end if

11: if node 𝑛𝑖 is selected as a relay node for packet 𝑝 then
12: Node 𝑢 forwards a copy of packet 𝑝 to node 𝑛𝑖

13: 𝑐𝑝𝑛𝑖 =
𝑐𝑝𝑢
2

14: 𝑐𝑝𝑢 = 𝑐𝑝𝑢
2

15: end if

16: 𝑖 = 𝑖+ 1
17: end while

Table 4.1: Definitions of notations in the forwarding scheme

Notation Meaning

𝑛𝑁𝐵
𝑢 The number of neighbors of node 𝑢

S𝑁𝐵
𝑢 = {𝑛𝑖|1 ≤ 𝑖 ≤ 𝑛𝑁𝐵

𝑢 }
The neighbor set of node 𝑢 after sorting in

increasing order of values for PFMs between

the neighbor nodes and the destination

𝑆𝐶𝑢
𝑝

The spreading rate control value for packet 𝑝 of

node 𝑢

𝜅 ∈ [1/𝑒, 1] The threshold value for the spreading rate control

𝑃𝐹𝑀𝑢,𝑣
The potential forwarding metric between node 𝑢

and node 𝑣

𝐶𝐷(𝑢) The mean value of degree centrality for node 𝑢

𝑡𝑝 The residual lifetime of packet 𝑝

𝑑𝑡
The time threshold for determining a long-delayed

packet

𝑐𝑝𝑢 The forwarding token for packet 𝑝 of node 𝑢
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layer. Specifically, the neighbor list of node 𝑢 is checked. If the destination is in its neighbor

list, the packet is delivered to the destination. If not, the forwarding scheme is executed.

As described in Table 4.1, the neighbors of node 𝑢 are sorted in increasing order of

PFM values between the neighbor nodes and the destination. Recall that a node with a

lower PFM value is considered better for relaying packet 𝑝. Therefore, packet 𝑝 should be

forwarded to the node with a lower PFM value. For this, relay selection is performed with

each neighbor 𝑛𝑖, where 𝑖 is from 1 to 𝑛𝑁𝐵
𝑢 .

For each node 𝑛𝑖, the packet forwarding token of node 𝑢, 𝑐𝑝𝑢, is checked in line 3. If

𝑐𝑝𝑢 ≤ 1, node 𝑢 stops forwarding and waits until meeting the destination; otherwise, relay

selection begins and the spreading rate control value (𝑆𝐶𝑢
𝑝 ) is checked in line 4. If 𝑆𝐶𝑢

𝑝 is

a low value (i.e., 1/𝑒 ≤ 𝑆𝐶𝑢
𝑝 ≤ 𝜅), in line 5, node 𝑢 selects node 𝑛𝑖 as the relay node for

packet 𝑝 without considering any other metrics. With a high 𝑆𝐶𝑢
𝑝 value (i.e., 𝑆𝐶𝑢

𝑝 > 𝜅),

the relay node is selected based on PFMs.

PFM values are compared in line 6. In particular, if node 𝑛𝑖 has a lower PFM with the

destination than node 𝑢 (i.e., 𝑃𝐹𝑀𝑛𝑖,𝑣 < 𝑃𝐹𝑀𝑢,𝑣), node 𝑛𝑖 is selected as the relay node

for packet 𝑝 in line 7.

In our forwarding scheme, if a packet cannot be delivered to the destination for a long

time, degree centrality is also used to create more chances to deliver the packet to the

destination. Specifically, the residual lifetime of packet 𝑝 is taken into account in line 8.

𝑇𝑇𝐿− 𝑡𝑝 > 𝑑𝑡 indicates that packet 𝑝 is experiencing a long delay. For such packets, degree

centrality, which is the number of links to a node, is used. Degree centralities of nodes are

obtained for each day in the movement history, and then, the mean value of degree centrality

is calculated. A node with a higher mean value for degree centrality shows that it has many

neighbors and more chances to meet better relay nodes. Therefore, if 𝐶𝐷(𝑛𝑖) > 𝐶𝐷(𝑢), node

𝑢 will select node 𝑛𝑖 as the relay node for packet 𝑝.

Finally, if node 𝑛𝑖 is selected as the relay node for packet 𝑝, in lines 12-14, node 𝑢 will

forward a copy of packet 𝑝 to node 𝑛𝑖, and a half of the forwarding token value is assigned

to the copy of packet 𝑝 at node 𝑛𝑖.

4.3 The Analytical Model

In the analytical model, it is assumed that 𝑁 nodes are in the network, each with a finite

transmission range, and moving in a closed area. Two nodes encounter when they come

within the transmission range of each other, at which point they can exchange packets. It
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is assumed that each node has enough buffer to store all packets that it has received. A

packet has the time to live (𝑇𝑇𝐿) and it is dropped if 𝑇𝑇𝐿 expires.

To design a feasible mathematical model, yet obtain an analytical insight into the pro-

posed routing protocol, the behavior of TSIRP is slightly simplified. Specifically, the meeting

probability is used instead of using PFMs and the degree centrality in case of long delay

packets is not considered. For example, node 𝑢 wants to send packet 𝑝 to node 𝑣. Let 𝑛𝑖

be a neighbor of node 𝑢. After checking the forwarding token value (i.e, 𝑐𝑝𝑢 > 1) and the

spreading rate control value (i.e., 𝑆𝐶𝑢
𝑝 > 𝜅), if node 𝑛𝑖 has a higher meeting probability

with the destination than node 𝑢, it will be selected as the relay node for packet 𝑝.

In order to obtain the analytical model, first, the network state is discussed. Then,

the state transition is described. Finally, an absorbing Markov chain is used to obtain the

network performance. The meaning of notations, which are used in the analytical model,

are shown in Table 4.2.

4.3.1 Network Sate Space

Let us focus on a single packet 𝑝 from source node 𝑢 to destination 𝑣. A bit is used to

represent the state that a node carries the packet or not. If the node carries the packet,

the state bit is set to 1; otherwise, the state bit is set to 0. Let 𝑆 = {0, 1} be the node

state space. For 𝑁 nodes in the network, the space of network state is a set of 𝑁 - element

vectors, possibly restricted by a number of constraints. Let Ω ⊆ 𝑆𝑁 denote the network

state space.

Ω = {𝑋|𝑋 = (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑁 )}, 𝑥𝑖 ∈ 𝑆 (4.7)

where 𝑥𝑖 represent the state of node 𝑖 in the network.

The number of replications is limited by forwarding token value 𝐶. Therefore, the

network state space has a constraint as follow:

𝑁∑︁
𝑖=1(𝑖 ̸=𝑣)

𝑥𝑖 ≤ 𝐶 (4.8)

4.3.2 State Transition

We assume that the network is in a state during a time slot, and the network state transition

is considered when the time slot changes. Specifically, the state transition happens if the

packet is forwarded to new nodes in the next time slot. An example of state transitions for
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Table 4.2: Important notation in the analytical model

Notation Meaning

𝑆 = {0, 1} The node state space

Ω The network state space

𝑝𝐶𝑖 The probability that 𝑐𝑝𝑖 > 1

𝑝𝑅𝑡 (𝑖, 𝑗) The probability that node 𝑗 receives packet 𝑝 from node 𝑖 at time slot 𝑡

Ω𝑋 The set of potential next states with current state 𝑋

R𝑋 The set of relay nodes in state 𝑋

𝑝𝑅𝑡 (𝑗) The probability that node 𝑗 receives packet 𝑝 at time slot 𝑡

𝑝(𝑋,𝑌 )𝑡 The probability that the network state switches from 𝑋 to 𝑌 at time slot 𝑡

S𝑇𝑅 The set of transient states

𝑛𝑇𝑅 The number of transient states

S𝐴𝐵 The set of absorbing states

𝑛𝐴𝐵 The number of absorbing states

Q𝑡
𝑖 The transition matrix between transient states at time slot 𝑡 with 𝑡𝑝 = 𝑇𝑇𝐿− 𝑖

Q𝑡 The set of all transition matrix Q𝑡
𝑖 at time slot 𝑡

R𝑡
𝑖 The transition matrix from transient states to absorbing states at time slot 𝑡 with 𝑡𝑝 = 𝑇𝑇𝐿− 𝑖

R𝑡 The set of all transition matrix R𝑡
𝑖 at time slot 𝑡

N𝑡 The fundamental matrix for packets, which is generated at time slot 𝑡

B𝑡 The absorbing probabilities matrix for packets, which are generated at time slot 𝑡

𝑝𝐼𝑡 (𝑍) The probability that the initial network state is state 𝑍

𝑝𝑑(𝑋
*) The probability that the final network state is absorbing state 𝑋*

𝑝𝑑 The packet delivery ratio

𝛿𝑡𝑖,𝑋* The expected number of steps until absorbing state 𝑋*, when starting at state 𝑖

𝜏 The duration of a time slot

𝐸𝐷 The delivery delay
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six nodes in the network with the initial forwarding token 𝐶 = 4 is shown in Fig. 4-2. The

network state switches from state 𝑋1 to state 𝑋2 when node 2 forwards the packet to node

5, and from state 𝑋2 to 𝑋3 when the packet is forwarded to node 4. In TSIRP, the state

transition from 𝑋3 to state 𝑋1 is impossible.

Figure 4-2: Example of state transitions for six nodes with initial forwarding token 𝐶 = 4

To study state transition, first, the probability that a relay node 𝑖 forwards packet 𝑝 to

node 𝑗 is discussed. Then, the transition between network states is presented.

Now, it is assumed that there is a contact between relay node 𝑖 and node 𝑗. In the case

that node 𝑗 is the destination, packet 𝑝 is delivered to node 𝑗. Otherwise, the forwarding

scheme is taken into account. Specifically, the forwarding token value is checked. Recall

that 𝑐𝑝𝑖 is the forwarding token for packet 𝑝 of node 𝑖. For node 𝑖 to transfer packet 𝑝 to

node 𝑗, the first condition is 𝑐𝑝𝑖 > 1. The number of relay nodes in state 𝑋 is defined as 𝑛𝑅
𝑋

(𝑛𝑅
𝑋 =

∑︀𝑁
𝑖=1 𝑥𝑖). Let 𝑝𝐶𝑖 denote the probability that 𝑐𝑝𝑖 > 1, which is approximated one if

𝑛𝑅
𝑋 is lower than

𝐶

2
. Otherwise, 𝑝𝐶𝑖 is approximated as:

𝑝𝐶𝑖 =
𝐶 − 𝑛𝑅

𝑋

𝑛𝑅
𝑋

(4.9)

In the case that 𝑐𝑝𝑖 > 1, let 𝑝𝑅𝑡 (𝑖, 𝑗) be the probability that node 𝑗 receives packet 𝑝 from

node 𝑖 at current time slot 𝑡. Then, 𝑝𝑅𝑡 (𝑖, 𝑗) is obtained as follow:

𝑝𝑅𝑡 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑃 𝑖,𝑗
𝑡 , if 𝑗 = 𝑣

𝑝𝐶𝑖 × 𝑃 𝑖,𝑗
𝑡 , if 𝑗 ̸= 𝑣 and (1𝑒 ≤ 𝑆𝐶𝑖

𝑝 ≤ 𝜅 or 𝑃 𝑗,𝑣
𝑡 > 𝑃 𝑖,𝑣

𝑡 )

0, otherwise

(4.10)

where if node 𝑗 is the destination (i.e., 𝑗 = 𝑣), 𝑝𝑅𝑡 (𝑖, 𝑗) is equal to the probability that node

55



Chapter 4. Temporal Social Interactions-Based Routing Protocol

𝑖 encounters node 𝑗 at time slot 𝑡 (𝑃 𝑖,𝑗
𝑡 ). In the case of 𝑗 ̸= 𝑣, the spreading rate control

value and the meeting probability are checked. Specifically, if 1
𝑒 ≤ 𝑆𝐶𝑖

𝑝 ≤ 𝜅 or 𝑃 𝑗,𝑣
𝑡 > 𝑃 𝑖,𝑣

𝑡 ,

𝑃 𝑖,𝑗
𝑡 is calculated based on 𝑝𝐶𝑖 and 𝑃 𝑖,𝑗

𝑡 . Otherwise, the packet is not be forwarded.

Now, we consider the transition between network states. Let 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) and

𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛) be two network states in Ω, and also let 𝑋 be the current network state.

For 𝑌 to be a potential next state from current state 𝑋, 𝑦𝑖 should be equal to 1 if 𝑥𝑖 is 1.

Let Ω𝑋 be the set of potential next states from current state 𝑋. We assume that 𝑌 ∈ Ω𝑋 .

S𝐷𝑋,𝑌 defines a set of nodes, which have the different state between 𝑋 and 𝑌 . Specifically,

𝑥𝑗 = 0 and 𝑦𝑗 = 1, ∀𝑗 ∈ S𝐷𝑋,𝑌 . Every contact between a relay node 𝑖 (𝑥𝑖 = 1) and node

𝑗 ∈ S𝐷𝑋,𝑌 offers the chance for transiting from current state 𝑋 to state 𝑌 . Let R𝑋 be the

set of relay nodes in state 𝑋 and 𝑝𝑅𝑡 (𝑗) be the probability that node 𝑗 receives packet 𝑝 at

time slot 𝑡. 𝑝𝑅𝑡 (𝑗) is calculated as:

𝑝𝑅𝑡 (𝑗) = 1−
∏︁
𝑖∈R𝑋

(1− 𝑝𝑅𝑡 (𝑖, 𝑗)) (4.11)

where the probability that node 𝑗 has not received the packet from any nodes in R𝑋 is

computed. Then, the 𝑝𝑅𝑡 (𝑗) could be obtained as Eq. (4.11).

If the packet is transferred to all nodes in S𝐷𝑋,𝑌 and was not transferred to any other

nodes, then the network transition from state X to state Y happens. Let R𝑌 be the set of

relay nodes in state 𝑌 . The probability that the network state switches from 𝑋 to 𝑌 at

current time slot 𝑡 is defined as 𝑝(𝑋,𝑌 )𝑡, which is obtained as follow:

𝑝(𝑋,𝑌 )𝑡 =

⎧⎪⎨⎪⎩
∏︀

𝑖∈S𝐷𝑋,𝑌
𝑝𝑅𝑡 (𝑖)×

∏︀𝑁
𝑗=1(𝑗 /∈R𝑌 )(1− 𝑝𝑅𝑡 (𝑗)), if 𝑋 ̸= 𝑌

1−
∑︀

𝑍 ̸=𝑋 𝑝(𝑋,𝑍)𝑡, if 𝑋 = 𝑌

(4.12)

where if 𝑋 ̸= 𝑌 , the probability that all nodes in S𝐷𝑋,𝑌 receive the packet and the probability

that all nodes, which are not relay nodes in state 𝑌 , do not receive the packet are calculated.

Then, 𝑝(𝑋,𝑌 )𝑡 is obtained. In the case of 𝑋 = 𝑌 , which means that the network state is

not be changed, 𝑝(𝑋,𝑌 )𝑡 is calculated based on the probability that the state transition

does not happen.

4.3.3 Network Performance

In this subsection, the routing protocol is transformed into an absorbing Markov chain.

Then, network performance metrics such as 𝑃𝐷𝑅 and 𝑃𝐷𝐿 in routing are obtained.
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An absorbing Markov chain is a Markov chain in which every state can reach an absorbing

state after some number of steps. An absorbing state is a state that, once entered, is

impossible to leave. States, which are not absorbing states, in an absorbing Markov chain

are defined as transient states. To transform the routing protocol into an absorbing Markov

chain, a network state is considered as a state in the absorbing Markov chain. From the

network state space (Ω), states, in which the destination has not received the packet, are

defined as transient states, and states, in which the packet was delivered to the destination,

are considered as absorbing states. When the network state is a transient state, it may switch

to another transient state or an absorbing state. When the network state is an absorbing

state, further transitions are no longer considered. The transition matrix between transient

states and the transition matrix from transient states to absorbing states are obtained from

the probability of state transitions. Based on those matrices, the fundamental matrix and

the absorption probabilities matrix for the absorbing Markov chain are calculated. Then,

network performance is obtained using those matrices.

Specifically, we consider the network state when transferring packet 𝑝 from source node

𝑢 to destination 𝑣. Any state 𝑋 ∈ Ω, with 𝑥𝑣 = 0 and 𝑥𝑖 = {0, 1}, ∀𝑖 ̸= 𝑣, is considered

as the transient state. The set of transient states is denoted as S𝑇𝑅. The desired network

state is any 𝑋* ∈ Ω, with 𝑥𝑣 = 1 and 𝑥𝑖 = {0, 1}, ∀𝑖 ̸= 𝑣. These states are absorbing states.

Let S𝐴𝐵 be the set of absorbing states. 𝑛𝑇𝑅 and 𝑛𝐴𝐵 denote the number of transient states

and the number of absorbing states, respectively.

Now, the transition matrix between transient states is considered. It is assumed that

𝑇𝑇𝐿 of packet 𝑝 is 𝑘 time slots. Note that 𝑡𝑝 is the residual lifetime of packet 𝑝, and the

spreading rate control value depends on 𝑡𝑝. The value of 𝑡𝑝 decreases from 𝑘 to 0. For each

time slot 𝑡, a set of matrices Q𝑡 = (Q𝑡
0,Q

𝑡
1, ...,Q

𝑡
𝑘−1) is obtained. Where Q𝑡

𝑖 is the transition

matrix between transient states at time slot 𝑡, with 𝑡𝑝 = 𝑇𝑇𝐿−𝑖. An element 𝑞𝑡𝑛,𝑚 in matrix

Q𝑡
𝑖 represents the probability that a state transits from transient state 𝑛 to transient state

𝑚 at time slot 𝑡. The size of matrix Q𝑡
𝑖 is 𝑛

𝑇𝑅 × 𝑛𝑇𝑅.

For the transition matrix from transient states to absorbing states, another set of matrices

R𝑡 = (R𝑡
0,R

𝑡
1, ...,R

𝑡
𝑘−1) is also obtained. R𝑡

𝑖 is a 𝑛𝑇𝑅 × 𝑛𝐴𝐵 matrix, which is the transition

matrix from transient states to absorbing states at time slot 𝑡 with 𝑡𝑝 = 𝑇𝑇𝐿 − 𝑖. Each

element 𝑟𝑡𝑛,𝑚 in matrix R𝑡
𝑖 shows the probability that state switches from transient state 𝑛

to absorbing state 𝑚 at time slot 𝑡.

Now, the fundamental matrix for the absorbing Markov chain can be defined. Let N𝑡
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be the fundamental matrix for the packet, which is generated at time slot 𝑡 and has the

𝑇𝑇𝐿 = 𝑘. N𝑡 is calculated as:

N𝑡 = I+

𝑡+𝑘−1∑︁
𝑖=𝑡

𝑖∏︁
𝑗=𝑡

Q𝑗
𝑗−𝑡 (4.13)

where I is the identity matrix. N𝑡 is a 𝑛𝑇𝑅×𝑛𝑇𝑅 matrix whose element 𝑛𝑡
𝑛,𝑚 is the expected

number of times the network is in state 𝑚, starting from state 𝑛, before getting absorbed.

Therefore, the sum of a row in matrix N𝑡 is the expected number of steps until absorption,

when starting from the respective state at time slot 𝑡.

Now, the absorbing probabilities matrix can be obtained. B𝑡 is defined as the absorbing

probabilities matrix for packets, which are generated at time slot 𝑡. B𝑡 is calculated as:

B𝑡 =
1

𝑘

𝑡+𝑘−1∑︁
𝑖=𝑡

(N𝑡 ×R𝑖
𝑖−𝑡) (4.14)

where each element 𝑏𝑡𝑛,𝑚 is the probability of being absorbed in an absorbing state 𝑚 during

𝑘 time slots, given that we start at a transient state 𝑛.

We assume that the initial network state is one of the state in S𝑇𝑅. When source node

𝑢 generates packet 𝑝 at time slot 𝑡, the network state is 𝑋 = (0, 0, ..., 𝑥𝑢 = 1, ..., 0, 0). Let

𝑝𝐼𝑡 (𝑍) be the probability that the initial network state is state 𝑍 (𝑍 ∈ S𝑇𝑅). In our model,

𝑝𝐼𝑡 (𝑍) is set to 𝑝(𝑋,𝑍)𝑡, with 𝑡𝑝 = 𝑘.

Let 𝑝𝑑(𝑋
*) denote the probability that the final network state is absorbing state 𝑋*.

From the probability that the initial network state is state 𝑋 ∈ S𝑇𝑅 and the probability of

being absorbed in state 𝑋*, given that the initial state is state 𝑋, 𝑝𝑑(𝑋
*) is obtained as:

𝑝𝑑(𝑋
*) =

1

36

36∑︁
𝑡=1

∑︁
𝑋∈S𝑇𝑅

(𝑝𝐼𝑡 (𝑋)× 𝑏𝑡𝑋,𝑋*) (4.15)

where 𝑝𝑑(𝑋
*) is the average value of 36 time slots in a day.

Now, 𝑃𝐷𝑅 of packets from source node 𝑢 to the destination 𝑣 is denoted by 𝑝𝑑. 𝑝𝑑(𝑋
*)

is calculated for all 𝑋* ∈ S𝐴𝐵. Then, 𝑝𝑑 is the sum of those values.

𝑝𝑑 =
∑︁

𝑋*∈S𝐴𝐵

𝑝𝑑(𝑋
*) (4.16)

In order to obtain the delivery latency, first, assume that the network ends up absorbing
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state 𝑋*. Now, there is only one absorbing state in the set of absorbing states (i.e., state

𝑋*). The set of transient states is also updated. Specifically, states that are impossible to

switch to 𝑋* are removed. Let S𝐴𝐵
𝑋* and S𝑇𝑅

𝑋* denote the set of absorbing states and the set

of transient states for this case, respectively. All conditional transition probabilities, given

that the process ends up in state 𝑋* are computed to update 𝑝𝐼𝑡 (𝑋). Q𝑡 and R𝑡 are also

updated based on those probabilities. A new fundamental matrix N𝑡* is obtained for new

transition matrices. Let the vector 𝑁 𝑡*
𝑖 = (𝑛𝑡*

𝑖,1, 𝑛
𝑡*
𝑖,2, ..., 𝑛

𝑡*
𝑖,𝑛𝑇𝑅) denote the row 𝑖𝑡ℎ in matrix

N𝑡*. The expected number of steps until absorbing state 𝑋*, when starting at state 𝑖 is

defined as 𝛿𝑡𝑖,𝑋* , whose value is the sum of all elements in 𝑁 𝑡*
𝑖 . The values of 𝛿𝑡𝑖,𝑋* are

obtained for all absorbing state 𝑋* ∈ S𝐴𝐵.

Let 𝜏 be the duration of a time slot. Note that each step corresponds to a time slot.

𝐸𝐷 is defined as the delivery delay of packets from source node 𝑢 to destination 𝑣. Then,

𝐸𝐷 is computed as:

𝐸𝐷 = 𝜏 × 1

36

36∑︁
𝑡=1

∑︁
𝑋*∈S𝐴𝐵

(
𝑝𝑑(𝑋

*)

𝑝𝑑

∑︁
𝑋∈S𝑇𝑅

𝑋*

(𝑝𝐼𝑡 (𝑋)× 𝛿𝑡𝑖,𝑋*)) (4.17)

where using the initial probabilities, 𝑝𝐼𝑡 (𝑋), and the law of total expectation, 𝐸𝐷 is obtained

and it is also the average value for 36 time slots in a day.

4.3.4 Comparing with the Simulation
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Figure 4-3: The results from the analytical model and the simulation with the various
number of nodes in the network
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In this subsection, the analytical model is compared with the simulation. First, a part

of Helsinki map [78], with a size of 2, 000 meter × 2, 000 meter was used for the simulation.

We generate the movements of 20 nodes for 100 days by using the social relationship-aware

human mobility model (SRMM) [79], which reflects the characteristics of human movement

(i.e., flight lengths, inter-contact times, the radius of gyrations, and pause times) and the

social context. In SRMM, people are partitioned into social groups based on information

from a social graph. People in the same group have several common places where they

frequently visit. Then, the movements of the people are determined by considering the

distances from people to places, and social relationships between people. For instance,

people prefer visiting nearby places, as well as places where many of their friends are. In

SRMM, people are assumed to move 12 hours per day. The movements from day 1 to day 98

were used to obtain the meeting probability between nodes in the network. The simulations

of routing protocols were performed on days 99 and 100 with 24 hours simulation time and

an opportunistic networking environment (ONE) simulation tool [78] was used.

The 𝑇𝑇𝐿 is set to 3 hours (𝑘 = 9 time slots). The initial value of forwarding token 𝐶 is

4. 𝜅 and 𝜒 are set to 0.6 and 0.5, respectively. The packet generation interval is randomly

set at between 25 and 30 seconds.

One source and destination pair is randomly chosen for simulation. The result is the

average over five-times simulations with five different pairs of source and destination. The

analytical model also obtains the results for five pairs of source and destination, respectively.

Figure 4-3 shows the network performance obtained from the analytical model and the

simulation with the various number of nodes in the network. The results of 𝑃𝐷𝑅 are

presented in Figure 4-3(a). For a larger number of nodes in the network, packets have more

chances to forward to a better relay, which leads to a higher 𝑃𝐷𝑅. That is reflected in both

the analytical model and the simulation. Specifically, Figure 4-3(a) indicates that 𝑃𝐷𝑅

increases as the number of nodes increases. Overall, the obtained results show that 𝑃𝐷𝑅

from the analytical model coincides well with the simulation.

Figure 4-3(b) shows the results of 𝑃𝐷𝐿. The trends between the analytical model and

the simulation match. Specifically, 𝑃𝐷𝐿 was reduced when the number of nodes increased

since, with a larger number of nodes, the possibility of meeting and forwarding packets to

nodes that have higher meeting probabilities with the destination is increased. Figure 4-3(b)

also indicates that 𝑃𝐷𝐿, which is obtained by the analytical model, is slightly longer than

the simulation results. It is partially because, in the analytical model, each step for state
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transition is processed at the end of a time slot. However, in the simulation, packets could

be forwarded in the middle of a time slot.

4.4 Performance Study

In this section, the performance of the proposed routing protocol is evaluated in terms of

𝑃𝐷𝑅, 𝑃𝐷𝐿, and 𝐷𝐶. First, TSIRP was validated with three PFMs. Then, TSIRP was

compared with epidemic routing [16], the spray-and-wait routing protocol [18], PRoPHET

[20], and CORP [21].

4.4.1 Simulation Setup

A map of Helsinki [78], with a size of 8, 300 m × 7, 310 m was used as the simulation

area. Let 𝑇 denote the simulation time. In this paper, the movements of 150 nodes for 81

days were generated by SRMM. The movements from day 1 to day 80 were used to obtain

PFMs in TSIRP and the delivery predictability in PRoPHET and CORP. The simulations

of routing protocols were performed on day 81 with simulation time 𝑇 = 12 hours. It is

assumed that people move between places by car in the city. Based on car speeds from [80],

the speed of node movement was set to follow a normalized distribution: 𝑁(39, 52) km/h.

We used the media access control (MAC) layer of Bluetooth 5.0 with a node transmission

range of 100 m, and a transmission rate of 2 Mbps. Packets were generated with a size of

500 bytes, and the generation interval was randomly set at between 25 and 30 seconds. The

𝑇𝑇𝐿 for packets was set to three hours. Each node has a buffer that can store 100 packets.

The initial value of forwarding tokens 𝐶 and 𝜒 were set to 32 and 0.5, respectively. In our

simulation, a message can contain different information (e.g., an emergency alert, a traffic

jam notification, or weather information). Depending on the information a message carries,

the message should have a different value for 𝑑𝑡, which determines whether the message is

experiencing a long delay or not. Therefore, the values of time threshold 𝑑𝑡 were assumed

to be 𝑁(80, 102) minutes.

In addition, we also compared the proposed protocol with other routing protocols. Com-

mon parameters, such as the network area, the number of nodes, the mobility model, and

the MAC layer were the same in all routing protocols. Under PRoPHET, the initialization

constant of delivery predictability, 𝑃𝑖𝑛𝑖𝑡, the aging constant, 𝛾, and the scaling constant, 𝛽,

were set to 0.75, 0.98, and 0.25, respectively. For CORP, the maximum probability thresh-

old 𝑃𝑚𝑎𝑥 and minimum probability threshold 𝑃𝑚𝑖𝑛 were set to 0.88 and 0.45, respectively.
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Under the spray-and-wait, the forwarding token was set to the same value as our routing

protocol. A summary of simulation parameters is in Table 4.3.

Table 4.3: Simulation parameters

Parameter Value

Size of network area 8,300 m×7,310 m

Number of nodes (𝑁) 150

Simulation time (𝑇 ) 12 h

Mobility model SRMM

The speed of node movement 𝑁(39, 52) km/h

MAC layer Bluetooth 5.0

Transmission rate 2 Mbps

Transmission range 100 m

Packet 𝑇𝑇𝐿 3 h

Packet size 500 bytes

Packet generation interval 25-30s

Buffer size 100 packets

Initial value of forwarding token (𝐶) 32

Time threshold for considering the mean value of degree centrality (𝑑𝑡) 𝑁(80, 102) min

4.4.2 Effects of the Spreading Rate Control Threshold (𝜅) and the Initial

Value of the Forwarding Token (𝐶) on the Performance for Three

PFMs
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Figure 4-4: The network performance for three PFMs with various 𝜅 values (the spreading
rate control threshold).
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In this subsection, the effects of three potential forwarding metrics (𝐼𝐶𝑇 : the mean value of

inter-contact time, 𝐸𝐷: the expected delivery delay, 𝑥̂: the number of time slots to satisfy

the meeting probability condition) are analyzed. 𝐸𝐷 between nodes was computed with

𝑘 = 100 time slots. The required meeting probability, 𝜗, was set to 0.2 when we calculated

𝑥̂. For the three PFMs, network performance based on various values for 𝜅 and 𝐶 was

collected.

Figure 4-4 shows the network performance for the three PFMs with various 𝜅 values.

In Fig. 4-4(a), 𝑃𝐷𝑅 increased significantly when 𝜅 increased from 0.4 to 0.6, and then

slightly decreased if 𝜅 kept increasing. For a low value of 𝜅, the message spreading rate is

quickly reduced and packets are not spread widely enough. In contrast, if 𝜅 is large, the

relay selection will be performed too late. Those reasons led to a low 𝑃𝐷𝑅. As shown in

Fig. 4-4(a), the best packet delivery ratio was achieved when 𝜅 = 0.6. For the three PFMs,

when 𝜅 = 0.4 and 𝜅 = 0.5, higher packet delivery ratios were obtained by using 𝐸𝐷. Then,

when 𝜅 was between 0.6 and 0.9, different PFMs obtained similar values for 𝑃𝐷𝑅.

Figure 4-4(b) illustrates 𝑃𝐷𝐿 for the three PFMs. Overall, the results indicate that all

three PFMs have a lower 𝑃𝐷𝐿 from a larger value for 𝜅. 𝐸𝐷 achieved a lower 𝑃𝐷𝐿 than

𝐼𝐶𝑇 and 𝑥̂ because, based on temporal social interactions, nodes that have lower values for

𝐸𝐷 were determined and selected as relay nodes.

The results for 𝐷𝐶 are displayed in Fig. 4-4(c). It is clear that 𝐷𝐶 increased to a certain

point when 𝜅 varied between 0.4 and 0.6, and did not change after that. With a large value

for 𝜅 (between 0.7 and 0.9), most of the message copies were forwarded to neighbor nodes

without considering PFM, so 𝐷𝐶 was high, and different PFMs obtained similar results.
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Figure 4-5: The network performance for three PFMs with various 𝐶 values (the initial
value of the forwarding token).

The network performance for the three PFMs with various 𝐶 values is shown in Fig.
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4-5. 𝑃𝐷𝑅 is presented in Fig. 4-5(a). We see that a larger 𝐶 value achieves a better

packet delivery ratio because, with a large 𝐶 value, the number of copies of messages in

the network was also large, and the messages had a high possibility of being delivered to

the destinations. The obtained results with 𝐼𝐶𝑇 and 𝐸𝐷 are similar and higher than the

results with 𝑥̂. Figure 4-5(b) presents 𝑃𝐷𝐿 for various 𝐶 values. Overall, latency decreased

when there was an increase in 𝐶 values; by selecting relay nodes with lower values for 𝐸𝐷,

𝑃𝐷𝐿 based on 𝐸𝐷 was lower than with the other PFMs.

The results of 𝐷𝐶 for various 𝐶 values are displayed in Fig. 4-5(c). As shown in the

figures, 𝐷𝐶 increased as 𝐶 increased, since a large 𝐶 value means a large number of message

replications. The results obtained for the different PFMs are similar in terms of 𝐷𝐶.

Based on the results of network performance in Fig. 4-4 and Fig. 4-5, the value of 𝜅

was set to 0.6, and the expected delivery delay (𝐸𝐷) was used as the PFM to compare with

other routing protocols.

4.4.3 Effects of the Packet Generation Interval on the Performance of

Routing Protocols
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Figure 4-6: The network performance for various values of the packet generation interval.

The network performance for various values of the packet generation interval is presented

in Fig. 4-6. 𝑃𝐷𝑅 is shown in Fig. 4-6(a). We see that all five protocols achieved higher

packet delivery ratios as the packet generation interval increased since the network traffic

is lower with a longer packet generation interval. By controlling the message spreading

rate and selecting relay nodes with lower values for 𝐸𝐷, 𝑃𝐷𝑅 under TSIRP is higher

than the others. In PRoPHET and epidemic routing, the message spreading rate was not

considered, and the number of replications was not limited. Thus, the buffer filled, and

a lot of packets were dropped, which led to a low value for 𝑃𝐷𝑅. By using the network
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community information, 𝑃𝐷𝑅 in CORP is higher than those in PRoPHET and epidemic

routing. In the spray-and-wait routing protocol, by limiting the number of replications, the

buffer overflow was reduced and 𝑃𝐷𝑅 was greater than that in CORP.

Latency from various values for the packet generation interval is illustrated in Fig. 4-

6(b). Based on the flooding strategy, epidemic routing provided a shorter delay than other

routing protocols with less network traffic (i.e., a longer packet generation interval). Under

TSIRP and the spray-and-wait routing protocol, 𝑃𝐷𝐿 increased when we increased the

packet generation interval because, with a short packet generation interval, the network

traffic is heavy and the buffer overflows. Therefore, when new packets are generated and

received, packets with long delays are removed from the buffer to store the new packets. As

a result, there are only packets with short delays in the buffer. That creates low values for

𝑃𝐷𝐿. When the packet generation interval is longer, buffer overflow is reduced, and more

packets with longer delays are in the buffer, which increases latency. Under PRoPHET

and CORP, when a message has just been generated, the message is slowly spread due to

nodes performing relay selection. Therefore, 𝑃𝐷𝐿 under PRoPHET and CORP is long. By

controlling the message spreading rate, TSIRP resolves this problem, and nodes with lower

values for 𝐸𝐷 are preferred as relay nodes. That reduces the latency. As shown in Fig.

4-6(b), TSIRP achieved a lower latency than PRoPHET and the spray-and-wait routing

protocol.

Figure 4-6(c) displays the results for 𝐷𝐶. Under TSIRP and the spray-and-wait routing

protocol, low values for 𝐷𝐶 were obtained by limiting the number of replications, whereas

epidemic routing and PRoPHET had very high values for 𝐷𝐶. In the CORP, by finding the

node in the destination’s community before finding the destination, 𝐷𝐶 is also reduced. For

example, when the packet generation interval is five seconds, 𝐷𝐶s from TSIRP, the spray-

and-wait routing protocol, and CORP were 23, 24, and 212, respectively, whereas epidemic

routing and PRoPHET obtained 3194 and 2643, respectively.
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4.4.4 Effects of Packet 𝑇𝑇𝐿 on the Performance of Routing Protocols
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Figure 4-7: The network performance for various values of packet time to live.

In this subsection, we also collect and present the result of epidemic routing in the case of

unlimited buffer size for various TTL values to show the theoretical maximal performance

and compare it with our routing protocol.

In Fig. 4-7, the network performance for various values of 𝑇𝑇𝐿 is illustrated. 𝑃𝐷𝑅 is

shown in Fig. 4-7(a). The results indicate that giving a longer lifetime to packets increases

𝑃𝐷𝑅 up to a certain point, and then, 𝑃𝐷𝑅 settles under TSIRP and the spray-and-wait

routing protocol but decreases in epidemic routing, and PRoPHET due to buffer overflow. In

CORP, by trying to forward the packet to the destination’s community, the buffer overflow is

reduced and 𝑃𝐷𝑅 is slightly higher than PRoPHET. By considering packet spreading rate

and relay selection, 𝑃𝐷𝑅 from TSIRP is higher than from other routing protocols when

𝑇𝑇𝐿 varies between 2 hours and 10 hours, and it close to the theoretical maximal value

with a large value for 𝑇𝑇𝐿 (e.g., 𝑇𝑇𝐿 between 6 hours and 10 hours)

𝑃𝐷𝐿 results are in Fig. 4-7(b). A large value for 𝑇𝑇𝐿 means packets can be stored for

a long time in the buffer, which leads to increased latency, as shown in the figure. Epidemic

with unlimited buffer size obtained the lowest value. The results also indicate that 𝑃𝐷𝐿

under TSIRP is lower than under PRoPHET and the spray-and-wait routing protocol, and

is slightly longer than epidemic routing.

𝐷𝐶 with various values of 𝑇𝑇𝐿 is presented in Fig. 4-7(c). The obtained results from

TSIRP are better than from other routing protocols due to the small number of replications

and from executing relay selection. Under PRoPHET and epidemic routing, when TTL

increases, a lot of packets are dropped and re-transmitted due to the buffer overflow. In the

case of epidemic routing with the unlimited buffer size, the buffer overflow does not happen
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and packets are not dropped. That is the reason why 𝐷𝐶 from PRoPHET and epidemic

routing higher than epidemic routing with unlimited buffer.

4.4.5 Effects of Buffer Size on the Performance of Routing Protocols
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Figure 4-8: The network performance for various buffer sizes.

Figure 4-8 displays the network performance for various buffer sizes. First, 𝑃𝐷𝑅 is shown

in Fig.4-8(a). We can see that 𝑃𝐷𝑅 increased as the buffer size increased since a large

buffer means more packets can be forwarded and stored in it. 𝑃𝐷𝑅 in CORP is higher

than PRoPHET and lower than the spray-and-wait routing. TSIRP always achieves the

best packet delivery ratio with the various buffer sizes.

𝑃𝐷𝐿 is in Fig. 4-8(b). When the buffer size is smaller than 100 packets, the proposed

routing protocol delivered lower latency than the others. Note that a shorter latency was

achieved under epidemic routing when the buffer size increased to 150 packets since a large

buffer will reduce the packet loss rate in epidemic routing. However, with epidemic routing,

𝐷𝐶 is huge, as shown in Fig.4-8(c), because of flooding.

4.5 Chapter Summary

In this Chapter, we proposed an efficient routing protocol for opportunistic mobile networks.

Based on temporal social interactions and the history of social interactions between nodes,

three PFMs were proposed for relay selection (i.e., the mean value of inter-contact time

between nodes, the expected delivery delay, and the number of time slots to satisfy the

meeting probability condition). In addition, a scheme to control the message spreading rate

was proposed based on the state of the message in order to achieve a balance between 𝑃𝐷𝐿

and 𝐷𝐶. Specifically, based on the residual lifetime and the forwarding token, a spreading

rate control value was proposed to control the message spreading rate. This scheme allows
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reducing both latency and 𝐷𝐶. Furthermore, in our forwarding scheme, if a packet is

experiencing a long delay, degree centrality is also used to create more chances to deliver the

packet to the destination. In addition, we design an analytical model to study the proposed

routing algorithm and the proposed model can accurately estimate the network performance

in terms of 𝑃𝐷𝑅 and the delivery delay.

The human movements generated from SRMM is used for validating TSIRP. The net-

work performance under TSIRP was evaluated by comparing it with other routing protocols

(epidemic routing, spray-and-wait, PRoPHET, and CORP) in terms of 𝑃𝐷𝐿, 𝑃𝐷𝑅, and

𝐷𝐶. The simulation results indicate that TSIRP can outperform existing routing protocols.
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Chapter 5

Human Location Prediction-Based

Routing Protocol

5.1 The Network Model and Problem Definition

In this work, we extend the thesis by studying scenarios for urban sensor networks. Then, a

human location prediction model is designed and a human location prediction-based routing

protocol is proposed. This section first describes the network model is described. Then, the

problem definition is presented.

Figure 5-1: The network model.

Figure 5-1 shows the network model that consists of four entities as follows:

� Mobile nodes (mobile users): Mobile nodes collect data, such as temperature, images
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of traffic conditions, and videos of accidents, using the sensors embedded in their smart

devices (e.g., camera, microphone, positioning sensor, temperature sensor), and send

to edge nodes. They can walk or be in a vehicle to move around the area. When mobile

users are in contact with other people or sensors, they can exchange data between them

and transmit data to the destination.

� Sensors: Sensors are deployed in specific locations to collect data, such as air quality,

radioactivity, noise levels, and humidity levels. When sensors and destinations (edge

nodes) are not directly connected, the sensors must relay packets to mobile users to

transfer them to the destinations.

� Edge nodes: Edge nodes are located in particular locations to gather and preprocess

collected data from sensors and mobile users. Then, edge nodes send processed data

to the server center.

� The server center: The server center receives data from edge nodes and uses the

received data for urban-sensing applications.

Messages in this network can be of different data types, such as text, images, and video.

This model could be used in various applications, such as environmental monitoring [23,24],

smart traffic light systems [25], and waste management [81]. For example, in monitoring en-

vironmental conditions [23,24], the data from sensors, such as air quality, noise, and radiation

sensors, and the data from sensors embedded in smart devices for temperature measurement,

are collected and sent to edge nodes. Then, edge nodes preprocess the collected data and

send it to the server center.

In this system, edge nodes connect with the server center via an infrastructure network,

whereas edge nodes, sensors, and mobile nodes exchange messages with each other using

wireless communications such as Bluetooth 5.0. Therefore, this work addresses the prob-

lem of how to effectively route data from sensors and mobile nodes to edge nodes. Data

collection at edge nodes in this system relies on mobile nodes that move around the city.

The selection of nodes for forwarding messages is an important issue. Our work considers

network performance in terms of 𝐷𝐶, 𝑃𝐷𝐿, and 𝑃𝐷𝑅.

We assume that the movement histories of a number of mobile nodes are observed, and

each node knows its encounter history with other nodes. The information from observed

movement history is denoted as 𝑀 . Let S𝑁𝐵
𝑢 denote the set of neighboring nodes of node 𝑢.

The information on the encounter history of nodes in S𝑁𝐵
𝑢 is denoted 𝐸. Node 𝑢 wants to
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send a message to edge node 𝑣. The objective is to choose relay nodes in S𝑁𝐵
𝑢 to maximize

𝑃𝐷𝑅 and minimize 𝑃𝐷𝐿 and 𝐷𝐶, given the information on movement history 𝑀 and

information on encounter history 𝐸.

5.2 HLPRP routing protocol

In this section, the proposed human location prediction model is described in detail. Then,

we discuss how to determine packet delivery predictability using the estimated information

from the human location prediction model. The of nodes is also calculated using their

encounter histories. Finally, a forwarding algorithm is proposed based on those metrics.

The routing process of HLPRP is shown in Figure 5-2.

Figure 5-2: The HLPRP routing process.

5.2.1 Human Location Prediction (HLP) Model

We propose a human location prediction model based on a RNN and LSTM cells [28] for

estimating mobile users’ next positions, using information from their previous movements.

In particular, the proposed model takes movement information of mobile users in current

and previous time slots as input and outputs estimated locations for the next 𝑘 time slots.

71



Chapter 5. Human Location Prediction-Based Routing Protocol

The information that will be used as input for the prediction model is discussed next.

First, to distinguish mobile users, each one is assigned a unique ID. Then, a one-hot vector

is used to represent the user ID. Let
−→
𝑎𝐼𝑢 denote the one-hot vector that indicates the ID of

user 𝑢. Second, a time slot index is also used as an input feature. The one-hot vector that

represents time slot ℎ is denoted
−→
𝑎𝑇ℎ . Third, the day of the week is considered. Let

−→
𝑎𝐷ℎ be

the one-hot vector that indicates the day of the week of time slot ℎ. Fourth, the locations of

mobile users are taken into account. The one-hot vector that indicates the location of user 𝑢

in time slot ℎ is
−−→
𝑎𝐿𝑢,ℎ. Finally, let 𝑡 denote the current time slot. From time slot 𝑡, the human

location prediction model will predict the location of mobile user 𝑢 in the next time slot, 𝑞

(e.g., with 𝑘 = 4, 𝑞 could be time slot 𝑡+1, time slot 𝑡+2, time slot 𝑡+3, or time slot 𝑡+4).

To determine time slot 𝑞, a one-hot vector is used. Let
−−→
𝑎𝑃𝑇 denote the time slot in which we

want to predict the location of user 𝑢.
−−→
𝑎𝑃𝑇 is considered an input feature as well. One-hot

encoding is used for all input features because those features are nominal and not ordinal.

The input will be information from time slot (𝑡−𝑚+1) to current time slot 𝑡. Let us define

−−→𝑥𝑢,ℎ as the input vector of user 𝑢 in time slot ℎ, specifically, −−→𝑥𝑢,ℎ = {
−−→
𝑎𝑃𝑇 ,

−→
𝑎𝐼𝑢,

−→
𝑎𝐷ℎ ,

−→
𝑎𝑇ℎ ,

−−→
𝑎𝐿𝑢,ℎ}.

This model is based on a RNN with LSTM cells. After the last hidden state of the LSTM

cell, a fully connected layer with ReLU activation and a fully connected layer with a softmax

activation function is used for the output layer. Let ̂︀𝑦𝑢,𝑞 denote the output vector that shows
the probability that mobile user 𝑢 will visit locations in time slot 𝑞 (e.g., 𝑞 = 𝑡 + 1). For

example, ̂︀𝑦𝑢,𝑞 = [0.1, 0.05, 0.01, . . . , 0.3] means that in time slot 𝑞, the probability of visiting

the first location is 0.1; the probability of visiting the second location is 0.05, and so on.

The notations used in the human location prediction model are shown in Table 5.1.
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Table 5.1: Notations used in the human location prediction model.

Notation Meaning

−−→𝑥𝑢,ℎ Input vector of user 𝑢 in time slot ℎ

−−→
𝑎𝑃𝑇 One-hot vector: the next time slot for prediction of the user’s location

−→
𝑎𝐼𝑢 One-hot vector: the ID of mobile user 𝑢

−→
𝑎𝐷ℎ One-hot vector: the day of the week of time slot ℎ

−→
𝑎𝑇ℎ One-hot vector: presents time slot ℎ

−−→
𝑎𝐿𝑢,ℎ One-hot vector: the location of user 𝑢 in time slot ℎ

̂︀𝑦𝑢,𝑞 Output vector

5.2.2 Packet Delivery Predictability

In the network model, edge nodes are deployed at certain locations. Suppose that edge

node 𝑣 is located at a certain location in the area. The probability that a mobile user

visits edge node 𝑣 from time slot 𝑡 + 1 to time slot 𝑡 + 𝑘 is obtained by using the human

location prediction model. Let 𝑝(𝑢, 𝑣)𝑡+𝑗 denote the probability that mobile user 𝑢 visits

edge node 𝑣 at time slot 𝑡+ 𝑗. Based on the visit probability, packet delivery predictability

(the possibility that a node will deliver a packet to its destination) can be calculated. Let

𝐷𝑃 (𝑢, 𝑣)𝑡 denote the packet delivery predictability of mobile user 𝑢 to edge node 𝑣 in time

slot 𝑡. 𝐷𝑃 (𝑢, 𝑣)𝑡 is calculated as follows:

𝐷𝑃 (𝑢, 𝑣)𝑡 =
𝑘∑︁

𝑗=1

(𝑝(𝑢, 𝑣)𝑡+𝑗)
𝜁×𝑗 (5.1)

where a tunable parameter, 𝜁 ∈ (0, 1), is used to adjust the effect of probabilities based on

time. Specifically, with (𝜁 × 𝑗), the probability for a time slot in the distant future has less

effect on the value of 𝐷𝑃 (𝑢, 𝑣)𝑡 than the probability for a time slot in the near future (e.g.,

𝑝(𝑢, 𝑣)𝑡+2 affects 𝐷𝑃 (𝑢, 𝑣)𝑡 less than 𝑝(𝑢, 𝑣)𝑡+1). In other words, a node with a high visit

probability in the near future has higher packet delivery predictability than a node with a

high visit probability in the distant future. A high 𝐷𝑃 (𝑢, 𝑣)𝑡 value indicates that a message

can be delivered from mobile user 𝑢 to edge node 𝑣 with high probability and low latency.

Therefore, a relay node with high packet delivery predictability is preferable.
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5.2.3 Social Strength

Social strength is used to represent the social relationships between nodes in the network.

To measure the social strength between nodes, connection characteristics such as encounter

frequency [82] and contact duration [83, 84] can be used. In this work, social strength is

determined based on contact duration between nodes. During the observation time, nodes

that have been in touch for a longer period have a higher social strength. Contacts between

nodes are assumed to be collected over a time period, 𝑇𝐶 . Let 𝜂 represent the number of

contacts between node 𝑢 and node 𝑣. The duration of the 𝑖𝑡ℎ contact between node 𝑢 and

node 𝑣 is defined as 𝐶𝑇 𝑖
𝑢,𝑣. Let 𝑠(𝑢, 𝑣) denote the social strength between node 𝑢 and node

𝑣. Then, 𝑠(𝑢, 𝑣) is calculated as:

𝑠(𝑢, 𝑣) =

∑︀𝜂
𝑖=1𝐶𝑇 𝑖

𝑢,𝑣

𝑇𝐶
(5.2)

From Equation (5.2), we see that the social strength of two nodes is the total contact

duration between them over the time period of collecting contacts between nodes. A high

value for 𝑠(𝑢, 𝑣) implies that they have a close relationship and usually encounter each other.

5.2.4 Forwarding Algorithm

The proposed forwarding algorithm, based on packet delivery predictability and social

strength, is presented in Algorithm 2. The notations used in the algorithm are defined

in Table 5.2.

Table 5.2: Notations used in the proposed forwarding algorithm.

Notation Meaning

𝐷𝑃 (𝑢, 𝑣)𝑡 The packet delivery predictability between node 𝑢 and node 𝑣 in time slot 𝑡

𝑠(𝑢, 𝑣) The social strength between node 𝑢 and node 𝑣

𝐷𝑢 The degree centrality of node 𝑢

𝑐𝑝𝑢 The forwarding token of node 𝑢 for packet 𝑝

S𝑁𝐵
𝑢 The set of neighboring nodes of node 𝑢

Assume that node 𝑢 wants to send packet 𝑝 to edge node 𝑣. First, the neighboring

nodes of node 𝑢 are checked. If the destination is listed in the neighboring nodes, the packet
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Algorithm 2 The forwarding algorithm.

1: Node 𝑢 has packet 𝑝 to send to edge node 𝑣
Input: S𝑁𝐵

𝑢 , 𝐷𝑃 (𝑢, 𝑣)𝑡, 𝑠(𝑢, 𝑣), 𝜁,𝐷𝑢, 𝑐
𝑝
𝑢

2: for each 𝑖 ∈ S𝑁𝐵
𝑢 do

3: if 𝑐𝑝𝑢 > 1 then
4: Node 𝑢 selects node 𝑖 as a relay node and forwards a copy of packet 𝑝 to 𝑖
5: 𝑐𝑝𝑖 = min(max(𝑐𝑝𝑢 × 𝐷𝑖

𝐷𝑖+𝐷𝑢+𝜖 , 1), 𝑐
𝑝
𝑢 − 1)

6: 𝑐𝑝𝑢 = 𝑐𝑝𝑢 − 𝑐𝑝𝑖
7: else if 𝑐𝑝𝑢 = 1 then
8: if 𝐷𝑃 (𝑖, 𝑣)𝑡 > 𝐷𝑃 (𝑢, 𝑣)𝑡 then
9: Node 𝑖 is chosen as a relay node for packet 𝑝
10: else if 𝐷𝑃 (𝑖, 𝑣)𝑡 = 𝐷𝑃 (𝑢, 𝑣)𝑡 and 𝑠(𝑖, 𝑣) > 𝑠(𝑢, 𝑣) then
11: Node 𝑖 is chosen as a relay node for packet 𝑝
12: end if

13: if Node 𝑖 is chosen as a relay node for packet 𝑝 then
14: Node 𝑢 forwards packet 𝑝 to node 𝑖 and deletes packet 𝑝 from buffer
15: 𝑐𝑝𝑖 = 1
16: end if

17: end if

18: end for

is delivered to the destination. Otherwise, the forwarding process is executed following

Algorithm 2.

In the forwarding algorithm, a forwarding token for packets is used to limit the number

of copies of packets in the network similarly in [18,22]. Specifically, when a node generates a

packet, it also assigns a forwarding token to the packet. The forwarding token’s initial value

is 𝐶. Let 𝑐𝑝𝑢 represent the forwarding token for packet 𝑝 of node 𝑢. The forwarding algorithm

is processed in two phases based on the value of 𝑐𝑝𝑢. In phase 1, i.e., when 𝑐𝑝𝑢 > 1, packets

are quickly spread in the network, and degree centrality is used to update the forwarding

token’s value. In phase 2, when 𝑐𝑝𝑢 = 1, relay nodes are selected based on packet delivery

predictability and social strength.

Specifically, in phase 1 when 𝑐𝑝𝑢 > 1, node 𝑢 selects node 𝑖 in S𝑁𝐵
𝑢 as a relay node and

forwards a copy of packet 𝑝 to node 𝑖 without consideration of any other condition in line

4. Based on the social strength between nodes, a social graph is constructed. In the social

graph, vertices are nodes, and there is a link between two nodes if their social strength is

greater than zero. The degree centrality of a node is defined as the number of links between

itself and other nodes in the social graph. To update the forwarding token’s value, degree

centrality is used. Let 𝐷𝑢 and 𝐷𝑖 represent the degree centrality of node 𝑢 and the degree

centrality of node 𝑖, respectively. The forwarding token’s value assigned to the copy of packet
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𝑝 at node 𝑖 is denoted as 𝑐𝑝𝑖 , which is calculated as follows:

𝑐𝑝𝑖 = min(max(𝑐𝑝𝑢 × 𝐷𝑖

𝐷𝑖 +𝐷𝑢 + 𝜖
, 1), 𝑐𝑝𝑢 − 1) (5.3)

where a very small value, 𝜖, is added to avoid the denominator being zero. According to

Equation (5.3), 𝑐𝑝𝑖 is limited to values between [1, 𝑐𝑝𝑢 − 1], and a node with a larger value

for the degree centrality will be assigned a greater forwarding token’s value. In the real

context, a node with a high degree of centrality has a greater likelihood of connecting with

other nodes. If it has a large value for the forwarding token, copies of the packet will

quickly spread throughout the network. That supports minimizing 𝑃𝐷𝐿 and enhances the

possibility of delivering the packet to its destination. In Algorithm 2, 𝑐𝑝𝑖 is calculated in line

5, and 𝑐𝑝𝑢 is updated in line 6 (i.e., 𝑐𝑝𝑢 = 𝑐𝑝𝑢 − 𝑐𝑝𝑖 ).

In phase 2, when 𝑐𝑝𝑢 = 1, the packet delivery predictabilities are compared in line 8.

If node 𝑖 has a greater packet delivery predictability with edge node 𝑣 than node 𝑢 (i.e.,

𝐷𝑃 (𝑖, 𝑣)𝑡 > 𝐷𝑃 (𝑢, 𝑣)𝑡), node 𝑖 is chosen as a relay node for packet 𝑝 in line 9. Otherwise, if

𝐷𝑃 (𝑖, 𝑣)𝑡 = 𝐷𝑃 (𝑢, 𝑣)𝑡, social strengths are compared in line 10. Specifically, if 𝐷𝑃 (𝑖, 𝑣)𝑡 =

𝐷𝑃 (𝑢, 𝑣)𝑡 and 𝑠(𝑖, 𝑣) > 𝑠(𝑢, 𝑣), node 𝑖 is selected as a relay node for packet p in line 11.

Finally, if node 𝑖 is chosen as the relay node for packet 𝑝, node 𝑢 will forward packet 𝑝 to

node 𝑖 and delete packet 𝑝 from its buffer (line 14). The forwarding token’s value for packet

𝑝 at node 𝑖, 𝑐𝑝𝑖 , is set to 1 (line 15).

5.3 Performance Evaluation

In this section, first, a Wi-Fi scan dataset is presented. Then, the simulation setup is

discussed. The results of the proposed HLP model are presented and compared with the

results of the Markov model [85]. The performance of the proposed routing protocol is

evaluated in terms of 𝐷𝐿, 𝑃𝐷𝐿, and 𝐷𝐶. The proposed routing is compared with epidemic

routing [16], the spray-and-wait routing protocol [18], PRoPHET [20], CORP [21], and

TSIRP [22]. The opportunistic networking environment (ONE) simulation tool [78] is used

for simulation.

5.3.1 Dataset

The UB/phonelab-wifi logs were gathered over a five-month period from the smartphones

of 284 faculty members, staff, and students at the University at Buffalo [86]. We specifically
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use the sub-dataset named WifiScanResult, which includes the Wi-Fi scan records of 274

anonymous mobile users and about 1.1 million access point (AP) scans. When a phone

scans for and finds a nearby AP, it records information, such as the timestamp, device ID,

basic service set identifier (BSSID), and signal strength. Most people carry their phones,

and indoor Wi-Fi APs often have short transmission ranges of tens of meters. Thus, the

human movement could be represented as a sequence of scanned APs identifiable by their

BSSIDs [87]. A smartphone can scan and detect several APs at one time. The scanned AP

with the highest signal strength is chosen to reflect mobile users’ positions.

We focus on data collected over 90 days from 1 January to 31 March 2015. During this

period, the most Wi-Fi activities for all selected mobile users, as well as their interactions,

can be observed. Then, the 50 most active users and 1243 of the most visited APs are

chosen as input data for building our proposed human location prediction model. An extra

dummy AP is added for a time slot in which there are no scanned APs. The proposed

model estimates mobile users’ locations from 9 a.m. to 6 p.m. (the most active period

of the day). Therefore, to train the model, human movement from 8 a.m. to 6 p.m. is

extracted. Specifically, the time period from 8 a.m. to 6 p.m. is divided into 41 time slots

of 15 minutes (including the last time slot from 6 p.m. to 6:15 p.m.), and then, each data

sample’s timestamp is mapped to one of the predefined 41 time slots. During a time slot,

the latest position of the user is considered the user’s position for that whole time slot.

Because the UB dataset is sparse, there are a lot of dummy labels. To prevent the model

from predicting the dummy location as the next location, all training and validation samples

containing dummy labels are removed. Note that only dummy locations from the label are

removed, allowing for the possibility of dummy locations in input samples. Following the

data extraction procedures mentioned above, we derive a new dataset from which to build

the proposed human location prediction model.

5.3.2 Simulation Setup

The data for 13 February 2015, is used to simulate the proposed routing protocol. The

remaing 89 days are used to train and test the human location prediction model. The

simulation’s duration is set to nine hours (i.e., from 9 a.m. to 6 p.m.). The number of edge

nodes and the number of sensors are set to 5 and 50, respectively. These nodes are randomly

placed at locations of frequently scanned APs. Specifically, from 20 access points (APs) that

have the highest number of scanned times by mobile users, five APs are randomly selected
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as locations to deploy five edge nodes. From 150 APs that have the highest number of

scanned times by mobile users, 50 APs are randomly selected as locations to deploy sensors.

Using this method, the edge nodes and the sensor nodes are deployed to locations that are

frequently visited by mobile nodes. In other words, they are deployed at locations with a high

density of mobile users. Note that in order to reflect a more realistic scenario in this work, a

scenario in which some of the users have predictable mobility and the rest have unpredictable

mobility is considered. Therefore, the 50 most active users were selected from the UB dataset

and were considered users with predictable mobility. The human location prediction model is

trained and tested using the movement history of those people. Thus, their future locations

can be predicted using the model. Moreover, we also select 100 additional mobile users

from the UB dataset and assume that they have no movement history. The locations of

those nodes are unpredictable. Therefore, their packet delivery predictability is set to zero.

However, in the network model, it is also supposed that each node knows its encounter

history with other nodes. Therefore, the social strength of those 100 mobile users can still

be determined. Finally, the total number of mobile nodes is 150 (i.e., 50 mobile users with

movement history and 100 mobile users without movement history).

The media access control (MAC) layer of Bluetooth 5.0 with a transmission rate of 2

Mbps is used. Bluetooth 5.0 is designed for very low power operation. That reduces power

usage and extends battery life for nodes. The UB dataset provides the Wi-Fi scan records

of mobile devices. Indoor Wi-Fi APs often have short transmission ranges of tens of meters.

There is no physical location information for APs and mobile users in the UB dataset. The

real distance between nodes cannot be obtained. Therefore, we assume that a mobile user

communicates with another mobile user if they scan and detect at least one common AP. In

addition, a mobile user communicates with a sensor or an edge node if the user scans and

detects the AP where the sensor or the edge node is placed. Packets are generated with a size

of 500 bytes (e.g., the size of sensing data or a text message), and the generation interval is

randomly set at between 25 s and 30 s. We consider the network model that allows messages

with a long expiration time. Therefore, the time to live (TTL) for packets was set to four

hours. Each node has a buffer that can store 150 packets. The first-in-first-out (FIFO)

buffer is used. The initial value of forwarding token C is set to 64. In addition, the proposed

protocol is also compared with other routing protocols. Common parameters, such as the

number of nodes and the MAC layer are the same in all routing protocols. The forwarding

token under spray-and-wait and TSIRP is set at the same value in HLPRP. In TSIRP, the
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expected delivery delay (ED) is used as potential forwarding metric. Under PRoPHET, first,

the initialization constant of delivery predictability, 𝑃𝑖𝑛𝑖𝑡, was set to 0.75. Then, the scaling

constant, 𝛽, and aging constant, 𝛾, were set to 0.25 and 0.98, respectively. For CORP, the

threshold of minimum probability and the threshold of maximum probability are set to 0.45

and 0.88, respectively. Table 5.3 shows the details for the simulation parameters.

Table 5.3: Simulation parameters.

Parameter Value

Simulation duration 9 h

Number of edge nodes 5

Number of sensors 50

Number of mobile users with movement history 50

Number of mobile users without movement history 100

Transmission rate 2 Mbps

Packet generation interval 25–30 s

Buffer size 150 packets

Packet TTL 4 h

Packet size 500 bytes

Initial value of forwarding token (𝐶) 64

5.3.3 The Results of the Proposed Human Location Prediction Model

Table 5.4 presents the top-1 accuracy of the prediction models when predicting users’ loca-

tions in various future time slots (i.e., 𝑡+1, 𝑡+2, 𝑡+3, 𝑡+4). In general, our proposed model

obtains higher accuracy than the Markov model. Top-1 accuracy achieves the highest value

when predicting the users’ locations in the next time slot, 𝑡+ 1, and then decreases slightly

at time slots in the further future. This indicates that the movement history of mobile users

has a greater impact on their locations in the near future than on their locations in the

further future. The average accuracy from the proposed HLP model is 0.5831. This indi-

cates that the proposed model can work well. Using the predicted information, the values

of packet delivery predictability are obtained for the routing algorithm.
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Table 5.4: Top-1 accuracy from the prediction models.

Prediction Model Time Slot 𝑡 + 1 Time Slot 𝑡 + 2 Time Slot 𝑡 + 3 Time Slot 𝑡 + 4 Average

The proposed HLP model 0.6102 0.5907 0.5735 0.5555 0.5831

The Markov model 0.6030 0.5636 0.5338 0.5097 0.5535

5.3.4 Effects of 𝜁 on the Performance of the Proposed Routing Protocol
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Figure 5-3: The network performance for various values of 𝜁.

In this subsection, the effects of 𝜁 on the performance of HLPRP are discussed. Recall that

when calculating packet delivery predictability, we can adjust the effect on packet delivery

predictability of the predicted information for the near future and the distant future by

using tunable parameter 𝜁. Figure 5-3 shows the network performance for various values of

𝜁 and 𝑇𝑇𝐿. 𝑃𝐷𝑅 is shown in Figure 5-3a. In general, 𝑃𝐷𝑅 is higher with a longer 𝑇𝑇𝐿.

For the same value of 𝑇𝑇𝐿, 𝑃𝐷𝑅 does not change much. For example, with 𝑇𝑇𝐿 = 4 h, it

reduces slightly when 𝜁 increases from 0.1 to 0.3, and then it slightly increases from 0.7506

to 0.7521 when 𝜁 increases from 0.6 to 0.7. Figure 5-3b displays 𝑃𝐷𝐿. 𝑃𝐷𝐿 increases when

the 𝑇𝑇𝐿 increases. For low values of 𝜁, latency is high. Then, it decreases when 𝜁 increases.

For example, with the 𝑇𝑇𝐿 = 4 h, 𝑃𝐷𝐿 is 3269 s when 𝜁 = 0.1 and 3225 s when 𝜁 = 0.7.

𝐷𝐶 is presented in Figure 5-3c. 𝐷𝐶 is larger with a longer 𝑇𝑇𝐿. The value of 𝜁 does not

affect 𝐷𝐶 much. It is similar for the various values of 𝜁. For example, 𝐷𝐶 is 37.4 when the

𝑇𝑇𝐿 = 1 h for all different values of 𝜁.

From the obtained results in Figure 5-3, the value of 𝜁 was set to 0.7 in the proposed

routing protocol.
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5.3.5 Effects of Packet 𝑇𝑇𝐿 on the Performance of Routing Protocols

Figure 5-4 shows the network performance for various TTL values. First, the results for

𝑃𝐷𝑅 are presented in Figure 5-4a. Overall, the figure shows that increasing the lifetime

of packets increases 𝑃𝐷𝑅 to a certain point, and then it stabilizes under HLPRP, CORP,

TSIRP, and spray-and-wait routing protocols but decreases under epidemic routing and

PRoPHET. CORP tries to forward the packet to the community of the destination. In a

sparse network, nodes belonging to two distinct communities rarely communicate with one

another. Hence, there are very few nodes that can be selected as relay nodes. As a result,

CORP obtained the lowest values for the 𝑃𝐷𝑅. The number of packet copies was not

limited in PRoPHET and epidemic routing. Thus, the buffer quickly filled when the TTL

increased, and a large number of packets were dropped, resulting in a low value for 𝑃𝐷𝑅.

For example, 𝑃𝐷𝑅 of PRoPHET reduces from 0.6874 to 0.5363 when the 𝑇𝑇𝐿 increases

from 3 h to 6 h. In the spray-and-wait routing protocol, buffer overflow was reduced by

the limited number of replications. Therefore, 𝑃𝐷𝑅 of the spray-and-wait is greater than

that of PRoPHET and epidemic routing. By limiting the number of copies of packets,

TSIRP and HLPRP can also reduce buffer overflow. TSIRP achieves high values of 𝑃𝐷𝑅

with using PFM. In HLPRP, relay selection is based on packet delivery predictability and

social relationships. Optimal relay nodes can be found, and hence, 𝑃𝐷𝑅 under HLPRP is

improved and is higher than those of the other protocols. For example, when the TTL is 6

h, the 𝑃𝐷𝑅 of HLPRP, TSIRP, spray-and-wait routing, PRoPHET, CORP, and epidemic

routing are 0.7645, 0.7591, 0.7450, 0.5363, 0.4371, and 0.4074, respectively.
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Figure 5-4: The network performance for various values of packet time to live.

Latency from various values for the packet TTL is illustrated in Figure 5-4b. In general,

a larger value for TTL means packets can be stored in the buffer for longer, which leads

to an increased 𝑃𝐷𝐿, as shown in the figure. Under CORP and PRoPHET, a packet is
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slowly spread due to the absence of a rapid packet-spreading mechanism. This results in a

significant increase in 𝑃𝐷𝐿. Based on the flooding strategy, 𝑃𝐷𝐿 under epidemic routing

is low. In TSIRP, a node with a lower value of ED is preferred as relay. Therefore, 𝑃𝐷𝐿

is reduced. Under HLPRP, packets are quickly spread during phase 1, and nodes with a

higher probability of meeting the destination in a short period of time are preferred as relay

nodes during phase 2. Therefore, HLPRP also achieves a short delay, comparable to that

of epidemic routing, and shorter than the other protocols. For example, when the TTL is 5

h, 𝑃𝐷𝐿 of HLPRP, TSIRP, and epidemic routing are 3476 seconds, 3563 seconds, and 3470

seconds, whereas spray-and-wait routing, PRoPHET, and CORP are 3626 seconds, 3862

seconds, and 3667 seconds, respectively.

Figure 5-4c shows the results for 𝐷𝐶. Under PRoPHET and epidemic routing, the

number of packet copies is not limited. As a result, 𝐷𝐶 is extremely high. When the

TTL increases, the buffer overflows, and a large number of packets are dropped. That leads

to a quickly increasing 𝐷𝐶 under those protocols. In CORP, by finding the node in the

destination’s community before finding the destination, 𝐷𝐶 is reduced. By limiting the

number of replications with the spray-and-wait routing protocol and and TSIRP, low values

of 𝐷𝐶 can be obtained. Under HLPRP, the number of copies of a packet in the network

is also limited. 𝐷𝐶 from HLPRP is also reduced and is lower than that from PRoPHET,

CORP, and epidemic routing. For example, when the packet TTL is 2 h, 𝐷𝐶 from HLPRP,

TSIRP, the spray-and-wait routing protocol, and CORP are 51.6, 18.8, 22.4, and 96.6,

respectively, whereas PRoPHET and epidemic routing reach 709.6 and 1636.2, respectively.

HLPRP’s 𝐷𝐶 is greater than TSIRP’s because when the forwarding token value is equal to

1, HLPRP continues to forward the packet if a better relay node is found, whereas TSIRP

waits until it reaches the destination.

5.3.6 Effects of Buffer Size on the Performance of Routing Protocols

Figure 5-5 shows the network performance for various buffer sizes. First, 𝑃𝐷𝑅 is presented

in Figure 5-5a. A larger buffer means that it can forward and store more packets. Thus,

as shown in Figure 5-5a, 𝑃𝐷𝑅 increases as the buffer size increases. Our routing protocols

(i.e., HLPRP and TSIRP) can achieve a greater 𝑃𝐷𝑅 than others when the buffer size is

between 10 and 250 packets. When the buffer size is very large, buffer overflow is reduced

in the flooding strategy. Specifically, epidemic routing obtains high values for 𝑃𝐷𝑅 when

the buffer capacity is larger than 300 packets. However, the flooding strategy also consumes
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a significant amount of network resources.
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Figure 5-5: The network performance for various buffer sizes.

𝑃𝐷𝐿 results are in Figure 5-5b. A small buffer (e.g., 10 packets) will quickly overflow.

As a result, it removes packets with long delays to make room for the new ones coming.

Therefore, the buffer contains only packets with short delays. This results in low 𝑃𝐷𝐿.

When the buffer size increases, it can contain more packets with longer delays, which in-

creases latency. By using the predicted information and the social strength between nodes,

the shortest latency is obtained by HLPRP when the buffer capacity is between 10 and 100

packets. In epidemic routing, a large buffer can store more packets. Packets are quickly sent

to their destinations without being dropped. Hence, epidemic routing with a large buffer

(e.g., 300 packets) has a short 𝑃𝐷𝐿.

Figure 5-5c shows the results for 𝐷𝐶. When the buffer is small, numerous packets are

lost and retransmitted due to buffer overflow under epidemic routing and PRoPHET. That

creates a huge 𝐷𝐶. 𝐷𝐶 from HLPRP is lower than that from PRoPHET, CORP, and

epidemic routing.

5.3.7 Effects of the Packet Generation Interval on the Performance of

Routing Protocols

In Figure 5-6, network performance for various packet generation intervals is shown. The

results for 𝑃𝐷𝑅 are illustrated in Figure 5-6a. In general, increasing the packet generation

interval will reduce network traffic. Thus, 𝑃𝐷𝑅 tends to increase as the packet generation

interval increases. By rapidly spreading packets and selecting optimal relay nodes based on

the predicted information and social relationships, HLPRP achieves a better 𝑃𝐷𝑅 than the

others when the packet generation interval is between 25 s and 45 s.
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Figure 5-6: The network performance for various values of the packet generation interval.

Figure 5-6b shows the results of 𝑃𝐷𝐿. The latency from HLPRP is lower than from

other routing protocols when the packet generation interval varies between 5 s and 25 s.

When network traffic is light (i.e., the packet generation interval is between 35 s and 45 s),

using the flooding strategy, epidemic routing obtains the shorter delivery latency. However,

𝐷𝐶 from epidemic routing is huge, as shown in Figure 5-6c. Figure 5-6c also indicates that

HLPRP has a lower 𝐷𝐶 than CORP, PRoPHET, BUBBLE Rap, and epidemic routing.

5.4 Chapter Summary

In this Chapter, we proposed a novel routing protocol for mobile crowdsensing-based urban

sensor networks based on human location prediction. Specifically, a RNN-based model using

LSTM cells was built for estimating the locations of mobile nodes. Useful information,

such as nodes’ identities, time slots in the day, the day of the week, and node location

is extracted from the dataset. That information is used to train and test the prediction

model. Packet delivery predictability is proposed by using the probabilities obtained from

the prediction model. From the encounter histories of the nodes, social strength between

them is also determined and considered in the proposed routing algorithm. Specifically,

HLPRP is processed in two phases. In the first phase, the degree centrality is used to

determine the forwarding token value of relay nodes. That helps to quickly spread the

packets throughout the network. In the second phase, packet delivery predictability and

social strength are used to select optimal relay nodes. The network performance under

HLPRP was evaluated by comparing it with that of other routing protocols in terms of 𝑃𝐷𝑅,

𝑃𝐷𝐿, and 𝐷𝐶. The obtained results showed that based on the human location prediction,

HLPRP is slightly better than TSIRP and outperforms the other routing protocols.
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Concluding Remarks

6.1 Summary of the Contribution

This dissertation investigates problems in opportunistic mobile social networks (OMSNs).

We introduced a social relationship−aware human mobility model (SRMM) that can capture

both social context and human movement features. The temporal social interaction-based

routing protocol (TSIRP) is then built, and SRMM is used to generate people’s movements

in order to validate the performance of TSIRP. Finally, we expand our work by developing

a human location prediction model and proposing a routing protocol based on the human

location prediction.

Human movement patterns are important for verifying routing protocol performance.

Therefore, we developed the social relationship−aware human mobility model (SRMM),

which takes into account both the social relationships and the features of human movements.

SRMM uses information from a social graph to divide individuals into social groups. Then,

based on the distances and social relationships, people’s movements are generated. When

compared to other models, the experiment results show that human movements from SRMM

more closely match real human movement features and clearly reflect social relationships

among individuals.

In the second part of this work, the problem of message exchange in general scenarios

of OMSNs is studied and a temporal social interactions-based routing protocol (TSIRP)

is proposed. The temporal context of social interactions is first considered. Specifically,

during a given time of day, a person frequently connects with certain people. Based on

social interactions between nodes, potential forwarding metrics are calculated for each time

of the day. This information is used to make forwarding decisions. We also built a novel
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strategy for controlling the message spreading rate, allowing us to achieve a balance between

packet delivery delay and delivery cost. The network performance of TSIRP was compared

to different routing protocols in terms of 𝑃𝐷𝑅, 𝑃𝐷𝐿, and 𝐷𝐶. According to the simulation

outcomes, TSIRP outperforms existing routing protocols.

Data transmission challenges in urban sensor networks are also investigated. To solve the

challenges, a human location prediction-based routing protocol (HLPRP) has been proposed.

In particular, a human location prediction (HLP) model has been developed to estimate the

position of mobile nodes. The proposed HLP model is built on a recurrent neural network

with long short-term memory cells. Each person’s movement history is used in the HLP

model to estimate their future locations. Then, using estimated location information from

the HLP model, packet delivery predictability is determined and used to select optimal relay

nodes. Social strength is also considered for relay selection. HLPRP network performance

was evaluated by comparing it to other routing protocols. Based on the results, HLPRP is

slightly better than TSIRP and outperforms the other routing protocols.

In summary, the main contributions of this work are as follows:

� We summarized studies related to human mobility models and routing protocols in

OMSNs. Then, the limits of existing works are discussed. We formally define three

problems: generating realistic human movements, routing protocol in general scenarios

of OMSNs, and transmitting data in an urban sensor network.

� For generating realistic human movements, we proposed the social elationship-aware

human mobility model, which considers both social relationships and human movement

characteristics. SRMM divides people into social groups based on a social graph. Then,

people’s movements are generated based on distances and social relationships.

� For the second problem, a temporal social interactions-based routing protocol (TSIRP)

is proposed. Social interactions are first considered temporally. Potential forwarding

metrics are determined based on node-to-node social interactions. This information

is used for relay selection. We also developed a novel method for controlling message

spreading rate, balancing packet delivery delay and cost. An analytical model with an

absorbing Markov chain is also proposed to estimate TSIRP performance.

� For third problem, we proposed a human location prediction-based routing protocol

(HLPRP). A human location prediction (HLP) model based on a recurrent neural net-

work with long short-term memory cells is designed to estimate the location of mobile
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nodes. Following that, packet delivery predictability is determined using estimated lo-

cation information from the HLP model and used to select optimal relay nodes. Social

strength is also taken into account when relays are chosen.

� Various experiments have been conducted to evaluate the proposed human mobility

model and the proposed routing protocols. Specifically, SRMM is evaluated using both

the synthetic map and the real road map. The results show that SRMM consistently

better reflects human movement and social relationships. TSIRP is then validated

using generated human movements from SRMM. HLPRP is evaluated using real traces

(e.g., UB datasets). The results show that TSIRP and HLPRP outperform existing

routing protocols.

6.2 Future Works

For the human mobility model, SRMM considers social groups in which each person belongs

to one social group. However, in the real world, an individual can be a member of multiple

social groups, and social relationships are also time-dependent. Thus, to make social contexts

more realistic in the mobility model, we plan to use social graphs, in which an individual can

belong to multiple social groups, and social relationships will change according to the time

of day. Additionally, SRMM does not take into account temporal aspects. For instance, a

student has a high probability of visiting classes at the school in the morning. Then, in the

afternoon, the student may visit parks or return home. We intend to consider the effects of

temporal aspects in our future work.

SRMM focuses on the general movement of people in a city-wide area. However, in each

specific scenario, the characteristics of human movement can be different. Therefore, we

want to consider the characteristics of human movement and design mobility for people in

specific scenarios (e.g., workers in industries, people in parks).

For routing protocols, we want to evaluate the performance of proposed routing protocols

in real-world scenarios, such as monitoring environmental conditions (e.g., air quality, noise

levels, and humidity levels). Social aspects (e.g., information about nodes with strong

social ties) have a high probability of helping in the prediction of human locations in the

future. However, it is not taken into account in our current HLP model. We plan to

take them into account to develop a highly accurate HLP model. This will support the

selection of the optimal relay nodes in the routing protocol. Additionally, we would like
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to study a reinforcement learning-based routing protocol in which the agent’s action is to

select relay nodes based on current state information such as social strength, packet delivery

predictability, and spatial information.
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