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ABSTRACT 

The health monitoring of pipelines has become extremely essential since pipeline networks 

were widely constructed. The primary aim of this process is to pinpoint any abnormality early 

in a pipeline to require maintenance or replacement as soon as possible because a defective pipe 

that has not been repaired would cause serious consequences for nearby nature and human. 

Pipeline failures can mainly be classified into a range of types including leaks, cracks, and 

corrosions. Cracks and corrosions, alongside their other effects, the easiest possibility would be 

leakage if a crack/corrosion grew to some extent to rupture a pipe. Hence, all the faults should 

immediately be identified once they occur. 

Acoustic emission had long ago been utilized as the effective means to inspect materials and 

structures. This phenomenon occurs within a material from localized sources once the material 

is put stress and strain on. Acoustic emission is extremely sensitive to structural irregularities; 

therefore, AE signal–based techniques have been employing in recent studies of pipeline fault 

diagnostics. However, because the content of AE signals is extraordinarily complicated, which 

is resulting from the effects of wave attenuation and dispersion as well as the interference of 

ambient noises, the  algorithms that scientists and researchers developed may not be reliable 

enough to extract accurate information about a defect from the signals. In this dissertation, what 

need to be improved in the pipeline fault diagnosis using AE signals will be considered, in 

which the identification of leak and crack is concentrated. 

First, the thesis introduces a reliable method to detect a leak in a water pipeline based on AE 

wave attenuation. This approach segmented AE signals into short frames, calculated 

intermediate quantities that contain the symptoms of a leak and keeps its characteristic 

adequately stable even when the environmental conditions change, and trained a k–NN 

classifier using features extracted from the transformed signals to identify a leak in the pipeline. 

Experiments were conducted under different conditions to confirm the effectiveness of that 

method. The experimental results indicate that it offers better quality and more reliability than 

using features extracted directly from the AE signals to train the k–NN classifier. Moreover, 

the proposed method required less training data than existing techniques. The transformation 

method was highly accurate and worked well even when only a small amount of data was used 

to train the classifier, whereas the direct AE–based method returned misclassifications in some 

cases. In addition, the robustness of the proposed method was also tested by adding Gaussian 

noise to the AE signals. The proposed method was more resistant to noise than the direct AE–

based method. 
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Leak localization is as important as leak detection in the general pipeline fault diagnosis. As a 

result, this dissertation proposes a method of leak localization using AE bursts, which is aimed 

particularly at industrial–fluid pipelines made from steel. The proposed approach exploited a 

burst phenomenon in AE signals and combined signal processing with a physical wave–

propagation model in order to improve the leak localization. The algorithm sought AE bursts 

based on a detection theorem and then associated neighboring bursts into unique burst groups. 

Filtered AE events which are pairs of grouped bursts from two signal channels in turn allowed 

the extraction of precise location where a leak came about. The resulting localization method 

yielded a mean error of approximately 2.5% of the distance between two sensors, while this 

parameter returned by conventional approaches was greater than 10%. The combination of 

grouping and filtering in the methodology elucidates event concentration and reduces error. 

Another technique is also offered for detecting a leak in a gas pipeline using a k–NN classifier 

and hybrid AE features in the thesis. This whole algorithm was embedded in an MCU to achieve 

a complete real–time pipeline leak detection system. First, AE signals were first recorded from 

a gas pipeline testbed under various conditions and offline investigated to synthesize the leak 

detection algorithm. The approach explored different features of normal/leaking states from 

corresponding datasets and eliminated inferior features to enhance the performance of leak 

detection. In order to obtain the robustness, alongside features were normalized, the trained k–

NN classifier was adapted to the specific environment where the system was installed. 

Furthermore, the system decided the state of the pipeline on ALEOR and a defined threshold to 

reduce false alarms. The entire proposed system was implemented on the 32F746G–

DISCOVERY board, and to verify this system, numerous real AE signals stored in a hard drive 

were transferred to the board. In the experiments, the implemented system executed the leak 

detection algorithm in a period shorter than the total input data time, thus guaranteeing the real–

time characteristic. Additionally, the system yielded high ACA despite adding a white noise to 

input signal, and false alarms did not occur with a reasonable ALEOR threshold. 

Finally, a novel approach is presented in the dissertation to detect and localize a crack in a 

pipeline transporting fluid under high pressure using AE signals. From signals acquired by two 

R15i-AST sensors at two ends of a fluid pipeline, the proposed method scanned peaks in the 

individual signal channels in the time–frequency domain and filtered out noise to obtain AE 

events. Subsequently, adjacent events were combined into grouped events, and these were 

picked and paired together on two sensor channels to localize emission sources using the TDOA 

technique. To improve the location accuracy, the mechanism only determined TOA of Rayleigh 

waves with a similar frequency in event pairs. Furthermore, the Rayleigh wave velocity was 
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found by a PLB procedure. Additionally, false emission sources were eliminated by considering 

the wave energy attenuation characteristics in their propagation path. After locating the 

emission sources, the approach observed their distribution according to the position and time 

of occurrence. The variation in AE activity against applied load, which was established by 

counting the returned sources, could indicate irregular structural changes in a material. The 

location of the structural change could be surmised by the emission source distribution and 

density according to the position along the pipeline. Experimental results showed that the 

proposed method correctly diagnosed faults in the considered pipeline from AE signals, 

whereas a conventional approach (performed by detecting hits with a threshold) inaccurately 

localized AE sources and imprecisely exposed signs of abnormal structural transformation
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Chapter 1 

Introduction 

1.1. Motivation 

1.1.1. Urgency of Pipeline Leak Detection 

Nowadays pipelines play a vital role in human life and industry. First, people utilize them to 

conduct clean water to buildings, hospitals, schools, etc. where inhabitants almost lean on such 

water supplies. Second, to start vehicles on roads, to operate machines in factories, to warm 

houses in winter, or to cook meals in kitchens and restaurants, humans need fuel, for example, 

oil and gas,  and pipelines are used for transporting fuel from mining and refinement places to 

stations. Also, other industrial liquids such as benzene, xylene, and toluene are widely used in 

industry, and they are transported via pipelines. Moreover, domestic wastewater is discharged 

from houses, markets, etc. to proper treatment plan through pipelines. 

 
Figure 1. 1. Major fire after a pipeline oil leak in Cairo, Egypt (source: 

https://www.energyfacts.eu/shuqair-mostorod-pipeline-oil-leak-causes-major-fire-break-out-in-cairo/) 

Any leak in a pipeline system can lead to serious consequences. For example, a leak occurring 

in a pipeline network transporting clean water, gas, oil, or other industrial liquids, which are 

extremely valuable resources, can cause waste of resources and then make significant loss of 

finance. The total cost due to such a failure can amount to a few million US dollars in some 

case [1]. A pipeline leak can also pollute the environment and affects human health. For instance, 

oil from an undersea leaky oil pipeline can spread on the sea and destroy the nearby ecosystem 

where billions of marine creatures live. Then, fishermen accidentally catch fishes at that 

contaminated location and bring them to markets. Those fishes may be incredibly poisonous to 

consumers. Furthermore, a leak in a natural gas pipeline in a crowded place would directly risk 
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human injury and death because natural gas could lead to violent fires and explosions. 

Additionally, wastewater would decay into flammable and toxic substances; therefore, it could 

be terribly dangerous if there was a leak in a wastewater disposal pipeline system. Figure 1.1 is 

a concrete example of a leak oil which caused a major fire in Cairo, Egypt suburb on July 14th, 

2020, and injured many people.  

 

Figure 1. 2. Uncontrolled pipeline leaks (sources: (a) https://www.torque-lock.com/dont-ignore-
water-damage-warnings/, (b) https://www.siliconrepublic.com/machines/mit-pipeguard-water-leaks, 

(c) https://www.cfr.org/blog/trouble-oil-pipelines-nigeria) 

 
Figure 1. 3. Example of corroded pipeline (source: 

https://www.petroskills.com/blog/entry/00_totm/aug20-sub-oilfieldcorrosion#.YV0-qppByUk) 

Figure 1. 2 shows several uncontrolled pipeline leaks. Such leaks might be inevitable even 

though the pipeline is always designed and installed strictly and properly according to standard 

technical principles and criteria as introduced in [2, 3] to ensure the safety in the operation of 

pipeline. First, an unexpected leak may be a result of assembly defects such as loosing of screw 

thread connections. Furthermore, due to corrosions and material aging, pipelines can gradually 

be degraded, and they can break in a long period of operation. An example of a pipeline which 
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has seriously been corroded is shown in Figure 1. 3. Another inherent risk is that gas or liquid 

flowing through a pipeline may trigger off twinning, boundary sliding, and moving dislocations 

in materials that the pipeline is made from and then stimulate crack growth within the pipeline 

and rupture it anytime as illustrated in Figure 1. 4. Moreover, external forces including ground 

movement, nearby strong vibrations, etc. can damage pipelines and create leaks. The 11th report 

of the European Gas Pipeline Incident Data Group [4] concludes that there are 1,411 pipeline 

incidents that are recorded in the period from 1970 – 2019 on 142,711 km of pipelines and their 

primary causes are external activities (e.g. digging, piling, ground works), external equipment 

(e.g. anchor, bulldozer, excavator), corrosion, construction defects, material failure, design 

error, lightning, maintenance error, erosion, landslide, and flood.  

 
Figure 1. 4. Fatigue crack of a pipeline (source: https://https://www.ishn.com/articles/108930-

fatigue-crack-cause-of-pipeline-rupture-oil-spill) 

1.1.2. Existing Technologies for Pipeline Fault Diagnosis 

To reduce the dangers posed by a pipeline leak, people try their hardest to inspect regularly 

pipelines and early detect any leak there; thus, the necessary maintenance and repair as well can 

be conducted immediately if a leak happens. However, usually, a pipeline network is highly 

sophisticated and some of its pipe segments can be buried deep underground to link many places 

together. As a result, pipeline operators would be difficult to discover a leak immediately 

without an automatic leak detection method. Researchers have proposed various techniques that 

can spot a leak in a pipeline automatically as reviewed by Murvay et al. [5], Leman et al. [6], 

Datta et al. [7], Chan et al. [8], Moubayed et al. [9], and Baroudi et al. [10].  

Figure 1. 5 illustrates current detection technologies referred to the categorization sketched by 

Chan et al. [8]. Vision utilization, in terms of the passive leak detection, is to observe anomalies 
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on ground surface or vegetation growth, i.e. surrounding environments, hence spotting a leaky 

place. This is the oldest leak detection solution and mainly carried by human power. As stated 

above, this method would be inapplicable for the underground pipeline networks where are not 

easy to observe or the leak detection cannot be early enough because it may take a long time to 

manifest the leak syndromes on the ground surface and to affect the nearby ecosystem. A more 

advanced approach is sensor utilization carried by using measurement devices. This solution 

not only can improve the leak detection accuracy in a pipeline but also be applicable for the 

large pipeline systems. For example, the CCTV system consisting of a remote–controlled pan 

and a camera is installed on a robot inspecting inside pipes. This technology can precisely 

discover any abnormality of the pipelines. 

 

Figure 1. 5. Categorization of current leak detection technologies 

Other approaches involve acoustic emission mechanisms, ground penetrating radar, 

flow/pressure meters, and infrared thermography using. AE techniques are constructed on the 

phenomenon of release of elastic waves from an active source [11]. AE signals coming from a 

leak through which liquid/gas passes can be captured by AE sensors installed on the surface of 

pipes due to the wave propagation along the pipeline; thus, the leak can be detected and 

localized. However, AE signals depend on various factors such as pipe material, operating 

conditions. They are also subjected to ambient noises, while the working environments of 

pipelines are extremely noisy. The operation of a ground penetrating radar used for leak 

detection is based on analyzing the electromagnetic signatures of an image of the pipe 

underground. Leaky regions would manifest their discrimination in features in the captured 

images. A leak can then be localized using the direct interpretation of the images. Yet the 

reflection of electromagnetic wave is strongly influenced by the characteristics of soil where 

the pipelines are installed. For instance, the moisture of soil can absorb the electromagnetic 

energy; thus, the resulting signals may not be sufficient to establish a correct portrait of the 

pipelines beneath. The infrared thermography method utilizes the infrared radiation across 
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spatial surfaces and energy transfer theorem detect a leak in a pipeline based on the resulting 

temperature difference in the vicinity of the leak. This approach depends on weather and surface 

conditions as well as soil types. A pipeline leak can be also detected using flow rate or pressure 

meters and observing a mass–balance operation. However, these meters may not be sensitive 

to subtle variations in flow rate and pressure caused by tiny leaks. 

Besides, the solutions belonging to the active systems such as transient–based [12], model–

based [13], data–driven based [14] approaches are proposed. In nature, these methods are the 

implementation of sensor utilization, in which they employ signals collected by the 

corresponding sensors as their input measurements. Commonly, the transient–based methods 

indicate the presence of leak using transient negative pressure waves measured within a pipeline 

system. They analyze the data collected during the occurrence of transitory events via 

minimization of the difference between the observed and the calculated parameters. These 

methods are subjected to background noise or other events happening in a complex network. 

Negative pressure waves also depend on geometric parameters of pipe and fluid properties. The 

model–based approaches usually exploit mathematical functions to express the operation of a 

pipe system. It can detect a leak and determine its approximate location using pressure 

measurements and their estimation resulting from a hydraulic network model. However, to 

achieve a high accuracy, the model should be sufficient to represent the network. The data–

driven method detects a leak relying on the signal processing and statistical analysis using the 

data collection. This approach is advantageous because it does not require any specific in-depth 

knowledge about the inspected object but learns from the historical data. 

1.1.3. AE Signals–based Pipeline Fault Diagnostics and Thesis Objectives 

Among the existing technologies, the leak detection using AE signals is promising for several 

reasons. First, AE sensors can offer high sensitivity to any anomaly within materials. Therefore, 

the AE signal–based method is potential for immediately identifying a small–scale leak even 

crack growth which could lead to an imminent aperture in a pipeline. Second, the method 

extracts information about pipeline health from signals collected by AE sensors attached to the 

outer surface of pipe (see Figure 1. 6), which does not disturb any operation of the pipeline 

system. Thus, it belongs to the class of non–destructive and non–invasive techniques which are 

used to test a part or material or system without impairing its future usefulness. Moreover, AE 

testing is nondirectional. The energy that is detected in AE testing is released from within the 

test object rather than being supplied by the test method. Most AE sources radiate energy in 

spherical wave fronts and a transducer located anywhere in the vicinity of an AE source can 
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sense the resulting AE signals. This contrasts with other methods of nondestructive testing, 

which rely on prior knowledge of the probable location and orientation of a discontinuity to 

direct an energy beam on a path that will properly intersect the area of interest, for instance, 

ground penetrating radar and ultrasonic scanning. Thus, the method using AE signals for leak 

detection in a pipeline has attracted a lot of interest [15-19]. 

 

Figure 1. 6. AE signal–based pipeline fault diagnosis 

Formally, AE is a phenomenon in which transient elastic waves are emitted by the rapid release 

of energy from localized sources in a material, or transient elastic waves so generated [11]. 

Hence, diverse AE sources could be constituted by the operation of pipeline such as mechanical 

deformation of stressed materials, leaks, cavitation, and friction. Additionally, elastic waves 

suffer from dispersion and attenuation during their propagation through a pipeline [11, 20, 21]. 

This would severely distort signals before AE sensors can acquire them. Background noise also 

has a considerable impact on the AE testing. Noise can come from nearby operating machines, 

vehicles, and environmental agents such as rain and wind; or it is created by flow turbulence 

inside the pipeline. In consequence, usually, it is not straightforward to obtain correct 

information about health of an operating pipeline from AE signals because this information is 

deeply buried in the content of signals. 

To determine whether AE sources are caused by internal failures in a pipeline or are irrelevant 

sources and to localize them, researchers have been proposed a series of different methods using 

advanced mechanisms of signal processing and pattern recognition. Sun et al. [22, 23] employed 

LMD and WPT to get the most intrinsic components from AE signals collected in a natural gas 

pipeline, then  identified leak apertures by envelope spectrum entropy or RMS entropy features 

and an SVM classifier; finally it analyzed the time–frequency parameters to obtain time delays 

for leak localization. Chencheng et al. introduced an adaptive noise cancelling method based 

on EMD, combined with the CC between two sensor channels to eliminate poorly correlated 

elements that are less related to a leak, thus increasing the signal–to–noise ratio of leak signals 

and improving the error leakage location [24]. Gao et al. established a procedure to improve the 
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shape of the cross–correlation function for leak detection in a plastic water distribution pipeline, 

hence resulting in unambiguous and clear estimate of the time delay [25]. Qiyang et al. also 

suggested another adaptive denoising approach using VMD and ACC to detect a small leak in 

a natural gas pipeline [26]. Zhenlin et al. proposed using kernel PCA to reduce feature 

dimensions and select optimal features, and an SVM classifier to recognize leakage levels in a 

gas pipeline valve [27]. Yu et al. offered a method detecting a leak at screw thread connection 

for indoor gas distribution using time– and frequency–domain features directly extracted from 

raw AE signals, selecting the best features relying on the distance from the noise background, 

and training an SVM classifier for leak detection [28]. Suzhen et al. also extracted features from 

AE signals in time and frequency domains, but selected the best signatures based on KL 

distance, and finally conducted them to an ANN to identify leakage of a socket joint between 

two pipeline segments [29]. Nicola et al. developed a system in LabView programming 

environment for leak detection and localization in a pipeline using the CC method and a data 

acquisition system based on AE sensors [30]. Song et al. suggested selecting features by 

analyzing average and CC of the features to remove redundant signatures, and applied an 

artificial neural network model for the leakage classification in galvanized steel pipes due to 

loosening of screw thread connections [31]. Rui et al. used the DWT with the Wavelet basis 

selected by the entropy–based algorithm to denoise signals and then extracted features and 

chose features using the Relief–F mechanism, and trained an SVM classifier for leakage 

severity identification in a gas pipeline [17]. Xu et al. proposed denoising AE signals using an 

improved VMD, optimizing the governing parameters via coupling particle swarm optimization 

to a fitness function based on maximum entropy, and then extracting features from 

reconstructed signals based on the energy ratio of each VMD sub–mode and training an SVM 

classifier for leakage pattern recognition in a liquid pipeline [32]. 

Most researchers have been adopting data–driven techniques to detect a leak in a pipeline from 

AE signals. In those, classifiers are trained by previously recorded datasets to categorize the 

states of pipeline health. A data–driven model is more convenient than another one built directly 

from mathematical equations because AE signals constantly fluctuate. However, such 

classifiers would be insufficient in diverse cases due to lack of data for training. On the other 

hand, the time–delay methods the researchers have been exploiting for leak localization would 

not result in high accuracy because they utilized the CC function between two signals while the 

CC is rather low. As a result, this dissertation further digs deep into the AE signal–based 

pipeline leak identification. The problem of pipeline crack detection and localization is also 

necessary and urgent [33, 34] because it can help prevent following leaks. Thus, the objective 
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of the thesis focuses on pipeline leak and crack identification using AE signals, specifically, 

including: (i) improving reliability and robustness of leak detection, (ii) increasing accuracy of 

leak localization, (iii) crack detection and localization. 

1.2. Dissertation Outline 

The thesis is composed of six chapters, and they are briefly outlined as follows. 

Chapter 1 states the motivation and the outline of thesis. 

Chapter 2 introduces a reliable method for leak detection in a water pipeline based on AE wave 

attenuation. This approach transformed AE signal segments into intermediate quantities to 

identify a small leak using a k–NN classifier. This work was published in the international 

journal, Energies, in 2019. 

Chapter 3 proposes a leak localization method for an industrial–fluid pipeline using AE bursts. 

The proposed approach combined signal processing, which was used for AE burst detection, 

with a physical wave–propagation model to locate a leak in a steel pipeline. This work was 

published in the international journal, Measurement, in 2020. 

Chapter 4 offers a technique using a k–NN classifier and hybrid features extracted from AE 

signals for detecting a gas pipeline leak. The scheme of detection algorithm was implemented 

in an MCU to achieve a complete real–time leak detection system. This work was published in 

the international journal, Sensors, in 2021. 

Chapter 5 presents a novel approach to crack detection and localization in a fluid pipeline using 

AE signals. The proposed method found events in the signals in the time–frequency domain 

and then localized them based on the TDOA technique. To reduce the location error, the 

algorithm only utilized events belonging to the wave mode Rayleigh with the same frequency 

in event pairs from the two signal channels. This work was published in the international 

journal, Mechanical Systems and Signal Processing, in 2021. 

Finally, Chapter 6 provides a summary of the contributions and a discussion of future work.
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Chapter 2 

Water Pipeline Leak Detection utilizing Acoustic Emission Wave 
Attenuation  

2.1. Introduction 

It is difficult to establish a detection model directly from mathematical equations due to the 

complication of AE phenomenon; therefore, numerous methods training the model using 

recorded datasets have been proposed [29, 35]. Although these techniques offer high accuracy, 

they could be inefficient in diverse circumstances because the classifiers are trained using 

features extracted directly from AE signals. Thus, it makes the classifiers dependent on the 

absolute signal levels that are influenced by the flow rate and pressure in a pipeline system [3, 

21]. Moreover, AE signals also vary with temperature, which is uncertain in industries. As a 

result, AE measurements recorded under such uncertain working conditions have different 

signal levels, and thus, a fault diagnosis model based on the absolute amplitude values of the 

signals is unreliable. In [36], the authors presented a study that investigates the inherent 

properties of the vibro-acoustic signals instead of relative amplitude values. It delivers useful 

insights and results for water leak detection, but the study focused on pipelines buried under 

soil less influenced by external factors while AE signals from pipelines above soil in factories 

are subjected to noise. This issue can be addressed by acquiring many training datasets under 

different working conditions to provide enough information for the classifier. However, it is 

not an optimal solution because the design of experiments can become immensely expensive 

or even prohibitively complicated. Therefore, this study extracts features from transformed 

signals independent of an absolute level instead of directly from AE signals. The obtained 

classifier can detect small leaks in a pipeline with high accuracy and reliability. 

For the experiments, this study uses a water pipeline system deployed in a laboratory. Three 

AE sensors are mounted on different parts of the system with the known distances among the 

sensors. A pinhole is drilled through the pipe wall to simulate leakage of the pipeline and a 

valve is attached to the wall to control the flow of water through the leak. When the valve is 

closed, and system is working in a normal state (no leakage) then there is no variation in the 

levels of the recoded signals. If a small leak appears between sensors 2 and 3, an imbalance is 

created between AE channels 1 and 2 by reporting dissimilar amounts of noise from the leak. 

Since sensor 2 is nearer the leak than sensor 1, the leak noise on channel 2 is greater than that 

on channel 1, as explained by the theory of wave attenuation [37-39]. Thus, this uneven 

behavior of the signals can be used to detect small leaks in a pipeline system. The leak-signal-
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to-normal-noise ratio and the attenuation law of wave propagation can be used to detect the 

leak; these characteristics are demonstrated in the methodology section. 

To demonstrate the advantages of the balance/imbalance–based approach, this paper uses the 

theory of KL distance [40] to measure the separability between the two classes (i.e., NORMAL 

and ABNORMAL) in different experiments. Furthermore, it applies a k–NN model to identify 

a normal/leak state. Two approaches, one using features extracted directly from the AE signals 

and the other using features extracted from the transformed signals based on the function g(r) 

are employed to train k–NN classifiers. These classifiers are trained on the data of one working 

condition and tested using data of other conditions. Additionally, Gaussian noise is added to 

the AE measurements to evaluate the robustness of the classifiers. 

2.2. Data Acquisition 

2.2.1. Testbed Configuration 

 
Figure 2. 1. Data acquisition setup 

 
Figure 2. 2. Pipeline testbed 

Figure 2.1 and Figure 2.2 show a setup of the acquisition of AE signals from a water pipeline 

system. The configuration parameters of the testbed are listed in Table 2.1. In the experiments, 

the pipeline leaks were emulated by four orifices with different diameters including 2.0 mm, 
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1.0 mm, 0.5 mm, and 0.3 mm, which are abbreviated to L1, L2, L3, and L4, respectively. The 

water flow was controlled using pressures of 7, 13, and 18 bar, given as P1, P2, and P3, 

respectively. The experiments were conducted under a stable temperature of approximately 

29 °C. To acquire AE signals, R15i–AST sensors were used to provide high sensitivity during 

the data recording and the recorded signals tend to be free of low-frequency components. Their 

characteristics have been detailed in [41]. 

Table 2. 1. Experimental parameters 

No. Quantity Detail 

1 Distance from Sensor 2 to Sensor 3 (D) 2000 [mm] 

2 Distance from Sensor 2 to Sensor 1 (d) 1000 [mm] 

3 Distance from Sensor 2 to Leak (d2) 900 [mm] 

4 Distance from Sensor 3 to Leak (d3) 1100 [mm] 

5 Thickness of pipeline 6.02 [mm] 

6 Outer diameter of pipeline 114.3 [mm] 

7 Material of pipeline Stainless steel 304 

2.2.2. Data Record 

The normal and abnormal states of the system refer to the closed and open positions of the valve 

installed on the leak, respectively. The data for every pair of (P, L) combinations are recorded 

for 2 minutes with a sampling frequency of 1 MHz after the water flow are stable. Thus, there 

are a total of 72 datasets for the three signal channels in the experimental conditions (3 channels 

× 3 pressures × 4 leaks × 2 classes). Figure 2.3 presents mode setting of water flow. In the first 

stage, the pump is turned on, the leak is deactivated (closed) and the pressure is controlled 

around 7 Bar. Then, AE signals are recorded in 2 minutes. In the second stage, the leak is 

activated (open). The acquisition device waits for the flow stabilization and records AE signals 

in 2 minutes. The process continues, as shown in Figure 2.3. 

 
Figure 2. 3. Input flow rate experimented with leak L3 
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2.3. Small Leak Detection Methodology 

The mathematical modeling of the leaks and their symptoms is based on the testbed, as shown 

in Figure 2.1.  

2.3.1. Symptoms of Leak Presence 

There exist AE activity in pipelines, even when they are operating in a healthy state. It can be 

due to the mechanical sources such as pumps or particles in the flow hitting a pipeline wall or 

hydraulic sources caused by pressure pulses at vortexes in the fluid inside the pipeline [3]. Let 

assume that ni (i =1,2) are AE signals acquired by sensors 1,2 in the normal state, and their 

mean and variance are 0 and N1≈N2≈N > 0, respectively. When a small leak occurs in the testbed 

pipeline, it makes a small disturbance in the flow around the leak, which introduces a new AE 

source into the system. The previous source ni can be deemed as background noise; suppose 

that it is uncorrelated with the source of the signal obtained from the leak. Therefore, the model 

for AE measurements from the sensors for this scenario can be given as: zi = si + ni (i =1,2); 

where si is the leak AE signal received by sensor i. If the variance of zi and si is Zi and Si, 

respectively, then the uncorrelation between ni and si, Zi = Si + N can be explored by setting g 

= Z2/Z1 and it is transformed as follows: 

2 2 2

1 1 1

/ 1

/ 1

Z S N S N
g

Z S N S N

 
  

 
    (2. 1) 

If the background noise ni (i =1,2) is bandlimited white noise, then its variance is always N 

over its entire frequency range. Next, consider the measurement model when the measurement 

consists of the background noise ni and the leak signal si (i =1,2) at a frequency ω. In fact, the 

spectrum of the leak noise is a broadband range of frequencies; however, all the components 

demonstrate an identical behavior toward the leak phenomenon. The AE attenuation 

characteristic from a power law [39], S1 and S2 are related by: 

1 2
dS S e       (2. 2) 

where α = α(ω) is the attenuation coefficient in wave propagation, which is dependent on 

frequency, d is the distance between sensors 1 and 2, and Si (i =1,2) is the leak signal having 

frequency ω. By substituting (2.2) into (2.1), and abbreviating r = S2/N, which is the SNR 

measured by sensor 2 at frequency ω, and symbolizing β = e-ad, (2.1) becomes: 
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Next, take the partial derivative of g according to r: 
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                 (2. 4) 

Since  0 1  for 0 d   , then  / 0g r . As a result, g(r) is a monotonically increasing 

function according to r. If r1 ≠ r2, then g(r1) ≠ g(r2). Naturally, a normal state has r = 0 at every 

frequency ω, and an abnormal state always has r ≠ 0; thus, the function g(r) is applicable for 

leak detection. Figure 2.4 shows the dependence of g(r) on r with different β values at a 

particular frequency. It can be easily observed that all the curves g(r) increases from the normal 

state when r increases. 

 
Figure 2. 4. The dependence of g(r) on r with different β at frequency ω 

2.3.2. Robustness of g(r) in Leak Manifestation 

This section investigates the reliability of leak manifestation using the function g(r) when the 

background noise increases. Gaussian noise is added to the signals to emulate the presence of 

noise. Suppose that an amount of noise Δn with the mean 0 and variance ΔN is added to the 

noise background while the leak signal remains the same. At this moment, the background noise 

n is replaced by n’ = n+Δn; its variance is N’=N+ΔN, and r is replaced by r’=S2/N’. 

Setting /N N   , produces  ' / 1r r   , which is a function of two variables (r, γ). 

Consider the partial derivative of r’ with respect to γ: 
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Now, the function g is replaced by (2. 6):  
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and its partial derivative according to γ is given by: 
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If 0 1   and ' / 0g    , then g’ decreases when   increases. In other words, the 

discrimination quality of g’ becomes poorer as the intensity of the background noise is higher. 

This characteristic is similar to r’; however, g’ is more reliable than r’ because the decline in g’ 

is smaller than the decline in r’. Also, we obtain: 
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Obviously, if the parameter β in (2.8) is selected suitably, then 2 1/ 1 ,r     . As a result, 

g(r’) varies more slowly than r’ if  is increasing. It turns out that if the noise background 

increases to some extent, the variable r’ exceeds the limitation of leak discrimination, whereas 

the function g(r’) still provides enough differentiation. 

In (2.8), if β approaches 0, the ratio 2 1/   converges 1 and the variation of the function g is 

similar to r if the background noise changes, the characteristic of g is no longer robust. In 

contrast, (2.3) reveals that if β approaches 1, g converges 1 for any r. This means that the 

function g does not manifest any abnormal state of the system. Hence, the parameter β should 

be chosen optimally to trade off between the two above cases so that both high sensitivity and 

reliability can be achieved. 

2.3.3. Detection Procedures  

This section proposes an algorithm of leak pipeline detection based on g(r) function because it 

can reliably indicate the presence of leak. Figure 2.5 shows a generic framework for leak 

detection using the direct AE–based and g(r)–based approaches. The signals from sensors 1, 2, 

and 3 are the inputs to the framework. In the direct method, there is no g(r)–construction block. 

After dividing the AE signals into frames, they are provided to the feature extraction block. The 

feature extraction process is carried out after the completion of g(r)–construction process. 
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Figure 2. 5. Leak detection procedures 

(1) Frame division 

The recorded AE signals are segmented into a series of frames by the frame division block. The 

AE waves propagate through different distances from the leak to the sensors. Thus, their arrivals 

are lagged. It indicates that the frame indexes associated with different channels are not exactly 

correlation. Hence, at the detection stage, the position of the leak is obscure, and the time of 

arrival of the signals at the sensors is unknown. Thus, one way to deal with this problem is to 

select a reasonable frame size. Figure 2.6 uses an example of two signals s1 and s2 to explain 

the method. In this figure, lagt  and framet are the lag time and frame size (in time) of the two 

signals, respectively. Due to the existence of the lag time lagt , a lag part of signal s1 cannot be 

correlated with any part of signal s2 in the same frame index i because it has already propagated 

in frame (i - 1) of s2. Thus, a formula for the frame size can be defined as: 

frame lag extt t t         (2. 9) 

where extt is an amount of time to extend the frame size. Obviously, the bigger extt is, the smaller 

the lag compared with the remains, which reduces the effect of the lag on the correlation. 

 
Figure 2. 6. Frame division dependent on lag time 

Next, the parameter 
lagt is calculated. The location of the leak in the pipeline is unknown, 

however, the leak lies somewhere within the tested pipeline. According to this condition, the 

following equations can calculate the maximum lag time and this result is used to calculate the 

reasonable frame size, given by (2. 10).  
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        (2. 10) 

In (2.10) C is the wave speed. AE signals can be propagated in fluid in the frequencies range of 

20 kHz to 80 kHz besides propagating through the pipe wall in higher frequencies [42]. 

Furthermore, leak signals are from the flow turbulence and interaction of particles at the leak 

point. Thus, AE signals might contain both kinds of propagation. In other words, the wave 

speed in water is smaller than in solid materials [43]. Hence, the value of C should be calculated 

with the propagation in water. The wave speed can be calculated by (2. 11) [44, 45]. 
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  (2. 11) 

where K and ρ are the volumetric compressibility modulus and the liquid density of the medium 

inside the pipeline, e and Dp are the thickness and inner diameter of the pipe, ψ is a factor related 

to the pipe supporting condition, and u is Poisson’s ratio. 

The window size is counted as: 

  ext1 ,frame lag
lag

t
t t

t
    


    (2. 12) 

where ζ must keep the lagged part of the signals, which is not very large as compared to the rest 

of the signal. 

(2) g(r) - Construction 

The quantity g(r) in Subsection 2.3.1 is formulated by dividing the variance of one frequency 

for the leak signal. In this section, g(r) vector is constituted from the signal of sensors 1 and 2. 

The proportions of the amplitudes over all the frequencies are considered in the g(r) vector (see 

Figure 2.7). 

 

Figure 2. 7. g(r) - construction 
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In Figure 2.7, time domain signals are converted to the frequency domain by FFT, taking only 

their amplitudes as components of the divider for every frequency. After the transformation, we 

have a new signal in the form of g(r) containing information about leakage symptoms.  

(3) Feature Extraction 

In this study, the three features given in Table 2. 2 are used to compare the performance of the 

direct AE–based method with that of the g(r)–based one. These features are selected because 

their effectiveness may be consistent in both time and frequency domains.  

Table 2. 2. Typical features 

No Feature Equation 

1 Root mean square 2

1
/

N

ix N  

2 Short time energy 2

1

N

ix  

3 Average amplitude 
1

/
N

ix N  

(4) Classification 

The k–NN kernel function is widely used to identify instances belonging to different classes 

during the diagnosis. The theory of k–NN is presented clearly in [40, 46]. This paper uses the k 

–NN classifier to solve a binary classification problem, i.e., whether a sample belong to the 

normal or abnormal conditions of the pipeline. 

2.4. Experimental results 

In this section, the proposed leak detection methodology is evaluated using the Matlab software 

version 2019b installed in a personal computer (CPU: Intel (R) Core i7–7800X, RAM: 16 GB, 

the Window 10 Pro Operating System) and the datasets of AE signals collected in the pipeline 

testbed as described in Section 2.2. To segment AE signals, the Hanning window function with 

size of 3000 points and overlap of 50% was utilized. For comparison between the direct AE–

based and g(r)–based approaches, 6665 frames of each of patterns (P, L, 

‘NORMAL/ABNORMAL’) and 73331 frames of those were conducted to the training and 

testing processes, respectively, where P ϵ (P1, P2, P3) and L ϵ (L1, L2, L3, L4) are pressures 

and leaks, respectively, as defined in Subsection 2.2.1. After the AE signals were divided into 

frames, they were transferred directly to the feature extraction block in the direct AE–based 

method, and to the g(r)–construction block in the proposed method (see Figure 2.5). Figure 2.9 

illustrates AE signals of the pair (P1, L1), and Figure 2.10 presents the signals in a frame index. 
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Figure 2. 8. Datasets of the pair (P1, L1): (a) Channel 1, NORMAL, (b) Channel 1, 

ABNORMAL, (c) Channel 2, NORMAL, (d) Channel 2, ABNORMAL, (e) Channel 3, 
NORMAL, (f) Channel 3, ABNORMAL 

 
Figure 2. 9. A frame of datasets of the pair (P1, L1): (a) Channel 1, NORMAL, (b) Channel 1, 

ABNORMAL, (c) Channel 2, NORMAL, (d) Channel 2, ABNORMAL, (e) Channel 3, 
NORMAL, (f) Channel 3, ABNORMAL 
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Figure 2. 10. A frame of g(r) for datasets of the pair (P1, L1): (a) NORMAL, (b) ABNORMAL 

The signals shown in Figure 2.8 and Figure 2. 9 demonstrate that noise levels of all the channels 

are nearly same in the normal condition but differ from those of the abnormal condition. The 

channel 1 is mounted at the furthest place from the leak, the signal level at this point is the 

lowest which resembles to the noise while two others get higher amplitudes for being closer to 

the leak. Moreover, such low level of signals is prone to noise in industry as well as attenuation 

over a long path of wave propagation. Therefore, a classification algorithm relied on absolute 

levels is unreliable if it is only trained by a limited number of datasets. In a real application, the 

leak position is obscure, AE signals can vary from the low level like noise when AE sensors 

are far from the leak to higher levels when they are closer to the leak. The g(r)–construction 

block in Figure 2.7 converts the signals of channels 1 and 2 from the time domain to the 

frequency domain and then transforms into the quantity g(r). Figure 2.10 presents a frame of 

g(r) in which the normal g(r) fluctuates around 0, but the abnormal g(r) has different trend. This 

behavior is independent of distance and resistant to noise. Hence, a classifier that is trained by 

the quantity g(r) can detect a leak correctly even if the environment fluctuates widely. 

2.4.1. Effectiveness of the g(r)-based Approach Compared with the Direct AE–based Method 

The effectiveness of the g(r)–based approach compared with the direct AE–based method is 

illustrated by state scattering in 3–D space, as shown in Figures 2.11-14. The plot uses the 

features and a separability comparison that relies on KL distances [40] between the two classes 

under various experimental conditions. The KL distance is given as follows: 
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ln , ln

kld D D

p x w p x w
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   (2. 14) 

where w1, w2 are the two classes (i.e., NORMAL and ABNORMAL) and x = [x1, x2, …, xn]T is 

the features for n data frames, and p is the probability density function.  
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Figure 2. 11. Features–based state scattering: (a, b, and c) features extracted from signals on the 
individual 1st, 2nd, and 3rd AE sensor channels (CH1, CH2, and CH3), respectively, (d) features 

extracted from g(r) 

Table 2. 3. KL distances in decibels (dB) (dkl (dB) = 10*log10(dkl)) 

P L 
CH1 CH2 CH3 g(r) 

RMS STE AVA RMS STE AVA RMS STE AVA RMS STE AVA 

P1 L1 11 1 16 1 22 -10 8 25 2 59 112 60 

P1 L2 9 -1 14 11 42 5 16 44 11 63 118 63 

P1 L3 -6 13 2 3 34 -6 8 35 4 70 109 70 

P1 L4 -2 6 5 11 44 6 17 46 12 63 110 63 

P2 L1 0 24 -11 12 42 8 16 42 12 70 102 71 

P2 L2 2 36 -7 15 58 11 21 61 17 73 104 73 

P2 L3 3 29 -4 24 65 20 29 67 25 60 116 60 

P2 L4 4 33 -2 13 49 8 18 51 14 68 110 68 

P3 L1 14 48 10 23 64 19 27 65 23 72 101 73 

P3 L2 10 48 5 17 62 12 22 65 18 76 99 77 

P3 L3 7 -3 11 5 36 0 9 35 4 73 107 74 

P3 L4 6 37 1 12 48 8 19 52 15 69 108 70 

MEAN 5 23 3 12 47 7 18 49 13 68 108 69 

Figure 2.11 shows state scattering based on the features extracted from direct AE signals and 
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g(r).  Table 2.3 shows the KL distances for each pair of pressure, leak (P, L) values. Since the 

KL distances depend on features and their value can be relatively large, this study uses a 

logarithm calculation to convert the distances into dB for demonstration. Obviously, the KL 

distances based on features extracted directly from the AE signals vary in a wide range. In 

contrast, the KL distances calculated using features extracted from g(r) remain around a certain 

value for each type of feature under diverse conditions. Moreover, the average values also 

demonstrate that the class separability of the g(r)–based approach is greater than that of direct 

AE–based one. From the state scattering and the KL distances, it is clearly observed that the 

g(r)–based approach is more effective than direct AE–based one. 

2.4.2. Classifier Training and Testing  

(1) Training 

This paper uses datasets of pressure and leak (P, L) pairs to train the k–NN classifier used in 

the two approaches. Table 2.4 presents the performance of the two approaches. The P4 column 

in the table represents the combination of datasets with all the pressures and leaks. Although 

Table 2.4 shows high accuracies with both methods, their performances become different when 

applying them under different conditions, as shown in the next section. 

Table 2. 4. Trained classifiers and their accuracy (%) 

 
Direct AE–based g(r)-based 

P1 P2 P3 P4 P1 P2 P3 P4 

L1 97.5 100 100 

99 

98.8 100 100 

100 
L2 100 100 100 100 100 100 

L3 100 100 100 100 100 100 

L4 100 100 100 100 100 100 

(2) Cross Testing 

The previous section trained 12 classifiers using datasets for conditions corresponding to each 

pair (Pi, Lj) for each method: direct AE–based and g(r)–based. This section uses datasets in 

conditions (Pm, Ln) to test them, where i, m = 1, 2, 3 and j, n = 1, 2, 3, 4. The purpose of the test 

is to verify the reliability of each approach if the training is carried out using only some of the 

datasets. Tables 2.5-8 show the experimental results under this configuration. In each table, the 

trained classifiers are symbolized in the columns, and the test datasets are listed in the rows. It 

is obvious that when the testing datasets use the same conditions as the training datasets, the 

accuracies reach 100% or nearly 100%. However, if the testing conditions differ from the 

training conditions, the accuracies are not promising, and misclassification can occur when 
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using the direct AE–based method. In Table 2.6, an accuracy of 0% indicates misclassification. 

In the same situation, however, the g(r)–based approach identifies leaks without 

misclassification. Furthermore, the average accuracy of the g(r)–based approach is higher than 

that of the direct AE–based method in every test.  

Table 2. 5. Accuracy (%) of classifiers trained with leak L1 

 
Direct AE–based g(r)–based 

P1 P2 P3 P1 P2 P3 

L1 

P1 98.55 69.64 62.66 99.78 99.82 99.82 

P2 99.54 99.98 65.85 99.82 99.88 99.88 

P3 96.71 99.94 100 99.88 99.82 99.8 

L2 

P1 99.88 100 64.45 99.98 99.76 99.76 

P2 98.23 99.86 100.0 100 99.88 99.86 

P3 99.76 100 100.0 99.98 99.96 99.96 

L3 

P1 100 100 62.91 99.96 99.9 99.88 

P2 99.42 99.96 67.25 100 99.82 99.82 

P3 99.32 99.98 82.05 99.76 99.82 99.84 

L4 

P1 99.96 64.27 62.94 99.98 99.90 99.88 

P2 99.80 99.94 63.18 99.94 99.96 99.94 

P3 99.70 99.94 63.83 99.19 99.84 99.84 

MEAN 
99.24 94.46 74.59 99.86 99.86 99.86 

89.43 99.86 

Table 2. 6. Accuracy (%) of classifiers trained with leak L2 

 
Direct AE–based g(r)–based 

P1 P2 P3 P1 P2 P3 

L1 

P1 65.77 62.54 0 86.92 99.54 99.9 

P2 100 63.25 62.69 62.91 99.52 99.92 

P3 100 77.53 64.53 62.65 99.58 99.92 

L2 

P1 100 62.65 62.51 100 99.98 99.84 

P2 99.94 100 99.36 70.4 100 99.92 

P3 100 100 100 63 99.96 99.98 

L3 

P1 100 62.58 62.53 98.33 99.88 99.92 

P2 99.96 64.15 62.91 98.06 100 99.92 

P3 100 62.99 62.74 98.06 99.64 99.74 

L4 

P1 63.97 62.58 0 64.73 99.94 99.98 

P2 99.98 62.74 62.58 98.56 99.84 99.96 

P3 99.96 63.04 62.68 95.72 98.95 99.52 

MEAN 
94.13 70.34 58.54 83.28 99.74 99.88 

74.34 94.3 
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Table 2. 7. Accuracy (%) of classifiers trained with leak L3 

 
Direct AE–based g(r)–based 

P1 P2 P3 P1 P2 P3 

L1 

P1 70.51 73.06 63.19 97.96 95.1 97.83 

P2 99.98 99.96 76.28 81.45 66.99 79.7 

P3 99.92 99.88 100 76.79 64.07 74.84 

L2 

P1 100 100 99.82 99.98 100 99.98 

P2 99.86 99.80 100 99.9 99.64 99.88 

P3 100 100 100 98.95 78.53 98.64 

L3 

P1 100 100.0 63.87 99.32 99.07 99.3 

P2 99.96 99.96 72.89 99.98 99.7 99.96 

P3 99.98 99.96 100. 99.21 98.85 99.13 

L4 

P1 64.34 64.6 63.52 98.5 92.05 98.42 

P2 99.94 99.92 100 99.52 99.27 99.5 

P3 99.94 99.94 80.45 97.83 97.35 97.79 

MEAN 
94.54 94.76 85 95.78 90.89 95.41 

91.43 94.03 

Table 2. 8. Accuracy (%) of classifiers trained with leak L4 

 
Direct AE–based g(r)–based 

P1 P2 P3 P1 P2 P3 

L1 

P1 97 63.79 67.29 99.78 98.08 98.33 

P2 99.72 99.52 100 99.88 82.62 86.62 

P3 97.6 100 99.98 99.96 77.92 82.9 

L2 

P1 99.94 100 100 99.98 99.98 99.98 

P2 98.64 100 99.94 100 99.9 99.94 

P3 99.86 100 100 99.98 99.03 99.36 

L3 

P1 100 98.62 100 99.98 99.32 99.42 

P2 99.62 88.8 99.98 100 99.98 100 

P3 99.56 100 100 99.78 99.21 99.23 

L4 

P1 99.96 63.72 64.06 100 98.52 98.93 

P2 99.8 100 99.94 99.96 99.54 99.6 

P3 99.8 99.44 99.94 99.3 97.87 97.96 

MEAN 
99.29 92.82 94.26 99.88 96 96.86 

95.46 97.58 
 

(3) Testing Classifiers Trained by Combined Datasets 

To detect a fault, a classifier that depends on data must be trained using many datasets 

representing various experimental conditions to provide high reliability. Table 2.9 shows 

accuracies of the two approaches when using the dataset of each pair (P, L). 
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Table 2. 9. Accuracy (%) of classifiers of two approaches by combined datasets 

 
Direct AE–based g(r)–based 

P1 P2 P3 P1 P2 P3 

L1 96.49 99.72 97.75 99.94 100 100 

L2 99.96 98.76 99.88 99.9 100 100 

L3 100 99.66 99.64 100 99.92 99.96 

L4 99.96 99.8 99.8 100 100 99.9 

MEAN 
99.1 99.48 99.27 99.96 99.98 99.97 

99.28 99.97 
 

The average accuracies are 99.28 and 99.97 for the direct AE–based and g(r)–based approaches, 

respectively, as shown in Table 2.9. Thus, a model trained by many datasets can work in varied 

conditions. However, the g(r)–based method is more efficient than the direct AE–based because 

it still achieves the expected accuracy with only a small number of training datasets.  

(4) Evaluating Two Approaches Using Combined Datasets with Added Noise 

 
Figure 2. 12. AE on channel 2 before/after adding noise with γ = 0 dB: (a, c) NORMAL, (b, d) 

ABNORMAL 

To evaluate robustness of the proposed method, Gaussian noise was added to the acquired 

signals to increase the intensity of background noise. The parameter γ is counted in (dB) for 

each channel of the three AE sensors. Figure 2.12 illustrates the signals from channel 2 before 

and after added noise with γ = 0 (dB). This evaluation was conducted using the k–NN classifier 

trained by the combination of all datasets. The testing accuracies are shown in Table 2.10. 

Table 2.10 shows that if γ is small, the accuracies of the two methods are approximately the 

same as in Table 2.9. When γ increases, the accuracy of both approaches decreases, and at a 
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certain value, they cannot guarantee classification. However, the direct AE–based method fails 

in classification when the added noise reaches 5 (dB) whereas the proposed g(r)–based method 

works until γ reaches 35 (dB). Thus, the g(r)–based approach produces a classifier that can 

detect a small leak more robustly than the direct AE–based classifier. 

Table 2. 10. Accuracy with added noise 

γ [dB] 
Model 

Direct AE–based g(r)–based 

-30 99.28 99.97 

-20 99.28 99.97 

-10 99.28 99.97 

-5 99.25 99.96 

0 99.08 99.83 

5 0 98.46 

10 0 94.38 

15 0 88.83 

20 0 76.9 

25 0 70.74 

30 0 66.96 

35 0 0 

2.5. Conclusions 

AE–based techniques have the advantages of detecting the physical changes within a structure 

such as water pipeline with high accuracy. Due to the complication of the AE phenomenon, 

model–based fault diagnosis of the water pipeline is difficult whereas a data–driven fault 

diagnosis is relatively easy to implement. However, if the training relies on extracting features 

directly from AE signals, the resulting classifier is unreliable because such data cannot reflect 

all possible information under divers working conditions. This paper introduced an intermediate 

step in a water pipeline fault diagnosis framework in which the signals are preprocessed before 

the extraction of features. The preprocessing step calculates an intermediate quantity g(r) by 

applying an attenuation equation to the acquired AE signals. The quantity g(r) is more stable 

than the original AE signals in leakage identification. The results showed that the g(r)–based 

approach achieves higher accuracy and higher reliability than the direct AE–based method. This 

approach can be applied in a variety of systems because the g(r) function always possesses the 

same behavior reflecting leaks in a system. This paper also proposed a way to select a 

reasonable window size when dividing signal frames. The proposed technique uses the speed 

of acoustic emission signal to calculate a possible maximum lag time between signals on the 

sensor channels. From that computation, the frame size can be adjusted appropriately. 
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Chapter 3 

Leak Localization in an Industrial–fluid Pipeline based on 
Acoustic Emission Burst Monitoring 

3.1. Introduction 

Since AE waves propagated to sensors along a pipeline comply with the wave dispersion rule 

of attenuation and velocity [21], AE source localization can be relied on either amplitude 

(related to the wave attenuation) or arrival time (related to the wave velocity) [47]. The 

amplitude approach is hard to apply because the attenuation function of AE signals is extremely 

complicated – they depend on both frequency and operating condition [21, 37, 48]. As a result, 

conventional methods harnessing arrival time have been used more frequently to pinpoint an 

AE source in a pipeline [47].  

AE source localization based on arrival time estimates the TDOA between AE signals recorded 

by two sensors. Although the value can be computed by a CCF [30], it is strongly dependent 

on the chosen wave propagation model and background noise [49]. Moreover, the propagation 

path is not always straight from the defect to the sensors, and could instead involve reflection, 

diffraction, or divergence. In addition, AE signals are not from a unique source; they come from 

multiple sources, such as vibrations at joint points of flange, inner fluent disturbance places, or 

external random collisions. Waves also propagate in various modes and can superpose at the 

point of measurement [21]. Consequently, AE source localization via CCF results in 

considerable error.  

A GCC function [50-52] was presented to improve the shape of the CCF, thus obtaining 

superior accuracy of the TDOA estimator. The CC between two signals is associated with their 

cross power spectral density function through an inverse Fourier transform and a general 

frequency weighting function which is a prefilter added into the CCF estimator [52]. The 

prefilter includes Roth, SCT, PHAT, EF, etc. However, authors in [52] claimed that designing 

a prefilter needs a priori knowledge of leak signals and noise. Indeed, the issue is challenging 

in industrial-fluid pipeline systems because countless factors can impact on AE signals, for 

instance, environmental temperature, inner fluid pressure and flow rate. In consequence, leak 

localization with GCC does not provide high accuracy.  

Some approaches have been introduced to enhance leak localization in fluid pipelines [53, 54]. 

They used WDD, and EMD to eliminate components which are uncorrelated with leak signal, 

and then increased an accuracy of the leak location estimation. However, AE signals are 
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distorted by both the noise presence and the wave attenuation, the presented methods have their 

own limitation on improving the quality of CCF to retrieve an expected location accuracy 

because the most intrinsic components decomposed by WDD or EMD are only related to the 

remains of leak signals attenuated in their propagation path. 

As can be seen in Figure 3.1, a recorded signal in an industrial fluid pipeline contains many AE 

bursts. They can come from abnormal points — leaks, bending-segments, cracks, or collisions 

in pipelines [3]. The amplitude and arrival time of AE bursts vary with their source’s position 

and strength. Thus, such bursts can provide relevant information about leak location. This paper 

proposes an ABM method for leak localization. The monitoring mechanism is implemented in 

several stages. First, AE bursts are detected by adaptive thresholds from individual sensor 

channel. Second, the bursts are grouped into pairs. If two bursts in a pair come from a source, 

they provide an appropriate characteristic of wave dispersion related to TDOA and energy. In 

addition, same-origin bursts reveal a degree of similarity in the frequency domain despite of the 

attenuation. Hence, another step of ABM is that AE burst pairs are filtered by constraints of 

their TDOA, energy, and coherence evaluated by a coherence-squared function [55, 56]. A pair 

of filtered bursts is referred as an event from an AE source. Next, a statistic technique clusters 

the coordinates of events in a histogram. Finally, the AE burst monitoring program issues a 

warning alarm through cluster distribution and a priori information about the pipeline system’s 

design. Experimental results show that ABM identifies leaks more precisely than conventional 

methods using CCF and GCC to estimate TDOA from recorded AE signals or even from their 

most intrinsic components returned by WDD and EMD.  

 
Figure 3. 1. AE bursts. 

3.2. Methodology 

To illustrate leak localization based on AE burst monitoring, the setup in Figure 3.2 is applied. 

In Figure 3.2, x–axis is established to coordinate a leak and sensors. As a reference, the origin 

of x–axis is set at a flange because this position is always permanent. The AE source is referred 

to as the leak (S) at d [mm] and the AE sensors 1 and 2 are mounted at d1, d2 [mm] and 

designated CH1 and CH2, respectively. Other parameters are also symbolized in the picture.  
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Figure 3. 2. AE source and sensor mounting. 

The localization methodology is shown in Figure 3.3. 

 
Figure 3. 3. Fault localization based on AE burst monitoring. 

3.2.1. AE Burst Detection 

Since AE bursts can be detected from the envelope of signal, we start with an AE burst detection 

process using a Hilbert transform and an envelope detector, as depicted in Figure 3.4. The 

Hilbert transform is responsible for converting a real input value sequence into an analytic form 

that is a complex signal. Then, the envelope detector simply takes the modulus of the complex 

signal at the output of the Hilbert transform block to have the signal envelope. More information 

about the envelope detection method is available in [56].  

Bursts are then searched from the signal envelope on the output of the envelope detector. The 

Neyman–Pearson theorem [57] states that to maximize PD (detection probability) for a given 

PFA = α (false alarm probability), it is necessary to decide if H1 satisfies 
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       (3. 1) 

where the threshold γ is found from 

    FA 0:
|

z L z
P p z H dz      (3. 2) 

where the function L(z) is the likelihood ratio, H0 is the null hypothesis (signal absent), H1 is 

the alternative hypothesis (signal present), z is an observed set of data, and p(z) is the probability 

density function. Eq. (3.1) and Eq. (3.2) are the mathematical fundamental of threshold 

calculation for AE burst detection with a given false alarm probability. The existence of a burst 
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is the H1 hypothesis if the envelope value exceeds the threshold, and the case of no burst is the 

H0 hypothesis if the signal envelope lies below the threshold. Those expressions are 

implemented in the threshold calculation block of the AE burst detection process in Figure 3.4. 

As can be seen in the detection diagram, a threshold is computed from the AE input signal. 

Since AE signals depend on operating conditions of a pipeline such as fluid pressure, flow rate, 

and temperature [21], they are constant variation of AE signals. Accordingly, the applied 

threshold which is continuously updated in time can adapt to the operating condition. 

 

Figure 3. 4. AE burst detection based on adaptive thresholds. 

 

Figure 3. 5. AE bursts detected in a signal: (a) Raw signal, (b) Seeking high peaks, (c) After 
eliminating high peaks, (d) Calculating threshold 2, (e) Detecting bursts 

In the burst detection process, high–peak elimination plays a central role in estimating noise 

level. If high peaks are involved in the calculation, the estimated noise level differs significantly 

from the true value. This leads to missing signals and increasing time-of-arrival error. Hence, 

we use two thresholds in the burst detection, as illustrated in Figure 3.5. We use the first 

threshold, which is called a coarse threshold, to eliminate high peaks over the noise level in the 

signal, as shown in Figure 3.5 (c). With the remaining signal after eliminating high peaks, a 

second threshold (fine threshold) is computed. The second threshold is smaller than the first 

one; thus, low bursts can be identified, for example of the burst 3 in Figure 3.5 (e), unlike in 

Figure 3.5 (b). The same samples of the burst 3 cannot be detected because they are completely 

under the first threshold. 

Apart from the adaptive threshold, this paper suggests grouping adjacent bursts as an AE wave 

is likely possible separated into many bursts due to the diversity of propagation modes. The 

grouping step aims to unify the bursts, decreasing the false alarm rate for event detection. The 

constraints of this process are defined by analyzing the wave models and propagation velocities 
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given in [21, 43]. Figure 3.6 illustrates an AE burst created from neighboring bursts. Here, two 

detected bursts are considered neighboring if their time distance is smaller than the separability 

of waves propagated in the lowest and highest velocities from a point in the pipeline. Expression 

(3.3) establishes the condition for the grouping. 

neighboring
min max

l l
t

C C

 
  
 

      (3. 3) 

Here, tneighboring is the time-distance between the two bursts; l is distance from the burst source 

to the sensor; and Cmin and Cmax are the lowest and highest wave velocities, respectively. 

 

Figure 3. 6. A grouped AE burst formed from neighboring small bursts. 

Since AE waves can propagate in the walls of pipes and in the inner fluid [42], Cmin and Cmax 

are considered by comparing speeds in both media. Wave velocity in solids is dominant against 

fluid velocity [43], and Cmin and Cmax values can therefore be considered as the fluid and solid 

wave velocities, respectively. However, because the source of a burst between CH1 and CH2 

may be ambiguous, calculations of neighboring time assume that l is L, which is the distance 

between the two sensors. This value is the maximum possible path of direct wave propagation 

from the wave source to one of the sensors in the tested pipeline. 

3.2.2. AE Event Filter and Localization 

An AE event is defined to be a pair of bursts propagated from the S fault to the CH1 and CH2 

sensors as depicted in Figure 3.7. According to the wave propagation theorem [21], the x 

coordinate is calculated by: 

2 1 2,
2

L C t
x d t t t

 
          (3. 4) 
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where C is the wave propagation velocity and t1 and t 2 are the arrival times. Although 

expression (3.4) allows for localization of an AE source, they cannot distinguish which pair of 

bursts is the true event. In a true event, a pair of bursts come from the same source. If they are 

from two different sources, the pair is useless and should be discarded. This paper offers 

constraints to filter such events.  

 
Figure 3. 7. An AE event represented by two bursts in the CH1 and CH2 channels. 

First, from the frequency response of the system in [37] we can observe that the energy of an 

AE wave attenuates in proportion to propagation distance as it disperses along pipeline. A 

possible pair of bursts can therefore be checked by the attenuation condition: 

  1 2 2 1 0l l E E         (3. 5) 

in which l1 and l2 are the distances from S to CH1 and CH2, respectively, and E1 and E2 are the 

respective burst energies. In Eq. (3.5), if l1 is greater than l2, then CH1 receives an amount of 

signal energy smaller than those of CH2 which receives from the leak signal. Additionally, if 

two bursts originate from the same source, they must comply with the coherence-squared 

function [55, 56], which is written as: 

   

   
12

12 1

2
11 22

,
,

, ,

S t f
C t f

S t f S t f
 

  

    (3. 6) 

where β is a threshold (0 ≤ β < 1), C12 (t, f)  is the coherence-squared function estimate, S12 (t, 

f) is the cross-spectral density function estimate, and S11 (t, f) and S22 (t, f) are spectral density 

function estimates of the two bursts, respectively. The signals are considered nonstationary 
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processes, where t is time and f is the frequency. In addition to the impact of pipeline material, 

fluctuation of operating conditions (inner fluid pressure and flow rate), and surrounding 

environment, AE signals suffer from inevitable distortion in their dispersion because the wave 

attenuation is a function of frequency and propagation distance [37, 48]. Therefore, the 

coherence-squared function can receive a comparatively low value to an AE burst pair even 

though they are from a source. For example, if leak location is close to CH1 and far from CH2, 

the coherence-squared function of two bursts acquired by the two sensors provides smaller 

value compared to the case that the leak is located at the middle of these sensors. However, if 

the leak location is unknown, and the external factors (pressure, flow rate, and temperature) are 

constantly variable, we need set β not to be so high to avoid missing useful AE events which 

come from a leak and not to be so low to eliminate useless AE events including two bursts from 

two different sources. Thus, an optimal value of β should be chosen in practice. If a large 

number of satisfactory AE events is collected in a certain time, but their coordinates are 

randomly scattering which makes difficulty in event monitoring, we can increase β to restrict 

this phenomenon. In other word, if there are a few events, we can decrease β to get more events. 

Furthermore, as the leak is between the two sensors, its coordinate should satisfy: 

2 1d x d        (3. 7) 

Combining (3.4) and (3.7) produces: 

maxtdoa

L
t t

C
            (3.8) 

Expressions (3.5), (3.6), and (3.8) are constraints for AE event filtering.  

 
Figure 3. 8. Filtered AE events. 
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Figure 3.8 includes sixteen filtered AE events marked in blue with indexes above in a frame of 

one million samples per channel. Some bursts are eliminated even though their amplitudes are 

not small. Some unmet events can be generated by the leak source; however, they are seriously 

distorted due to attenuation, interference, or flow disturbance. As a result, they provide no 

valuable information about the leak location and their absence could enhance the localization. 

3.2.3. AE Event Clustering and Judgment 

According to the theorem of probability and statistics [56], a decision is made by a dominant 

probability of event occurence. Hence, the leaking position can be determined at the point where 

AE events spread more densely than surroundings. This can be seen in Figure 3.9 (a), which 

depicts the distribution of AE events by coordinates and time. Although the AE events can 

come from any place on the tested pipeline due to turbulence in the fluid flow, the leaking 

region would turn out an event distribution denser than its neighboring positions because a 

leaking location is always non-movable. Therefore, in order to address leak localization, we can 

rely on the probability of AE event occurence acoording to location along the pipeline. We 

examine the event occurence probability in regions created by equivalently dividing a pipeline 

into small segments instead of monitoring in total continuous points on the pipeline. Call n as 

a number of divided segments, then size of a segment is given by: 

L
u

n
        (3. 9) 

where u is the length of a segment. We asume that the expected location error of leak 

localization is Δx. This parameter is usually predefined, which is a technical criterion to 

evaluate the result. Based on the expected location error, the size of segment is selected by: 

2

x
u


      (3. 10) 

Eq. (3.10) can guarantee that the event distribution has enough resolution to distinguish among 

event distribution densities which are appropriate for the expected location error (see Figure 3.9 

(b)). In the real application, since a pipeline is various in length, a relative error is consequently 

useful to improve the location accuracy of a leak localization algorithm. This error is given by: 

r x100
x

e
L


       (3. 11) 

where er refers to the relative error in percentage. From Eqs. (3.9), (3.10), (3.11), we can 

determine the number of segment by (3. 12). 



Chapter 3: Leak localization in an industrial–fluid pipeline based on acoustic emission burst monitoring 

34 
 

r

200
n

e
       (3. 12) 

Eq. (3.12) is a mathematical expression to choose the number of segments to quantify the event 

distribution density. Due to the lack of a priori information about a probability density function 

of leaking events, we assume that they have a uniform distribution. It means that the probability 

density is the same for all the events existing in segments. Thus, the probability of event 

occurence in a segment is proportional to event distribution density, which is equal to sum of 

events in the segment. The leak location is therefore determined through density peaks in the 

event distribution density, as illustrated in Figure 3.9 (right), where the events are arranged in 

proper segments depending on their coordinates matched in the x-axis along the pipeline. In 

this graph, the leak is located at the point of the highest density. 

 
Figure 3. 9. AE event clustering: (a) Event occurrence over time and coordinate, (b) Source 

distribution density 

3.3. Experiment Setup 

3.3.1. Testbed Configuration 

 
Figure 3. 10. The pipeline testbed. 
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Figure 3.10 shows a testbed and an AE equipment system to record AE signals in a tested part 

of a water pipeline system. The installation is matched with Figure 3.2 and the experimental 

parameters are listed in Table 3.1. 

Table 3. 1. Experimental parameters 

No Quantity Detail 

1 Location of sensor 1 (d1) 2600 [mm] 

2 Location of sensor 2 (d2) 100 [mm] 

4 Location of leak (d) 900 [mm] 

5 Thickness of pipelines 6.02 [mm] 

6 Outer diameter of pipelines 114.3 [mm] 

7 Material of pipelines Stainless steel 304 

The leak was designed by a tool welded into a hole on the pipe wall. Four leaks with diameters 

(2.0, 1.0, 0.5, 0.3) [mm] are abbreviated by F = (F1, F2, F3, F4), respectively. There is a valve 

on this tool to activate or deactivate the leakage simulation in the system. 

3.3.2. Acquisition Equipment System 

 
Figure 3. 11. The overall paradigm of AE equipment system. 

Figure 3.11 illustrates an overall process of the AE equipment system for data acquisition in 

this study. R15i–AST sensors from MITRAS corporation were used for data acquisition 

because they provide high sensitivity. The 16–bit analog to digital converter with controllable 

sampling frequency and the interface module through the high–speed universal serial bus 

standard are integrated in a NI–9223 module manufactured by NI. The computer is a personal 

computer compatible with NI–9223 interface, and a hard drive of one terabyte is installed as a 

data storage. The AE sensors were attached to the surface of a pipeline using a set of mounting 

kit and tapes to fix their positions. In order to reinforce the contact between the sensor and the 

pipe surface, we added a type of specialized gel into the contacting area. After finishing the 

setup of hardware, a data recording software which is self–developed using a Python language 

and an interface library supported by NI was used to control the data acquisition system. Then, 

the AE equipment was tested by the pencil lead break method [58]. This ensures a suitable 

sensitivity for the data acquisition system and calibrates the sensors, thus resulting in reliable 

AE signal datasets. The operating principle of the system in Figure 3.11 is composed of several 

phases. First, AE waves are converted to electronic signals by an AE sensor. Since the electronic 

signal in an analog form, it is converted into digital signal by the ADC. Second, the interface 
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module is responsible for communicating between the ADC and the computer. Finally, the data 

recording program receives data from the interface module and saves them in a hard drive.  

3.3.3. Data Record 

 
Figure 3. 12. The water flow rate in the F1–leak experiment. 

Datasets were collected in the leaking state, referred to the open position of the valve, the water 

flow was controlled in pressures (7, 13, 18) bar called P = (P1, P2, P3), and the environmental 

temperature was roughly 26° Celsius degree. In a conditional pair FiPj (i = 1, 2, 3, 4; j = 1, 2, 

3), a dataset was recorded for two minutes with a sampling rate of 1 MHz. Figure 3.12 presents 

the experimental process with the F1–leak. In the beginning, the pump was turned on, the valve 

was closed (deactivated leak), and the pressure was adjusted to P1. The valve was then opened 

(leak activated), with the recording device waiting for flow stability before acquiring data for 

two minutes for the pair F1P1. Next, the experiment continues with the pressures P2, P3, as 

depicted in Figure 3.12. Prior to switch conditions, the leak is deactivated to standardize the 

moment of pressure measurement when the pipeline is normal. After completing the F1–leak 

experiment, the data acquisition with the leaks F2, F3, F4 were repeated. 

3.4. Experimental Results 

To evaluate the proposed method, the approaches using CCF along with WDD, EMD and GCC 

with PHAT were implemented on the same datasets to which ABM was applied. WDD and 

EMD techniques were employed to search for the most intrinsic components from the raw AE 

signals. After decomposing the original signals into distinct components for both channels, they 

were grouped in corresponding pairs to calculate the cross-correlation. The one that returned a 

maximum correlation coefficient was assumed to estimate TDOA. 

The window size was given below, according to the suggestion in Subsection 2.3.3. 
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frame 10 ,lag lag

L
t t t

C
         (3.13) 

In (3. 13), tframe is signal frame size, Δtlag is the maximum lag time, and C is the wave velocity 

in water. This equates the lag part of signal to 10% of the whole frame. 

Table 3.2 lists the necessary parameters used in this study, which were calculated from a priori 

information about the experimental setup. As we digitized AE signals, the values tframe, tmaxtdoa, 

and tneighboring with unit of second can be represented by Nframe, Nmaxtdoa, and Nneighboring with unit 

of sample. The parameters α and β were manually selected to get the expected effectiveness of 

event filtering, hence reducing the relative location error. 

Table 3. 2. Implementation parameters 

No Parameter Value 

1 Frame size (Nframe) 16700 [sample] 

2 Wave velocity (C) 1,500,000 [mm/s] 

3 Expected relative error (er) 4% 

4 Number of divided segments (n) 50 

5 The maximum TDOA (Nmaxtdoa) 1667 [sample] 

6 False alarm probability (α) 0.1% 

7 The coherence threshold (β) 0.8 

8 Time–distance (Nneighboring) 1667 [sample] 

Multiple peaks appeared in the coordinate distribution density, as depicted in Figures 3.13.c, 

3.14.c, 3.15.c, and 3.16.c. This can be attributed to the fact that the correlators implemented by 

CCF or GCC were continuously applied to all the signal frames while intrinsic components of 

the leak could not be correctly extracted, resulting in the low correlation coefficients of Figures 

3.13.b and 3.16.b. Although Figures 3.14.b and 3.15.b present higher coefficients due to the 

application of WDD and EMD, these values are still low and leak localization was still 

ineffective. However, the AE sources in Figure 3.17 largely concentrate around the leak 

position for multiple datasets in diverse conditions as the localization has been deliberately 

applied only to the filtered events. With the AE event filtering technique as presented in 

Subsection 3.2.2, unwanted events are excluded, improving the accuracy of leak localization. 

Table 3.3 shows the leak coordinates and their relative errors resulting from all the datasets if 

the leak position is selected to be the place with the highest density. The average errors in this 

table claim that the ABM method is more effective than the others. Although CCF or CCF with 

EMD return the nearly correct location of the leak in some datasets (for example, F2P1) and the 

errors are not greater than 2%, similar results were not provided in other cases, such as F4P1. 
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This can be explained by the low correlation coefficients, as illustrated in Figures 3.13.b, 3.14.b, 

3.15.b, and 3.16.b. In contrast, the ABM method identifies the leak signals through obvious 

signatures before the localization, which was presented in Subsection 3.2. This approach can 

therefore enhance the results. 

 
Figure 3. 13. Leak localization using CCF for the F1P2 dataset: (a) raw signals, (b) CCF, (c) 

density. 

 
Figure 3. 14. Leak localization using CCF combined with WDD for the F1P2 dataset: (a) raw 

signals, (b) CCF, (c) density. 

 
Figure 3. 15. Leak localization using CCF combined with EMD for the F1P2 dataset: (a) raw 

signals, (b) CCF, (c) density. 
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Figure 3. 16. Leak localization using GCC through a PHAT function for the F1P2 dataset:(a) 

raw signals, (b) CCF, (c) density. 

 
Figure 3. 17. AE source distribution density using ABM: (a) F1P1, (b) F1P2, (c) F1P3, (d) F2P1, (e) 

F2P2, (f) F2P3, (g) F3P1, (h) F3P2, (i) F3P3, (j) F4P1, (k) F4P2, (l) F4P3  
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Table 3. 3. Leak coordinate x [mm], relative error [%] 

 Method 

CCF CCF with WDD CCF with EMD GCC with PHAT ABM 
D

at
as

et
 

F1P1 1325; 17 1325; 17 1275; 15 1325; 17 800; 4 

F2P1 950; 2 1025; 5 875; 1 1100; 8 850; 2 

F3P1 800; 4 1325; 17 1325; 17 1325; 17 900; 0 

F4P1 1400; 20 1325; 17 1325; 17 1500; 24 950; 2 

F1P2 400; 20 1325; 17 1325; 17 1325; 17 800; 4 

F2P2 850; 2 1325; 17 975; 3 1325; 17 800; 4 

F3P2 1100; 8 1325; 17 875; 1 1325; 17 850; 2 

F4P2 1325; 17 1325; 17 1325; 17 1325; 17 800; 4 

F1P3 1350: 18 1325; 17 1425; 21 1325; 17 850; 2 

F2P3 1400; 20 1125; 9 625; 11 1325; 17 800; 4 

F3P3 450; 18 1325; 17 1075; 7 1325; 17 850; 2 

F4P3 1250; 14 1325; 17 1375; 19 1325; 17 900; 0 

Average 1022.7; 13.3 1283.3; 15.3 1150; 12.2 1320.8; 16.8 845.8; 2.5 

3.5. Conclusions 

Leak localization using the proposed acoustic emission burst monitoring outperformed 

conventional methods. The methodology was applied to an industry in which pipelines are 

typically made of steel to handle adverse conditions. In this environment, acoustic emission 

signals can be distorted by complications in wave propagation and are prone to interference 

from ambient noise. Conventional techniques such as cross-correlation function and 

generalized cross-correlation — even when combined with Wavelet decomposition and 

denoising and empirical mode decomposition — cannot produce sufficiently accurate location 

information. However, the experimental results showed that leak regions exhibit the highest 

density of acoustic emission sources using the proposed method, facilitating leak localization 

in industrial-fluid pipelines. This is because the proposed method employed a burst detection 

technique using adaptive thresholds in which they are automatically updated depending on 

measured acoustic emission signals. This burst detection method offers peak elimination to 

boost background–noise estimates which converge to the true value and enhance detection 

precision. Moreover, a grouping tactic helps reduce the false alarm rate associated with wave 

separation. The event filtering revealed the coordinate concentration of leak events in a 

clustering histogram, further improving localization accuracy. 



Chapter 4: Real–time leak detection for a gas pipeline using hybrid acoustic emission features and a k–nearest 
neighbors classifier 

41 
 

Chapter 4 

Real–time Leak Detection for a Gas Pipeline using Hybrid 
Acoustic Emission Features and a k–Nearest Neighbors Classifier 

4.1. Introduction 

Researchers tend to adopt a data–driven approach that trains a classifier using AE features 

extracted from AE signals to separate pipeline health states to normal or leaking. This approach 

is appropriate because an AE signal acquired from a gas pipeline is non–stationary [26, 59]. 

Moreover, AE waves attenuate along the pipeline from their emission source to AE sensors[37]; 

they vary with the environmental conditions of pressure, flow rate, and temperature [21]. Thus, 

it is challenging to draw an explicit model to identify a leak relying on AE signals exclusively. 

A classification model learns the leakage manifestation from the supplied training data; hence, 

it can identify the leak detection problem effectively. However, the computational complexity 

of existing leak detection methodologies restricts their exploitation in real–time applications, 

despite the fact that they show high classification accuracy. For example, the Wavelet transform 

and the signal decomposition algorithms are used to analyze AE signals, and machine learning-

based models are used for state classification [17, 19, 22, 23], which can improve accuracy, but 

their computation is highly complex. 

A long gas transportation system usually comprises numerous pipeline segments with diversity 

in size, shape, and material. Many sensors are spread over that system to monitor the health of 

different pipeline segments. A wireless-based leak detection system with a server receiving and 

exploring signals dispatched from remote sensor nodes, as proposed by [60], would not be 

suitable for AE signal application due to the overload of communication and computation. 

Therefore, a sensor node should be a smart integrated system that can itself inspect a pipeline 

segment and report only the health state of pipeline to its server instead of sending a massive 

amount of AE signals to the server. The advantage of the integration is that it does not require 

a complex communication network topology between the sensor nodes and the server. 

Nonetheless, the integrated system must be low-power and compact, because if many devices 

are installed, they will result in high energy consumption and a bulky system. This is similar to 

the design presented in [61], which integrated a propane sensor with a low-power system-on-

chip device. However, a propane sensor could only detect an obvious gas leak nearby, thus 

challenging the early gas leakage detection in a large pipeline network, where a tiny leak would 

occur at any place and any time. 
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Working from the demand for gas pipeline leak detection and the achievements and limitations 

of current studies, this work presents an MCU–based system designed to diagnose leakage for 

a gas pipeline in real–time. The system analyzes AE signals locally to identify a leak and just 

issues a warning of state changing. Because an MCU–based system only supports a restricted 

resource in memory and execution speed for computing implementation, the paper exploits a 

k–NN classifier trained by using hybrid AE features directly extracted from raw AE signals. 

The k–NN algorithm can execute on a limited-resource platform in real–time because it is made 

up of simple computations and neighbor-searching loops. To optimize the algorithm further, a 

filtering technique is exploited to remove the least useful elements from the feature pool relying 

on the three-sigma rule [62] and the KL distance [40], which reduces the number of computation 

cycles and loops in the correspondingly implemented program, thus accelerating the proposed 

detection system. The selected features are normalized as well; hence, a trained k–NN model 

can be applied to various sensor nodes along a pipeline network. Moreover, the trained model 

can be updated in run–time to adapt to a sensor installation location or any change in the 

working conditions. 

Prior to implementing the leak detection program on an MCU–based hardware platform, the 

proposed methodology is offline synthesized using the Matlab 2019a software and AE signal 

datasets recorded at a gas pipeline testbed under diverse experimental scenarios. Thus, the 

essential parameters of the k–NN classifier (training features and number of nearest neighbors) 

are chosen to ensure not only the real–time characteristic, but also high accuracy of the leak 

detection program. Aside from ambient noise, any external factor that can cause the vibrations 

in the pipeline can trip AE signals. For instance, a random pipe collision triggers a mechanical 

vibration that generates plentiful elastic waves propagating through the pipeline. AE sensors 

with enough sensitivity can capture signals resulting from those elastic waves, thus interfering 

with measured target signals. Hence, a k–NN classifier based on AE signals is subjected to 

discrete events near the testing pipeline, generating false alarms. To address this problem, the 

current work proposes monitoring the ALEOR from the output of the state classifier. A final 

decision of pipeline health state is based on the comparison between the instant ALEOR and a 

defined threshold, hence avoiding a false alarm. 

Finally, the work evaluates the gas pipeline leak detection system constructed from the 

proposed methodology on the 32F746G–DISCOVERY board (STMicroelectronics, 

Quakertown, Pennsylvania, USA) using recorded AE signal datasets. Experimental results 

demonstrate that the system can identify a leak in real–time with high average classification 
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accuracy under various pressure conditions, and its robustness is satisfactory, even with adding 

white noise to the input AE signal. Hence, the proposed MCU–based system is applicable for 

gas leak detection in real applications. 

4.2. AE Signal Data Acquisition 

A pipeline testbed is established to simulate the gas leakage as shown in Figure 4.1. The testbed 

is a part of a real gas pipeline system (see Figure 4.1 (c)) made from stainless steel 304 pipelines 

with sizes of 114.3 millimeters (mm) and 6.02 mm in outer diameter and wall thickness, 

respectively. To create various leaks, we designed a leak tool as shown in Figure 4.1 (a), which 

is assembled to the testing pipeline. This tool is composed of a valve and an orifice of diameter 

0.3 mm, 0.5 mm, or 1 mm (see Figure 4.1 (b)). Hence, the normal/leaking states of the pipeline 

are connected to closed/open valve positions. 

 
Figure 4. 1. Pipeline testbed: (a) leak tool, (b) orifices, (c) test section. 

The experimental configuration is shown in Figure 4.2. To capture AE signals, two R15i–AST 

sensors (AE channels), which were manufactured by MITRAS Group, Inc (Princeton Junction, 

NJ, USA), are mounted at downstream and upstream locations on the surface of the testing 

pipeline. These sensors can detect any elastic wave in a range of operating frequencies, which 

are 50 kilohertz (kHz) to 400 kHz [41]. Those elastic waves can be caused by diverse sources 

such as leak noise [17], negative pressure wave [5], ambient noise, and other vibrations of the 

pipe wall. Such R15i–AST sensors are selected because their operating frequency range covers 

the frequency ranges of AE waves propagating in metal objects, which are from 100 kHz to 300 
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kHz, as stated in the BSI standard BS EN 15856 [42]. AE signals are sampled at 1 megahertz 

(MHz) by the NI 9223 module. The sampling frequency of 1 MHz is more than double the 

maximum operating frequency of sensors, thus satisfying the Nyquist–Shannon sampling 

theorem [63] about converting analog signals into digital signals. 

 
Figure 4. 2. Experimental setup: (a) test section, (b) data acquisition system. (R15i Ch1 and R15i 

Ch2 are acoustic emission (AE) channels, P is a pressure meter). 

After finishing the hardware setup, data recording software is installed on the computer to 

control the whole data acquisition. Additionally, we exploit the pencil lead break technique [58] 

to examine both sensitivity of sensors and the whole AE equipment. This ensures the reliability 

of AE signal datasets prior to storing them in the hard drive. 

 
Figure 4. 3. Gas flow rates corresponding to three orifices: (a) 0.3 mm, (b) 0.5 mm, (c) 1.0 mm. 

In the experiment, the three orifices are alternated to simulate different leakages at three inner 

relative pressures of 700 kPa, 1300 kPa, and 1800 kPa, resulting in three normal states of the 

testing pipeline (closed valve) and nine diverse leaking states (open valve). Specifically, data 

acquisition has been performed as follows. First, an orifice was installed, and the pipeline 

system was configured at a pressure level of 700 kPa, 1300 kPa, or 1800 kPa, and this condition 

was kept relatively stable before acquiring AE signals. At this time, the valve of the leak tool 

was closed to simulate the normal state of the pipeline. For this state, the signals were recorded 

for 2 mins. Next, the valve was opened to simulate a leakage. Here, the data corresponding to 

a leaking state were collected after pressure stabilization. Figure 4.3 presents gas flow rates 

measured in front of the testing pipeline during the experimental stages. 



Chapter 4: Real–time leak detection for a gas pipeline using hybrid acoustic emission features and a k–nearest 
neighbors classifier 

45 
 

4.3. Leak Detection Methodology 

The overall gas pipeline leak detection diagram is shown in Figure 4.4. It is composed of two 

processes: one is offline, and the other is online. The offline analysis synthesizes and optimizes 

the leak detection algorithm, while the online process experiments and verifies the detection. 

We will describe the analysis blocks of the algorithm below. 

 
Figure 4. 4. Entire flow diagram of the gas pipeline leak detection. 

4.3.1. Hybrid Feature Pool and Feature Selection 

To detect the leaking state of a gas pipeline, time and frequency domain statistical features are 

extracted, as shown in Table 4.1, from raw AE signals utilized as diagnosis leakage signatures. 

We therefore obtain a hybrid feature pool of size R × M, where R is the number of feature types 

(R = 12, as shown in Table 4.1), and M is the number of analyzed signal frames. The value M 

should be large enough to reflect the statistical discrimination of the pipeline states precisely. 

Next, the feature pool should be refined to enhance the pipeline health classification quality. 

Outliers, data points that differ significantly from the other aggregated data points in the same 

class can cause serious problems in statistical analyses. The existence of outliers in a feature 

extracted from an AE signal measured at a gas pipeline is inevitable, resulting from both 

exterior and interior factors. The exterior factor could be variability in the measurement. For 

example, power spikes can interfere with sensed signals, causing outliers in AE features. This 

problem can be fixed by perfect experimental configuration and the exploitation of high-quality 

equipment. Outliers may be created by interior factors of the pipeline system, such as burst 

emissions appearing in high amplitude and energy in AE signals. A gas pipeline itself generates 

such a signal due to the disturbance between inner gas flow and the gas flow–pipe wall 

interaction. Nevertheless, outliers should be eliminated from features used for training a 

classifier because they do not statistically characterize the normal/leaking state discrimination, 

thus leading to the deterioration of the classification performance. This paper assumes a normal 

distribution for the AE features; outliers can therefore be detected by the three–sigma rule [62]; 

this rule is expressed in (4. 1). 
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 Pr 3 0.99
i ii y yY         (4. 1) 

where Yi is an observation from a normally distributed feature yi; μyi and σyi are the mean and 

standard deviation of the distribution, respectively; i = 1, 2, …, R. According to (4.1), if |Yi - 

μyi| > 3σyi, the value Yi is considered an outlier and it is removed from the set of yi-feature 

observations. After unwanted observations are eliminated from the yi-vector, the length of yi-

vector is shrunk as Mi* (Mi* ≤ M). Because the feature types distribute dissimilarly, the outlier 

elimination might return different lengths Mi* of the yi-vectors (i = 1, 2, …, R). As a result, we 

compensate new satisfactory observations for the feature pool to gain Mi* = M. The feature 

pool size is therefore intact (R × M); however, its elements are refined, which satisfies (4.1). 

Table 4. 1. Typical features for leak detection. 
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Furthermore, all the extracted features may not be equally effective in highly accurate leak 

detection. Inferior signatures not only impair the classification accuracy but also increase the 

computational complexity. Thus, we need to filter out redundant features from the pool to 

enhance the detection performance while reducing the computational load. This paper scores 

features using the KL distance [40] and eradicates low–ranked elements in the feature pool. The 

KL distance is calculated given by (4. 2). 

   
     

 
1 2

12 21 12 1 21 2
2 1

; ln ; lni i
KL i i

i i

p y w p y w
d D D D p y w D p y w

p y w p y w
       (4. 2) 

where dKL is the KL distance, w1, w2 are two classes indicating the normal and leaking states, 
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respectively; yi = [yi1, yi2, …, yiM]T is a sort of yi-feature in the refined feature pool, p is a 

conditional probability density function. Based on (4.2), we retain features with the dominant 

KL distance and remove the others in the feature pool, because the greater the KL distance is, 

the more discriminative the feature. Finally, we retrieve a purified feature pool with size r × M, 

where r is the number of high-scored features (r ≤ R). 

4.3.2. Leak Detection Using a k–NN Classifier and Accumulative Leaking Event Occurrence 

Rate 

With the purified feature pool, we utilize a k–NN classifier to distinguish the two normal/leaking 

states, in which an obscure new class is assigned to the most common class among its k nearest 

neighbors using the Manhattan distance given by: 

,
1

r

j n n j
n

z y


        (4. 3) 

where δj is the Manhattan distance between the input feature vector z = [z1, z2, …, zr] and the jth 

training feature vector y*j = [y1j, y2j, …, yrj], and j = 1, 2, …, M. The k–NN classifier categorizes 

the input z into the major class in its k nearest neighbors corresponding to k minimum distances 

δj (k < M). 

The detection approach aims at the extremely noisy industrial environment. A k–NN classifier 

is sensitive to noise involving ambient noise and discrete events and may subsequently yield a 

false alarm (the classified state is “leaking” but the true state is “normal”) or miss a true leaking 

event (the leakage is actually happening); thus, a normal/leaking state decision should depend 

on monitoring the ALEOR. The leak detection criterion is given by: 

2 1,
B

ALEOR t t t
t


    


    (4. 4) 

where ΔB is the number of leaking events in a time period Δt = t2 – t1, which is from the moment 

t1 to the moment t2, and γ is a threshold to issue a warning of pipeline health state. This threshold 

is flexibly adjusted by pipeline operators in their specific real environment. 

4.4. Implementation of Proposed Gas Pipeline Leak Detection on an MCU-

Based Architecture 

4.4.1. Offline Analysis of AE Signal Datasets 

Prior to developing the real–time gas leak detection program with the proposed methodology 
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on an MCU–based architecture, we analyzed offline AE signal datasets to search for a set of 

optimal parameters, thus enhancing the performance of the real–time leak detection program. 

The optimized parameters are the feature pool for training the k–NN classification model and 

the number k (the number of nearest neighbors used for the k–NN classifier). We perform the 

offline analysis process using a number of AE datasets, as shown in Table 4.2. 

Table 4. 2. Number of datasets used for the offline analysis and evaluation. 

 
P0 P1 P2 

NFA NFE NFA NFE NFA NFE 

L0 600 30,000 600 30,000 600 30,000 

L1 200 10,000 200 10,000 200 10,000 

L2 200 10,000 200 10,000 200 10,000 

L3 200 10,000 200 10,000 200 10,000 

For feature selection, we should first normalize extracted features to place them on the same 

unit basis. The feature normalization is expressed by the following equation: 

old
new

yn

yn

y
y





      (4. 5) 

where yold, ynew are original and rescaled features, respectively, and µyn, σyn are successively 

mean and standard deviation of the feature estimated from samples belonging to the normal 

pipeline state. 

Table 4.3 exhibits feature scores using the KL distance method. The most highly ranked features 

are STE, RMS, AVA, and STD, and these are returned in every pressure condition. Hence, we 

only consider these kinds of features to build the real–time gas leak detection program. Figure 

4.5 illustrates the 3–D visualization of three features with the highest scores under diverse 

pressure conditions, in which the normal/leaking states are obviously separated for all the cases. 

Moreover, we know that a large k may improve performance; however, a too large k destroys 

the locality. Therefore, to choose k appropriately, we employ the available k–NN fitting 

function “fitck–NN” supported by Matlab 2019a to trial different values of k using the analysis 

datasets and we obtain k = 25. 

Table 4. 3. Feature score based on KL distance. 

 STE RMS AVA MEA STD ZCR ETY KUS SKE SPP SPC SPS 

P0 57.7 36.5 37.3 −30.2 36.2 10.8 4.0 6.9 −18.0 1.8 7.0 8.9 

P1 71.9 44.2 44.4 −0.2 44.0 10.2 −1.7 3.3 −9.1 2.0 7.8 7.6 

P2 77.7 47.2 47.4 5.1 47.1 13.3 −5.6 1.1 −6.5 3.3 11.1 9.0 
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The datasets belong to a signal channel (R15i Ch1 or R15i Ch2), corresponding to three pressure 

conditions: 700 kPa (P0), 1300 kPa (P1), and 1800 kPa (P2), and pipeline health states: normal 

(L0), leaking (0.3 mm (L1), 0.5 mm (L2), and 1 mm (L3)), which were recorded in Subsection 

4.2; NFA and NFE are the numbers of frames for the offline analysis and experiment respectively, 

and a frame consists of 8192 samples stored in the hard drive. 

 
Figure 4. 5. Three-dimensional visualization of the three most highly ranked features under 

various pressure conditions: (a) P0, (b) P1, (c) P2. 

4.4.2. Gas Pipeline Leak Detection Implementation on an MCU-Based Hardware 

Architecture 

(1) Overview of the Experimental Hardware Design with an MCU Used for Real–time Gas 

Pipeline Leak Detection 

 
Figure 4. 6. Experimental MCU–based hardware architecture for the gas pipeline leak detection. 

 

Figure 4. 7. 32F746G-DISCOVERY board (top view: left side—bottom view: right side). 

Figure 4.6 illustrates an MCU–based hardware architecture to implement the proposed method 

for real–time gas pipeline leak detection. A sensor channel is connected to a DAQ module 
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which converts analog AE signals to digital AE signals and directly writes them to a SRAM 

through a communication module, along with a DMA channel available in the MCU; hence, 

the leak detection program can investigate AE signals in real–time. We also design a portable 

memory (SDcard) to store some pre–defined parameters of the leak detection program and its 

runtime log files used for later analyses. Hence, the program can be adjusted and updated 

quickly. Additionally, a LCD is installed to indicate the output of the diagnostic program. This 

entire design is embedded in the 32F746G–DISCOVERY board, as shown in Figure 4.7. 

(2) Real–time Gas Leak Detection Implementation on the 32F746G–DISCOVERY Board 

 
Figure 4. 8. Primary program module of real–time gas pipeline leak detection embedded in the 

32F746G–DISCOVERY board. 

Due to the limit on memory and computing speed of an MCU, we use integer instead of 

floating–point format for the feature calculation and the k–NN classification, thus utilizing the 

memory economically and lightening the computation load. In other words, a real feature value 

is multiplied by 10 before rounding it, which sustains a one–decimal point precision for the 

vectors of rounded features, while avoiding reduction in the classification quality. 

A trained classifier leans heavily on its training datasets, while AE signals acquired from a 

pipeline are prone to variation because the inner flow rate and pressure change constantly. The 

signals also fluctuate according to the sensor installation location and the operating moment. 

To reconcile these differing environments, we must adjust the trained leak detection model to 

its real and specific operational conditions. Therefore, the paper proposes updating the classifier 

by modifying the two parameters µyn and σyn related to the normal pipeline state in run–time, 

and which are employed in (4.5). Figure 4.8 shows the feature calculation and k–NN 

classification module of a real–time gas pipeline leak detection program implemented on the 

32F746G–DISCOVERY board. 
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4.5. Experimental Results 

To evaluate the gas pipeline leak detection system quickly, we emulate a real DAQ using a 

computer program which dispatches recorded AE signal datasets, whose description is shown 

in Table 4.2, through an available communication channel to the 32F746G–DISCOVERY 

board. This does not affect the objective assessment because the datasets have been acquired 

from a practical pipeline testbed under various operating conditions. We here figure out three 

aspects: detection accuracy, real–time characteristic, and detection robustness, because those 

are key factors to apply a leak detection system for the real environment. 

4.5.1. Detection Accuracy and Real–time Characteristic 

 
Figure 4. 9. Confusion matrices resulting from experimental scenarios: R15i Ch1 (a) P0, (b) P1, 
(c) P2; R15i Ch2 (d) P0, (e) P1, (f) P2 (classes 0, 1, 2, 3, and 4 are L0, L1, L2, and L3, respectively). 

 
Figure 4. 10. ALEOR under different pressure conditions: (a) P0, (b) P1, (c) P2.  

Figure 4.9 shows confusion matrices of experimental results returned by the leak detection 

program running on the 32F746G–DISCOVERY board, and Table 4.4 illustrates classification 

accuracy and execution time for evaluation scenarios. The accuracy, as averaged over the two 
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sensor channels (R15i Ch1 and Ch2), and that of various pipeline states (L0, L1, L2, and L3), is 

relatively high at better than 98% for every pressure condition (P0, P1, and P2). Besides, the 

mean execution time (tE = 109 s) is less than the total experimental dataset duration (tD = 123 

s). This demonstrates the real–time characteristic of the implemented system that does not miss 

any data and returns a timely result during the analysis operation. Furthermore, the ALEOR is 

monitored while examining dataset pairs (L0, L1), (L0, L2), and (L0, L3) subsequently (see Figure 

4.10). This plot reveals the correct identification of pipeline states: normal (L0), leaking (L1, L2, 

and L3), exploiting a threshold γ = 10 (see red dash line in Figure 4.10). The leaking state is 

decided only if ALEOR exceeds the threshold, despite the fluctuation below it. Therefore, no 

false alarm is reported in the experiment and the leaking state is also indicated punctually. 

Table 4. 4. Classification accuracy and execution time. 

  
P0 P1 P2 

A tD tE A tD tE A tD tE 

R15i  
Ch1 

L0 97.2 246 214 99.7 246 214 99.8 246 214 

L1 92.8 82 74 99.0 82 74 99.3 82 74 

L2 100 82 74 100 82 74 100 82 74 

L3 100 82 74 100 82 74 100 82 74 

R15i  
Ch2 

L0 99.9 246 214 100 246 214 100 246 214 

L1 99.7 82 74 100 82 74 100 82 74 

L2 100 82 74 100 82 74 100 82 74 

L3 100 82 74 100 82 74 100 82 74 

Average 98.7 123 109 99.8 123 109 99.9 123 109 

where tD and tE are the total time of datasets and execution time, respectively, measured in seconds. A is classification accuracy given by: A = 

100xNC/NFE [%], NC is the number of correctly classified frames. 

4.5.2. Detection Robustness 

The result as exhibited in Table 4.4 and Figures 4.9 and 4.10 is obtained by using the test 

datasets under the same recording condition as the training datasets. As a result, the 

effectiveness of the proposed leak detection system may not be adequately demonstrated, 

because in a real gas pipeline network, there are always irregular disturbances leading to AE 

signal modifications, such as operating mode variation (inner pressure or flow rate), noise 

interference, etc. Measurement of an AE sensor can be modelled as follows: 

z x         (4. 6) 

where z and x are measured and original signals, respectively, and η represents any signal 

modification including ambient noise and discrete events. We assume the normal distribution 

function for both x and η. According to the probability rule specified by [64], z distributes 
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normally also, and its mean and standard deviation are sequentially: 

2 2;z x z x              (4. 7) 

where μz, σz, μx, σx, μη, ση are means and standard deviations of z, x, and η, respectively. Equation 

(4.7) shows that the abnormal disturbance distorts original signals, thus deteriorating the signal-

based leak detection model. 

 
Figure 4. 11. A signal after adding a white noise with ρ = 2. 

To verify the robustness of the proposed leak detection method, we add white noise to the 

experimental datasets prior to conducting the real–time leak detection on the 32F746G–

DISCOVERY board. This noise is referred to as the signal disturbance η, simulated by an 

available function in the Matlab software with a rule below: 

0; xn            (4. 8) 

where σxn is the standard deviation of normal state signal (acquired when the pipeline is healthy), 

and ρ is a proportion ratio. We set μη = 0 in (4.8) because the mean parameter of a signal is 

mainly related to low frequency components of that signal, while the operating frequency range 

of R15i sensors is from 50 kHz to 400 kHz. The low frequency band (below 50 kHz) is not 

examined and the influence of μη is therefore relatively minor or μη ≈ 0. Figure 4.11 illustrates 

the signal distortion if adding a white noise η according to (4.6) and (4.8) where ρ = 2. We can 

easily realize that the distorted signal energy is greater than the original because of the added 

noise in Figure 4.11. 

We alter ρ and observe the performance deterioration of the trained classifier. Figure 4.12 shows 

the dependence of ROC and ACA on ρ. The computation is calculated on all the datasets of the 
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two sensor channels in two cases: with updating μyn and σyn (see Subsection 4.4.2 (2)) and 

without updating. The classification performance substantially declines at slight values of ρ if 

we do not adapt the model to the increasing added white noise (see Figure 4.12 (a) and the blue 

dash dot line in Figure 4.12 (c)). In contrast, the classifier can still work acceptably until ρ = 70 

if we adjust μyn and σyn (see Figure 4.12 (b) and the red solid line in Figure 4.12 (c)). With ρ = 

10, the resulting classification accuracy is above 90% (see Figure 4.12 (c)) and the pipeline 

state can be exactly identified by the ALEOR with a threshold γ = 10, as shown in Figure 4.13 

for every experimental condition. In short, the proposed methodology can ensure the robustness 

of the leak detection system. 

 
Figure 4. 12. ROC and ACA according to ρ: (a) ROC without updating µyn and σyn, (b) ROC with 

updating µyn and σyn, (c) ACA reduction. 

 
Figure 4. 13. ALEOR under different pressure conditions: (a) P0, (b) P1, (c) P2 (After adding a 

white noise with ρ = 10). 

Although the proposed method can sustain a high classification performance with small values 

of ρ, the classification performance still deteriorates gradually according to the increase in ρ 

and the classifier cannot precisely operate with ρ > 70 which causes severe distortion of the 

acquired signals. Therefore, we should configure the testbed to resemble an applied real 

pipeline before gathering datasets for training the classifier, thus obtaining an adequate leakage 

detector. The greater the similarity between the testbed and the real pipeline, the more accurate 

the detection is. 
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4.6. Conclusions 

A complete system is offered for real–time gas pipeline leak detection in the paper. First, the 

system offline analyzed recorded AE signals sampled at 1 MHz. The process configured a 

hybrid feature pool and normalized its elements using the mean and standard deviation of the 

set of feature observations related to normal pipeline health. Then, the pool was purified using 

the three-sigma rule and the Kullback–Leibler distance to obtain the most discriminative 

signatures. Next, the system identified the pipeline health states (normal/leaking) with an input 

vector of features, by exploiting a k-nearest neighbor classifier that seeks the purified feature 

pool for the signatures closest to the input vector, based on the Manhattan distance. To avoid 

issuing a false alarm, the system decided a pipeline state via monitoring the accumulative 

leaking event occurrence rate and a predefined threshold. Finally, the total proposed leak 

detection method was embedded in a compact MCU–based hardware platform for real–time 

leak detection. The detection accuracy, the real–time characteristic, and the robustness of the 

introduced gas pipeline leak detection system have been evaluated. The experimental results 

showed that the system indicated pipeline health states robustly in a quick enough timeframe 

for real–time application. Thus, this system can be applied for inspecting pipeline health in a 

real gas pipeline network. 

The testbed used in this paper for collecting AE signals is a part of a real gas pipeline network. 

Hence, the resulting AE signals are not simple signals generated by the pipeline leakage 

simulation in a laboratory. They do not only contain information about pipeline states (normal 

or leaking), but also depend on practical gas transportation and systematic behavior. 

Additionally, a noisy measurement location and wave attenuation could conceal symptoms of 

leakage in recorded signals. This challenges the signal investigation because the relation 

between the leakage phenomenon and AE signals is unclear in the initial analysis stages. 

Therefore, a short pipeline was chosen in the paper to easily separate signal classes related to 

pipeline states corresponding to different experimental scenarios, hence conveniently proposing 

a leak detection method as well as evaluating experimental results. However, it is believed that 

the proposed technique can effectively monitor a long pipeline in a real application. The 

pipeline length depends on the signal detection ability of the AE sensor—their sensitivity and 

a specific working environment. These parameters can be estimated by using pencil lead 

breaking tests. 
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Chapter 5 

Crack Detection and Localization in a Fluid Pipeline using 
Acoustic Emission Signals 

5.1. Introduction 

Aside from assembly defects, leakage in a pipeline network generally originates from ruptures 

resulting from material aging and from the impact of inner pressure. This process usually 

happens in a period referred to as crack growth. Initially, a crack may be a small structural 

deformation when a pipeline is under pressure slightly higher than its current endurance. The 

flaw may gradually become a fracture if the pipeline continues to operate. Therefore, a pipeline 

health inspection program is essential in providing the ability to alert operators of any 

irregularities in pipeline health early and thus avoid leakage. During the crack growth period, 

AE signals are generated by the stress and strain at the deformation position [6, 11, 65, 66]. 

Many studies offer algorithms for analyzing such signals to detect and localize cracks in 

material structures [33, 67, 68]. Those install AE sensors on the surface of the experimental 

object to collect AE signals (known as AE waves) that are propagating throughout the body and 

surface of the object from deformed points. The AE signals contain relevant information about 

a probable crack, even at its inception; as a result, the AE based approach can immediately 

detect any small variation in the material structure.   

Although AE signals directly respond to an imminent fracture, clearly identifying unusual 

syndromes in these signals is challenging, due to noise presence. This is definitely the case for 

fluid pipelines because the inner medium flow makes a nonstationary noise. Hence, an adequate 

algorithm should be developed to extract fault symptoms from AE signals. Currently, there is 

a study using AE parameters such as rise time, duration, amplitude, ring down count, and energy 

in the time domain. This study constructs the event probability by relying on parameter 

variations versus loading cycles [33]. In this method, a cumulative AE event count and event 

rate versus time may indicate a fatigue crack. However, this method does not exclude noise 

events from the computation, and noise is abundant in such cases. Therefore, this method might 

be inapplicable for a real pipeline network (for example, AE signals which are measured at a 

pipeline location in a factory could be inevitably influenced by nearby elements and fluid flow 

fluctuation due to complexity of pipeline topology). There are several approaches that detect 

cracks in concrete structures through a trained model [18, 69] with high accuracy. However, a 

key requirement of these approaches is that training data must be available. This requirement 

may not be easily satisfied with pipelines, in which real signals vary with operating conditions 
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such as temperature and inner pressure [11, 21, 42]. Moreover, acquired signals are generated 

by various sources in a pipeline system (for example, nearby machinery vibrations, and inner 

flow turbulences). As a result, dataset labeling that categorizes data into classes for learning is 

problematic. Another AE–based technique (used for crack detection in pressure vessels and 

tanks) determines hits in the time domain by means of a threshold, and clusters AE sources 

according to their coordinate and emission time [70]. The paper states that a region with a high 

density of hits could be a sign of impending fracture. This statement is reasonable; however, 

the location accuracy significantly affects hit clustering, while hit localization still results in 

significant errors, as specified in Ref. [70]. There are two main reasons for such location errors. 

First, diverse wave modes with different velocities could be stimulated, and they could convert 

into or interfere with each other [11]. Second, AE waves attenuate along their propagation path, 

depending on not only distance, but also the frequency [37, 39, 71]. Some works propose 

solutions for enhancing localization accuracy via separating wave modes and improving onset 

time determination [72-81] in time domain signals. However, the nonstationary noise in 

operating pipelines would substantially influence those procedures, and the location accuracy 

could still be inadequate for source clustering based on their coordinates.  

As analyzed above, for crack detection and localization, current AE based methods would be 

ineffective if used for fluid pipelines. Hence, this paper proposes a novel approach, 

incorporating existing ideas along with improvements for early detection and localization of 

cracks in a fluid pipeline. Our approach detects AE events in time-frequency domain signals 

instead of time domain signals. This provides a frequency feature to eliminate unwanted 

emission sources while localizing AE sources, thus increasing the location accuracy. To reduce 

the coordinate errors further, the algorithm separates wave modes to identify Rayleigh waves 

for matching wave velocity with flight time. Hence, the idea of clustering sources according to 

their coordinates can be effectively exploited because the locations have become accurate. 

Furthermore, this paper constructs a line of AE activity against applied load using filtered AE 

events. The variation in AE activity can reveal irregular states in the pipeline structure, which 

is claimed by the theorem of Kaiser and Felicity effects [11, 82]. In addition, an AE source 

distribution density in terms of the source location coordinates along the pipeline (AE source 

histogram) can specify an abnormal region where there is a high source concentration. The 

experimental results show that the proposed method obtains high accuracy in localizing AE 

sources, thus facilitating early crack detection. 
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5.2. Data Acquisition 

 
Figure 5. 1. Pipeline testbed for crack detection 

Figure 5.1 illustrates a pipeline testbed that was constructed to record AE signals for crack 

detection, and Figure 5.2 depicts its configuration. We selected a pipeline specimen made from 

carbon steel, and water as the transported medium in our experiment. The pipeline’s 

geometrical parameters are as follows: 2 m length, 4.85 mm thickness, and 165.2 mm outer 

diameter. Water flow was circulated from a water tank with a pump and external specialized 

pipelines, and the inner pressure was controlled by two valves, as shown in Figure 5.2 (a). A 

pressure transducer was installed in the system to monitor any pressure change.  

In accordance with the BSI standard BS EN 15856 [42], the relevant frequencies used for 

analyzing AE wave propagation in metal range from 100 to 300 kHz. Therefore, we set up two 

R15i–AST sensors at the two ends of the pipe to acquire AE signals while pressurizing the 

pipeline. This type of sensor has a resonant frequency of 150 kHz, and a range of operating 

frequencies from 50 to 400 kHz [41], which covers the above frequency range. To store signals 

in a hard drive, we utilized an integrated DAQ system based on an EXPRESS–8 device 

designed by MISTRAS Group [83] (see Figure 5.2). We digitalized AE signals at a sampling 

rate of 1 MHz, which was chosen according to the Nyquist–Shannon sampling theorem, in 

which the sampling frequency must be at least double the maximum frequency of the signal, as 

stated in [63]. After configuring the hardware and software correctly, we exploited the pencil 

lead breaking technique [58] to check the sensitivity of the mounted sensors and the entire 

operation of the experimental system. Hence, the recorded dataset is reliable for later analyses.  
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Figure 5. 2. Experimental configuration and data acquisition system: (a) testbed, (b and c) 

integrated DAQ 

 
Figure 5. 3. (a) Pressurizing process, (b) the broken pipeline 

To observe the variation in AE signals resulting from a crack, we pressurized the pipeline 

sample since it was intact when the inner pressure was 0 bar, until it ruptured. Figure 5.3 (a) 

shows the increasing pressure line and Figure 5.3 (b) shows the fractured pipe detached from 

the testbed. In a real situation, we would never increase the pressure beyond the design pressure 

of the pipeline (indicated by the red dash line in Figure 5.3 (a)), because of safety concerns. 

However, we conducted the destructive experiment to correlate the crack phenomenon 

happening in a water pipeline under high pressure with AE activity. Moreover, operating 

pipelines gradually degrade over time, which results in a lower critical pressure than their 

nominal design pressure. Thus, depending on the level of pipeline degradation, over time, a 

serious fault may occur, even if the operating pressure is less than the design pressure. Hence, 

the experiment emulated what might happen in real applications except for using high pressure 

to damage the pipeline. 
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5.3. Methodology 

The crack detection and localization algorithm for a fluid pipeline is illustrated in Figure 5.4. 

The methodology consists of three procedures: event detection, source localization, and source 

monitoring. AE signals are acquired by the corresponding AE sensors and saved in the hard 

drive, as shown in the data acquisition subsection, and then are loaded as inputs of the diagram. 

Figure 5.4 shows an offline analysis. However, we can apply this algorithm online for real-time 

situations in which the data acquisition and the pipeline health inspection are simultaneous. 

 
Figure 5. 4. The overall diagram of crack detection and localization for a fluid pipeline 

5.3.1. AE event detection 

The method using AE hits to identify suspicious faulty regions detects events directly through 

bursts of AE signals in the time domain [34]. As stated in the introduction, this could be 

productive if noise is stationary while background noise of AE signals measured from an 

operating pipeline is non–stationary, because it is extremely influenced by dynamics of its inner 

water flow. Furthermore, the wave attenuation weakens bursts in signals acquired by sensors 

when they propagate from a distant source to measurement places, thus challenging the event 

detection in the time domain. In order to address this problem, we investigated events in the 

time–frequency domain, as illustrated in Figure 5.5. Despite the amplitude attenuation in the 

time domain, an AE event can still emerge from the noise background, due to its distinct 

frequency content. Additionally, a detected event in the time–frequency domain contains not 

only its time of arrival and amplitude (as in the time domain) but also its frequency. This 

information is helpful in pairing events correctly during the next stage, in which we localize 

their source (see Subsection 5.3.2).  

 
Figure 5. 5. The event detection diagram 

The Wavelet transform can perform a detailed time–frequency analysis of a non–stationary 

signal better than the Fourier transform or the short time Fourier transform [84]. Thus, we 

construct the Wavelet transform in the first block of the event detection diagram to decompose 

a one–dimensional time domain signal into a two–dimensional time–frequency domain 
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Wavelet coefficient matrix where each row corresponds to one frequency band and the column 

size is equal to the length of signal in the time domain. The number of input samples and 

frequency bands must not too large to ensure the fast transform execution and not too small to 

obtain an adequate time–frequency content. 

The Wavelet coefficient matrix is directly led to the peak–finding block. This is a complex 

matrix containing both the phase and amplitude; however, we only analyze its amplitude 

components to seek local maxima, which are candidates for events in the AE signal. Since the 

two–dimensional amplitude matrix is similar to a gray image (a pixel is an element with 

coordinate of frequency band and sample index), the technique seeking local maxima in a gray 

image [85] can address our peak–finding problem. The overall peak finding algorithm is shown 

in Figure 5.6.  

 
Figure 5. 6. Peak finding algorithm 

First, a 2–D median filter is utilized to get rid of single pixel noise [86]. Second, we smooth the 

filtered matrix so that it exhibits a high probability for only one pixel in each peak 

corresponding to a local maximum. We continue removing the noise background of the pixel 

matrix using a threshold as follows: 
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where aij is the (ith, jth) element of the pixel matrix, aM is the maximum pixel value of the pixel 

matrix, and α is the threshold. In fact, the threshold can be adjusted, however, we set a default 

value α = 0.9 for the quick peak finding. Finally, we scan pixel regions containing nonzero 

elements in the processed pixel matrix and search for local maxima from those regions to obtain 

AE peaks (including their frequency band, sample index, and amplitude). The result of peak 

finding is shown in Figure 5.7, in which local maxima are marked by red circles. 

The detected peaks could come from noise not due to AE events because AE activity related to 

material structure is present only if the load levels exerted on the material exceed the previous 
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stress (Kaiser effect) according to Ref. [11]. Therefore, a filtering step is necessary to obtain 

true events. We establish the filter based on a Neyman–Pearson theorem of signal detection 

probability, with an assumed normal distribution for the noise [57], which is illustrated by Eq. 

(5. 2). 
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where L(z) is the likelihood ratio, H0 is the signal absence hypothesis, H1 is the signal presence 

hypothesis, z is an observed set, p(z) is the probability density function, PFA is the false alarm 

probability, and γ is a threshold. In our study, H0 and H1 are hypotheses of the peaks coming 

from noise and events, respectively, and the likelihood ratio L(z) is calculated according to the 

peak amplitudes. 

 
Figure 5. 7. (a) AE signal in time domain, (b) detected peaks in time-frequency domain (red 

circles) 

Eq. (5. 2) is a general equation to calculate a threshold γ for classifying two hypotheses H0 and 

H1 (true events) with a false alarm probability PFA. Since a normal distribution is assumed for 

the noise, the probability density functions p(z|H0) and p(z|H1) are as follows: 
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where µ and σ are the mean and deviation of noise, respectively, and x0 is a shifting amount of 

probability density function due to the true event presence (x0 > 0). Hence, the likelihood ratio 

is given by (5.4). 
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Eq. (5. 4) shows a monotonically increasing exponential function L(z) according to z because 

x0 > 0, thus the inequation L(z) > γ belonging to Eq. (5. 2) is equivalent to the inequation z > z0 

where L(z0) = γ. Accordingly, we directly use z0 as a detection threshold in the observation zone 

(z) instead of using the threshold against the likelihood function L(z) to simplify the 

computation.  In other words, we set u = (z-µ)/σ, u0=(z0-µ)/σ, and the false alarm probability 

becomes: 
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Therefore, if a false alarm probability PFA is given, we can determine u0 through Eq. (5. 5), and 

employ an equivalent detection criterion for identifying true events from AE peaks: 
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      (5. 6) 

where if a peak’s amplitude satisfies Eq. (5. 6), the peak is assigned to be a true event. In 

addition, we can nearly estimate the parameters µ and σ from a set z = z0, z1, …, zN-1 by 

exploiting following expressions: 
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Eq. (5. 5), Eq. (5. 6), and Eq. (5. 7) are applied for the event filtering in this paper, in which a 

false alarm probability is given, and the other parameters are calculated according to it. The 

false alarm probability can be adjusted to the number of returned events in a real application. A 

huge number of events would challenge the computation and visualization, we should therefore 

decrease the false alarm probability to eliminate more noise peaks whereas we can increase the 

false alarm probability to obtain more events.  

Figure 5.8 illustrates the filtering out of noise peaks. The black dashed line in Figure 5.8 (a) is 

the detection threshold. Peaks whose amplitudes are below the threshold line are noise and the 

remaining peaks are true AE events. Figure 5.8 (b) designates events and noise peaks with red 

triangles and green circles, respectively, and Figure 5.8 (c) shows events and noise peaks in the 

time–frequency domain.  
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Figure 5. 8. AE event filtering: (a) detected peaks, (b) filtered events, (c) filtered events in time-

frequency domain 

In this manner, we can detect events in an AE signal in the time–frequency domain. However, 

one notable point is that removed peaks (which are considered as noise) could possibly come 

from faraway event sources whose signals have been seriously distorted. Therefore, we should 

choose an appropriate false alarm probability in order to not miss true events while eliminating 

unnecessary peaks. Inversely, events or peaks that pass the filter could possibly be false events. 

Their amplitudes could be great because their emission sources are intense and near sensors; 

however, they are out of the testing pipeline. The following stages will further eradicate false 

events, based on information about source location. 

5.3.2. AE source localization 

We establish a flow diagram for locating an AE source, as shown in Figure 5.9. Here, the core 

of localization exploits the TDOA between two signals, which has been thoroughly written 

about in Ref. [11]. The following mathematical equation demonstrates the technique: 

2

L C t
x

 
      (5. 8) 

where x is the AE source location, L is the distance between two sensors, C is the wave velocity, 

and Δt is the TDOA.  

Eq. (5. 8) shows that the location accuracy depends on not only Δt, but also C. A mechanical 

wave propagates throughout a material in various modes, and their velocities are distinctive. 

Therefore, if we do not ascertain the wave mode, the value of C will be inappropriate to use in 

computing the location using Eq. (5. 8). In addition, different waves themselves tend to separate 

from each other in the dispersion from their emission source to sensors due to their distinctive 
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flight velocity, thus complicating the onset time determination. As a result, we should select the 

most distinct mode for the emission source localization. The pencil lead breaking investigation 

can expose proper modes in our specific pipeline. Figure 5.10 demonstrates a signal analysis 

when conducting a pencil lead breaking action at a coordinate of 0.6 m along the pipeline 

surface, according to the Ox axis shown in Figure 5.2 (a). In the experiment, we fully filled the 

pipeline with water at a pressure of 0 bar to take the pipeline and fluid interaction into 

consideration. As shown in Figure 5.10, three wave modes S0, A0, and Rayleigh can be 

identified while others are overshadowed. Consequently, detected AE events can fall in one of 

three modes: S0, A0, and Rayleigh. It can be seen that Rayleigh waves comprise most of the 

total energy. This result has been noted in other studies as well [20, 87]. Moreover, the noise 

background fluctuates when pressurizing pipelines; thus, the Rayleigh mode would be the most 

likely to indicate an event source localization because low-energy wave modes could be veiled 

by noise. A signal analysis performed when pressurizing the pipeline (see Figure 5.11) 

demonstrated this to be the case, in which the Rayleigh mode is the most dominant in both 

sensor channels. 

 
Figure 5. 9. AE source localization 

The AE source localization algorithm shown in Figure 5.9 is carried out by using the Rayleigh 

wave mode. In the diagram, we first group neighboring events, before transferring them to the 

event pairing block, because an AE source results in ample adjacent events (see the filled red 

triangles in Figure 5.11). We call event collections "grouped events." They are marked with 

green–dashed ellipses in Figure 5.11. To group events, we scan all the detected individual 

events and examine their relation of sample index and frequency band. Two parameters ΔT and 

ΔF successively defined as sample index and frequency band distances are exploited to claim 

the neighboring relationship of two adjacent events. If ΔT ≤ ΔTmin and ΔF ≤ ΔFmin, the two 

events are gathered in a grouped event, where ΔTmin and ΔFmin are minimum sample index and 

frequency band distances between the two individual events which are not their own neighbor. 

The values ΔTmin and ΔFmin can be flexibly modified in a real application. Additionally, we can 

further remove noise events by considering how many child events a grouped event contains. 
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This is illustrated by the following expression: 

g mN N       (5. 9) 

where Ng is a count of child events of a grouped event, and Nm is the minimum number. 

 
Figure 5. 10. Analyzing pencil lead breaking signals stimulated at the location of x = 0.6 m 

acquired by two sensors: (a, c) time domain signals, (b, d) AE events in time-frequency domain 

Next, two grouped events are paired from two sensor channels for source localization, based on 

the time difference of arrival technique. With values t1, 2 (which are the onset time of grouped 

events of signal channels 1 and 2, respectively), we can simply compute source location via Eq. 

(8) and Δt = t2 – t1. However, to obtain an accurate location, we must precisely determine the 

Rayleigh mode to select t1, 2, and they should correspond to events with the same frequency 

band regarding both signal channels. Since the Rayleigh mode is the most dominant, it can be 

identified correctly according to the energy distribution. The onset of Rayleigh wave is located 

at the frontal first position where its energy is equal to 30% of the maximum energy region of 

a grouped event regardless of the other wave presence. 
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Figure 5. 11. Analyzing real signals acquired by two sensors when pressurizing a pipeline: (a, c) 

time domain signals, (b, d) AE events in time–frequency domain 

Apart from errors returned by the wave mode determination and TDOA calculation, wrong 

event pairs also result in false alarms. For example, Figure 5.11 (b) comprises two grouped 

events of signal channel 1. However, the earlier one is actually matched with the grouped event 

of signal channel 2, as shown in Figure 5.11 (d). Thus, a step of false source elimination should 

be added. This is carried out by the following condition: 

   1 2 1 2 0A A t t         (5. 10) 

where A1,2 are amplitudes of grouped events of signal channels 1 and 2, respectively, which are 

averaged over child event amplitudes. Eq. (5. 10) is determined by attenuation characteristics 

when AE waves propagate faraway [37]. This means that a sensor farther away receives less 

wave energy than a sensor that is nearby.  

5.3.3. AE source monitoring 

We monitor the AE activity while pressurizing a pipeline (see Figure 5.12 (a)) via visualizing 

AE sources according to their location, onset time, and amplitude, as shown in Figure 5.12 (b). 
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The plot draws the coordinates of AE sources symbolized by filled, colored circles. The size 

and color of the filled circles are linked to emission intensity (magnitude and duration). The 

source magnitude and duration are related to the average amplitude, as well as the mean number 

of elements of the grouped events that we paired to localize a source as presented in subsection 

5.3.2. In this picture, a bright red circle with a large diameter depicts a strong source, and dark 

circles with small diameters indicate weak ones. Hence, we can conveniently observe the 

occurrence of AE event sources on the testing pipeline while increasing its inner pressure.  

Next, we establish an AE activity vs. applied pressure graph, as depicted in Figure 5.12 (c). The 

AE activity–pressure graph can indicate the structural integrity of the pipeline material. This 

procedure refers to both the Kaiser effect theorem, describing an AE pattern in the material that 

is subjected to mechanical stress, in which AE events occur until the load is exceeded, and the 

Felicity effect, in which emissions continue to occur while the load is held [11]. Hence, if a 

load was kept still, yet the AE activity had not stopped or did not gradually vary due to noise 

impact, then there would be a major structural defect in the pipeline. For instance, the circled 

points in Figure 5.12 (c) are the "suspicious" signs, indicating risk of serious deformations in 

the pipeline structure because the AE activity sharply grew, even though we did not strengthen 

the pressure load. 

The existence of energetic sources could indicate unsafe conditions in the structure of the 

pipeline. However, minor sources could be created by slight stresses and strains occurring in 

initial structural deformation stages, and these would also provide helpful information about 

possible crack locations. We therefore construct a histogram as illustrated in Figure 5.12 (d) by 

computing the distribution density of all the AE sources according to their coordinates along a 

pipeline. The histogram is established by equivalently dividing the pipeline into n small 

segments whose length is given by: 

L
b

n
       (5. 11) 

where b and L are the length of a segment and the whole pipeline, respectively. Besides, we 

usually predefine a relative location error er as follows: 

100r

x
e

L


        (5. 12) 

where Δx is the absolute location error.  

To guarantee the coordinate discrimination for the histogram, we have (5. 13). 
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From Eq. (5. 11), Eq. (5. 12) and Eq. (5. 13) we can reasonably choose the parameter n using 

the following constraint: 

200

r

n
e

       (5. 14) 

 
Figure 5. 12. AE source monitoring while pressurizing the testing pipeline: (a) pressurizing 
process, (b) AE source distribution, (c) AE activity against load, (d) AE source histogram 

The source density in a segment is defined as a total number of detected AE sources whose 

coordinates belong to the segment. Additionally, we determine the source intensity as weights 

when forming the histogram using the following formula: 

i i s sh h M N        (5. 15) 

where hi is a current count of sources in the ith segment (i = 1, 2,… , n), and Ms and Ns are 

magnitude and duration of a source, respectively. The term Ms × Ns in Eq. (15) is used to 

improve the simple counting of sources in a segment, which is hi = hi+1, thus resulting in a 

weighted source histogram. With the assistance of the histogram, we can predict irregularities 
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in the pipeline, at locations where high source density occurs. For example, the A, B points (see 

Figure 5.12 (d)) are suspicious locations of potential cracks in the histogram, because the 

emission density is highly concentrated there. 

5.4. Experimental Results 

Prior to evaluating the algorithm of crack detection and localization, we determine the Rayleigh 

wave velocity, based on testing signals received by stimulating pencil lead breaking on the 

surface of the pipeline. Although wave velocity has been specified in Ref. [20, 88], it is 

necessary to determine this value for a specific object, such as our pipeline, because the manner 

in which waves propagate through a body or a surface depends on its material, size, and 

structure. The velocity determination procedure is referred to "wave velocity calibration," as 

shown in Figure 5.9 in subsection 5.3.2. This is carried out by the following expression: 

2L x
C

t





      (5. 16) 

where C is the Rayleigh wave velocity, x is the pencil lead breaking location, L is the distance 

between the two sensors (1 and 2), and Δt is the TDOA. In fact, Eq. (5. 16) is inversely 

transformed from Eq. (5. 8). 

From multiple pencil lead breaking stimulations at various positions along the pipeline, we 

calculated the mean value of velocities and found that the applied average velocity was 

approximately 1873 m/s. Moreover, the paper chooses 79 frequency bands for converting 

50000–sample signals from the time domain into the time–frequency domain, PFA = 0.01% and 

Nm = 5 for the event filtering, ΔTmin = 50 and ΔFmin = 2 for the event grouping, er = 5% and n 

= 50 for the event source monitoring to obtain the acceptable results. 

With the AE signal data recorded in subsection 5.2 during the pressurization process (from the 

beginning moment until the pipeline was broken) and the method given in subsection 5.3, we 

obtain the AE source distribution, AE activity against load, and AE source histogram, as 

depicted in Figure 5.13. It can be seen that major AE sources (large red points in Figure 5.13 

(b)) appear when the pressure line increases (Figure 5.13 (a)). This can be explained by the 

Kaiser effect (the AE activity continues if the current stress rises above the applied former 

value). In addition, we can clearly see the dependence of AE activity on load in Figure 5.13 (c), 

and the AE density along the pipeline in Figure 5.13 (d). We note that the density is calculated 

before the moment the pipeline breaks because the AE sources after the rupture are from the 

leak, not from a material crack in the pipeline.  
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Figure 5. 13. AE source monitoring while pressurizing the testing pipeline until it was broken: 
(a) pressurizing process, (b) AE source distribution, (c) AE activity against load, (d) AE source 

histogram 

 
Figure 5. 14. Acoustic emission around M5: (a) AE source distribution, (b) AE source histogram 
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Figure 5. 15. Acoustic emission around M4: (a) AE source distribution, (b) AE source histogram 

 
Figure 5. 16. Acoustic emission around M3: (a) AE source distribution, (b) AE source histogram 

 
Figure 5. 17. Acoustic emission around M2: (a) AE source distribution, (b) AE source histogram 
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Figure 5. 18. Acoustic emission around M1: (a) AE source distribution, (b) AE source histogram 

We conducted the experiment until the pipeline was broken, thus exposing the cracked area. 

We can therefore mark the rupture region, with a green dashed rectangle, at a fixed coordinate 

in Figure 5.13 (b and d). Obviously, this is the location of the highest density of sources along 

the pipeline, as shown in Figure 5.13 (d). In this plot, other positions which are local density 

peaks are defined as "considerable regions." They should be noted, because they may be 

imminent ruptures that have not been previously detected. Although not as serious as the known 

rupture that destroyed the pipeline, other cracks could be growing at considerable regions. 

As stated in Subsection 5.3.3, the points M1, M2, M3, M4, and M5 in Figure 5.13 (c) mark 

irregular structural changes of the pipeline because the AE activity surges while the applied 

pressure is held. We will subsequently investigate each of these to analyze the crack growth. 

The M5 position is the rupture moment that we do not want to occur in real situations, and AE 

sources at this time have not been considered in the histogram in Figure 5.13 (d) because they 

are created by leakage from the rupture; however, this point is useful for verifying the proposed 

method of AE source localization. The AE source histogram in Figure 5.14 (b) shows that the 

rupture region exhibits the highest density of AE sources after the M5 moment. Although there 

exist plenty of additional AE sources far from the rupture region in Figure 5.14 (a), the AE 

source density in the rupture region is dominant. The observations of acoustic emission around 

the M1, M2, M3, and M4 moments in Figure 5.15, Figure 5.16, Figure 5.17, and Figure 5.18 also 

reveal the concentration of AE sources at the rupture region. 

In practice, we would never exploit a pressure exceeding the endurance limitation of pipelines. 

Consequently, the M1 and M2 moments are more important than the others for early 

identification of pipeline degradation. With the assistance of variation in AE activity according 

to pressure, we can detect these moments. Additionally, suspicious locations exhibiting high 
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densities of AE sources in the AE source histogram indicate where the pipelines should be 

examined thoroughly. Thus, the proposed method is applicable for crack detection and 

localization in a fluid pipeline. To emphasize its effectiveness, we implemented a current 

approach for comparison using a threshold to detect AE hits in the time domain signals [34] 

and combined this with the Akaike information criterion [72-74] to improve the location 

accuracy. The implementation is tested using the same signals as those that were analyzed in 

our method. That technique creates AE hits in pairs from the two signal channels and localizes 

AE sources via Eq. 8; however, it does not involve the wave mode determination. The wave 

mode which AE hits fall in is unknown, thus the applied wave velocity should be a typical value 

of roughly 3000 m/s given by Ref. [43]. We also establish the distribution and histogram of AE 

sources obtained by this method according to their coordinates, as depicted in Figure 5.19 and 

Figure 5.20. The AE sources are indicated by filled circles with the same scaling and color rule 

as employed in the proposed method. 

 
Figure 5. 19. Acoustic emission from the beginning moment of pressurization to the broken 
moment using a threshold technique to detect AE hits in time domain signals: (a) AE source 

distribution (b) AE source histogram 
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Figure 5. 20. Acoustic emission after the broken moment using a threshold technique to detect 

AE hits in time domain signals: (a) AE source distribution, (b) AE source histogram 

In Figure 5.19 (a), it is challenging to spot the location of the "considerable regions," even 

though the rupture region is already known. Besides, Figure 5.19 (b) shows the trend of AE 

source occurrence to the left of the pipeline (whose coordinate is close to zero) while the real 

fracture is not present. Furthermore, we can observe the most explicit AE sources (Figure 5.19 

(a)), which are from leaks due to the rupture. Although these AE sources are localized around 

a certain coordinate, it does not, however, match with the rupture region as shown in Figure 

5.20 (a and b). Hence, the effectiveness of the proposed method is verified because it results in 

the correct AE source concentration with the correct coordinates (i.e., the fracture location). 

5.5. Conclusions 

The proposed method showed potential for crack detection and localization in a fluid pipeline. 

This approach investigated AE signals in the time–frequency domain to locate events. These 

events were carefully filtered according to the amplitude, frequency, and wave mode. The result 

was accurately determining the location of emission sources. Based on event sources that are 

precisely determined in terms of the coordinates and time of the occurrence, the source 

distribution, the AE activity against load, and the source histogram were constructed to inspect 

pipeline health. Those can be used to determine not only when a serious structural deformation 

occurs, but also irregular locations that need to be early checked. The experimental results 

confirmed the effectiveness of this approach using the data record of an experiment in which 

we pressurized a water pipeline from its intact status until it ruptured. The proposed method 

outperformed a conventional one, while exploiting the same datasets. The conventional method 

only supports an offline signal analysis, whereas the proposed method can be applied online, 

for a working pipeline, with some adjustments in data acquisition and signal processing. 
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Chapter 6 

Summary of Contributions and Future Work 

6.1. Summary of Contributions 

The dissertation has focused on pipeline leak and crack identification using AE signals to 

achieve the objectives: (i) improving reliability and robustness of leak detection, (ii) increasing 

accuracy of leak localization, (iii) crack detection and localization. The contributions of this 

thesis are briefly given below: 

A scheme of water pipeline leak detection was introduced in Chapter 2. It includes an 

intermediate step in which AE signals are preprocessed prior to the feature extraction. This step 

applies the equation of wave attenuation to the signals to compute the function g(r). The use of 

quantity g(r) is more robust than using direct AE signals in leak detection. The experimental 

results indicates that the g(r)–based method yields accuracy and reliability higher than which 

employs direct AE signals. This framework is applicable for diverse systems because the 

behavior of g(r) reflecting a leak is the same. This Chapter also offered a way to choose an 

appropriate size of window for the signal segmentation. The mechanism determines a possible 

lag time between the signals channels exploiting the propagation velocity of waves. 

Chapter 3 devised a method of leak localization for an industrial–fluid pipeline using AE bursts. 

This approach includes several stages. First, AE bursts are detected in individual signal 

channels through thresholds which are adapted to measurements. To further refine the 

thresholds, the removal of peaks in the signals is suggested before estimating their true level of 

background–noise. Moreover, adjacent bursts which might be separated by wave dispersion are 

grouped to decrease the false alarm rate of burst detection. Next, event sources of bursts from 

two signal channels are localized by the time–delay technique in which the arrival time of bursts 

is determined at the points on the signals that the thresholds cross. In addition to enhance the 

localization, a technique of event filtering is also offered. Finally, any anomalies that can be 

leaks are pinpointed by their high density on a histogram where the event source distribution is 

illustrated in coordinate along the testing pipeline. The proposed leak localization methodology 

exceeds the previous ones which employ cross–correlation or generalized cross–correlation 

functions to estimate the time difference of arrival despite the integration between them and 

advanced signal denoising techniques such as Wavelet and EMD. 

In Chapter 4, a real–time system is developed to detect a leak in a gas pipeline. This system 

includes a leak detection methodology relying on a k–NN classifier and executes on an MCU–
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based platform. The classifier seeks in the hybrid feature pool for the signature closest to inputs 

using the Manhattan distance. To improve its robustness, the feature pool is normalized utilizing 

the statistical arguments (mean and standard deviation) of the observations corresponding to 

the normal state, and then it is purified via the three–sigma rule and the KL distance. The 

Chapter also offers employing ALEOR to judge the pipeline health to reduce the false alarm 

rate. In the experiments, the system achieved high accuracy and high robustness of leak 

detection in the short timeframe; hence, it is applicable for real world applications. 

Chapter 5 offered a method for crack detection and localization in a fluid pipeline using AE 

signals. The approach localizes event sources in the time–frequency domain signals. To 

enhance the location accuracy, a technique constructed on amplitude, frequency, and wave 

mode is exploited to filter out false events. Next, the method monitors pipeline health through 

the source distribution, the AE activity against load, and the source histogram which are 

constructed on the coordinates and time of the occurrence of event sources. The proposed 

approach was verified using the recorded data, which outperforms a conventional one. The 

potential of this method can also be confirmed by its online capability for a working pipeline, 

in which the data acquisition and the signal–processing program have some modifications. 

6.2. Future work 

The dissertation has offered potential AE signal–based methods for pipeline leak and crack 

identification. However, their evaluation only happened in the laboratory using the rather short 

pipelines. A real pipeline network is usually composed of long pipes. As stated in the previous 

sections, the signal distortion would become serious on such pipelines because AE waves are 

subjected to dispersion and attenuation. Moreover, the interference of ambient noise sources, 

which are abundant near working pipelines, can strongly impact on the signals. Accordingly, 

the AE portrait resulting from a pipeline in a practical environment may significantly differ 

from which in the laboratory. Thus, a larger pipeline system will be designed to experiment the 

methods proposed in this thesis in order to make necessary modifications and achieve those are 

more applicable for real situations. Because an experiment of crack growth requires more 

complicated setup phases, especially, in an industrial environment, the future study will 

primarily focus on the leak identification for pipelines. 

On the other hand, the prerequisite of the methods presented in Chapter 2 and Chapter 4 is a 

priori information about the normal state of pipelines. This is sometimes impossible for a real 

pipeline system which has been working for ages. Hence, the techniques introduced in Chapter 

3 and Chapter 5 can be more appropriate for such cases, which do not require any prerequisite 
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knowledge of pipeline health. However, their kernels that are the AE event detection and 

filtering need to be further optimized because a true event related to any anomaly may deeply 

be concealed in the signals acquired in a real pipeline. In future work, other advanced 

mechanisms of signal processing and pattern recognition will be adopted to transcend their 

limitation towards a complete method of leak and crack identification using AE signals, which 

can be implemented in real pipeline networks. 

In addition, to facilitate the study of pipeline leak detection, the digital twin technology can be 

applied. This technology virtually represents a real–time digital counterpart of a physical object 

or process. Thus, based on it, both the data collection and the test of leak detection algorithm 

can be conducted in real time.
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