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Gearbox fault diagnosis based on the vibration characteristic analysis has been widely 

developed and applied in research and industrial fields. Vibration characteristic of the gearbox 

systems accommodates the fault-related information of the rotating machines. In a simple 

gearbox, there are two engaged rigid blocks including a pinion wheel and a gear wheel for 

transferring the motion from the source to the load. The time variable gear-mesh stiffness 

causes the internal excitations during operation. If one or some of the teeth are faulty, 

abnormal movements will be appeared making the impulsive events in the vibration 

characteristic of a gearbox system. The vibration characteristic is normally sensed by vibration 

sensors (accelerometers) mounted on a gearbox sink. Thus the gearbox fault diagnosis model 

can be constructed based on the method of vibration signal analysis (VSA) to highlight the 

fault-related information. However, the gearbox vibration signals in real world are very 

complicated acting as non-stationary, nonlinear, and noisy overwhelming because of the 

inconsistent operation condition of a gearbox such as speed variation, fluctuation of the load, 

and the influence of mechanical resonances of other components.  In addition, the several fault 

types create a similarly behavioral reflection on the gearbox vibration characteristic 

challenging the fault type discriminating process. Therefore, the enhanced denoising 

approaches and accurate fault type identifying methods are critically needed to construct the 

accurate and stable gearbox fault diagnosis model. 

This study aims to propose novel adaptive denoising methodologies for filtering the original 

fault relative components from the raw noisy vibration signals regarding to variable operating 

speeds condition of a gearbox. Moreover, the AI based fault identification models are 

developed to process the fault-related information for accurately discriminating the fault types 

of a gearbox system. These advanced approaches of signal processing, feature engineering, 

and classification are incorporated to construct the sensitive and stable fault diagnosis 

frameworks for a multi-level gear fault gearbox under varying rotational speeds conditions. 

This thesis addresses four research keynotes. 
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For the first research topic, the adaptive noise reducer based Gaussian reference signal (ANR-

GRS) approach is created for denoising the raw vibration signals. The ANR-GRS technique 

is established by following processes: first of all, the vibration characteristics of a gearbox 

system are structurally analyzed to classify noise types; then the speed-dependent Gaussian 

reference signals with adjustable parameters are generated, according to those noise types; 

finally, these generated noise-simulated reference signals were adaptively adjusted and 

accessed to the space between two consecutive fault-related frequency components and reduce 

the interference noise along with the whole frequency range of raw vibration signals. After 

denoising, the manual feature extraction method for extracting the optimized vibration 

subbands, outputted from the ANR-GRS, to many statistical features in time and frequency 

domains. Those fault representation features are used to input to a one-against-one support 

vector machine (OAOSVM) classifier for the fault type classification. The gearbox fault 

diagnosis scheme is validated for identifying the three fault types and one healthy state of the 

experimental testbed of a spur gearbox under varying speeds conditions.  The result shows 

that the disturbance noises are significantly removed by using ANR-GRS method, thus feature 

extraction and OAOSVM based classifier provide excellent fault identification accuracy.  

Secondly, the research topic focuses on the combined application of the adaptive noise control 

(ANC) method and genetic algorithm (GA) based feature selection to draw the sensitive fault 

diagnosis scheme. In this scheme, the applied adaptive noise control approach performs 

significantly removing noise elements and keeping original fault relative information from 

gearbox vibration signals. The outputs of ANC, optimized subbands, are then statistically 

extracted to many features configuring a feature pool. GA operates a heuristic searching 

process to select the most discriminative fault features, that represent samples of each fault 

type in clear separation allowing a simple machine learning model such as k-nearest neighbor 

(k-NN) for classifying defect categories into the respective types. This model is applied to 

classify six defective categories of a gearbox with multi-level gear defects. The accuracy result 

verifies the effectiveness of the combination fault identification model.   

In the third research topic, the adaptive noise control (ANC) based Gaussian reference signal 

and stacked sparse autoencoder based deep neural network (SSA-DNN) are employed in 

combination for constructing a sensitive and speed invariant fault diagnosis model. The 
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applied model is used for diagnosing seven health states of the multi-level tooth cut gear 

defects (MTCG) gearbox under variable speed conditions. The deep learning model is built 

up by stacking the sparse autoencoder layers as the hidden layers and using a Softmax layer 

as the output layer of the network. SSA-DNN is capable to extract the spectra of the optimal 

vibration subbands, significantly denoised by ANC, into the high dimension feature pool of 

latent representative fault features, then selecting the most fault discriminant features for 

identifying the MTCG fault types under various speeds conditions. The effective evaluation 

of the proposed fault diagnosis scheme is verified by the classification result of the experiment 

on the vibration signal dataset of an MTCG gearbox collected under four different rotational 

speeds. The experiment is arranged by four sub-experiments using the datasets corresponding 

to four rotational speeds. In each sub-experiment, the network model is trained using a one-

speed dataset and tested by two other speed datasets. The highest accuracy results are 

achieved, which outperform the state-of-the-art methodologies, validating the sensitive and 

speed invariance capabilities of the proposed fault diagnosis model in this research topic.  

For the fourth study, the new localized adaptive denoising technique (LADT) is developed 

based on the ANR-GRS approach for improving the efficiency of noise reduction. Thus, an 

accurate and stable gearbox fault diagnosis scheme, that combines LADT with wavelet-based 

vibration imaging approach and deep convolution neural network model, is established. The 

new localized adaptive denoising technique results in optimized vibration subbands with 

negligible background noise. To obtain fault-related information, the wavelet-based vibration 

imaging approach (WVI) is applied to the denoised vibration signal. The wavelet-based 

vibration imaging approach decomposes the vibration signal into different time-frequency 

scales, these scales are reflected by a two-dimensional image called a scalogram. The 

scalograms obtained from the wavelet-based vibration imaging approach are provided as an 

input to the deep convolutional neural network architecture (DCNA) for discriminant features 

extraction and classification of multi-degree tooth faults (MDTF) in a gearbox under variable 

speed conditions. The proposed scheme outperforms the already existing state-of-the-art 

gearbox fault diagnosis methods with the highest classification accuracy.  
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Chapter 1 Introduction 

 

Chapter 1 

Introduction 

 

This chapter provides a brief background and fundamental explanation of conditional 

monitoring technique, vibration characteristics, related works, the motivations, and research 

objectives of this dissertation. All research work described in this thesis has been published 

in peer-reviewed conferences and journals. Moreover, in each chapter, introduction, 

background, and literature review, motivation for the given problem are also described. 

However, in this chapter, the background of a gearbox fault diagnosis system is explained in 

section 1.1, and the next sections (section 1.2, 1.3) described the related works, motivation, 

the outline of this thesis is presented in section 1.4. 

1.1 Background  

Gearboxes play a vital role in numerous application systems such as industrial machines, 

vehicles, robotics, electrical generators [1]–[3]. The gearboxes mainly function as increasing 

or reducing the rotational speed. However, gear failure can be prone to occur due to continuous 

and harsh operating conditions including fatigue phenomenon, exaggerated loads, inadequate 

lubrication, installation, and calibration problems [4], [5]. The failure of a gearbox can 

deteriorate the gearbox performance and entail damaging the rotation machine systems. These 

unwanted events might cause financial losses and human unsafety. Therefore, the appropriate 

maintenance processes are essential for fault early detection. These strategies can be 

performed by some methods as corrective and preventive maintenances [6]. Corrective 

maintenance is a very basic method as the implementation of repairing and modifying after 

machine faults occur, thus it can be applied for the small fault consequence. For the 
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applications with the large-scale and serious influence of risk and profit, the most suitable 

strategy is preventive maintenance. Preventive maintenance is used for preventing the defects 

of the rotation machinery and performed based on a time schedule (time-based maintenance - 

TBM) or based on condition (condition-based maintenance - CBM) [7]. However, TBM is 

done according to the calendar schedule, which is set for the maintenance process about 

historical information of the failure, regardless of the realistic health state of the rotation 

machine. Thus, TBM cannot prevent the defective effect on the machine when it is appeared 

out of the investigated periods. CBM is an effective maintenance technique to address the 

disadvantages of TBM by making maintenance decisions based on the current and actual 

health states of the items (e.g. gearbox, bearing, pump, …) in the rotation machines. Many 

researchers have demonstrated the advantages and efficiency of CBM in industrial 

applications [8]–[10].  

The intrinsic failure of the items can be determined by conditional monitoring (CM) 

technique. Thus, CM is the key process of the CBM (the maintenance decision is more correct 

based on a more accurate CM process). CM can be understood as the activities, which can be 

manually or automatically established, designated to measure the parameters and 

characteristics, those represent actual health states of the items. Then CM is intended to detect 

the defects in the early phases for minimizing and avoiding the risk, secondary damages, and 

safety incidents. CM is applied in the gearbox fault diagnosis for early detection and avoiding 

the influence of defects in the gear teeth. Based on the application types of sensors and 

acquisition systems, different conditional monitoring techniques including vibration signal 

analysis, acoustics emission signal analysis, chemical monitoring, temperature signal analysis, 

electric current signal analysis are employed for the construction of the fault diagnosis 

systems. Nowadays, vibration monitoring is widely applied because of its easy arrangement 

and installation [11], [12].    

In general, vibration monitoring is a non-destructive technique by using a vibration sensor (or 

accelerometer) mounted on the gearbox housing, for sensing the vibration characteristic, 

represented the actual states of a gearbox. Indeed, numerous health-state relative features of 

vibration characteristic of the item can be inspected in the vibration signals obtained from 
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sensors. The different fault states cause dissimilar patterns in the vibration characteristic. 

Therefore, analyzing the vibration signals allows us to discover the health conditions of the 

items of the machine during operation [13]. The aim of vibration monitoring for a gearbox is 

to detect and analyze any abnormal change in the vibration signal because of the gear failure 

condition to provide the premonition. Generally, a fault diagnosis system for the combination 

machine involves the recognition of fault elements or sub-elements of a whole system. 

Similarly, in a gearbox fault diagnosis system, the gear tooth is a vibrated dominant sub-

element due to the gear mesh stiffness is the backbone of the gearbox vibration characteristic 

[14], [15]. If it is faulty (e.g. cracked tooth, worn tooth, spall), the operating properties of a 

gearbox are deteriorated causing catastrophic damages to other elements or the whole 

combination machine. Therefore, this thesis conducts the research on vibration monitoring for 

identifying gear tooth defects in several operating conditions. Figure 1.1 demonstrates the 

function block diagram of the general gearbox fault diagnosis systems based on the 

conditional monitoring approach. 

 

Figure 1.1. The general gearbox fault diagnosis system 

As shown in Figure 1.1, it is constructed through four following main processes: 

(1) Data collection: acquiring the vibration signal by using a vibration sensor and data 

acquisition system. 
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(2) Vibration signal analysis (VSA): this stage is to process the vibration signals and to capture 

the fault-related information. 

(3) Feature pool configuration: the feature extraction and feature selection methods perform 

extracting and selecting the features of optimized vibration subbands obtained from the 

vibration signal analysis approach to configure feature pool. 

(4) Fault pattern identification: the fault-related elements in the feature pool are used as input 

data of artificial intelligence based classification approaches for identifying the actual fault 

states. 

The vibration characteristic of a gearbox in perfect and faulty cases have been analyzed in 

detail in [16]. In perfect condition, normal smooth and periodical movements of a pair gear 

generate the linear and periodic vibration signals, which are obtained from accelerometers and 

data acquisition systems. In a faulty case, the transferring motion is passed through a defective 

tooth causing impulsive events on vibration characteristics, thus the gearbox vibration signal 

can be a structure of a phase and amplitude-modulated signal [17]. This modulated signal 

comprises various frequency tones distributed around central frequencies in its spectrum. The 

series of central frequencies are meshing frequency harmonics, the sideband frequencies, and 

frequencies of free oscillations. These complex frequency components in the vibration signal 

can be used as fault relative information represented the actual health states of a gearbox [18], 

[19]. The aim of VSA, which is implemented by digital signal processing, is to highlight the 

informative ingredients from the vibration signals, which can be used for the identification of 

fault states of a gearbox system. Thus, VSA is the major process in the gear fault diagnosis 

application.  

The gear faults are categorized into three major types: fabricating faults (e.g., incorrect tooth 

profile, eccentric calibrated wheels…), wrong setting and assembly, and operational faults 

caused by long time operation (e.g., broken tooth, cracked tooth, tooth spalling, worn tooth…). 

A conditional monitoring method is usually applied to diagnose operational fault types for 

detecting in an early phase. Thus, the experimental testbed of multi-level tooth cut gear 

(MTCG) faults gearbox under varying speed conditions was constructed in this study, shown 
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in Figure 1.2. The MTCG faults were created by cutting a tooth, which mounted on a gear 

wheel, in many depth levels (6.6%, 10%, 20%, 30%, 40%, and 50%) for simulating the same 

behavior of the gear failures caused by the long-term operation of a gearbox system. The gear 

wheel with 38 teeth is fixed with the load and non-drive shaft and engaged with a pinion wheel 

(25 teeth), which directly connects to AC motor through drive shaft, creating a gearbox with 

gear reducing ratio of 1:1.52. The rotation movement (torque) of the load is provided by the 

motion of the AC motor through the gearbox. Therefore, the rotational speed of the pinion 

wheel is equal to the rotational speed of AC motors, and the gear frequency is calculated by 

the pinion frequency and the gear ratio.   

 

Figure 1.2. The arrangement of the experimental testbed 

The datasets were collected by sampling vibration signal (using the accelerometer 622B01) 

with the frequency of 65536 Hz during one-second length. This process was repeated multiple 

times to acquire many vibration samples for each fault state (seven states) and alternately 

performed through four rotational speeds (300 RPM, 600 RPM, 900 RPM, and 1200 RPM).  

Figure 1.3 demonstrates the analysis of a frequency spectrum of one vibration sample obtained 

from a gearbox with a gear tooth of 30% cut under the rotational speed of 900 RPM according 

to the gearbox vibration characteristic. The defect frequency tones are overwhelmed in noise 

components. Therefore, it is essential to develop the effective signal processing techniques, 

which are capable to highlight the informative components for identification of gear failures. 
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Figure 1.3. The analysis of the frequency spectrum of a vibration sample according to the vibration 

characteristic of a gearbox system 

1.2 The previous researches 

Vibration characteristic represents the response of the kinetic and dynamic models of a 

gearbox. In this matter, gear-mesh stiffness is the key factor for the exploration of fault gears 

[20], [21]. However, the gearbox vibration signals obtained from a vibration sensor in the 

combination systems are very complicated. Firstly, a gearbox usually works in the fluctuated 

or varying speeds condition according to the request of other systems, thus the gearbox 

vibration signals are considered as nonstationary and nonlinear signals [22]. On the other 

hand, the vibration characteristic of a gearbox is commonly impacted by undesired influences 

of the structural resonances of numerous lateral sub-systems such as gear wheels, shafts, 

bearings, and other mechanical elements, these induce the noise and redundant ingredients in 

the vibration signal making disorderliness of gearbox vibration characteristic. In addition, the 

interference noise from the sensor and data acquisition system is also affected to vibration 

signal during the data acquiring process [16], [23]–[25]. Those disturbance noises and 

unwanted residual elements, which are randomly occurred (i.e. random magnitude, random 

frequencies) in the whole range of vibration signals, significantly derange the gearbox 

vibration characteristic and defeat the clarifying process for fault useful components in the 

vibration signal analysis technique. In other words, the vibration signal is noisy, nonlinear, 

and non-stationary. Therefore, the applicable signal processing methodologies for removing 

redundancy and noise in vibration signals are previously necessitated.  
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In recent decades, numerous methodologies for analyzing the vibration signal have been 

proposed to find the fault representative elements in many domains.  Those signal processing 

methods can be divided into several major types such as time domain VSA, frequency domain 

VSA, time-frequency domain VSA, and empirical mode decomposition (EMD) VSA, and 

other VSA.  

For the time domain VSA, the performance is directly applied to the vibration signals in the 

time domain. The well-known method is to calculate the statistical features in the time domain 

as mean value, peak-to-peak value, kurtosis, skewness, root mean square, and crest factor. 

Then the evaluation process is used to examine the abnormal change which relates to the 

deterioration caused by the tooth faults. The description of statistical feature extraction in time 

domain is demonstrated in [14], [26], [27]. The other effective signal processing approaches 

in the time domain are time-synchronous averaging (TSA) and Hilbert transform. TSA is to 

extract the periodic portions by synchronous averaging the number of revolutions of the gears 

for detecting gear fault [28], [29], and Hilbert transform is carried to detect the repetitive 

impulsive amplitudes, formed by the operation of a faulty tooth, in the envelope [30], [31]. 

However, fault relative components are very difficult to be extracted from the noise immersed 

vibration signals by using the time domain VSA.  

By contrast, the frequency domain VSA processes the vibration signal in frequency scope.  

Fourier transform (FT) is commonly used to transform the time domain vibration signal to a 

frequency spectrum. By using FT, the frequency tones are isolated to identify the fault relative 

elements.  Many different techniques based Fourier transform have been developed in [32], 

[33]. There exist several frequency analysis methods as demodulated signal analysis and 

residual signal analysis. In a gear system, a vibration signal can be spectrally demodulated to 

figure out fault-related frequency tones (e.g., sideband frequencies, free oscillations) for 

discriminating the gearbox fault states. Demodulation analysis is developed in both the phase 

and magnitude of a vibration signal, which was recommended by McFadden in [34]. A detail 

explanation of demodulated analysis approach can be found in [35]–[37]. Another process 

technique in the frequency domain is residual signal analysis. The idea to develop this method 

is to remove the regular ingredients of a vibration signal, which are established in the normal 

operation condition, and to generate residual components for evaluation to detect fault impact. 
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There are some methods for obtaining the residual signals: removing meshing frequency 

harmonics [36], [38], [39], subtraction of two vibration signals acquired from the fault-free 

faulty gearboxes [26], [40], autoregressive model application [41], [42]. The frequency 

domain VSA can be efficient to distinguish a healthy gear and a fault gear, however, the 

frequency analysis is incapable to examine nonstationary signals.  

To develop the appropriate signal processing methods for handling a nonstationary signal, 

time-frequency VSA has been conducted by many researchers.  This method is carried out by 

applying the frequency transform technique on each divided timing window along the time 

length of a signal. Based on the method to create timing windows, different approaches have 

been constructed and widely applied including short-time Fourier transform (STFT), Wigner-

Ville transform (WVT), and wavelet transform (WT)  [27], [43]–[45]. Therein, WT is the 

most effective and well-known methodology for processing gearbox vibration signals. In WT, 

a vibration signal is decomposed to numerous vibration subbands by a family of wavelet 

functions, which are created by the transition and dilation process of the mother wavelet 

function (e.g., Morlet wavelet, Daubechies wavelet, Haar wavelet…). WT outcomes the good 

resolution analysis of the vibration signal in both time domain and frequency domain for the 

possibility of enhanced capturing short-term events of fault informative components [45], 

[46]. Nevertheless, the performance of WT might deteriorate in the case that informative 

frequency tones and mother wavelet function are uncorrelated, the disturbance noise tones, 

which are correlated with wavelet functions set, prevail to be excited rather than informative 

tones. 

Another effective processing technique for nonstationary and nonlinear signals, which have 

been developed and applied for fault diagnosis systems of rotation machines, is a Hilbert-

Huang transform [47]–[49]. This technique tries to decompose a vibration signal into set of 

intrinsic mode functions (IMFs), which represents fault-related intrinsic oscillations, by time 

adaptive performance of empirical mode decomposition (EMD). EMD has been demonstrated 

better performance than other time-frequency analysis methods as STHT and wavelet 

approach for VSA. Thus, the EMD technique was used in combination with others as: envelop 

analysis, wavelet approach to make use of their advantages [50]–[53]. However, the 

disadvantage of EMD is of noise sensitivity, thus in noisy circumstances, IMFs generated 
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from interference noise components cause a fault diagnosis system unreliably. The limitations 

have been assessed in [54], EMD has a better performance for low-noise vibration signals. 

Coupled with the aforementioned signal processing approaches, a denoising technique is of 

importance for analyzing vibration signals. There exist some noise filtering approaches as 

narrowband decomposition [55], discrete wavelet analysis [56], [57].  By applying these 

techniques, the interference noise in vibration signals has been reduced, but original fault 

useful frequency tones were also distorted due to attenuation of filters or threshold parameters.  

The additional function module in the gear conditional monitoring system is fault pattern 

identification, which contains some functions as feature extraction, feature selection, and fault 

classification. Feature extraction is an interference operation that calculates the parameters of 

a vibration signal obtained from a vibration signal processing module. After extraction, the 

achieved parameters are configured as a feature pool. Next, the features in the pool are 

investigated and examined to figure out the characteristics of fault-related discrimination by 

the feature selection procedure. By selecting better representation features of gear health 

states, the dimension of the feature pool is reduced. The machine learning based classification 

approaches are applied for classifying the fault categories based on analysis of selected 

features. This is a process flow in a gearbox fault diagnosis model.  

The conventional condition monitoring models have employed the manual feature extraction 

methods such as calculation of statistical parameters of vibration signal in time and frequency 

domain, complex envelope analysis, wavelet coefficient calculations… [58]–[60], and feature 

selection processes including principal component analysis (PCA), linear discriminant 

analysis (LDA), independent component analysis (ICA), genetic algorithm (GA) [61]–[65] 

for configuration of an optimal feature pool, then the optimal features are used as input data 

for fault classification by several shallow machine learning models: k-nearest neighbors 

(KNNs), decision tree, support vector machines (SVMs), and artificial intelligence networks 

(ANNs) [66]–[69]. The fault diagnosis models based on handcraft feature engineering and 

shallow networks have been of efficient performance for diagnosis of gear faults of a gearbox 

under the condition of constant rotational speed, however, those could restrict or degrade 

when processing the data of a gearbox under variable speeds conditions due to the limitation 

of feature pool configured by handcraft methods. 
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To address the issues of the dimensional limit of a feature pool, deep learning models (DLM) 

have been developed. DLM has demonstrated the advantages in many applications: computer 

vision, image processing, pattern recognition, and natural language processing… by the 

successfulness of discrimination of tiny different components for categories classification 

through numerous nonlinear transforming processes [70]–[73]. DLM performs automated 

feature extraction and feature learning procedures based on unsupervised hierarchy to 

configure the high dimension feature pools, which might contain discriminating features in 

small scales. Then, the fine-tuning process through neural layers of a DLM is executed to 

fetch the fault representation elements. Finally, gear fault types are identified based on those 

features. Further description of deep neural network architectures applied in a fault diagnosis 

system of a rotation machine can be found in [74]–[79]. 

1.3 Motivation 

 In order to construct the gearbox fault diagnosis system based on the conditional monitoring 

method, vibration signal analysis is particularly important. That is an initial step to obtain the 

gear state representative components, which highly influences the accuracy of the next steps 

of a fault identification system. Furthermore, a gearbox vibration signal is realized as a very 

complicated signal (i.e., nonlinear, nonstationary, and noisy), then the efficient VSA methods 

encounter the difficulties and challenges of the establishment. State-of-the-art methodologies, 

which have been described in the previous section (section 1.2), have been developed the VSA 

techniques for gearbox vibration signals, however, those studies were still associated with 

several issues that could depreciate the accuracy of the fault diagnosis system or could be 

inapplicable for a fault types identification system. The issues can be described as follows. 

- There can be a problem to process nonstationary and nonlinear vibration signals. 

- Noise reduction methods were not analyzed clearly in consideration of gearbox 

vibration characteristic 

- There can be limitations for a gearbox operating under inconsistent working conditions, 

e.g. the rotational speeds of a gearbox were not considered. 
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- The informative frequency tones might be distorted and omitted. 

- The challenge and inapplicability can be faced when processing vibration signals, which 

present similar behaviors of multi-level gear faults. 

Therefore, the novel denoising methodologies have been constructed in this dissertation to 

analyze gearbox vibration signals for significant reduction of disturbance noise and 

preservation of fault informative elements. Those methods were constructed base on the 

adaptive denoising approaches as adaptive noise reducer-based Gaussian reference signal 

(ANR-GRS), and localized adaptive denoising technique (LADT). 

Coupled with the signal processing approach, the feature engineering and classification 

procedures are also very essential to construct the conditional monitoring combination system 

for gearboxes. In this thesis, many techniques including a combination of handcraft feature 

pool configuration and shallow machine learning methods of classification, automatic and 

high dimensional feature engineering, and classification-based deep learning models, are 

experimentally employed to process de-noised vibration signals outputted from the proposed 

adaptive denoising technique modules.  

The objective of this thesis is to develop effective noise controlling techniques and apply the 

proper neural network architectures to construct accurate and reliable fault identification 

systems for a multi-level tooth cut faults gearbox system under variable rotational speeds. 

This study is briefly described: (i) Construction and experimental verification of the novel 

effective denoising methodologies (ANR-GRS and LADT), (ii) Investigating the feature 

extraction, feature selection, and shallow neural network, (iii) examining and applying the 

deep neural network architectures for establishing a gearbox fault identification system.   

 

 

 

1.4 Thesis Outline 

The content of this dissertation is arranged by six chapters outlined below:  
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Chapter 1 briefly describes the background of a gearbox fault diagnosis system, 

conventional studies, motivation, and outline of this dissertation.  

In Chapter 2, adaptive noise reducer based Gaussian reference signal methodology is 

developed for vibration signal analysis. A reliable gearbox fault diagnosis system is to 

establish by association of ANR-GRS, handcraft feature extraction, and support vector 

machine (SVM) approaches for identifying four health states of an MTCG gearbox under 

inconsistent speeds conditions.    

Chapter 3 presents fault types identification and diagnosis model of a multi-level gear 

defect gearbox in the operation of a constant speed. In this model, the adaptive noise control 

technique is applied for denoising, genetic algorithm (GA) and k-NN are used for feature 

selection and fault classification, respectively. 

Chapter 4 proposes a sensitive and invariant speed gearbox fault diagnosis model for 

seven fault types of an MTCG gearbox under varying speeds condition. In this model, adaptive 

denoising technique is used for significant removing noise and preserving fault useful 

information in the output optimized vibration subbands, then stacked sparse autoencoder 

based deep neural network (SSA-DNN) tries to perform automated feature extraction, fine 

tuning feature optimization and classification.  

In Chapter 5, localized adaptive denoising technique (LADT) is developed based on 

ANR-GRS methodology for more efficient of noise reduction. An accurate and stable gearbox 

fault diagnosis framework is constructed based on LADT, wavelet-based feature pool 

configuration, and convolutional neural network architecture for identifying the fault states of 

a multi-degree tooth faults gearbox in the operation of the variable speeds. 

Finally, the dissertation is of conclusion in Chapter 6 with a summary of the 

contributions and a discussion of the future studies. 
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Chapter 2 A Reliable Fault Diagnosis Method for a Gearbox System with Varying Rotational Speeds 

Chapter 2 

A Reliable Fault Diagnosis Method for a Gearbox System 

with Varying Rotational Speeds 

 

2.1 Introduction 

Gearboxes are widely used in industrial applications, usually in harsh and continuous 

conditions, making them susceptible to a variety of failures. Defects can cause the gearbox 

system to break down and potentially damage complex mechatronic equipment or even cause 

a serious threat to safety, property, or customer satisfaction. Therefore, it is essential to 

diagnose gearbox faults regularly to ensure their early detection. The vibrations of gearbox 

systems have been studied since the 1980s, and previous researchers have found that gearbox 

vibrations have a keynote meshing frequency [3], [80] with complex sidebands around it and 

its harmonics [81], [82]. Therefore, the sideband frequencies and the meshing frequency and 

its harmonics are the informative components for identifying gear faults. Signal analysis is a 

backbone procedure for rotational-machine fault diagnosis research and applications. It works 

by decomposing the related fault features that are the groundwork for identifying fault 

patterns. The vibration characteristics of gearbox systems produce two major signals that can 

be analyzed for fault detection: acoustic signals and vibration signals [83]. Vibration signals 

are the most popularly used ones for gearbox fault monitoring because acquiring vibration 

data is easy [84]. However, vibration signals contain many types of noise from sources such 

as measurement systems (data acquisition systems), the environment, shafts, gears, and other 

related components and their impingement [85], [86]. All that noise, which exceeds the signal, 

fills the frequency spectrum of the vibration signal, and eclipses it. 
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Many signal processing methods using advanced techniques have been presented by many 

researchers: frequency analysis focusing on Fourier transform [87], Wigner distribution [88], 

rank-order morphological filter [89], cyclostationary signals for mechanical applications [90], 

and the envelope analysis [91], which is the most well-known for rotational-machine fault 

diagnosis applications such as bearing-fault diagnosis. It detects the repeating shock 

amplitudes that appear as faulty teeth traverse each rotation cycle. Using this method, the 

vibration signal is first processed by a bandpass filter to achieve a high signal-to-noise ratio, 

and second, the Hilbert transform is used to achieve the envelope. If the sideband frequencies 

in a gearbox vibration signal appear in the envelope, the presence of faulty teeth in the gearbox 

can be deduced [92], [93]. However, when the vibration signal is submerged in noise, it is 

difficult to recognize the informative components for fault diagnosis in the envelope.  

Time-frequency analyses were developed to process non-stationary signals using a frequency 

transformation process divided based on windows across the time axis to capture informative 

events. The basic time-frequency analysis method is a short-time Fourier transform (STHT) 

or a spectrogram, such as a limited time window–width Fourier spectral analysis [94], [95]. 

The challenges of the STHT method, such as a failure of the assumption that the pieces of a 

non-stationary signal are stationary, difficulty adapting the observation window size to the 

size of a real stationary piece of signal, and the conflict between frequency resolution and time 

resolution (which is related to the Heisenberg uncertainty principle) limit its usability. To 

resolve the disadvantages of the STHT method, the wavelet approach was developed as an 

adjustable window frequency spectral analysis method. The basic wavelet function can be 

modified to meet special needs, so the wavelet transform produces outputs with good 

resolution in the low-frequency range and good time resolution in the high-frequency range 

[96]–[98]. In the region relevant for rotational-machine fault diagnosis, wavelet-based 

decomposition has been widely used to apprehend the useful components of a vibration signal 

in a non-stationary condition (in this context, non-stationary is the notion that the sideband 

frequency information of a vibration signal is time-variant). Wavelet transform decomposes a 

vibration signal into many sub-bands that express the time-frequency distribution through the 

dilation and transition of the mother wavelet. The sub-bands that contain fault-related intrinsic 

features can then be used in the fault diagnosis process [99], [100]. Nevertheless, the 

efficiency of the wavelet-based method correlates with the basic wavelet function, so 
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informative components that do not correlate as well with the applied wavelet could be missed 

or lost in the transformed outcome. In addition, the white noise that is frequently parasitic in 

a vibration signal and appears across the whole range of the frequency spectrum gives 

correlated oscillations with a high potential to appear as excitation. In this paper, the effect of 

noise on the wavelet applied to the wavelet transform method is compared with the proposed 

method for processing the signal path in the experimental results. 

The Hilbert-Huang transform (HHT) was introduced as a better methodology for analyzing 

non-linear and non-stationary signals [47]. This technique is now often used for rotational-

machine fault diagnosis [101]–[104]. The HHT method uses a time adaptive operation known 

as empirical mode decomposition (EMD) to decompose the signal into a group of complete 

and orthogonal components, denoted as intrinsic mode functions (IMFs), that represent the 

intrinsic oscillation modes of the fault-related components of a vibration signal. The HHT 

method was shown to outperform wavelet transform in rotational-machine fault diagnosis in 

[105]–[107]. To capture the advantages of the HHT, several fault detection tools combine 

EMD with other methods, such as envelope analysis and the wavelet-based technique. EMD 

and the envelope analysis combine in series: the vibration signal is first decomposed by EMD 

to determine the number of IMFs; the envelope analysis then processes the IMFs to monitor 

for fault-related components. Compared with previous methodologies, this combined 

technique had better results [105], [108], [109]. Combining wavelet transform and EMD for 

time-frequency analysis is another currently used combination method. It takes advantage of 

the strong points of the two techniques and minimizes their limitations, particularly aliasing 

in the high-frequency band (wavelet transform) and difficulties in isolating the signals within 

the second harmonic (EMD) [53], [110].  

However, the EMD technique is sensitive to noise, so noise-related IMFs, which are not 

useful, can be generated by the EMD. As illustrated by Van M. et al. [54], EMD performs 

well in processing low-noise vibration signals and poorly in processing high-noise signals. In 

other words, even EMD combination techniques are unreliable in noisy environments. 

Therefore, to effectively apply enhanced signal analysis techniques to non-stationary vibration 

signals, a proper pre-processing method to reduce noise is required, such as narrowband 

demodulation [55] or discrete wavelet transform (DWT) [111], [112]. Applying those de-
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noising methods effectively reduces the measurement noise, but the original informative 

signal is also distorted by the attenuation of a narrow bandpass filter in narrowband 

demodulation or the threshold in DWT-based de-noising. In other words, using one of those 

noise reduction methods can degrade the performance of a fault diagnosis system. Therefore, 

we have developed a new de-noising technique to reduce the noise from an original vibration 

signal by optimizing a process for filtering the weights and parameters of the reference input 

signals (adaptive) and considering the noise characteristics and rotational speed. We call our 

new technique the Adaptive Noise Reducer–based Gaussian Reference Signal (ANR-GRS).  

The adaptive noise-controlling technique reduces noise by means of destructive interference. 

It consists of an adaptive filter and reference signals. The adaptive noise filter is a digital filter 

with an adaptive algorithm that adjusts the filtering coefficients (or tap weights) so the filter 

can be flexibly and optimally operated in unknown conditions with non-stationary signals to 

effectively remove low-level noise [113]. The typical performance criterion for adjusting the 

filtering weights (convergence condition) is based on the error signal, which is the difference 

between the output of the filter and the input reference signal as determined using the recursive 

least-squares or least mean square (LMS) algorithm. Between them, the LMS is more widely 

used because of its robustness and simplicity [114]. The ANR-GRS technique has three main 

function blocks: Gaussian reference signal (GRS) generation, adaptive noise filtering using 

the LMS algorithm, and optimal output sub-band selection. The generated GRS is a special 

signal consisting of a white-noise reference signal and a Gaussian reference signal with 

adjustable parameters (mean value and standard deviation) to identify noise components that 

are independent of the informative components in the frequency domains of the vibration 

signal from a varying speed gearbox. The adaptive noise filter consists of an M-tap digital 

Finite impulse response (FIR) filter and the LMS adaptive algorithm; it has two inputs: a 

reference input for the GRS signal with specific parameters and the desired input for a 

vibration signal. The noise-reduced sub-band is achieved as the output of the adaptive noise 

filter. The optimal output sub-band selection adjusts the parameter of the GRS signals to 

receive the set of noise-filtered sub-bands output by the adaptive filters and then selects the 

sub-band with the minimum mean square as the optimal sub-band, which is the final output 

of the ANR-GRS module. That output becomes the input for the feature pool configuration 

process used to extract the statistical features in the time and frequency domains of the 
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vibration signal as feature vectors [58] to be classified.  

The heterogeneous feature pool improves the efficiency of gearbox fault expression for fault 

diagnosis process; however, the high dimensionality of the feature vectors can be a challenge 

for various machine learning techniques that can be used for decision making. In comparison 

with the other artificial intelligence algorithms, the classification performance of support 

vector machines (SVM) classifier is not much sensitive to the dimensionality of the feature 

vectors, in other words, this algorithm is not affected by the problem called ‘curse of 

dimensionality’. Furthermore, SVM demonstrates excellent generalization performance, so 

this technique is capable of achieving high accuracy while classifying mechanical faults in 

rotation machinery [115]. Also, with an appropriate kernel function, SVM can accurately 

separate the non-linear datasets by hyperplanes in high-dimensional feature space using the 

non-linear mapping [116]. SVMs are widely used for fault diagnosis in many real-world 

applications [117]. They were originally designed for binary classification and then improved 

for multiclass classification using the one against one, one against all, or hierarchical strategy. 

Among them, the one against one strategy is the most reliable for our purposes [118]–[120]. 

Therefore, a one-against-one multiclass SVM (OAOMCSVM) is used in this proposed 

methodology.  

The new hybrid technique employs the ANR-GRS, which produces an optimal sub-band, and 

then uses a machine-learning classification of fault types based on the OAOMCSVM on 

features extracted from that optimal subband to identify faults in a gearbox system. The 

experimental results show that the proposed method outperforms the aforementioned 

denoising methods, which verifies that the “clean” input can be used to produce correct output 

from the signal processing and classification paths. 

The rest of this paper is organized as follows: Section 2 provides the characteristics of a 

gearbox vibration signal and the experimental test setup used in this study. The proposed 

methodology is explained in detail, from theory to the construction of the ANR-GRS, feature 

pool configuration, and OAOMCSVM classification, in Section 3. Section 4 demonstrates our 

experimental results in signal processing and classification. Finally, Section 5 concludes the 

paper.  
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2.2 The Characteristics of a Gearbox Vibration Signal and Experimental 

Testbed Setup 

2.2.1 The Characteristics of a Gearbox Vibration Signal 

The defects of a gearbox can be classified into three major categories: manufacturing defects 

(tooth profile error, eccentricity of the wheel, etc.), installation defects (parallelism), and 

operational defects (tooth wear, case wear, tooth spalling, tooth cracks). This research 

considers operational faults. A one-stage transmission gearbox, which consists of two rigid 

blocks with a pinion (on the drive side) and a gear (on the non-drive side), is illustrated in 

Figure 2.1. A healthy gear in normal condition working smoothly and periodically generates 

a linear and periodic vibration signal [81]. The vibration signal, 𝑠ℎ[mV/(m/s2)], of a fault-free 

normal pair of gears meshing under a constant load speed can be formulated as [121]: 

where 𝑆𝑖 and 𝜑𝑖 are the amplitude and phase of the i-th meshing frequency harmonics; 𝑓𝑀 is 

the meshing frequency (for the pinion: 𝑃 is the number of teeth in the pinion wheel, 𝑓𝑃 is the 

pinion rotation frequency, 𝑓𝑀 = 𝑃. 𝑓𝑃; or 𝑓𝑀 = 𝐺. 𝑓𝐺 , 𝐺 is the number of teeth in the gear 

wheel, 𝑓𝐺  is the gear rotation frequency), and N is the total number of 𝑓𝑀 harmonics in the 

frequency range of a vibration signal. Figure 2.2a shows the spectrum of the output vibration 

signal of a fault-free gearbox; it is filled with the frequency tones of the meshing frequency 

and its harmonics. 

 

Figure 2.1. The spur gearbox model  

                           𝑠ℎ(𝑡) = ∑ 𝑆𝑖cos(2πi𝑓𝑀t + 𝜑𝑖),𝑁
𝑖=0                                             (2.1)                       
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In a fault case, when the motion transferred from the drive shaft to the non-drive shaft by the 

rotation between the pinion wheel and the gear wheel traverses a defective tooth (chipped, 

worn, or missing), an abnormal movement occurs that changes the impulses in the vibration 

signals. The vibration signal contains amplitude and phase modulations of the carrier 

frequency as the meshing frequency; its frequency spectrum includes sidebands, frequency 

components on two sides of the meshing frequency and its harmonics, as given in Equation 

(1). Thus, when the gear wheel has a faulty tooth, the velocity of the gear angle changes 

impulsively within the rotating functionality and generates a non-linear vibration signal in 

which issues such as speed variation, amplitude, and phase modulation prevail [82]. The 

vibration signal is formulated [81] as given by Equation (2.2), and an example of its spectrum 

is shown in Figure 2.2b: 

Here,  𝑎𝑘(𝑡) = ∑ 𝐴𝑘𝑗cos (2𝜋𝑗𝑓𝐺𝑡 + µ𝑘𝑗)𝑀
𝑗=0  and 𝑝𝑘(𝑡) = ∑ 𝑃𝑘𝑗cos (2𝜋𝑗𝑓𝐺𝑡 + 𝜉𝑘𝑗)𝑀

𝑗=0 . 

𝐴𝑘𝑗,𝑃𝑘𝑗are amplitudes and µ𝑘𝑗,𝜉𝑘𝑗 are phases of the j-th sideband in the amplitude and phase 

modulation signals, respectively, around k meshing harmonics. 

 
                             (a)                                                                           (b) 

Figure 2.2. The frequency spectrum of the gearbox vibration signal: (a) a healthy gearbox and (b) a 

faulty gearbox 

2.2.2 The Experimental Testbed Setup 

The experimental testbed is illustrated in Figure 2.3. The pinion wheel is fixed to a three- 

phase AC induction motor by a drive shaft (DS). The motion (torque) is transmitted from the 

AC motor to the load as adjustable blades, which are mounted on the end of the non-drive 

shaft by the engaged teeth of a pinion wheel and a gear wheel (a gearbox with a gear reduction 

𝑠𝑓(𝑡) = ∑ 𝑆𝑘(1 + 𝑎𝑘(t)) cos(2πk𝑓𝑀t + 𝜑𝑘 + 𝑝𝑘(t)) 𝑁
𝑘=0 .                   (2.2) 
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ratio of 1:1.52).  

The number of teeth on the pinion wheel is 25 (P = 25), the gear wheel has 38 (G = 38), and 

the length of each tooth is 9 mm. Figure 2.4 depicts the seeded tooth failures on the gear 

wheel: a perfect or healthy gear (H), tooth cut 10% (F1), tooth cut 30% (F2), and tooth cut 

50% (F3). To measure the speed of the shaft rotation, a displacement transducer is placed to 

track the hole in the DS once per rotation. The vibration signals from the gear wheel in the 

normal condition and three levels of tooth cut defects (shown in Figure 2.4) were continuously 

acquired from the vibration sensor (accelerometer 622B01 made by the IMI Sensor Company) 

mounted on the end of the DS, 72.5 mm from the pinion gear. The analog vibration was 

digitized using PCI-2 data acquisition (the specifications of the data acquisition system are 

provided in Table 2.1). The sample datasets for each health condition (H, F1, F2, F3) of the 

gearbox under four shaft speeds are provided in Table 2.2.   

 
(a) 

 
(b) 

Figure 2.3. Experimental testbed setup: (a) function block diagram; (b) actual experimental 

assembly. 
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 (a)                                      (b)                                   (c)                                    (d) 

Figure 2.4. The health states of the gear wheel and examples of vibration signals at the rotation speed 

of 300 RPM: (a) no seeded fault, healthy gear, (b) tooth cut 10% (0.9 mm), (c) tooth cut 30% (2.7 

mm), (d) tooth cut 50% (4.5 mm). 

Table 2.1. Specification of the sensors and data acquisition system. 

Device Specification 

Vibration sensor  

(Accelerometer 

622B01) 

Sensitivity (V/g): 10.2 mV/(m/s2) 

Operational frequency range: 0.42 to 10 kHz 

Resonant frequency: 30 kHz 

Measurement range: ± 490 m/s2 

4- Channel DAQ 

 PCI Board 

18-bit 40MHz AD conversion, a sampling frequency of 65.536 kHz is 

used for each of two channels simultaneously 

Displacement  

 transducer 

Distance from the head of a transducer to a hole: 1.0 mm 

Diameter of a hole: 12.80 mm 

Sensitivity: 0 to −3dB 

Frequency response: 0–10 kHz 

 

Table 2.2. A detailed description of the fault types and dataset. 

Gearbox 

health state 
Description 

Number of 1-s data samples 

acquired for each rotation speed 
Sampling  

frequency 

(Hz) 
300 

RPM 

600 

RPM 

900 

RPM 

1200 

RPM 

Healthy 

(H) 

No seeded fault in the 

teeth of a gearbox 
300 300 300 300 65536 

Fault type 1  

(F1) 

 Pinion tooth cut 10%   

(0.9 mm) 
300 300 300 300 65536 

Fault type 2  

(F2) 

 Pinion tooth cut 30%    

(2.7 mm) 
300 300 300 300 65536 

Fault type 3  

(F3) 

 Pinion tooth cut 50%   

(4.5 mm) 
300 300 300 300 65536 
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Each health state is sampled by sampling frequency 65536 Hz in continuous 1 second (1-s 

sample) repeating by 300 times to receive 300 1-s samples for each shaft speed. Hence, the 

number of samples for each health state is 1200 vibration samples in four different shaft 

speeds, the total number of samples in this experimental testbed is 4800 of 1-s samples. 

2.3 The Gearbox Fault Diagnosis Methodology   

A function block diagram of the method for gearbox fault diagnosis proposed in this study is 

provided in Figure 2.5. We use four main processing blocks: the sensor and DAQ block, ANR-

GRS, feature pool configuration, and multiclass SVM-based classification. To acquire 

discrete samples of each captured signal event containing information about the defective 

gearbox in the acquisition dataset, the raw vibration signal was sampled at a high frequency 

of 65536 Hz to acquire rich digitized vibration sample data under different shaft rotation 

speeds (300, 600, 900 and 1200 RPM), and the adjustable load was non-stationary. Though 

the operation frequency range of a vibration sensor in this study is from 0.42 Hz to 10 kHz 

(this is presented in Table 2.1), thus fault-related components in the frequency domain of 

vibration signals mostly exist in the lowest segment 0–10 kHz of their frequency spectrums. 

Therefore, the sampling frequency of the raw vibration signal (all vibration signals acquired 

in this paper) was reduced by a factor of three using a down-sampling technique. However, 

implementing decimation involves aliasing, so a low-pass Chebyshev Type I Finite Impulse 

Response filter (the filter with the order of 35 and a cut-off frequency of 10 kHz) was used 

for antialiasing [122]. The output sub-band signal from the lowpass filter (lpf(n), n is denoted 

as discrete-time) which have frequency spectrums in the range from 0–10 kHz, were then 

optimized by the ANR-GRS to achieve the optimal sub-band, opt(n), from which twenty-one 

features were extracted through a feature pool configuration, F(k), for classification by the 

OAOMCSVM. 
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Figure 2.5. Function block diagram of the proposed methodology. 

2.3.1 Adaptive Noise Reducer–based Gaussian Reference Signal  

2.3.1.1. Adaptive Noise Filtering Technique 

    The digital filter 

An adaptive filter combines the operation of a digital filter and an adaptive algorithm. The 

adaptive algorithm optimizes the coefficient (or weight) of a digital filter by using the 

feedback signal from the output (error signal) according to the signal condition or performance 

criteria [38]. Figure 2.6 illustrates the function of an adaptive filter constructed using a FIR 

filter and an adaptive algorithm. The output of the FIR filter is calculated as given in Equation 

(2.3): 

where, cm, m = 0,1, …, M-1 (M is the digital filter length) are the adjustable weights 

(coefficients) of the filter, which do not depend on the sample time. The weight vector (M × 

1) is formed as: 

                                              c(n)≡ [c0, c1, …, cM-1]
T,                                                              (2.4) 

and r(n-m), m = 0, 1, …, M-1 are samples of an input signal composed of the vector M × 1: 

g(n)  = ∑ cm(n)r(n − m) =  𝑐𝑇(n)r(n)M
m=1                                              (2.3) 

r(n) ≡ [r(n), r(n-1), …, r(n-M+1)]T.                                            (2.5) 
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Figure 2.6. Function block diagram of an adaptive filter. 

T denotes the transpose operation of the matrix. Then, the error signal e(n) is the difference 

between the FIR filter response, y(n), and desired signal, d(n), which can be calculated as: 

                                 e(n) = d(n) - g(n) = d(n) - cT(n)r(n).                                  (2.6) 

A common criterion for tuning the convergence of the weight vector, c(n), is the minimization 

of the mean-square error (MSE): 

where, R ≡ E{r(n)rT(n)} is the input autocorrelation matrix, and P ≡ E{r(n)d(n)} is the cross-

correlation vector between the input signal and the desired signal vector. 

Equation (2.2) indicates that the MSE is a quadratic function of the filter weights (c), and its 

performance surface guarantees that it has a single global minimum MSE corresponding to 

the optimal vector co. The optimal vector co can be found by taking the first derivative of 

Equation (2.3) and setting it to zero, the result achieved by Wiener-Hopf equation (assuming 

that R has an inverse matrix):  

co =R-1P, (2.8) 

so that the minimum MSE is: 

J ≡ E{e2(n)} = E{[d(n)-cT(n)r(n)]2} 

J = cT(n)Rc(n)- 2PcT(n) + E{d2(n)}, 

(2.1) 
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Jmin = E{d2(n)} – PTco. (2.9) 

     Adaptive algorithm 

The adaptive algorithm is a recursive function to automatically adjust the coefficient vector, 

c(n), to minimize MSE (Jmin) so that the weight vector converges to the optimum solution, co, 

after iteration loops. Both the LMS and recursive least-squares algorithms can be used to fetch 

the optimal solution [113], but the LMS is the most broadly used. To calculate the updated 

weight vector in the recursive loop, the LMS algorithm is based on the steepest-descent 

procedure using a negative gradient of the instant square error, which was devised by Widrow 

and Stearns [123] as follows: 

c(n+1) = c(n) + µr(n)e(n), (2.10) 

where µ is the step size (or convergence factor) that determines the stability and 

convergence rate of the LMS algorithm. The algorithm adapts the weight vector to the 

optimal Wiener-Hopf solution (co) given in Equation (2.9) by an iterative process with the 

convergence factor. The step size is selected in the range [114]: 

0 <  µ <
2

MSu
, (2.11) 

where Su is the average power of the input signal r(n). 

      Adaptive noise filtering technique applied to a vibration signal 

To construct the adaptive noise filter, the noise reference signal and observed signal are 

applied as the input signal of an adaptive filter (the input response in Figure 2.6) and the 

desired signal (d(n) in Figure 2.6), respectively. The observed signal is the vibration signal 

acquired from the accelerometer sensor and digitized by the DAQ block reflecting gearbox 

behavior as expressed by the informative signals (s(n)) and the noise (w(n)), as shown in 

Figure 2.7. As explained in sections 1 and 2, the informative signals and noise are formed by 

different sources: the informative signal comes from the vibration of the gear and pinion teeth, 

whereas the noise comes from the measurement system, unrelated gearbox components, and 

mechanical resonances. Therefore, the informative signal and noise represent independent 
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processes (E{s(n)w(n)} = 0). To implement an effective adaptive noise filtering system, the 

generated noise reference signal, r(n), should meet two conditions (A and B): 

A) The generated noise reference, r(n), and informative signal, s(n), are uncorrelated and 

independent (E{r(n)s(n)} = 0). 

B) The characteristics of the generated noise reference, r(n), and noise, w(n), are 

homologous as much as possible.              

 

Figure 2.7. Function block diagram of an adaptive noise filtering technique 

 

When those conditions are met, the MSE of the adaptive noise filter can be calculated as 

follows: 

where ro(n) = cT(n)r(n), and the adaptive filter uses an FIR filter, 

E{e2(n)} = E{s2(n)} + E{[w(n)- cT(n)r(n)]2}. (2.5) 

E{e2(n)} = E{[s2(n) + (w(n)-ro(n))]2}, (2.4) 
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The informative signal is independent of both the noise (E{s(n)w(n)} = 0) and the generated 

noise reference (E{r(n)s(n)} = 0). By implementing the LMS adaptive algorithm to adapt the 

filter coefficient vector, c(n), to the optimal vector, co, the mean square of the output signal 

(error signal) approaches the single minimum of the performance surface. From Equation 

(2.6), the minimum MSE is taken to be: 

Therefore, the output signal of the adaptive noise filtering system carries the complete 

informative part of the gearbox vibration signal throughout the whole process of algorithm 

implementation. In addition, the noise integrated into the vibration signal is reduced; in the 

ideal case, the noise is removed (min
𝐜(n)

E{[w(n) − cT(n)r(n)]2} = 0). Therefore, for adaptive 

noise control, we implement the ANR-GRS.  

 2.3.1.2. ANR-GRS  

In this paper, the noise (w(n)) in the gearbox vibration signal is divided into two types: white 

noise (u(n)) and band noise (b(n)). The white noise arises from the measurement system: the 

amplifier, detector, DC power supply, thermal vibration of the semiconductor atoms, etc. In 

the frequency domain, the power of the white noise is spread across the whole frequency 

spectrum of the vibration signal (theoretically, the power of white noise is spread from -∞ to 

∞ in the frequency axis) [86]. Band noise, on the other hand, represents noise caused by 

unrelated components [85]. The frequency harmonics of the band noise are distributed around 

the informative components of the gear sideband frequency, meshing frequency, and their 

harmonics. Therefore, the informative signal inside the vibration signal is separately 

independent of both types of noise. The ANR-GRS module is built using the adaptive noise 

filtering technique and reference noise-related generation signals, as illustrated in Figure 2.8. 

To reduce the white noise, we apply a generated white noise signal with a uniform, random 

distribution function (v(n)). The oscillation form of the generated white noise is thus 

analogous to the white noise integrated into the vibration signal. Because its frequency 

spectrum is within the observed frequency range, the maximum level of the power spectrum 

average (PSA) of the reference white noise is reduced to less than 10% (10% in this study) of 

the PSA of the vibration signal to ensure that the informative signal can be eligible for 

min
c(n)

E{e2(n)} =  E{s2(n)}  + min
c(n)

E{[w(n) − cT(n)r(n)]2} (2.14) 
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conditions A or B. The GRS (g(n)) is created to adapt to the band noise inside the vibration 

signal. To make the proposed methodology as an invariant model, the GRS generation module 

uses the shaft rotation speed (RPM) information from the displacement transducer and the 

vibration signal as the input parameters. Then, the mean frequency (FCenter) and the standard 

deviation of the GRS are calculated based on the frequency of the defective wheel, which is a 

function of RPM (the gear frequency in this paper). The GRS window is confined entirely 

within the frequency space between two consecutive sideband frequencies (a sideband 

segment), pictorially described in Figure 2.9, and computed as follows: 

WGRS(k) = ∑ e−
(k−FCenter)2

2Δ ,

Nb

k=1

 (2.15) 

where Δ = σ2 is the variance, σ is the standard deviation of the GRS window, and FCenter is 

the mean frequency of the GRS window. They function as the frequency of a faulty wheel 

(the gear frequency, fG = P. RPM/G in this research).  

By linearization of the Gaussian function, the standard deviation (the characteristic of a 

Gaussian distribution) can be approximately calculated as: 

σ = 0.318. FCenter = 0.318. α. fFW. (2.17) 

Nb is the number of frequency bins in a sideband segment and defined as follows: 

Nb  =
2Ns

Fs
. fFW, (2.18) 

where Ns is the number of samples of the vibration signal, Fs is the sampling frequency of the 

vibration signal, and  fFW is the frequency of the faulty wheel (the gear frequency, fG, in this 

paper).   

 𝐹𝐶𝑒𝑛𝑡𝑒𝑟  =  α. 𝑓𝐹𝑊 . (2.16) 
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Figure 2.8. A function block diagram of the ANR-GRS module and parameter adjustments 

 

Figure 2.9. The overall flow chart of GRS signal generation for the ANR-GRS module 
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To qualify condition B, the frequency components of a Gaussian window are separated from 

the informative frequencies (sideband frequencies). A Gaussian window is placed completely 

inside the space between two continual sideband frequencies in the visualization. Thus, the 

adaptation process for a band-noise reduction is to preserve the original informative frequency 

component (significantly reducing the noise components and causing negligible attenuation 

of the informative components). From Equations (2.15), (2.16), and (2.17) and Figure 2.9, the 

coefficient α is selected in the range from 0.25 to 0.75, and the qualified Gaussian window 

signals are generated using the parameters in the following ranges: 

The range of the mean value: 

0.25.  fFW ≤  FCenter ≤ 0.75. fFW. (2.19) 

The range of the standard deviations of the Gaussian reference signal: 

𝜎 = {
0.318 . α. 𝑓𝐹𝑊                           𝑤ℎ𝑒𝑛 0.25 ≤ α ≤ 0.5
0.318 . (1 − α). 𝑓𝐹𝑊                 𝑤ℎ𝑒𝑛 0.5 < α ≤ 0.75

 (2.20) 

Therefore, the implementation of a stepping adjustment in the coefficient α drives a change 

in the mean value and standard deviation (the position and shape) of the Gaussian window, 

which defines the condition for fetching the optimal Gaussian window, as illustrated in Figure 

2.9. 

2.3.1.3 The process for calculating the optimized subband 

First, the ANR-GRS algorithm germinates the initial parameters for the Gaussian signal 

generation module: starting value of α=0.25 in this paper, adaptive filter (M-tap, M=40 in this 

study), coefficient vector c(n) = [0,0,..,0], and step size µ (µ=0.01). The parameter α is scanned 

in the range [0.25 0.75] in steps of 0.01 in company with the input rotation speed (RPM) to 

compute the FCenter (mean value) and standard deviation (σ) using Equations. (2.16) and 

(2.17). To generate the specific GRS needed for the reference input of the adaptive filter r(n), 

the output of the adaptive filter is connected to the minus port of the summation module, ro(n). 

The vibration signal, which contains both the informative component and noise, is entered as 

the desired input and delayed for M sampling time steps to be compatible with the delayed 
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processing of the FIR digital filter. The LMS algorithm adjusts the coefficient vector to receive 

the LMS of the error, which is the output of the summation module. The output error signal, 

which has LMS (and to which the optimal coefficient vector is set), is pushed into the set of 

proposed optimized sub-bands. 

Finally, the algorithm calculates the mean square value of each subband in that set and then 

selects the sub-band with the minimum value as the optimized subband and output of the 

AND-GRS module (Figure 2.10). 

 

Figure 2.10. The algorithm flow chart of the ANR-GRS module. 

2.3.2. Feature pool configuration  

We found the ANR-GRS methodology to be highly effective in reducing most of the noise 

components from a 1-s raw vibration signal while leaving the information about gearbox faults 

intact. The optimized subband output from the ANR-GRS, i.e., the “clean” signal presenting 

the characteristics of the gearbox component vibration with trivial noise effects, carries the 

intrinsic fault symptoms of the cut tooth defects. We then use those optimal sub-bands, rather 

than the raw 1-s vibration signals, to extract features. According to Caesarendra et al. [124], 
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the statistical parameters from the time and frequency domains of the signal are congruent and 

subservient for fault classification using machine learning. Table 2.3 displays twenty-one 

features, eighteen time-domain features (e.g., root means square, square mean root, kurtosis, 

skewness, margin, impulse, and peak to-peak value) and three frequency-domain features 

(root mean square frequency, frequency center, and root variance frequency) for each optimal 

subband. The feature pool dimensionality is NHS × N1-SEC× NF, where NHS is the number of 

gearbox health states (number of classes) that need to be classified (4 classes in this study: 

healthy, pinion tooth cut 10%, pinion tooth cut 30%, and pinion tooth cut 50%), N1-SEC is the 

number of 1-s samples of each class (300 in this study), and NF defines the number of features 

(21 in this study). Therefore, groups of 21-feature vectors were considered as the validating 

input dataset for our proposed intelligent fault-detection method based on a multiclass SVM. 

Table 2.3. Definition of statistical features in the time and frequency domains 

Features Equations Features Equations Features Equations 

Peak Max(|s|) 
Shape 

factor 

𝑠𝑟𝑚𝑠

1
𝑁

∑ |𝑠𝑛|𝑁
𝑛=1

 
Mean (𝑠) 

1

𝑁
∑ 𝑠𝑛

𝑁

𝑛=1

 

Root 

mean 

square(srms

) 

√
1

𝑁
∑ 𝑠𝑛

2

𝑁

𝑛=1

 Entropy − ∑ 𝑝𝑛

𝑁

𝑛=1

. 𝑙𝑜𝑔2(𝑝𝑛) 

Shape factor 

square mean 

root 

𝑠𝑠𝑟𝑚

1
𝑁

∑ |𝑠𝑛|𝑁
𝑛=1

 

Kurtosis 
1

𝑁
∑(

𝑠𝑛 − 𝑠

𝜎
)

𝑁

𝑛=1

 Skewness 
1

𝑁
∑(

𝑠𝑛 − 𝑠

𝜎
)3

𝑁

𝑛=1

 Margin factor 
max (𝑠)

𝑠𝑠𝑚𝑟
 

Crest 

factor 

Max(|s|)

𝑠𝑟𝑚𝑠
 

 

Square 

mean root 

(ssmr) 
(

1

𝑁
∑ √|𝑠𝑛|

𝑁

𝑛=1

)2 Peak to peak max(s)-min(s) 

Clearance 

factor 

Max(|s|)

𝑠𝑠𝑚𝑟
 

 

5th 

normalize

d 

moment 

1

𝑁
∑(

𝑠𝑛 − 𝑠

𝜎
)5

𝑁

𝑛=1

 Kurtosis factor 
𝐾𝑢𝑟𝑡𝑜𝑟𝑖𝑠

𝑠𝑟𝑚𝑠
4  

Impulse 

factor 

Max(|s|)

1
𝑁

∑ |𝑠𝑛|𝑁
𝑛=1

 

6th 

normalize

d 

moment 

1

𝑁
∑(

𝑠𝑛 − 𝑠

𝜎
)6

𝑁

𝑛=1

 
Energy of 

signal 
∑ 𝑠𝑛

2

𝑁

𝑛=1

 

Frequency 

center 

(FC) 

1

𝑁𝑓
∑ 𝑆(𝑓)

𝑁𝑓

𝑓

 

Root 

mean  

square 

frequency 

√
1

𝑁𝑓
∑ 𝑆(𝑓)2

𝑁𝑓

𝑓

 
Root variance 

frequency 
√

1

𝑁𝑓
∑(𝑆(𝑓) − 𝐹𝐶)2

𝑁𝑓

𝑓

 

where s is an input signal (i.e., optimized subband), N is the total number of samples, S(f) is the magnitude 

response of the fast Fourier transform of the input signal s, 𝑁𝑓 is total number of frequency bins, 𝜎 =
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√
1

𝑁
∑ (𝑠𝑛 − 𝑠)2𝑁

𝑛=1 , and  𝑝𝑛 =  
𝑠𝑛

2

∑ 𝑠𝑛
2𝑁

𝑛=1
 

2.3.3 Gearbox fault classification using a multiclass SVM classifier 

The principle operation of an SVM is based on the statistical learning theory of Vapnik [118] 

and quadratic programming [119]. It was actually designed to classify binary datasets by 

finding the optimal plane, generally called the hyperplane, with the largest margin-gap 

separating it from both binary classes.  

Let {(xm, ym), m=1, 2, ..., M} be the given training dataset with M samples, where each 

sample data   xm, є ℝ𝐷, ℝ𝐷 is a D-dimensional feature vector, and ym (ym ∈ {-1, +1}) are the 

class labels. The SVM is used to find a set of linearly separable hyperplanes between two 

classes and maintain the maximum distance (called the margin) from both of them. The 

hyperplane, denoted as w, is determined as the maximized width of the margin and the 

minimized structural risk, given by 

                      (w, b) =  argmin
w,b

1

2
wTw + C ∑ ξm

M
m=1 ,                                                    (2.21) 

subject to:          ym(wTψ(xm)  + b) ≥  1 −  ξm, ∀m = 1,2,.., M; 

                                    - ξm ≤  0, ∀m = 1,2,.., M  

Here, b is bias, C is the trade-off parameter, ξ = {ξ1, ξ2, … , ξN} is the set of slack variables, 

and ψ(.) is a feature vector in the expanded feature space. Equation (2.21) can be solved by 

applying the Lagrange duality solution [117] as shown below: 

        argmax
α

w(α) =  ∑ αm
M
m=1 −  

1

2
∑ ∑ αmαkymykψT(xm)ψ(xk)M

k=1
M
m=1                  (2.22) 

subject to:  ∑ αm
M
m=1 ym =  0, 0 ≤ bm ≤  C,  ∀m = 1,2,…, M 

where, αm and αk are Lagrange multipliers, xm and xk are two input training vectors, and  

𝐾(xm, xk) = ψT(xm)ψ(xk) is a kernel function used to map the input data space into a higher-

dimensional feature space. Several kernel functions, such as linear, polynomial, Gaussian, 

radial basis, and sigmoid functions, can be used in SVM classification methods. Countless 
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classification applications have more than two classes in their datasets and thus require a 

solution beyond the binary SVM just described. Multiclass SVMs have been developed to 

classify datasets of N different classes (N>2), and they use one of three structures: one-

against-one, one-against-all, and hierarchical. Among those structures, OAOMCSVM 

requires more classifiers than the others, but it also has the most reliable classification 

accuracy [118]. Therefore, we use OAOMCSVM, illustrated in Figure 2.11, in the 

methodology proposed in this paper. 

 

Figure 2.11. The classification methodology of OAOMCSVM 

 

2.4 Experimental Results   

To verify the advantage of the ANR-GRS module in the proposed methodology, we 

implemented experiments in two technological zones, signal processing and features dataset 

classification, and compared our results with those from conventional methodologies.  
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2.4.1 Signal Processing Experimental Results  

The 1-s vibration signals acquired using the experimental testbed described above contained 

the phase and amplitude modulation signals bearing information about the health states of a 

gearbox. To investigate the effectiveness of the proposed noise reduction technique, the 

experimental dataset was collected under various shaft rotation speeds that are equal to 300, 

600, 900, and 1200 RPM, respectively. The vibration signals output from the accelerometer 

are analog, so they were digitized with a high holding sample frequency of 65536 Hz to gather 

as much information (and noise) as possible on the wideband PCI-based data acquisition board 

(Table 1). Each 1-s digital vibration signal was down-sampled three times, incorporating a 

low-pass filter for antialiasing to output a digital vibration signal realistically compatible with 

the working range frequency of the accelerometer (0–10 kHz, Table 1). Then, the vibration 

signal was input into the ANR-GRS module (Figure 2.5). The shaft rotation speed (RPM), 

measured by the displacement transducer, was observed by the ANR-GRS module according 

to appropriate vibration signal data to generate the Gaussian reference signal. The optimal 

subbands were the output of the ANR-GRS module. 

To demonstrate the superiority of the ANR-GRS technique, we compared its optimized 

subbands with the outputs of other signal processing approaches for noise reduction: The 

Hilbert transform (HT), window bandpass filter (WBF), and wavelet transform with optimal 

subband-based maximum kurtosis (WTK). We tested those approaches by replacing the ANR-

GRS module with them. Figure 2.12 illustrates the frequency spectra compared with the input 

vibration signal. Figure 2.12 shows the output of a low-pass filter that received a 1-s vibration 

sample with 900RPM (15Hz) of fault type 2 (meshing frequency, fM = P.RPM = 25.15 = 

375 Hz and sideband gear frequency, fG=P.RPM/G=9.87 Hz, shown as lpf(n) in Figure 

2.5 and labeled as the OutLPF signal in Figure 2.12a). The output signals from the noise-

reduction modules are shown in Figure 2.12b (OutHT signal), Figure 2.12c (OutWBF 

signal), Figure 2.12d (OutWTK signal), and Figure 2.13, the proposed ANR-GRS (OptANR 

signal). The three conventional methods (HT, WBF, WTK) changed the outLPF signal into 

different shapes and types (the outLPF signal is an amplitude and phase modulation signal) 

regardless of the fault information (meshing frequency and its harmonics and sideband gear 

frequencies). HT exalted the area of the low-frequency components, whereas WTK fortified 
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the high-frequency components in the frequency spectrum (Figure 2.12b,d). WBF was better 

than the HT and WTK methods because it filtered the noise in some of the meshing frequency 

harmonics and sideband gear frequencies, but it also reduced or removed significantly 

informative frequency components (Figure 2.12c). The outANR signal (Figure 2.13), the 

output signal from the ANR-GRS module proposed here, fulfilled the needs of signal 

processing: reducing the noise components and preserving the original informative 

components. It made the vibration signal from the gearbox “cleaner” (lowered the noise) and 

approached the characteristics of the gearbox vibrations signal presented in Section 2.2.1. This 

comparison verifies that our accurate is a suitable technique for reducing the noise in gearbox 

vibration signals and returning an honest reflection of the health states of a gearbox along an 

electronic signal path. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.12. The frequency spectrum analysis for the state-of-the-art methodologies:(a) the input 

signal, (b) the output signal from the Hilbert transform module, (c) the output signal from the window 

bandpass filter module, and (d) the output signal from the wavelet transform WTK module 
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Figure 2.13. Frequency spectrum analysis of the input and output signal of the ANR-GRS module. 

2.4.2 Classification results  

The classification performance of the proposed methodology is evaluated in two experiments. 

At the beginning, the feature sets of the dimensions 4 × 300 × 21 (300 samples from each of 

four health states, as shown in Table 2.2) for each speed (in this experiment, 300 RPM, 600 

RPM, 900 RPM, and 1200 RPM) were selected. Then, in the first experiment, the dataset is 

created by merging the data of four available health states under different rotating speeds 

resulting in the new feature set of the dimensionality 4800 × 21. This dataset was then 

randomly divided into a train and a test sets at ratio 8:2 for training and testing OAOMCSVM 

classifier and general evaluation of the proposed fault diagnosis methodology. 

Furthermore, to prove the robustness of the proposed ANR-GRS technique, the second 

experiment is performed where the classifier is trained on data (i.e., feature sets) 

corresponding to single rotating speed and tested by data instances collected under other 

speeds. Specifically, feature set for a single rotating speed was used as a training set (for 

instance, feature set corresponding to 300 RPM with the dimensionality of 4 × 300 × 21), and 

the feature sets corresponding to two other speeds were used for testing (for instance, feature 



 

  

 
Chapter 2: A Reliable Fault Diagnosis Method for a Gearbox System with Varying Rotational Speeds 

 

49 

 

set corresponding to two other speeds 600 RPM and 900 RPM with the dimensionality of 4 × 

600 × 21). 

Those processes were run four times. To construct the training model for classification, k-fold 

cross validation (k-cv) was used to estimate the accuracy of the generalized classification 

[125]. In k-cv, the set of samples in the feature vector is split randomly into k mutual folds 

(k=10 in this study), denoted as C1, C2,…, Ck. The classification OAOMCSVM operates on 

k-times of the accuracy estimation. Some folds {Cj } (a random subset from k folds) are used 

as a training set, and the rest are used as a validation set and alternative iteration k times. More 

specifically, for each speed, 300 feature vectors for each health state in the training set were 

partitioned into ten folds (each fold containing 30 randomly chosen feature vectors (30x21) 

for each health state); 9 of those folds were used for training, and the 1 remaining fold was 

used for validation. That process was repeated 10 times until all folds had been used as the 

validation set. The final measure of performance in the training model is the average value of 

the accuracies attained in each fold. These data are then used as the testing dataset (which was 

not used at all in the training process) to verify the OAOMCSVM method and provide the 

final classification result.  

We also used the OAOMCSVM classification method to classify the feature pool 

configuration datasets extracted from the comparison signal processing methodologies: the 

raw vibration signal (lowpass filter output signal) extraction (methodology I), HT, 

(methodology II), WBF (methodology III), WTK (methodology IV), and the IMFs and 

residuals from the EMD (methodology V). The implementation of those methodologies for 

achieving the classification result for the four health states complied strictly with the 

conditions used with input from the ANR-GRS module just described. To estimate the 

classification result between methodologies (the proposed method and others), all twenty-one 

features of the vibration signal were used as input feature vectors for the OAOMCSVM 

module to ensure that the most informative features for and from each methodology were used 

fairly for the classification. The classification results of the state-of-the-art methodologies and 

the proposed ANR-GRS methodology obtained during two experiments are shown in Table 

2.4 and Table 2.5 and Figure 2.14 to visualize the results tabulated in Table 2.5. Those 

classification accuracies were computed as follows: 
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                                      Caccuracy =
∑ NTPL

Nsamples
. 100%                                                      (2.23) 

where L is the number of categories (L = 4 as four health states), NTP is the number of true 

positives (the number of fault samples in category i that are correctly classified as class i), and 

Nsamples is the total number of samples used to estimate the performance of the proposed 

methodology.  

 

Figure 2.14. The accuracy of each class and the average accuracy of the state-of-the-art 

methodologies and the proposed ANR-GRS methodology. 

 

Table 2.4 Classification results for state-of-the-art methodologies and the proposed ANR-GRS 

methodology by a combination dataset of different speeds. 

Methodology 

OAOMCSVM 

(4800 samples) 
Accuracy (%) 

Training Set 

(80%) 

Test Set 

(20%) 
Healthy 

Fault 

Type 1 

Fault 

Type 2 

Fault 

Type 3 

Overall 

(%) 

I 3840 960 59 73 69 75 69.0 

II 3840 960 84 80 67 83 78.30 

III 3840 960 92 89 76 83 84.6 

IV 3840 960 85 87 58 74 73.10 

V 3840 960 92 89 88 94 90.80 

ANR-GRS 3840 960 100 99 99 100 99.70 
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Table 2.5. Classification results for the state-of-the-art methodologies and the proposed ANR-GRS 

methodology by observation of separated speed dataset. 

Metho-

dology 

OAOMCSVM (10-fold CV) Accuracy (%) 

Training set 

(300 

samples) 

Test set 

(600 samples) 

Healthy Fault 

type 1 

Fault 

type 2 

Fault 

type 3 

Overall 

(%) 

I 300 RPM 600RPM, 900 RPM 53 78 69 52 63 

600 RPM 900RPM, 1200 RPM 74 47 53 80 63.5 

900 RPM 600RPM, 1200 RPM 54 46 64 81 61.25 

1200 RPM 300RPM, 600 RPM 53 53 68 77 62.75 

Overall by health states 58.5 56 63.5 72.5 62.63 

II 300 RPM 600RPM, 900 RPM 51 99 63 85 74.5 

600 RPM 900RPM, 1200 RPM 75 67 64 72 69.5 

900 RPM 600RPM, 1200 RPM 75 48 70 83 69 

1200 RPM 300RPM, 600 RPM 74 62 74 84 73.5 

Overall by health states 68.75 69 67.75 81 71.63 

III 300 RPM 600RPM, 900 RPM 75 58 69 93 73.75 

600 RPM 900RPM, 1200 RPM 74 70 80 84 77 

900 RPM 600RPM, 1200 RPM 70 49 72 63 63.5 

1200 RPM 300RPM, 600 RPM 83 53 72 66 68.5 

Overall by health states 75.5 57.5 73.25 76.5 70.69 

IV 300 RPM 600RPM, 900 RPM 64 74 87 63 72 

600 RPM 900RPM, 1200 RPM 82 49 72 64 66.75 

900 RPM 600RPM, 1200 RPM 63 47 69 76 63.75 

1200 RPM 300RPM, 600 RPM 63 49 70 67 62.25 

Overall by health states 68 54.75 74.5 67.5 66.19 

V 300 RPM 600RPM, 900 RPM 77 94 72 89 83 

600 RPM 900RPM, 1200 RPM 90 82 91 82 86.25 

900 RPM 600RPM, 1200 RPM 94 80 69 85 82 

1200 RPM 300RPM, 600 RPM 98 65 69 83 78.75 

Overall by health states 89.75 80.25 75.25 84.75 82.5 

ANR-

GRS 

300 RPM 600RPM, 900 RPM 100 95 98 100 98.25 

600 RPM 900RPM, 1200 RPM 98 99 99 100 99 

900 RPM 600RPM, 1200 RPM 98 99 97 99 98.25 

1200 RPM 300RPM, 600 RPM 99 98 95 99 97.75 

Overall by health states 98.75 97.75 97.25 99.5 98.31 

 

Table 2.4 illustrates that the proposed technique significantly outperforms its counterparts 

when it is trained on the data instances corresponding to all available speeds and achieving 

the highest accuracy of 99.7%. 

Table 2.5 demonstrates that the proposed approach using ANR-GRS also yielded the highest 

average classification accuracies (98.31%) in comparison with the other five state-of-the-art 



 

  

 
Chapter 2: A Reliable Fault Diagnosis Method for a Gearbox System with Varying Rotational Speeds 

 

52 

 

signal processing methodologies when it is trained and validated on datasets corresponding to 

separate rotating speeds. 

The methodology I extracted the feature vectors of all four speeds for classification by the 

OAMCSVM directly from the raw vibration signal (OutLPF signal), in which non-linear and 

non-stationary signals drown out the informative signal. Accordingly, those results are 

distributed chaotically among the four classes, producing the lowest accuracy among the 6 

methodologies (62.63%). For methodologies II, III, and IV, the vibration signals change with 

the different characteristics of the gearbox vibration signal (its amplitude and phase 

modulation signal), so their classification accuracy is also low, around 70%. Methodology V 

(the EMD technique) is outstanding in comparison with the first four approaches (82.5%) 

because it extracts IMFs, which contain fault-related information to better discriminate 

between classes. However, IMFs can be mistakenly extracted from noise components, which 

damaged the accuracy compared with the ANR-GRS technique by around 15%.   

In addition, as a quantitative evaluation, we present the space distribution in a 3-dimensional 

visualization (Figure 2.15) of samples belonging to four classes based on some features 

extracted from the outLPF signal and the outANRsignal (signals before and after using the 

ANR-GRS technique, respectively). The features of the outANR signal show better separation 

and clustering for different health states of the gearbox fault diagnosis experimental scheme. 

Samples from the same class are more closely clustered, whereas samples from different 

classes are discriminated and easy to classify. On the contrary, before using the ANR-GRS, 

the features of different classes overlap, making it difficult to distinguish the fault classes. 
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(a) 

 

(b) 

Figure 2.15. Three-dimensional visualization of features extracted from (a) the input signal of the 

ANR-GRS module and (b) the output signal of the ANR-GRS module. 

Moreover, confusion matrixes are shown in Figure 2.16 to demonstrate the reliability of the 

varying-speed gearbox fault diagnosis methodology using the ANR-GRS module for effective 

noise reduction. Using real-time tracking of the rotation speed (RPM) of a gearbox system, 

the ANR-GRS generated speed-related function signals for real-time tracking of speed-

dependent noise components, and the optimized output signal was unaffected by speed during 

classification. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.16. Confusion matrixes for four classification cases according to the speed dataset input for 

training: (a) 300 RPM, (b) 600 RPM, (c) 900 RPM, (d) 1200 RPM. 

 

2.5 Conclusion 

In this study we propose a reliable fault diagnosis methodology for gearbox systems under 

varying speed conditions. It integrates adaptive noise control to significantly reduce noise with 
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machine learning classification to classify the fault states of the gearboxes. First, we created 

a set of Gaussian reference signals that are a function of the rotation speed and consist of many 

noise components such as white noise and band noise that are correlated to the parasitic noise 

in the vibration signals and independent of the intrinsic informative components. Then, we 

applied those GRSs to an adaptive noise control technique that produced an optimal sub-band 

as output for each 1-s vibration sample. The most optimal sub-bands were then used in the 

feature pool configuration to extract feature vectors, and an OAOMCSVM was used for 

classification. The experimental results indicated that the proposed gearbox fault diagnosis 

methodology achieved the highest classification accuracies in both experiments that are equal 

to 99.7% and 98.31% while significantly outperforming the counterpart state-of-the-art 

methodologies used for the comparison. In future research, we will continue improving the 

robustness of the proposed methodology and investigate it’s applicability to the real-time fault 

diagnosis scenarios.
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Chapter 3 Fault Identification of Multi-Level Gear Defects using Adaptive Noise Control and a Generic 

algorithm 

Chapter 3 

Fault Identification of Multi-Level Gear Defects using 

Adaptive Noise Control and a Genetic Algorithm 

 

3.1 Introduction  

Gearbox fault diagnosis has been studied excessively and by analyzing its vibration 

characteristics it is possible to detect the hidden fault-related informative components [82][3]. 

Vibration and acoustic signals are the two principal techniques for sensing the 

vibration characteristic of a gearbox. However, the vibration signal is most frequently 

used due to its easy data acquisition setup [84]. Nevertheless, there are several parasitic 

noise components observed in the vibration signal that appear from various sources. The 

most common causes of noise are the resonance processes ongoing in the shaft, gears, 

and other mechanical components as well as the bias hidden in data collection systems [85]. 

These factors cause difficulties when attempting to extract fault-related components. 

To overcome these issues, various techniques addressing the vibration signal processing 

and feature engineering areas have been proposed by researchers to improve the fault 

diagnosis capabilities of existing techniques.   

Regarding signal processing, many studies focusing on approaches that analyze the 

signal in multi-domain have been introduced for gearbox fault diagnosis. For instance, 

those techniques include Hilbert transform with bandpass filters for envelope analysis [91], 

wavelet transform-based decomposition [99], Hilbert-Huang transforms using time adaptive 

empirical mode decomposition (EMD) for decomposing vibration signals into 

intrinsic mode functions (IMF) [104], and a combined technique that utilizes wavelet 

transform and EMD [110]. Those methods could reduce the signal noise to some degree, but 
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this noise reduction led to degraded magnitudes of the sideband and meshing frequency 

harmonics distorting the components of vibration signals related to gear faults. Due 

to this drawback, these methods are likely inapplicable for differentiating fault types 

of multilevel gear tooth cut (MGTC) defects. Therefore, in this paper, we apply the 

adaptive noise control (ANC) for denoising the vibration signals and preserving the 

original gearbox fault-related components in it [126]. 

Regarding the feature selection, this procedure from the feature engineering area is 

mainly used to select the most discriminative feature parameters from the feature set. 

In general, the feature set extracted from the vibration signals consists of both useful 

and low-quality features that can affect the classification accuracy of the classifier. To 

address this problem and remove the redundant features, a searching procedure for 

selecting the most distinguishable fault features (MDFF) is needed. In practice, several 

selection algorithms such as: independent component analysis (ICA) [127], principal 

component analysis (PCA) [128], a linear discriminant analysis (LDA) [129], and a genetic 

algorithm (GA) are used for selecting high-quality feature. The main performance of 

these approaches [127]–[129] is to find the important components (independent, principal 

or linear dependence) in the feature space by applying the statistical process or the 

statistical functions, it is useful when the fault-related informative components are in 

the relation with the space of important components, otherwise, the output can be lost 

fault useful components. GA was constructed based on the principles of natural generic 

systems and popularly used to output the result of high effectiveness [100], thence GA 

draws the attention of the researchers. In this paper, a GA implements a heuristic search 

algorithm on the original feature pool to select the most relevant and discriminative 

features related to MGTC defects, so the dimensions of feature vectors can be reduced 

which complements the accuracy of the fault classification process. In other words, 

GA accommodates a balance between the complexity of computation and the optimal 

selection. Finally, the MDFF subsets delivered by GA are inputted to the k-nearest 

neighbor (k-NN) classification algorithm to discriminate the health states of a gearbox 

system. 

The remainder of this paper is organized as follows: Sect. 2 provides a problem 
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statement of vibration characteristic of a healthy and a defect gearbox. The detail of 

the proposed methodology is presented in Sect. 3. Section 4 presents the experimental 

results and discussion, and the concluding remarks are provided in Sect. 5. 

3.2 Problem Statements 

In this paper, the operating faults of a one-stage transmission gearbox, which encompass 

a pinion wheel (on drive side) and a gear wheel (on non-drive side) are considered. For  the 

healthy gear the operation of which generates a linear and periodical vibration signal [81], the 

vibration signal 𝑥𝑃(𝑡) under constant load speed is constructed by using the 

formula below [121], and the example of frequency spectrum illustrated in Figure 3.1a:   

 

where, 𝜉𝑖 and 𝑋𝑖 are the phase and amplitude of the i-th meshing frequency harmonics (𝑖 =

 1, … , 𝑁); 𝑓𝑚 is the meshing frequency (𝑓𝑚 =  𝑁𝑃. 𝑓𝑝, where 𝑓𝑝 is a pinion rotational 

frequency, 𝑁𝑃 is the number of teeth mounted on the pinion wheel; or 𝑓𝑚 =  𝑁𝐺 . 𝑓𝑔 where 𝑓𝑔 

is a gear rotational frequency, 𝑁𝐺  is the number of teeth mounted on the gear wheel); 𝑀 is the 

total number of meshing frequency harmonics in the frequency range of a vibration signal.   

In the case of faulty gear, the vibration signal, which is directly related to rotating 

acceleration, is non-linear and non-stationary (i.e. amplitude and phase-modulated signal) 

[14]. The Eq. (3.2) represents the vibration signal of the defected gear and its spectrum is 

depicted in Figure 3.1b: 

𝑥𝑑(𝑡) = ∑ 𝑋𝑙(1 + 𝑠𝑙(t)) cos(2π𝑙𝑓𝑚t + 𝜉𝑙 + 𝜓𝑙(t)) .𝑀
𝑙=0                      (3.2)  

Here: 𝑠𝑙(t) = ∑ 𝑆𝑙𝑘cos (2𝜋𝑘𝑓𝑔𝑡 + Ω𝑙𝑘)𝑀
𝑘=0 ; 𝜓𝑙(t) = ∑ 𝛷𝑙𝑘cos (2𝜋𝑘𝑓𝑔𝑡 + 𝜎𝑙𝑘)𝑀

𝑘=0 , 𝑆𝑙𝑘 and 

𝛷𝑙𝑘 are the amplitudes and Ω𝑙𝑘, 𝜎𝑙𝑘 are the phases of the k-th sideband frequency in the 

modulated signal around 𝑙 meshing harmonic. 

𝑥𝑃(𝑡) = ∑ 𝑋𝑖cos(2πi𝑓𝑚t + 𝜉𝑖) 𝑀
𝑖=0 ,                                 (3.1)  



 

 

 
Chapter 3: Fault Identification of Multi-Level Gear Defects using Adaptive Noise Control and a Genetic Algorithm                                                                                                          

 

59 

 

 

3.3 Proposed Method 

The proposed methodology is described in Figure 3.2. It consists of five steps that are 

represented as follows: the vibration signal collection, adaptive noise control for signal 

preprocessing, feature extraction, feature selection based on GA, and the k-NN-based 

fault classification.  

3.3.1 Adaptive Noise Control (ANC) 

This paper employed the adaptive noise reducer based Gaussian reference signal (ANRGRS) 

which was proposed by Nguyen et al. in [126] as an adaptive noise control technique. 

This technique comprises four main processing modules: a digital filter, an adaptive 

algorithm, a reference signal generation, and a Gaussian parameter optimizer. The reference 

signal generation module creates the reference signal inputting to adaptive filter 

 

(a)                                             (b) 
Figure 3.1. The example of the frequency spectra corresponding to the vibration signal of (a) a 

healthy gearbox and (b) a defected gearbox. 

 

Figure 3.2. Function block diagram of the proposed methodology. 
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by combining the adjustable Gaussian (the mean value and standard deviation value 

are adaptably tuned) and white noise signals which are mostly homologous to the band 

noise and white noise in a vibration signal, respectively. The adjustable parameters of 

a Gaussian reference signal (GRS) are the functions of the defective wheel frequency 

(𝑓𝐷𝑊, which is proportional to a shaft rotational speed). The detail description of GRS is 

presented by the Gaussian window in the Eq. 3, and the flow chart diagram in the Figure 3.3 

[126]: 

WGau(s) = ∑ e
−

(s− 𝐹𝐶)2

2σ2 
Ng

s=1  ,     (3.3) 

where σ and  𝐹𝐶  are the standard deviation and mean value of the Gaussian window (by 

linearization of the Gaussian function,  σ ≌ 0.318 ∙ 𝐹𝐶), respectively. These are the functions 

of the defective wheel frequency ( 𝐹𝐶  =  ξ ∙ 𝑓𝐷𝑊 and σ ≌ 0.318 ∙ ξ ∙ 𝑓𝐷𝑊).  Ng  =
2NT

𝑓𝑠
∙ 𝑓𝐷𝑊  

is the total number of frequency bins in a sideband segment of the gearbox vibration signal 

with NT representing the number of samples and sampling frequency 𝑓𝑠. To qualify the 

homologous condition defined in [126], the parameters of the Gaussian window are adaptively 

tuned in the following ranges:  

0.25.  fDW ≤   𝐹𝐶 ≤ 0.75. fDW,         (3.4) 

 

            𝜎 = {
0.318 ∗ ξ ∗ 𝑓𝐷𝑊                           𝑤ℎ𝑒𝑛 0.25 ≤ ξ ≤ 0.5
0.318 ∗ (1 − ξ) ∗ 𝑓𝐷𝑊                 𝑤ℎ𝑒𝑛 0.5 < ξ ≤ 0.75

 .                         (3.5) 

  

The digital filter module, which is used in the ANC, is an M-order FIR filter with the weight 

vector as w(n)≡ [w0, w1, …, wM-1]
T. The adaptive algorithm adjusts the weight vectors  based 

on the convergence condition by least mean square (LMS) of error between the vibration 

signal and each filtered GRS (the reference signal generation module creates a set of GRS 

signals by adjusting σ and  𝐹𝐶) for fetching the optimal weight vector and local optimal 

subband signal in the output. The Gaussian parameter optimizer module collects all the local 

optimal subbands where each of them corresponds to a specific GRS signal to make the set of 

optimal subbands, then it selects the optimal subband that has a minimum mean square value 

as global optimal subband termed as an optimized subband, the output of ANC. The block 
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diagram and signal processing flow are shown in Figure 3.3. 

 

3.3.2 Feature Extraction  

The optimized subband output from the ANC module represents a reduced-noise vibration 

signal which carries the intrinsic gear defective information of the MGTC faults. These 

outputs from ANC are then used to extract eighteen statistical feature parameters from the 

time and frequency domains to configure the feature pool [124]. The Table 3.1 illustrates the 

eighteen features with the specific name and calculated formulas [130]. From time-domain, 

the extracted features are as follows: peak (f1), root mean square (f2), kurtosis (f3), crest factor 

(f4), impulse factor (f5), shape factor (f6), entropy (f7), skewness (f8), square mean root (f9), 

energy of system (f10), mean (f11), shape factor of square mean root (f12), margin factor 

(f13), peak to peak (f14), kurtosis factor (f15). The features extracted from the frequency-

domain are as follows: frequency center (f16), power spectral density or frequency spectrum 

energy (f17), and root variance frequency (f18). 

 

Table 3. 1. Definition of time and frequency domain statistical features. 

Features Equations Features Equations Features Equations 

f1 Max(|s|) f6 

𝑠𝑟𝑚𝑠

1
𝑁

∑ |𝑠𝑛|𝑁
𝑛=1

 
f11 

1

𝑁
∑ 𝑠𝑛

𝑁

𝑛=1

 

 

Figure 3.3. A reference signal generation and function block diagram of the ANC module. 

 

 



 

 

 
Chapter 3: Fault Identification of Multi-Level Gear Defects using Adaptive Noise Control and a Genetic Algorithm                                                                                                          

 

62 

 

f2 √
1

𝑁
∑ 𝑠𝑛

2

𝑁

𝑛=1

 f7 − ∑ 𝑝𝑛

𝑁

𝑛=1

. 𝑙𝑜𝑔2(𝑝𝑛) f12 

𝑠𝑠𝑟𝑚

1
𝑁

∑ |𝑠𝑛|𝑁
𝑛=1

 

f3 
1

𝑁
∑(

𝑠𝑛 − 𝑠

𝜎
)

𝑁

𝑛=1

 f8 
1

𝑁
∑(

𝑠𝑛 − 𝑠

𝜎
)3

𝑁

𝑛=1

 f13 
max (𝑠)

𝑠𝑠𝑚𝑟
 

f4 

Max(|s|)

𝑠𝑟𝑚𝑠
 

 

f9 (
1

𝑁
∑ √|𝑠𝑛|

𝑁

𝑛=1

)2 f14 max(s)-min(s) 

f5 
Max(|s|)

1
𝑁

∑ |𝑠𝑛|𝑁
𝑛=1

 f10 ∑ 𝑠𝑛
2

𝑁

𝑛=1

 f15 
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠

𝑠𝑟𝑚𝑠
4  

f16 
1

𝑁𝑓
∑ 𝑆(𝑓)

𝑁𝑓

𝑓

 f17 ∑ 𝑆(𝑓)2

𝑁𝑓

𝑓

 f18 √
1

𝑁𝑓
∑(𝑆(𝑓) − 𝐹𝐶)2

𝑁𝑓

𝑓

 

here is an input signal (i.e., optimized subband), N is the total number of samples, S(f) is the magnitude response 

of the fast Fourier transform of the input signal s, 𝑁𝑓 is total number of frequency bins, 𝜎 = √
1

𝑁
∑ (𝑠𝑛 − 𝑠)2𝑁

𝑛=1 , 

and  𝑝𝑛 =  
𝑠𝑛

2

∑ 𝑠𝑛
2𝑁

𝑛=1
 

3.3.3 GA-based feature selection   

By applying the procedures from evolution theory such as selection, crossover, mutation, and 

replacement, GA detects the MDFF based on the class-wise information embedded in the 

complete feature set. The degree of class discrimination (𝐷𝑑𝑠𝑡) is defined in Eq. (3.6) for 

creating separability among observed classes. 

      𝐷𝑑𝑠𝑡 =  
𝐼𝑑𝑠𝑡

𝑊𝑑𝑠𝑡
 ,                                                      (3.6) 

where, 𝐼𝑑𝑠𝑡 is intercross classes discriminating parameter defining the distance between 

distinct classes, 𝑊𝑑𝑠𝑡 is the distance of the features inside the same class.  As the distance 

between two vectors, the Euclidian distance 𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)m
𝑖=1   is used in this 

paper. The parameter 𝐷𝑑𝑠𝑡 tends to increase with the increase of the numerator value (𝐼𝑑𝑠𝑡) 

and the decrease of the denominator. 𝐼𝑑𝑠𝑡  is calculated based on the average distance of 

specific feature vector from different classes by the formula: 

                      𝐼𝑑𝑠𝑡 =
1

𝐹.𝐶.𝑀
∑ ∑ ∑ 𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛(𝑖, 𝑗, 𝑘)m

k=1
C
j=1

F
i=1 ,                                       (3.7) 
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Equation (3.8) represents the computation of the average distance of a feature in the same 

class: 

                      𝐼𝑑𝑠𝑡 =
1

𝐹.𝑀
∑ ∑ 𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛(𝑖, 𝑗)M

j=1
F
i=1 .                                                      (3.8) 

Here, 𝐹 is the total number of features (𝐹 =  18 in this study), 𝐶 is the total number of 

categories or classes (𝐶 = 6), and 𝑀 is the number of samples of each category. 

The GA operates feature optimizing process following the flow chart shown in Figure 3.4 to 

find out the features with maximum 𝐷𝑑𝑠𝑡 to select as MDFF. 

3.3.4 Gearbox Fault Classification using k-Nearest Neighbor Algorithm (k-NN)   

In practice, the k-NN algorithm faces problems such as the increase of computational 

complexity when the high dimensional feature vectors are used as input. Thus, the GA-based 

feature selection for reducing the dimensionality of the feature set is essential before the 

application of k-NN to perform fault diagnosis of the gearbox faults. In k-NN, data samples 

are classed by plurality votes of k-nearest neighbors, which are calculated by distance 

parameters [131]. Therefore, to complete the k-NN classification process, two important 

parameters such as the number of nearest neighbors (k) and the distance metric have to be 

selected. As the distance metric, the Euclidian distance is considered in this study. The 

appropriate value of k should be selected during the training process. The parameter k could 

be identified manually or through cross-validation progress. In this paper, the value of k is 

 

Figure 3.4. The flowchart of the GA-based feature selection 
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first arbitrarily assigned at beginning of the training process, and then its value has been 

changing during the cross-validation to achieve the optimal value of k. 

3.4 Dataset, Experimental Results, and Discussion 

3.4.1 Dataset Description   

The experimental testbed for the gearbox fault diagnosis system is represented as a spur 

gearbox that consists of a pinion and gear wheels. The total number of teeth in the pinion 

wheel is 25 (𝑁𝑃 = 25) and 38 teeth (𝑁𝐺 = 38) in the gear wheel (the gearbox ratio is 1:1.52), 

respectively. The tooth failures of the gear wheel have been created by multiple levels of tooth 

cut seed fault (the total length of the tooth is 9 mm) and were termed as the fault states of the 

gearbox as follows: tooth cut 10% (D1), tooth cut 20% (D2), tooth cut 30% (D3), tooth cut 

40% (D4), tooth cut 50% (D5), and a healthy gear (P). These types of faults are depicted in 

Figure 3.5. The vibration sensor (accelerometer 622B01) was mounted at the end of the non-

drive shaft for sensing the vibration signals of the gear wheel under constant shaft rotation 

speed at 900 RPM. The analog vibration signals were digitized by using a PCI-2 data 

acquisition device with a sampling frequency of 65536 Hz. For each fault state of the gearbox, 

100 samples of 1-second length were acquired (further referred to as a 1-sec sample).   

3.4.2 Experimental Results and Discussion   

As the ANC functions for noise reduction, white noise and band noise integrated into the 1-

sec vibration signal samples are used by accessing the spaces between two consecutive 

sideband frequencies. Then the ANC performs tuning of the model coefficients and the 

parameters of the Gaussian reference signal to simultaneously remove the noise from the 

vibration signal and preserve the sideband and meshing frequency harmonics at their original 

magnitudes. Figure 3.6a presents the effect of applying the ANC technique to one 1-sec 

 

Figure 3.5. The description of the MGTC defects in a gear wheel 
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sample of fault state D3. It can be seen that the noise zones in the segment of the frequency 

spectrum (the green circles) are removed as the multitude in the same segment of the 

frequency spectrum of optimized subband output from ANC. On contrary, the magnitudes of 

informative components such as sideband frequencies and the meshing frequency (the black 

circles) are similar between the input vibration signal and output subband of the ANC. 

The GA -based feature selection operates through the selection, crossover, and mutation 

operators with respect to the finest function of the maximum degree of distance evaluated for 

each feature in the extracted feature pool. In this experiment, GA is applied during 150 

generations to achieve the optimal subset of two MDFF (f9, f17). f9 (square mean root) is a 

popular feature in the time domain, f17 is a power spectral density or frequency spectrum 

energy. The distribution zones of 6 MGTC fault states are sketched in Figure 3.6b by a 2D 

plot with (f9, f17). The subsets of MDFF selected by GA are used as input data of the k-NN 

classifier to classify the data into their respective categories (i.e., P, D1, D2, D3, D4, D5). By 

plotting distribution areas of samples in Figure 3.6b, we can see that samples of the same 

category are close to each other, whereas samples of different categories are separated in 

feature space. 

The optimizing process for tuning k value of the k-NN classifier is implemented multiple 

times with cross-validation for obtaining the determination boundaries and evaluate the 

effectiveness of k-NN performance. After optimizing the procedure, the optimal value of k 

has been assigned as 8. The classification accuracy (Aaccuracy) for assessing the fault diagnosis 

performance has been calculated as follows: 

Aaccuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
. 100%             (3.9) 

By using the optimal k value and GA-based selected MDFF subsets, the achieved an average 

classification accuracy of the proposed methodology was equal to 97.78%. The confusion 

matrix obtained by the proposed methodology is depicted in Figure 3.6c. From this figure it 

can be seen that the classification result for each fault type of MGTC faults was achieved as 

follows: P (98%), D1 (100%), D2 (100%), D3 (94%), D4 (100%), D5 (94%). From the 

experimental results, it can be concluded that the pro-posed model is capable of performing 
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the diagnosis of MGTC gearbox faults at high classification accuracy. 

To validate the effectiveness of the proposed method, the comparative experiments are 

conducted with other conventional feature extraction and classification approaches such as 

combined feature extraction [126] (further referred to as approach 1), ICA and k-NN (further 

referred to as approach 2), PCA and k-NN (further referred to as approach 3), and LDA 

(further referred to as approach 4). These comparisons are implemented by replacing the GA 

module of the fault identification system for multi-level gear defects in this paper with another 

one (ICA, PCA, LDA) for selecting the optimal feature space to attain comparing approaches 

(approach 2, 3, 4). The detail of the comparative results is demonstrated in Table 3.2. It is 

observed that the approach (GA+k-NN) achieves the highest accuracy (97.78%) 

outperforming the other state-of-the-art approaches. The improvements of the classification 

result of the proposed method are 14.26%, 26.37%, 23.51%, and 29.94% in comparison with 

four referenced approaches: 1, 2, 3, and 4, respectively. It is verified that the combined  
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application of ANC and GA can construct an effective model for fault identification of the 

MGTC gearbox system. 

Table 3.2. The fault classification results of the proposed and referenced techniques. 

The Approaches Average Classification Accuracy (%) The Improvement 

(%) 

Approach 1 83.52 14.26 

Approach 2 71.21 26.57 

Approach 3 74.27 23.51 

Approach 4 67.84 29.94 

Proposed Approach 97.78 - 

 

Figure 3.6. The effectiveness of ANC, GA, and classification result: (a) the comparison of vibration 

signal frequency spectrum between input and output of ANC, (b) 2-D visualization of data samples 

of MGTC faults based on the MDFF, (c) confusion matrix of the k-NN classification result. 
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3.5 Conclusions 

In this paper, we present the new sensitive gearbox fault identification system for diagnosing 

MGTC faults with the application of ANC and GA. In combination with ANC, the proposed 

approach is capable of efficiently removing numerous noise components and simultaneously 

preserving the intrinsic fault-related components in gearbox vibration signals. The output of 

GA-based feature selection (MDFF subsets) contains the most discriminative feature 

parameters that make the samples of each health state being clearly separated in the 2D feature 

space graph and allow for the application of a simple classification method such as k-NN for 

discriminating fault categories into the respective classes. The proposed method in this paper 

yielded the highest average fault classification accuracy result of 97.78% in comparison with 

conventional approaches. It provides an accuracy improvement of at least 14.26% higher than 

the referenced techniques. In the future, the proposed method will be investigated for 

identifying defects of a MGTC gearbox system under varying speed conditions.
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Chapter 4 Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an 

Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-based Deep 

Neural Network 

Chapter 4 

Construction of a Sensitive and Speed Invariant Gearbox 

Fault Diagnosis Model Using an Incorporated Utilizing 

Adaptive Noise Control and a Stacked Sparse 

Autoencoder-based Deep Neural Network 

 

4.1 Introduction 

Different types of gearboxes are used in various equipment such as vehicles, industrial 

machinery, and electrical generators. However, they are prone to defects due to harsh and 

continuous working conditions. Gear defects can lead to damage of the gearbox sys-tem and 

become a root cause of damaging the whole mechanical device, which may lead to serious 

economic losses and the threat of personal safety. Hence, the condition monitoring of 

gearboxes is essential, and it would be beneficial if the gear defects in gearboxes can be 

detected in the early stages. The general non-destructive method for condition monitoring of 

gearboxes is based on sensing the vibration characteristics which contain the fault-related 

components [80]. The complex sideband frequencies are distributed around the meshing 

frequency and its harmonics, which are considered as intrinsic components in the vibration 

signals and are used as informative components to identify gear defects [3], [82]. From the 

standpoint of signal processing, a gearbox vibration signal is an amplitude and phase-

modulated signal that occurs as many frequency tones centered by carrier frequencies are lined 

up along the whole range of the frequency spectrum. Each set of frequency tones contains a 

center frequency, as a meshing frequency or its harmonics, and sideband frequencies that are 

a function of the gear frequencies or specific oscillation frequencies distributed around the 
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center frequencies. For diagnosing gearbox systems, it is essential to decompose the intrinsic 

fault-related components, and signal analysis is the most popular technique for these purposes. 

For capturing the vibration characteristics, accelerometers for measuring vibration signals are 

more frequently employed than acoustic emission sensors due to their relatively easy 

installation [83], [84]. Notwithstanding, the vibration signals collected under variable 

rotational speeds in the gearbox are non-linear and non-stationary signals [132] which 

accommodate noise caused by the interaction of multiple related systems such as the 

resonance of shafts, gears, and other mechanical components, electrical and electronic control 

systems, data collection systems, and the environment [85]. These noise components are 

random and cause deterioration of the fault-relative characteristics in vibration signals, 

especially for the vibration signals of MTCG gearboxes (i.e., the noise frequency components 

might appear randomly with random amplitudes in the whole range of the frequency spectrum 

of a vibration signal and can cover or deform the original meshing frequency components, its 

harmonics, and sideband frequencies which are considered as fault signatures). For that 

reason, the appropriately selected signal processing techniques for reducing noise components 

and filtering out the informative components are of a high importance.  

Recently, many digital signal processing techniques have been developed by re-searchers that 

can be applied in different domains (e.g., time domain, frequency domain, and time-frequency 

domain) by employing a variety of advanced approaches such as Fourier transforms, short-

time Fourier transforms, Hilbert transforms, wavelet transforms, Hilbert-Huang transform-

based empirical mode decomposition [87], [91], [99]–[102], [104], and the combined 

techniques [105]–[107]. The key methods which were utilized in those methodologies for dis-

covering the fault-related components in the vibration signals are as follows: window filtering, 

thresholding, wavelet excitation, and intrinsic mode function extraction. These methods 

demonstrated their ability to reduce the noise at some ratio; however, the fault-informative 

components have been distorted as well. Due to these issues, these methods might not perform 

well in processing the signals containing MTCG faults to prepare the differentiable data for 

fault classification. Hence, in this paper, the ANC is utilized for processing the vibration 

signals to reduce the noise presence and preserve the fault-related components [126] to 

overcome the disadvantages of the previously introduced signal analysis models. 
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Considering the feature engineering and classification processes, the traditional gearbox fault 

diagnosis methods include feature pool configuration (feature extraction and feature selection) 

and fault classification by machine learning algorithms such as k-nearest neighbors (k-NN), 

support vector machines (SVMs), and artificial intelligence networks (ANNs) [66], [67], 

[133], [134]. The main idea of those methods is to perform fault classification using the 

features which are statistical parameters extracted and selected from vibration signals in the 

time and frequency domains [58]. Feature extraction is an interfering process that requires a 

series of experiments for discovering fault-related discriminating feature parameters and then, 

based on their discriminating capabilities, the appropriated feature selection algorithms are 

applied for reducing the dimensionality of the constructed feature pool and selecting the most 

discriminative features for the classification process. These feature pool configuration 

processes can precede the difficultness of analyzing the vibration signals in each fault case of 

an MTCG gearbox system for extracting discriminative parameters. Moreover, these 

approaches can efficiently classify gear faults of a gear-box system under invariant shaft 

speed, but their performance degrades when applied to the datasets collected under varying 

shaft speeds. These issues can be addressed by creating a network that can efficiently 

determine tiny different components of non-stationary vibration signals of an MTCG in a 

gearbox system operating under varying speeds. The deep learning technique has dawned as 

an advantageous tool that has been applied in the fields of natural language processing, 

computer vision, image processing, and pattern recognition, and has succeeded in 

discriminating barely distinguishable components in categories through multiple non-linear 

transformations [70], [71], [135]. In other words, deep neural networks (DNNs) are suitable 

for use in the construction of sensitive and non-linear models. Instead of manually extracting 

the features and selecting the most separable ones, DNNs can be efficiently used for 

unsupervised hierarchical feature extraction and feature learning [136]. Thus, this study 

employs a stacked sparse autoencoder (SSA)-based DNN for identifying the fault types of an 

MTCG gearbox system based on the vibration signals with reduced noise components 

delivered by the ANC module. 

The major contributions of this study are summarized as follows: (1) an adaptive noise control 

approach is designed for de-noising and preserving fault-related elements of raw vibration 

signals to obtain the optimized subbands on its outputs which mostly contain the essential 
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informative components of vibration signals, and (2) the SSA-DNN utilizes the optimized 

subbands for identifying the MTCG defect types. The efficiency of the proposed model is 

evaluated by applying it to the vibration dataset collected from the MTCG gearbox that 

contains signals collected under six levels of tooth cut fault, such as 6.6%, 10%, 20%, 30%, 

40%, and 50% cut as well as signals collected under normal operating conditions. The 

experimental dataset was collected under variable shaft rotating speeds, such as 300 RPM, 

600 RPM, 900 RPM, and 1200 RPM, respectively. The results demonstrate the improved fault 

classification performance in comparison with the existing models.  

The rest of this paper is organized as follows. Section 2 presents a gearbox experimental 

dataset along with the characteristics of vibration for normal and defective gears. The detail 

of the proposed method is provided in Section 3. Section 4 describes the experiment 

configuration and the process of parameter tuning for the proposed network. Section 5 

presents the results and discussion, and Section 6 contains the concluding remarks.    

4.2 The MTCG Gearbox Dataset 

4.2.1 The Experimental Testbed and MTCG Gearbox Dataset 

Figure 4.1 shows the experimental setup used for exploring the vibration characteristics of the 

MTCG gearbox system. A three-phase AC induction motor is connected to a pinion wheel 

through a drive shaft (DS) and a set of adjustable blades is mounted on a non-drive shaft 

(NDS) the other end of which is connected to a gear wheel. The numbers of teeth on the pinion 
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Figure 4.1. Experimental testbed arrangement for acquiring the MTCG gearbox dataset. 

 

(a) (b) (c) (d) (e) (f) (g) 

Figure 4.2. The defect states of the gear wheel and examples of vibration signals at a rotation speed 

of 600 RPM: (a) no seeded fault, normal gear, (b) tooth cut 6.6% (0.6 mm), (c) tooth cut 10% (0.9 

mm), (d) tooth cut 20% (1.8 mm), (e) tooth cut 30% (2.7 mm), (f) tooth cut 40% (3.6 mm), and (g) 

tooth cut 50% (4.5 mm), respectively. 

wheel and the gear wheel are equal to 25 (𝑁𝑝 = 25) and 38 (𝑁𝑔 = 38), respectively. The length 

of each tooth is equal to 9mm. The torque generated by the AC motor is transferred to the 

adjustable blade through the gearbox with a gear ratio of 25:38 (1:1.52). The multi-level tooth 

cut faults were seeded in one tooth of the gear wheel by cutting the percentage of the tooth 

length as depicted in Figure 4.2. The MTCG fault types contain a normal gear or a no seeded 

fault gear (N) condition, a tooth cut seeded gear defect of 6.6% (D1), a tooth cut seeded gear 

defect of 10% (D2), a tooth cut seeded gear defect of 20% (D3), a tooth cut seeded gear defect 

of 30% (D4), a tooth cut seeded gear defect of 40% (D5), and a tooth cut seeded gear defect 

of 50% (D6), respectively. For measuring the vibration characteristics of an MTCG gearbox 

in the normal and defects cases, the vibration sensor (an accelerometer 622B01 of IMI Sensor 
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company) was installed at the end of the NDS, 72.5 mm from a gear wheel. Therewith, the 

shaft rotation speeds are monitored by using a displacement transducer (a speed sensor) to 

track the seeded hole in the DS once per rotation. The output signal from a vibration sensor 

was digitized using a PCI-based data acquisition board with a sampling frequency of 65,536 

Hz continuously for one second. The data collection process was repeated 200 times to receive 

200 samples of 1-sec length per each gear defect state (seven states) under each shaft rotation 

speed. Therefore, the total number of observing samples is 5600, each of one second duration. 

The detailed description of the MTCG gearbox dataset is in Table 4.1. 

Table 4.1. A detailed description of the MTCG defect types and dataset. 

4.2.2 The Vibration Characteristics of the Gearbox System 

The categories of gear defects can be generally split into three types: manufacturing defects 

(wheel eccentricity, defect of tooth profile, etc.), installation defects (parallelism), and defects 

caused by long-term operation (cracked tooth, spalled tooth, case ware tooth, tooth wear, etc.). 

In this work, the MTCG defects were created to simulate the operated defects as the multi-

level depth of a tooth cut seeded in the gear wheel of the gearbox system. The vibration 

characteristics of a gearbox system are analyzed in the cases of a healthy gear (a defect-free 

gear) and a defect gear for identifying the informative fault-related components in the 

vibration signal. The vibration signal of a defect-free gear represents a linear and periodical 

signal that is calculated using the following formula [121]: 

Gearbox Fault 

State. 
Description 

Number of 1-Sec Data Samples Acquired for 

Each Rotation Speed 

Sampling  

Frequency 

(Hz) 300 RPM 600 RPM 900 RPM 1200 RPM 

Normal Gear 

(N) 

No seeded fault in the 

teeth of a gearbox 
200 200 200 200 65,536 

Defect type 1(D1) 
Gear tooth cut 6.6% 

(0.6 mm) 
200 200 200 200 65,536 

Defect type 2(D2) 
Gear tooth cut 10% 

(0.9 mm) 
200 200 200 200 65,536 

Defect type 3(D3) 
Gear tooth cut 20% 

(1.8 mm) 
200 200 200 200 65,536 

Defect type 4(D4) 
Gear tooth cut 30% 

(2.7 mm) 
200 200 200 200 65,536 

Defect type 5(D5) 
Gear tooth cut 40% 

(3.6 mm) 
200 200 200 200 65,536 

Defect type 6(D6) 
Gear tooth cut 50% 

(4.5 mm) 
200 200 200 200 65,536 
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𝑦𝑛(𝑡) = ∑ 𝑌𝑘cos(2πk𝑓ℎt + 𝜕𝑘) 

𝐾

𝑘=i

 (4.1) 

where 𝑦𝑛(𝑡) is a vibration signal of a healthy gear; 𝐾 is a total number of meshing frequency 

harmonics in the observed frequency spectrum of a vibration signal; 𝑌𝑘 and 𝜕𝑘 are the 

amplitude and phase of the k-th meshing frequency harmonics (k = 1,…, 𝐾); and 𝑓ℎ stands for 

the meshing frequency which can be calculated using the parameters of a gear wheel (𝑓ℎ =

𝑓𝑔𝑁𝑔, where 𝑓𝑔 is a gear wheel rotation speed and 𝑁𝑔 is the number of gear teeth) or parameters 

of a pinion wheel (𝑓ℎ = 𝑓𝑝𝑁𝑝, where 𝑓𝑝 is a pinion wheel rotation speed and 𝑁𝑝 is the number 

of pinion teeth). Figure 4.3a illustrates an example of a frequency spectrum denoting the 

informative components as meshing frequency tones in a spectrum of vibration signals of a 

defect-free gearbox. 

Compared to a vibration signal of a normal gear, a signal of a defected gear is more complex 

due to the occurrence of impulsive vibrations when the motion is transferred from the DS to 

the NDS by rotating a pinion wheel through a gear wheel at a defective tooth position during 

one rotation cycle. Those periodical impulsive vibrations create the non-linear and non-

stationary vibration signal formed as the amplitude and phase modulation signal in the point  

 
 

(a)                                                                                                               (b) 

Figure 4.3. The example vibration signals present in the frequency domain: (a) a normal gearbox and 

(b) a defective gearbox 

of view in the signal processing zone [82]. The fault gear vibration signal can be formulated 

[81] by equation (4.2), and an example for demonstrating the fault-related informative 

components is shown in Figure 4.3b.  
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𝑦𝑑(𝑡) = ∑ 𝑆𝑘(1 + 𝜎𝑘(t)) cos(2πk𝑓ℎt +∊𝑘+ 𝜓𝑘(t))

𝐾

𝑘=0

    (4.2) 

Here, 𝜎𝑘(t) = ∑ 𝛩𝑘𝑖cos (2𝜋𝑖𝑓𝑔𝑡 + Ω𝑘𝑗)𝑁
𝑖=0 and𝜓𝑘(𝑡) = ∑ 𝛹𝑘𝑖cos (2𝜋𝑖𝑓𝑔𝑡 + 𝜉𝑘𝑖)

𝑁
𝑖=0  are 

modulating components of the amplitude and phase partial in the fault gear vibration signal 

𝑦𝑑(𝑡); 𝛩𝑘𝑖,𝛹𝑘𝑖are amplitudes and Ω𝑘𝑗,𝜉𝑘𝑖 are phases of the i-th sideband, respectively, 

roundly k-order meshing the frequency tone of the vibration signal 𝑦𝑑(𝑡). 

4.3 The Incorporated Construction Model of the ANC and the SSA-DNN 

The proposed sensitive and speed invariant model for diagnosing gearbox faults is presented 

in Figure 4.4. Three major function blocks are utilized in this model, such as the data collection 

system (Sensors and DAQ), the ANC, and the SSA-DNN. The data collection system collects 

the vibration dataset of an MTCG gearbox system for each fault type (seven fault types in 

total) under variable shaft rotation speeds. It collects the vibration data samples and captures 

the gear defect behaviors in the vibration characteristics: each vibration sample is evenly 

acquired during one second to monitor several complete rotation cycles of the defected gear. 

The ANC module then processes the raw vibration signals. Firstly, it performs down-sampling 

three times along with filtering the signal with a low-pass filter to receive the vibration 

subbands within the frequency range from 0 to 10 kHz according to the real operating 

frequency range of the vibration sensor [126]. The expression of multi-level gear defect types 

on the vibration characteristic is signified by the magnitudes of the principal frequency tones, 

therefore the main function of the ANC is optimizing vibration subbands for removing the 

redundant components along with noise while preserving the original fault-related 

components. The output of the ANC provides the optimized subband in the frequency domain 

(power spectrum density) which mostly contains the meshing frequency, its harmonics, and 

their distributed sideband gear frequency tones (i.e., the defect-related informative 

components). Under variant speeds condition, the positions of principal frequency tones are 

altered according to the explanation in Section 2. There exist the components that represent 

the speed invariant MTCG defects as the numbers of latent features related to the ratio and 

proportional to the amplitudes and displacements in the optimized vibration subbands, which 
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are difficult to extract features from by traditional methodologies [124]. Notwithstanding, 

based on the unsupervised learning and hierarchy of feature extraction constitution of a deep 

neural architecture (DNA), the SSA-DNN can vanquish the issue and automatically explore 

the most defect-substantial features from a set of components in the frequency spectrums of 

optimized subbands output from the ANC. By fetching out these features, the SSA-DNN can 

use them to identify defect types of an MTCG gearbox system for achieving a high 

classification result in the output layer.  

4.3.1 Adaptive Noise Control (ANC) 

ANC is a signal processing method used for reducing noise and preserving the fault-related 

informative elements in gearbox vibration characteristics. The ANC approach is a self-

constructed and time-varying system that uses a recursive algorithm for optimizing its 

parameters for obtaining the desired optimized signal in its output [123]. General ANC 

consists of a digital filter, an adaptive algorithm, and a reference signal generator. An adaptive 

algorithm operates to update the coefficients of the digital filter based on the feedback error 

signal of a filtered reference and an input signal to receive the optimized denoised subband 

signal in the output of the ANC [114]. In this study, the ANC employs the adaptive noise 

reducer-based Gaussian reference signal (ANR-GRS) which has been elaborated in [126] for 

reducing noise and optimizing gearbox vibration signals. An adaptive noise control scheme 

 

 

Figure 4.4. A block diagram of the proposed gearbox fault diagnosis model. 
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contains two inputs (the desired input and a reference input) and one output. As the desired 

input for the observed signal, the vibration subband is used in this study, while the reference 

input is used for a signal that imitates the parasitic noise in the observed signal. The function 

of the ANC approach can be described in detail in the following processes [126]: 

1) Generating the reference signal to supply to the reference input of an ANC: 

Mainly, there are two types of noise present in the vibration signal: white noise and band 

noise. Hence, the reference signal generator creates the output signal behavior which is 

homologous with those such as Gaussian signals and white noise signals, as illustrated in 

Figure 4.5. The parameters of a Gaussian signal (a mean and a standard deviation value) can 

be adjusted based on the input variable of the shaft rotation speed. The adjustable Gaussian 

window, a component for building the entire Gaussian signal, is drawn to adapt to the 

frequency space between two consecutive sideband gear frequencies, formulated as follows: 

where the adjustable parameters (mean value 𝐹𝑜 and standard deviation value σ) are functions 

of the shaft rotation frequency [18]. Concretely, 𝐹𝑜 is proportional to the frequency of faulty 

wheel (𝑓𝐷𝐺) and can be computed as below: 

and by linearizing the Gaussian function, the standard deviation is approximated to the mean 

value as:  

𝛔 = 0.318 ∙ 𝐹𝑜 = 0.318 ∙ 𝜀 ∙ 𝑓𝐷𝐺 . (4.5) 

Also, the number of sideband segments 𝐍𝐭 is calculated using the known parameters such as 

the number of samples 𝐍𝐬, sampling frequency 𝐅𝐬, and fault wheel frequency. The formulation 

of sideband segments is presented below: 

𝐍𝐭  =
2𝐍𝐬

𝐅𝐬
∙ 𝑓𝐷𝐺 (4.6) 

where the frequency of a faulty wheel (𝒇𝑫𝑮) is represented as a gear frequency (𝒇𝒈) which is 

defined in Section 4.2. Therefore, by adjusting the ratio coefficient 𝜺, the Gaussian window 

WGref(p) = ∑ e
−

(p− 𝐹𝑜)2

2σ2 

Nt

p=1

 (4.3) 

𝐹𝑜  =  𝜀 ∙ 𝑓𝐷𝐺 , (4.4) 



 
Chapter 4: Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive 

Noise Control and a Stacked Sparse Autoencoder-based Deep Neural Network                                                                                                                                                                                                                                  

 

79 

 

can access the space between two consecutive sideband frequencies in the frequency spectrum 

of a vibration signal to reduce the presence of noise. According to specific conditions defined 

in [126], first, the coefficient 𝜺 is selected from the range of [0.25 0.75], and then, the Gaussian 

windows are created with the parameters chosen as shown below: 

   (1) the mean value 𝐹𝑜 is assigned to be in the range:  

0.25 ∙ 𝑓𝐷𝐺 ≤  𝐹𝑜  ≤ 0.75 ∙ 𝑓𝐷𝐺  (4.7) 

   (2) the standard deviation of the Gaussian windows is selected in the following range: 

By limiting the adjusting values of the coefficient 𝜺, each generated Gaussian window is 

positioned completely inside the area between two consecutive sideband frequencies during 

the optimization processes in the next steps. This ensures that the adaptive noise control 

technique performs reducing band-noise significantly whereas originally preserving the fault-

related informative components as meshing frequencies, its harmonics, and sideband 

frequencies [126]. 

2) The construction of an adaptive filter 

The adaptive filter is formed by combining the N-tap FIR digital filter (the coefficient vector 

𝜎 = {
0.318 ∙ 𝜀 ∙ 𝑓𝐷𝐺                       𝑤ℎ𝑒𝑛 0.25 ≤ 𝜀 ≤ 0.5

0.318 ∙ (1 − 𝜀) ∙ 𝑓𝐷𝐺                  𝑤ℎ𝑒𝑛 0.5 < 𝜀 ≤ 0.75
 (4.8) 

 

Figure 4.5. A functional block scheme of generating the adjustable Gaussian reference signal. 
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as c(n)≡ [c0, c1, …, cN-1]
T) and a least mean square (LMS) adaptive algorithm. The reference 

signals are used as the input to the digital filter and its output signals are summed with the 

vibration subbands to calculate the output error signals. Based on this error, the LMS adaptive 

algorithm tunes the coefficient vectors according to the convergence criterion of the least 

mean square error for determining the optimal coefficient vector (co) and then identifying the 

local optimal subbands. The operation of an adaptive filter is functionally described in Figure 

4.6.  

3) The optimization process for selecting the optimal vibration subband 

Each vibration subband, processed by an adaptive filter with the input reference of a 

parameter- adjustable Gaussian reference signal, results in many subbands in its output 

(termed as local optimal subbands) corresponding to the set of specific values of parameters 

and appropriate optimal coefficient vectors. At this step, the ANC selects the subband which 

 

Figure 4.6. A functional block diagram of an adaptive noise control module. 
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has a minimum mean squared value as an output result of the optimization process (termed as 

an optimized subband) illustrated in Figure 4.6. This optimized output subband is a final 

output of the ANC module that contains mostly the fault-related informative components and 

trivial disturbances or redundant components. 

In fact, the signal portions, which reflect the gear states (a meshing frequency, meshing 

frequency harmonics, and gear sideband frequencies), are represented mostly in the frequency 

domain as magnitudes, tones amplitudes, oscillations, frequencies, and the ratios between 

them. Thus, it is suitable to use the frequency spectrum of the optimized subband as the input 

data to the SSA-DNN so the deep network can explore and automatically extract the defect 

characteristic features from its inputs. Additionally, the usage of the frequency spectrum of 

the vibration signal reduces the complexity of the DNN. Therefore, in this paper, the frequency 

spectrum of the optimized vibration subband calculated by Fourier transform [137] is used as 

the input of the SSA-DNN module. The spectrum of the optimized subband is of ranges from 

0 to 10 kHz due to the down-sampling process of raw one second vibration samples. 

4.3.2 Stacked Autoencoder 

A stacked autoencoder is a type of DNN, with a number of hidden layers greater than one, 

formed by stacking simple autoencoders for feature discrimination and classification. To 

understand the concept of a stacked autoencoder, a simple autoencoder should be discussed 

first. It is an unsupervised DNN based on a three-layer symmetrical architecture for learning 

the representation of high-level data [75]. An autoencoder functions through two learning 

stages-encoding and decoding, as shown in Figure 4.7. In the encoding stage, it transforms the 

higher-dimensional input into a lower-dimensional one. High-dimensional input data is 

compressed by the hidden layer in DNN architecture [138]. Hence, the encoding path 

contributes to the principal goal of an autoencoder. In the mathematical expression, the higher-

dimensional input represented as 𝑠 ∈ 𝑅𝑁 (i.e., N dimensions) is encoded to a lower-

dimensional space ℎ ∈ 𝑅𝐾 (i.e., K dimensions), producing the output vector known as a latent 

space. The encoder function or the latent space can be represented as follows: 

ℎ = 𝑓𝑒(𝑊𝑒s + 𝑏𝑒), (4.9) 
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where 𝑓𝑒, 𝑊𝑒, and 𝑏𝑒 are the encoding activation function, weights, and bias of the network, 

respectively. From Figure 4.7, it can be interpreted that the decoding portion reconstructs the 

output of a lower-dimensional space that was compressed from higher-dimensional input 

using an encoding process. The reconstruction procedure can be expressed as follows:  

 Here 𝑓𝑑, 𝑊𝑑 , and 𝑏𝑑 are the decoding activation function, weights, and bias of the network, 

respectively. The key goal of the autoencoder is to minimize the reconstruction loss which is 

an objective function of an autoencoder. It can be expressed as following [76]:  

 

In this paper, the feature engineering and classification path of the sensitive and speed 

invariant gearbox fault diagnosis model is constructed by stacking multiple sparse 

autoencoders as a stacked sparse autoencoder (SSA) for determining the small differences of 

features between gear defect types which are the basis components for improving 

classification accuracy. In the next subsection, the sparse autoencoder algorithm is explained. 

 

4.3.3 Sparse Autoencoder 

Sparsity is a special parameter of autoencoders, which puts a constraint onto the hidden layer 

and causes activation of inactive hidden units to discover the tiny differences in decimated 

                                                 �̂� = 𝑓𝑑(𝑊𝑑h + 𝑏𝑑)                                                     (4.10)          

ℒ(s, �̂�) = ±(‖s − �̂�‖) =  ‖s − 𝑓𝑑(𝑊𝑑(𝑓𝑒(𝑊𝑒s + 𝑏𝑒)) + 𝑏𝑑)‖                                (4.11) 

 

Figure 4.7. The diagram of the two learning processes of an autoencoder. 
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features of data representation more sensitively and robustly than the simple autoencoder 

architecture [79]. The constraint of a sparse autoencoder usually embeds a regularization term 

to the objective function. Therefore, the regularized objective function can be expressed as 

follows [76]: 

ℒ(s, �̂�) =
1

𝑁
∑ ∑(𝑠𝑘𝑛 − �̂�)

𝐾

𝑘=1

𝑁

𝑛=1

+ 𝛽 × 𝜙𝑤𝑒𝑖𝑔ℎ𝑡𝑠 +  𝛾 × Φ𝑠𝑝𝑎𝑟𝑠𝑒 (4.12) 

In Equation (4.12), 𝛽 and 𝛾 refer to the ℒ2 regularization coefficient and the sparsity penalty 

factor, respectively. In the training process of an autoencoder, it is sometimes observed that 

the value of 𝛾 alters in an inversed way with the values of weight parameters and behaves 

proportionally to the latent space ℎ (for example the value of the sparsity penalty factor 

increases by decreasing the value of weights and increasing the value of latent code). Thus, 

the ℒ2 regularization is introduced for embedding in the cost function to solve this issue, which 

can be represented as follows [76]:  

where 𝐿, 𝑛, and 𝑘 represent the number of hidden layers, the number of observations, and the 

number of variables in the input data, respectively. Consequently, the sparsity constraint 

Φ𝑠𝑝𝑎𝑟𝑠𝑒 can be formulated as follows: 

 

where 

𝜙𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =
1

2
∑ ∑ ∑(𝑊𝑖𝑗

𝑙 )2

𝑘

𝑗

𝑛

𝑖

𝐿

𝑙

 (4.13) 

Φ𝑠𝑝𝑎𝑟𝑠𝑒 = ∑ 𝐾𝐿(𝜌||�̅�)

𝐿(1)

𝑖=1

= ∑(𝜌 log
𝜌

𝜌𝑖
+ (1 − 𝜌) log (

1 − 𝜌

1 − 𝜌𝑖
))

𝐿(1)

𝑖=1

  (4.14) 

𝜌𝑖 =
1

𝑚
∑ 𝑧𝑖

1(𝑠𝑗)

𝑚

𝑗=1

=
1

𝑚
∑ ℎ(𝑤𝑖

(1)𝑇𝑠𝑗 + 𝑏𝑖
(1)

)

𝑚

𝑗=1

  (4.15) 



 
Chapter 4: Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive 

Noise Control and a Stacked Sparse Autoencoder-based Deep Neural Network                                                                                                                                                                                                                                  

 

84 

 

This Equation (4.14) is known as Kullback-Leibler divergence [139]. Φ𝑠𝑝𝑎𝑟𝑠𝑒 takes a higher 

value when the i-th neuron gives an average activation value �̅� because that deviates mainly 

from the desired value 𝜌. 

To establish the SSA, several numbers of sparse autoencoders, which have been individually 

trained, are stacked and positioned in a form such the input layer is placed before the series of 

hidden layers, and a SoftMax classifier [140] represents an output layer of this network 

architecture. Hence, all sparse autoencoders, which are stacked, form the DNA. Figure 4.8 

depicts an example of a DNA with four hidden layers for visual understanding. This DNA 

first operates in an unsupervised learning manner, where all of the SSAs extract useful features 

and then, in a supervised learning manner, the DNA executes fine-tuning employing a back-

propagation algorithm based on the stochastic gradient descent [74]. After the training process 

is completed, the unseen data is used for evaluating the performance of the DNA.  

4.4 Experimental Setup and Tuning DNA Parameters 

To validate the effectiveness of feature engineering and classification by the SSA-DNN in the 

 

Figure 4.8. The DNA of a Stacked Sparse Autoencoder.  
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proposed model, we perform a set of four experiments listed in Table 4.2. In these 

experiments, the SSA-DNN uses the input data as the samples of the frequency spectrum of 

the subbands that were optimized by the ANC. The four subsets of gearbox data were taken 

based on shaft rotation speed, i.e., each data subset contains 1400 samples in total for all defect 

states (200 samples for each class of seven defect states: N, D1, …, D6), which were acquired 

from the vibration sensor when the shaft rotates at the same speed. For each experiment trial, 

the proposed DNA was trained numerous times with diverse numbers of epochs using samples 

corresponding to one speed of the shaft and validated with the dataset collected under two 

other shaft speeds, then changing samples belonging to different speeds for all four 

experiments. 

 

Table 4.2. Description of the dataset for training and testing with RPM in the experiment setup. 

The Experiments Number of Samples The RPM of Data Samples 

Experiment 1 
Training sample: 1400 The shaft speed: 300 RPM 

Testing samples: 2800 The shaft speed: 600 RPM and 900 RPM 

Experiment 2 
Training sample: 1400 The shaft speed: 600 RPM 

Testing samples: 2800 The shaft speed: 900 RPM and 1200 RPM 

Experiment 3 
Training sample: 1400 The shaft speed: 900 RPM 

Testing samples: 2800 The shaft speed: 300 RPM and 1200 RPM 

Experiment 4 
Training sample: 1400 The shaft speed: 1200 RPM 

Testing samples: 2800 The shaft speed: 300 RPM and 600 RPM 

4.4.1 Tuning Parameters for the SSA-DNN 

The parameters of the DNA play an important role in classification performance, so that the 

tuning process for selecting the optimal values has to be performed [141]. To construct this 

model, we have repeatedly tested the proposed model using various values of model 

parameters such as the length of recipient input, the sparsity regularization term, the number 

of hidden layers, the number of hidden nodes, and the cost function to evaluate their effect on 

DNA performance. The following subsections explain the parameter tuning process in detail.  

The length of the recipient input is the size of a single sample which is inputted to the DNA, 

it is also known as the value of higher-dimensional representation of the input layer. 

According to [41], this parameter is the first important factor for recognizing the complex 
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features that can be well supported for the classification of MTCG fault types to build up the 

sensitive gearbox fault diagnosis model. Therefore, a larger recipient input length helps the 

DNA to extract better representative features. Nevertheless, a huge size of the input increases 

the computational complexity of the model, while a reasonable size of the input can provide 

both a reasonable quality of feature extraction and well-proportioned computation complexity. 

As mentioned in Section 4.3.1, the one second raw vibration signals were sampled at a 

frequency of 65,536 Hz, resulting in 65,536 points in the time do-main. This raw signal was 

preprocessed by three-time down sampling accompanied by low-pass filtering before entering 

the ANC module. Hence, there are 21,845 (65,536/3) data points in the optimized time-

domain signals received in the output of the ANC module. By applying the Fourier transform 

to these signals, the symmetrical frequency spectrum of each optimized subband containing 

an imaginary part (this part represents a spectrum of the signal in the negative frequency) and 

a real part (for the frequency tones greater than zero) is received. The real part that represents 

a real frequency spectrum of an optimized subband with 10,922 (21,845/2) data points is used 

as the input to the DNA. The usage of a large number of data points at the input layer might 

increase the computational complexity; however, the effectiveness of fault identification 

might not be improved significantly. On the contrary, a further reduction of the input size will 

lead to the reduction of frequency resolution and hence, it might cause challenges for the 

model when identifying the MTCG defect types. Thus, the length of the recipient input with 

10,922 points of an optimized subband represents a rational trade-off between the 

classification performance and computational complexity for the sensitive and speed invariant 

MTCG gearbox fault diagnosis model. 
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Similarly, the number of neurons in the hidden layers also influences the performance of the 

DNA. Although there are no exact guidelines for selecting the number of neurons for a hidden 

layer of an autoencoder, this parameter directly impacts the process of feature extraction. 

Based on the functionality of the autoencoder, the number of nodes in the first hidden layer 

has to be lesser than the length of the recipient input for compressing the higher-dimensional 

data. To adjust the parameters of node number and sparsity, in this paper we create a fine-

tuning dataset which is formed by randomly picking 100 data instances corresponding to each 

class under each rotation speed condition. Hence, the fine-tuning dataset consisted of 𝑁𝑠𝑎𝑚𝑝 ×

𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑁𝑠𝑝𝑒𝑒𝑑 = 100 × 7 × 4 = 2800 data instances in total. Figure 4.9 illustrates the 

relationship between the reconstruction error curve and the number of nodes for the first 

hidden layer obtained while training the autoencoder on the fine-tuning dataset during 350 

epochs. This curve demonstrates that the number of 3000 nodes in the hidden layer, which is 

greater than 20% of the input size (10,922), leads to smaller reconstruction errors. A further 

increase in this number minorly affects the reconstruction error, but the computational 

complexity would be increased significantly. Thus, it is recommended to keep the number of 

nodes for the hidden layer at less than 35% of the input size. This criterion is applied to the 

 

Figure 4.9. The dependence graph of reconstructed error MSE and the number of nodes in the first 

hidden layer. 
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remaining hidden layers in the proposed model, so the number of nodes in each consecutive 

hidden layer is in the range from 20% to 35% of the number of nodes in the previous layer. 

The sparsity penalty can be used for improving the forward learning process of an 

unsupervised autoencoder, whose purposive activity orients to manifest the highly 

representative features. To evaluate the effect of the sparsity penalty, the reconstruction error 

is mostly considered for the experiment the value of sparsity penalty parameter in the first 

autoencoder (the first hidden layer is selected with number hidden nodes as 3000). Figure 4.10 

demonstrates the relation between the value of the sparsity term and the reconstruction error, 

which is a mean square error (MSE) in this study, achieved when training the auto-encoder 

on a fine-tuning dataset during 350 epochs. It is observed that values of sparsity penalty in the 

range from 0.05 to 0.15 are better than the remaining values, and a value of 0.08 is the optimal 

one leading to the minimum MSE. Hence, this value has been chosen as a penalty factor for 

all the hidden layers in the proposed model. 

The number of hidden layers plays an important role in the learning process. There exists a 

general opinion that a higher number of hidden layers results in better accuracy, but also 

 

Figure 4.10. The relation graph between the sparsity term and the reconstruction MSE. 
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reduces the generalization ability of the network [74]. In this work, a series of experiments to 

determine the number of hidden layers were performed while varying their number from three 

to six, as shown in Table 4.3. From this table, it can be observed that a number of hidden 

layers greater than three leads to the smallest reconstruction errors. Regarding a higher number 

of hidden layers, the reconstruction error does not change significantly; however, the 

computational time can be increased dramatically when making the architecture deeper. 

Therefore, to select a suitable number of hidden layers, the time performance also should be 

considered. 

Table 4.3. The reconstruction error with the sets of numbers of hidden layers and their nodes. 

Number of Hidden Layers Nodes per Each Layer Reconstruction Error 

3 3500/1500/500 16.312 × 10−3
 

3 3000/1000/300 15.189 × 10−3 

4 4000/1800/600/200 9.745 × 10−5 

4 3500/1500/500/200 6.887 × 10−5 

4 3000/1000/300/100 4.698 × 10−5 

5 6000/2000/800/250/80 3.783 × 10−5 

5 5000/1800/600/200/60 4.2 × 10−5 

5 4000/1400/400/160/60 4.034 × 10−5 

6 8000/4000/1500/500/200/60 1.439 × 10−5 

6 7000/3000/1000/400/150/50 1.907 × 10−5 

6 6000/2500/800/300/100/50 2.543 × 10−5 

 

The complexity of computation of the architecture, in general, can be measured as an average 

time required for one training cycle of DNA. Figure 4.11 shows the time consumption of 

different SSA-DNN deep architectures with various numbers of hidden layers and nodes in 

them during the training process. In this figure, the DNAs with higher numbers of hidden 
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layers and nodes requires more time for training due to the depth of the architecture. 

4.4.2 Parameter Selections of the SSA-DNN Model  

Through the experiments in the previous subsection, it was observed that with the increase of 

DNA architecture complexity, the reconstruction error was getting smaller while the time 

needed for training the deep architecture was increasing. However, from Table 4.3 it can be 

seen that after reaching certain numbers of hidden layers and nodes, the further increase of 

architecture complexity leads only to minor reductions of the reconstruction error. From this 

observation, it can be concluded that the actual number of highly representative features is 

limited, and thus, when the DNA attempts to extract more features from its input, which might 

be redundant and not representative, they would not affect the resulting reconstruction error 

significantly. The structure of a DNA should contain several numbers of hidden layers to 

adequately perform dimensionality reduction of the input data, where each hidden layer 

analyzes its input to perform both feature extraction and selection to receive the higher-level 

representative features. These features are then used for discriminating the MTCG defect 

types during the classification process. Because of the challenge of constructing the speed 

invariant fault diagnosis model for MTCG gearbox systems, the parameters are selected to 

prioritize the small reconstruction error with acceptable execution time consumption. 

 

Figure 4.11. The training time consumption of SSA-DNN architectures with different numbers of 

hidden layers and nodes in them. 
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Regarding the architectures with five or six hidden layers, the reconstruction errors are 

relatively small in comparison with other architectures, though, the time consumed for the 

training process is much higher and the error values are not much larger. Therefore, in this 

study, the number of hidden layers is selected as four with the amounts of nodes (i.e., number 

of features) in them as 3000, 1000, 300, and 100 neurons for the first, second, third, and fourth 

hidden layers, respectively. The finalized optimal parameters of the SSA-DNN model are 

listed in Table 4.4, and its architecture is shown in Figure 4.12.  

Table 4.4. The optimal selected parameters for constructing the SSA-DNN model. 

Input Size 

(Sample Length) 

Number of 

Layers 
Number of Nodes 

Sparsity 

Constraint 

Activation 

Function 

10,922 4 
3000, 1000, 300, 

100 

0.08, 0.08, 0.08, 

0.08 
Logistic sigmoid 

4.5 Result and Discussion 

The main function of the ANC is to perform noise reduction and to preserve the fault-related 

useful components existing in the vibration signals. To collect the informative content of the 

vibration sample, where the content represents numerous fault-related components that are 

useful for designing the sensitive fault diagnosis model, the analog signals from the vibration 

acceleration sensor were digitized with a high sampling frequency of 65,536 Hz every one 

second. Thus, a 1-sec length data sample is used to monitor several rotation cycles (from three 

to thirteen rotational cycles depending on the rotation speed from 300 RPM to 1200 RPM) to 

collect fault-related vibration characteristics with some special oscillations. After data 

collection, the digitized vibration samples were filtered by a digital low-pass filter with the 

cut-off frequency of 10,000 Hz accompanied with the down-sampling process to remove the 

high-frequency components (i.e., components located in spectrum higher than 10,000 Hz) 

which are out of operation range of the acceleration sensor, and to preserve the vibration 

 

Figure 4.12. The final architecture of the SSA-DNN model.  



 
Chapter 4: Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive 

Noise Control and a Stacked Sparse Autoencoder-based Deep Neural Network                                                                                                                                                                                                                                  

 

92 

 

components with intrinsic fault-informative features following realistic operation of a gearbox 

system. That is the first step for preprocessing data to remove the redundancy in the raw 

vibration signals. The vibration subbands output from a low-pass filter are inputted into the 

ANC module for a fine-optimizing process for noise reduction. In the range of the frequency 

spectrum less than 10 kHz, the ANC uses adaptive windows to access and remove white noise 

and band noise remaining between two consecutive sideband frequencies along the frequency 

spectrum.  

Figure 4.13 demonstrates the superiority of the ANC module for the de-noising process. Here, 

the red dotted circles indicate the noise frequency component zones of the input signals which 

were reduced significantly in the optimized subband outputted from the ANC. Moreover, the 

amplitudes of the sideband frequency tones, the meshing frequency, and its harmonics are 

kept unchanged when the vibration subband flows through the ANC module (the dashed blue 

and black circles). The outputs of the ANC are the optimized vibration subbands represented 

in the frequency domain for the expression of the energy distribution. These spectra are used 

as inputs to the SSA-DNN module for extracting the representative latent features by an 
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unsupervised learning technique, the autoencoder, which is a part of the SSA-DNN module. 

Figure 4.14 illustrates feature spaces for seven defect types of an MTCG gearbox using some 

of the discriminative features extracted by sparse autoencoders from the frequency spectra of 

optimized subbands under different rotational speeds. This figure shows that the data instances 

corresponding to different signal classes are well separable in feature space. Here, the samples 

belonging to one defect type are placed closely, whereas the samples of different defect types 

are located separately in the visualized feature space. These distinct features are extracted by 

stacking the sparse autoencoder layers and are used to enhance the performance of the deep 

architecture using a back-propagation algorithm to minimize the reconstruction errors and 

then, finally, to classify gearbox defects. For fault diagnosis performance evaluation, we 

compared the results of the proposed model with previous models such as ANC and SVM 

[126] (model 1), ANC and ANN (model 2), stacked denoising autoencoder [142] (model 3), 

and the spectra imaging of vibration signal [143] (model 4). 

 

Figure 4. 14. The feature space distributions of seven defect types using the features extracted by 

sparse autoencoders under four various rotational speeds. 

 

Figure 4.13. Frequency spectrum analysis of the vibration subband (for fault state D2 at 900 RPM) in 

the comparison between an input and output subband of the ANC module. 
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These results are presented in Table 4.5. The performance is evaluated using the four cases of 

experiment setup expressed in Table 2. The training dataset of each experiment contains 1400 

vibration samples (200 vibration samples for each defect state of seven states as N, D1, D2, 

D3, D4, D5, D6) for each rotational speed to construct the deep architecture network model. 

The testing process is performed by 2800 vibration samples of two different rotational speeds. 

By executing four experiments, the vibration samples of four rotational speeds are used for 

training set in sequence, whereas two datasets of rotational speeds, which are different from 

rotational speed in training dataset in each experiment, are consumed for the testing process. 

In these experiments, models 1 and 2 use the statistical features extracted from time and 

frequency domains, whereas the remaining models use autonomous feature extraction 

methods based on the unsupervised learning approach (model 3) and vibration imaging 

approach (model 4). Models 1 and 2 use the optimized subband output from an ANC module 

to extract twenty-one feature parameters and then, using these feature vectors, classify fault 

types using SVM and ANN, respectively. Manually extracted features in models 1 and 2 cause 

a challenge when classifying multi-level tooth cut gear defects. Their fault classification 

results were around 68%±10% for model 1 and 59.4% ± 10% for model 2, fluctuating over 

four experiments. The construction of DNA in model 3 is performed by replacing the four 

sparsity autoencoder hidden layers with two layers of denoising autoencoders using the 

optimal regularization terms and parameters from [142] and removing the ANC module from 

the proposed model. In model 3, the input data are the vibration subbands outputted from the 

down sampling and low-pass filtering process, with the denoising and feature engineering 

processes performed using the objective functions with the embedded manifold regularization. 

The fault identification results achieved by this model were about 82.88%±8% in four 

experiments. 

Table 4.5. Classification results of the referenced and proposed models in four experiments based on 

various rotating speed data. 

Models Training Set (1400 Samples) Test Set (2800 Samples) Accuracy 

I 

300 RPM 600RPM, 900 RPM 62.78 

600 RPM 900RPM, 1200 RPM 79.83 

900 RPM 300RPM, 1200 RPM 67.13 

1200 RPM 300RPM, 600 RPM 62 

Average accuracy by four experiments 68 

II 300 RPM 600RPM, 900 RPM 65 
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600 RPM 900RPM, 1200 RPM 48.10 

900 RPM 300RPM, 1200 RPM 73.5 

1200 RPM 300RPM, 600 RPM 51 

Average accuracy by four experiments 59.4 

III 

300 RPM 600RPM, 900 RPM 90.66 

600 RPM 900RPM, 1200 RPM 79 

900 RPM 300RPM, 1200 RPM 85.50 

1200 RPM 300RPM, 600 RPM 76.35 

Average accuracy by four experiments 82.88 

IV 

300 RPM 600RPM, 900 RPM 41.15 

600 RPM 900RPM, 1200 RPM 39.55 

900 RPM 300RPM, 1200 RPM 48.26 

1200 RPM 300RPM, 600 RPM 51.72 

Average accuracy by four experiments 45.17 

The proposed model 

300 RPM 600RPM, 900 RPM 95.51 

600 RPM 900RPM, 1200 RPM 97.32 

900 RPM 300RPM, 1200 RPM 99 

1200 RPM 300RPM, 600 RPM 96.1 

Average accuracy by four experiments 97 

 

These results can be observed because many fault-related components stay hidden in the 

background noise which can only be detected by the application of signal processing methods. 

Regarding model 4, the raw 1-sec vibration signal with 65,536 points was firstly down-

sampled by four times with a 10 kHz low-pass filter integrated for antialiasing to obtain the 

vibration subband with 16,384 data points. Then this subband is segmented in series without 

overlap by using windows of 1024-point size to attain sixteen segments of 1024-point 

vibration subbands. Then, each 1024-point window containing the vibration subband is 

transformed from the time domain to the frequency domain by FFT to obtain a 513-point sized 

vibration frequency spectrum. This process was repeated eight times by randomly picking 

eight segments of 1024-point vibration subbands from sixteen segments. These spectrums 

were stacked to form the 513 × 8 grayscale image corresponding to each raw 1-sec vibration 

sample. This image was later converted to a binary image by an 8 × 4 sized filter and the 

threshold (0.7). Hence, the binary image containing 4014 components in the frequency 

domain was used as the input to the ANN with three layers (input, hidden with three nodes, 

and output layers) for classification. The fault classification results of model 4 on the dataset 

used in this paper were about 45.17% ± 6% during four experiments. By analyzing the 

experimental results of the referenced models, it can be seen that the sensitive and speed 
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invariant fault diagnosis model proposed in this study outperformed their fault diagnosis 

performance with results around 97% ± 2% during four experiments showing small accuracy 

deviations when alternating the shaft rotational speeds of the MTCG gearbox system. 

Additionally, to verify the stability of the proposed algorithm, the experiments de-scribed 

above have been performed five times. The classification accuracies and their averages 

computed over five experimental trials are presented in Table 4.6. From these results, it can 

be seen that the proposed model demonstrates stable fault classification accuracy in 

independent trials of the experiments performed for training and testing subsets containing 

samples collected under different operating conditions, i.e., rotating speed. 

Table 4. 6. Fault classification results of the proposed model obtained during five experimental trials. 

Training Set 

(1400 Samples) 

Testing Set 

(2800 Samples) 

Experiment Trials 
Average Accuracy (%) 

#1 #2 #3 #4 #5 

300 RPM 
600 RPM  

900 RPM 
93 96.87 95.7 93.85 98.15 95.51 

600 RPM 
900 RPM  

1200 RPM 
97.68 98.2 94.95 100 95.78 97.32 

900 RPM 
300 RPM  

1200 RPM 
100 100 99.68 98.19 97.15 99.00 

1200 RPM 
300 RPM  

600 RPM 
98.00 94.28 95.47 97.9 94.87 96.10 

 

Controlling the noise embedded in the vibration signals is essential for the sensitive detection 

of multi-level cut tooth faults in gearbox systems. The presence of a high noise level can cause 

misidentifications of fault types and thus reduce the fault classification accuracy. Noise 

reduction is a complex problem, and it is not always possible to completely resolve this issue 

by signal processing or feature engineering techniques. Therefore, simultaneous usage of the 

ANC and SSA-DNN methods is an efficient approach for significant noise reduction while 

preserving the original fault-related information of the gear vibration characteristic, which is 

useful for fault identification. The design of a sensitive and speed invariant model requires 

exploration of the representative features that can be used for discrimination of multi-level 

tooth cut gear defects and maintaining its reliable performance under the operating speed 

fluctuation conditions in the gearbox system. In general, the manual feature extraction 

methods cannot satisfy those requirements, thus the unsupervised approaches based on deep 

neural networks are well-suitable for extracting the latent representative features by the 
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process of minimizing reconstruction errors during the operation of a back-propagation 

algorithm in the DNA. The SSA-based DNN constructed in this research satisfies the 

requirements for constructing the proposed model, such as extracting the representative 

feature space, selecting the most defect-related useful features for classification, and finally, 

achieving high fault classification results.  
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4.6 Conclusion 

This study presents a novel method which combines an ANC and an SSA-DNN to utilize their 

advantages for constructing a sensitive and speed invariant fault identification model for 

gearbox systems with multi-level tooth cut gear defects. The ANC technique is created based 

on the analysis of vibration characteristics of a gearbox system to generate the speed-

dependent reference window signals with adjustable parameters, according to the noise types 

presenting in the raw vibration signals. Then, these generated window series were adaptively 

adjusted to access the space between two consecutive defect-related frequency tones and 

remove the noise along the whole frequency range of vibration signals. The ANC optimizes 

the input vibration signal for outputting the optimal subband which contains mostly the defect-

related frequency tones with the integration of low-level background noise. Then, the 

frequency spectra of these optimal subbands are used as the input to the deep network 

architecture. This network is built up by stacking sparse autoencoders as the hidden layers of 

the network and using a Softmax activation function at the output layer for extracting latent 

representative feature spaces and selecting the most defect-related discriminative features for 

identifying the multi-level tooth cut fault types under the condition of various shaft rotational 

speeds. The effectiveness of the proposed model is validated by experiments performed using 

the vibration dataset containing MTCG gearbox defects collected under four different 

rotational speeds. To validate the property of speed invariance for the proposed model, the 

experiment was arranged as four sub-experiments using the datasets corresponding to each 

rotational speed. Each sub-experiment uses a one-speed dataset to construct and train the 

model. Then this given model is used for fault identification using two datasets collected under 

other speed conditions. This procedure was performed four times using the different speed 

datasets for building the model in each. The average classification result achieved over four 

experiments was 97%, which outperforms the techniques used for comparison. Moreover, the 

classification results shown by the proposed model did not fluctuate significantly (2–3%) 

when applied to different speed datasets, which evidences that the prosed model is speed 

invariant and can be used for identifying multi-level tooth cut defects in a gearbox system 

under varying rotational speeds.
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Chapter 5 Gearbox Fault Identification Framework Based on Novel Localized Adaptive Denoising 

Technique, Wavelet-based Vibration Imaging, and Deep Convolutional Neural Network 

Chapter 5 

Gearbox Fault Identification Framework Based on Novel 

Localized Adaptive Denoising Technique, Wavelet-based 

Vibration Imaging, and Deep Convolutional Neural 

Network 

 

5.1 Introduction 

Gearboxes play an important role in numerous industrial machines, vehicles, and 

wind turbines [27][144][145]. Due to the operation of gearboxes in harsh conditions, gear 

defects are found to be the most common defects in gearboxes [5]. A fault in the gearbox can 

result in catastrophic failures, economic losses, and danger to the operating staff. For 

this reason, early fault detection of the gearbox is of primary importance. The condition based 

monitoring approach suggests maintenance action based on the data collected from 

the gearbox. This strategy allows the gearbox to function for a long time with minimal 

maintenance costs [146][14].  

Gear fault signatures are sensed and acquired by two types of sensors: accelerometers 

and acoustic emission sensors [83]. Vibration signatures collected by the accelerometer from 

a gearbox carry enough fault-related information and can be used for efficient gear fault 

diagnosis [84]. Vibration signals obtained from a gearbox consist of meshing frequency 

harmonics, blended sideband frequencies, and other free oscillation frequencies. Therein, 

the meshing frequency harmonics and blended sideband frequencies are the fundamental 

defect-related frequencies that help in the process of identifying gear defects [3][80]. The 

vibration signals obtained from a gearbox under variable speeds are complex and 

nonstationary; furthermore, the gear fault-related elements are often overwhelmed by the 
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noise. To identify the fault symptoms in this complex vibration signal, the fault diagnosis 

technique tries to reduce the noise in the raw vibration signal [132]. In its raw form, the 

gearbox vibration signal contains various types of interference noises. The main sources 

for these interference noises are the interconnected systems, such as the electrical-electronic 

control and measuring systems, the mechanical systems (the influence of the mechanical 

resonances such as shaft, bearings, gears, etc.), and background noise [147][85]. The random 

behavior of these noises (i.e., random magnitudes, random appearances anywhere in the 

observed ranges of vibration signals) makes the noisy components dominant over the 

fault-related components in the vibration signal, and thus these noises overwhelm the 

fault-related components. To address this issue, a signal-processing technique, which 

can reduce the noise in the raw vibration signal, to highlight the fault-related meshing 

frequency harmonics and sidebands (fault-affiliated elements) for gearbox fault diagnosis 

in early stages is urgently needed. 

In the past, numerous signal processing techniques, such as Fourier transform (FT), 

envelope spectral analysis, Hilbert transform (HT), spectrogram or spectral analysis of a 

fixed timing-window Fourier transform (STHT), empirical mode decomposition (EMD), 

and wavelet-based spectral analysis (WA), have been developed for the processing of 

stationary and non-stationary complex signals [91][87][100][101][102][99]. To enhance the 

performance of the basic signal processing techniques, hybrid signal processing techniques 

such as EMD and HT and EMD and WA have also been introduced [105][53]. The vibration 

signatures obtained from a gearbox under faulty conditions are non-stationary. To obtain fault-

related information from the non-stationary vibration signal, time–frequency domain 

techniques are applied. These techniques commonly use window-based filtering, digital 

filtering, threshold estimation, decomposition modes in the form of intrinsic mode functions, 

and wavelet-based transformation. Their fault identification efficiencies have been confirmed 

by classifying fault states (e.g., a fault-free state and a defective state) and denoising in 

some cases. In the case of a gearbox, the fault-related information is distorted by the hefty 

noise present in the raw signal. Therefore, noise reduction techniques before applying the 

time–frequency domain signal processing technique will be helpful for the identification of 

MDTF in gearboxes. Nguyen et al. [126][148] proposed an adaptive noise reduction model, 

which effectively reduced the noise in the impaired signal. The resultant impaired signal 
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is then used for the classification of gearbox multi-level tooth cut faults under variable 

speed conditions. The effectiveness of the adaptive noise reduction model lies in adaptively 

adjusting optimal parameters of the Gaussian function, which are connected to the optimal 

weights of the adaptive filter, along the whole frequency range of a vibration signal. 

Nevertheless, the frequency spectrum of a vibration signal obtained from a gearbox is 

composed of meshing frequency harmonics, sideband components, and random noises, 

with different probability distributions. It should be noted that the influence of random 

noises and the change in stiffness of the gear under defect makes the vibration signal 

nonstationary and complex. Therefore, a single optimal parameter set of the Gaussian 

reference signal along the entire frequency range is less effective for noise reduction. To 

address this issue, a localized adaptive denoising technique (LADT) is proposed in this paper. 

The proposed LADT is a modified version of the adaptive noise reduction model proposed 

in [126]. The LADT adaptively transforms the raw vibration signals to the optimized 

subbands, which accounts for the majority of the defect-related information. The proposed 

method can reduce noise more effectively than the previous adaptive denoising models, 

while maintaining original fault-related information. The resultant impaired signal from 

LADT is then used for feature engineering and fault classification in the proposed scheme 

of gearbox fault diagnosis.  

After signal preprocessing, feature preprocessing and fault classification are the most 

important steps in the fault identification system. Conventional methods for the fault 

diagnosis of gearboxes used handcrafted features. After extracting a limited number of 

features from the signal in the conventional methods, domain knowledge was used for 

discriminant feature selection. These discriminant features were then classified using machine 

learning algorithms, such as support vector machines (SVMs), k-nearest neighbors (KNNs), 

decision tree algorithms (DTAs), and artificial neural networks (ANNs) 

[66][67][133][149][150]. However, the handcrafted features need domain knowledge and 

expertise for the identification of discriminant features. Furthermore, feature engineering 

techniques, such as dimensionality reduction for discriminant feature selection, result in fault-

related information loss. Thus, the conventional methods might not be appropriate for the 

classification and identification of MDTF defects in the gearbox. In addition, classification 

algorithms, such as KNNs, SVMs, DTAs, and ANNs, is strongly dependent on the quality of 
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the provided features. To address the above-discussed problems, this paper proposes a scheme 

of self-generating feature space. The proposed scheme first transforms a low-noise vibration 

signal into a two-dimensional (2D) image using wavelet transform and obtains WVI’s. The 

WVI’s reflect the 2D distributed power spectra of the optimized vibration sub-bands. To 

obtain fault-related information from the WVI and classify them into their representative 

classes, the proposed method used DCNA. Deep learning models (DLMs) have been used 

widely in the areas of finance, natural language processing, and image processing 

[151][152][45][77]. For condition monitoring of a rotating machine, there exist a variety of 

DLMs based fault diagnosis frameworks, such as stacked denoising autoencoder [153], 

recurrent neural network [154], long short term memory (LSTM) networks [155], gated 

recurrent unit network [156], and convolutional neural network (CNN) [156][157]. One of the 

deep learning models, CNN, is a famous model because of its visual understanding [72]. Deep 

convolutional network architecture (DCNA) has been created for image processing and 

recognition, and then developed for fault diagnosis of rotation types of machinery by self-

regulation and deep exploration of the latent fault-reflected features of vibration signals [78], 

[158]–[160]. 

The contributions of this study are briefly explained as follows: 

(1) A new signal preprocessing approach LADT is developed. The LADT is an adaptive 

algorithm that considers each principal frequency segment along the frequency 

spectrum of a vibration signal to fetch the optimized Gaussian parameters, called 

localized optimal parameters. The outputs of the LADT, which are optimized 

vibration sub-bands, contain fault-related information with very low interference 

noise. 

(2) To discriminate and highlight the fault-related information in the vibration signals 

of MDTF defect types in the time–frequency domain, the WVI technique is applied. 

(3) Potential features are extracted from the WVI’s and classified using DCNA. The 

latent features of DCNA contain discriminant fault-related features. To classify the 

fault-related features into their respective classes, DCNA then uses the fine-tuning 

process based on the backpropagation algorithm.                                         
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he remaining sections of this work are arranged as follows: the vibration characteristics of 

the gearbox are explained in Section 2; Section 3 describes the technical background. The 

experimental setup and proposed diagnosis scheme are explained in Section 4. Section 5 

presents the discussion and evaluation of the experimental results obtained from the proposed 

scheme, and finally, the conclusion of this study is presented in Section 6. 

5.2 The Specification of a Gearbox Vibration Signal 

A fault in the gear results in a change in the stiffness. This stiffness can be observed in 

the vibration spectrum at specific characteristic frequencies. These characteristic frequencies 

represent the tooth meshing stiffness. The meshing frequency in the vibration spectrum 

of the gearbox represents the symptoms of a defect in the gearbox, as the meshing frequency 

changes whenever an MDTF occurs in the gearbox [161]. Considering a gearbox operating 

under normal conditions, the vibration signature obtained from the gearbox is a stationary 

signal with tooth meshing frequency; this signal can be formulated as follows [81]. 

𝑥𝑔(𝑡) = ∑ 𝑋𝑝cos(2π𝑝𝑓𝑚t + 𝜀𝑝)𝑃
𝑝=i ,   (5.1) 

where 𝑥𝑔(𝑡) represents vibration signal of a gear operating under normal condition, 𝑋𝑝 and 

𝜀𝑝 stand for amplitude and phase of 𝑝-th harmonic of a meshing frequency, 𝑃 denotes 

harmonics of the meshing frequency; and 𝑓𝑚, which denotes meshing frequency, it can be 

computed using the parameter of pinion wheel (𝑓𝑚 = Number of pinion teeth × Rotational 

frequency of a pinion wheel) or using a gear wheel (𝑓𝑚 = Number of gear teeth × Rotational 

frequency of a gear wheel). The meshing frequency and its harmonics are considered useful 

components for the fault diagnosis process. Figure 5.1a shows an example of the frequency 

spectrum of a vibration signal in the perfect condition. 

A fault in the gearbox makes the vibration signal non-stationary, resulting in a complex 

frequency spectrum. During the gearbox operation, transmission occurs between the 

motion source (e.g., three-phase motor and a drive shaft) and a load (a non-drive-shaft 

and a load) through a pair of gears (pinion wheel and gear wheel). The non-stationary 

impulses start appearing in the vibration signal when there is an impulsive change in 

the angular velocity. The angular velocity changes impulsively when the two wheels 
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rotate across a faulty tooth (e.g., missing tooth, cracked tooth, chipped tooth, or worn 

tooth) [82]. Therefore, the vibration signals obtained from a faulty gearbox exhibit 

nonstationary behavior, for which the frequency spectrum contains harmonics of tooth 

meshing frequency, sidebands (the frequency tones are distributed in the two sides of 

harmonics of a meshing frequency), and other oscillation components. The vibration signal 

can be presented as a combination of phase and amplitude modulation signal [121], as follows: 

𝑥𝑚(𝑡) = ∑ 𝑋𝑝 (1 + 𝛽𝑝(𝑡)) cos (2π𝑝𝑓𝑚t + 𝜑𝑝 + 𝜙𝑝(t)) .

𝑃

𝑝=0

   (5.2) 

Here,  𝛽𝑝(𝑡) = ∑ Β𝑝𝑞cos (2𝜋𝑞𝑓𝑏𝑡 + γ𝑝𝑞)𝑄
𝑞=0  and 𝜙𝑝(𝑡) = ∑ Φ𝑝𝑞cos (2𝜋𝑞𝑓𝑏𝑡 + 𝜀𝑝𝑞)𝑄

𝑞=0  

represent the amplitude and phase modulation functions of the defective vibration signal. 𝑓𝑏 

is the sideband frequency, 𝑄 stands for a total number of sideband tones around 𝑝-th 

harmonics, Β𝑝𝑞, Φ𝑝𝑞 represents the amplitudes and γ𝑝𝑞, 𝜀𝑝𝑞 denote phases of 𝑞-th sideband 

in the amplitude, phase modulation functions, respectively. Figure 5.1b shows the frequency 

spectrum of the vibration signal obtain from the gearbox under defective conditions, the fault 

signatures or fault-related components are the harmonics of meshing frequency and sideband 

frequencies. 

 

 
(a)                                                                           (b) 

Figure 5.1. The frequency spectrum of a gearbox (a) under normal condition (b) under defective 

condition. 
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5.3 The Preliminaries  

This section provides insight into the methods used in the proposed gearbox fault diagnosis 

scheme.   

5.3.1 The Proposed Localized Adaptive Denoising Technique 

Generally, a vibration signal obtained from a gearbox contains fault-related vibration 

signatures and noise. Denoising of the signal is required for the extraction of fault-related 

vibration signatures. Suppose the observed signal is s and the informative signal is x; then s =

𝑥 + 𝜕, where 𝜕 represents the noise. The denoising technique tries to filter out noise for 

obtaining the estimation signal x̂ in a tendency to approximate the useful signal x as much 

as possible. The adaptive denoising technique uses the concept of destructive interference 

for denoising of an impaired signal. This technique utilizes the noise-simulated reference 

signal to access frequency segments in a frequency domain of the observed impaired 

signal in order to remove noise. The adaptive noise-reducer-based Gaussian reference 

signal (ANR-GRS), which has been proposed and verified in [126][148], has achieved great 

performance in reducing noise and avoiding distortion of the fault-related ingredients. 

In this method, the noise 𝜕 in a gearbox vibration signal is analyzed and divided into 

two types of noise: white noise (𝛼) and band noise (𝛽), 𝜕 = 𝛼 + 𝛽. Then, the reference 

signal is created by combining two noise-simulated signals, which are analogous with two 

existing sources of noise in the observed signal, a white noise signal and a Gaussian signal. 

Moreover, the parameters of the reference signal are adjustable by adaptive algorithm 

regarding the varying input values of rotation shaft speeds..  

The Gaussian signal is responsible for building the simulated noise reference signal. The 

parameters of the Gaussian signal (a mean value and a standard deviation value) are adaptively 

adjusted so as to reduce the noise between two consecutive sideband frequencies (the sideband 

frequency is the gear frequency in this study). The process for generating a reference signal is 

depicted in Figure 5.2, and the Gaussian signal is formulated as follows:  

                                                     Gns(𝑘) = ∑ e
−

(𝑘−𝐹𝑚)2

2σ2 𝐾
𝑘=1  ,                                           (5.3) 
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where, 𝐾 is the number of sideband segments, the mean value 𝐹𝑚 and the standard deviation 

value σ are the functions of the shaft rotation frequency. Those parameters are adjusted by an 

optimization process to select the optimized vibration sub-band as an output of the ANR-GRS 

module [126]. 

 From each parameter set (Fm, σ), which is randomly selected from the specific required 

range defined in [126], a noise-simulated signal is generated. This reference signal is 

provided as an input to the adaptive filter along with the impaired observed signal. The 

adaptive noise filter contains a digital filter, which employs an L-tap FIR type digital filter 

and weight vector as w(n) ≡ ≡ [w0, w1, …, wL-1]
T, and a least mean square adaptive 

algorithm. The adaptive filter works as follows: The noise-simulated signal is provided as 

an input to the digital filter, then the filtered output signal is summed with the vibration 

signal (impaired observed signal) to compute the error signal. This output error signal 

is provided as a feedback input to the adaptive algorithm to measure its mean square 

value. Next, the adaptive algorithm tunes the weights of the digital filter according to 

the converging criterion of least mean square (LMS) error to obtain the optimal weight 

vector (wo) and then expose the optimal vibration sub-band corresponding to the particular 

parameter set. The schematic diagram of the ANR-GRS is provided in Figure 5.2. 

From Figure 5.2, it can be observed that the ANR-GRS method tries to look for the 

general optimal parameters of the Gaussian reference signal applied to the whole frequency 

 

Figure 5.2. The schematic diagram of the ANR-GRS module. 
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range of input vibration signals (0–10 kHz).  

According to the vibration characteristic of the fault signal presented in section 5.2, the 

frequency domain of the phase-amplitude modulation signals is visualized as a set of many 

similar frequency segments, each of which contains a meshing frequency harmonic as a center 

frequency and the sideband gear frequency tones are distributed around the center frequency 

in the ideal condition. The principal frequency segment (PFS) is defined as a frequency 

segment with a meshing frequency harmonic as a center frequency and frequency wide equally 

to a meshing frequency (i.e. the frequency range of PFS is from (p-0.5)∗fm  to (p+0.5)∗fm with 

p∗fm, a p-th harmonic of a meshing frequency, is a center value). However, in the real world, 

the amplitudes of frequency tones in each PFS (PFS power distribution) of the gearbox 

vibration signals are uncorrelated to each other because of the influence of random noise 

(white-nose and band noise) on the nonlinear and phase-amplitude modulation signal [23].  

 Due to the differences of power distributions of PFSs, the general optimal parameter 

set of Gaussian reference signals cannot be used. Therefore, this paper proposes a new 

denoising technique called the localized adaptive denoising technique (LADT). The localized 

adaptive denoising technique adopts the ANR-GRS module from [126]. To improve the 

denoising capability of ANR-GRS, the LADT applies ANR-GRS to each PFS. By localized 

adaptive optimization, the new denoising methodology tries to find the localized optimal 

 

Figure 5. 3. Block diagram of the LADT. 
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parameter set of a noise-simulated reference signal, which is appropriate to each specific 

PFS. The function block diagram of LADT is demonstrated in Figure 5.3. To implement the 

ANR-GRS method on each PFS, the band-pass Chebyshev Type-I IIR filter of order 30 [162] 

is used to segment the frequency spectrums of a vibration signal to M sub-signals whose 

frequency spectrum is as a PFS. The band-pass filter had a bandwidth similar to meshing 

frequency, where M is computed as the quotient of the division of the frequency range 

and the meshing frequency. The localized optimizing process of LADT improves the noise 

reducing capability in comparison with that of the ANR-GRS method; therefore, in this 

study it is used for denoising the vibration signal before the feature engineering process.  

5.3.2 Wavelet-Based Vibration Imaging (WVI) 

To obtain discriminant features from the preprocessed vibration signal, intrinsic 

information of the vibration signal should be utilized, such that it can provide enough 

information about MDTF types of defects. For this reason, a proper method that can 

highlight the key representative elements of MDTF-type defects in gearbox vibration 

signal is needed. Accordingly, the optimized output sub-bands from the LADT, which 

contains condensed defect-related useful information, are converted into two dimensional 

time–frequency representation images by employing the CWT method; these 

images are called WVIs. These WVIs, which carry enough fault-related information, are 

referred to as the enriched feature pool in this paper. The enriched feature pool of the 

WVIs can be utilized for identifying each defect type of MDTF states (i.e., PC, DT1, DT2, 

DT3, DT4, DT5, DT6) of the gearbox under variable speed conditions. The process of WVI 

formation can be explained in detail as follows. 

To overcome the limitation of Fourier Transform in processing non-linear and non-stationary 

signals, and the limitation of STFT with fixed timing-window transforming observation, a 

wavelet approach has been developed. The wavelet transform uses a mother wavelet for 

decomposing a signal into the spatiotemporal domain. The mother wavelet can be adjusted by 

expanding or compressing during the transforming process [151]. We denote the wavelet 

function as φ(t), with ϕ(ω) as Fourier transform, to apply the wavelet approach in term of 

reversible transform, the admissibility condition must be satisfied.  
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𝐶𝜙 = ∫
|𝜙(𝜔)|2

|𝜔|
𝑑𝜔

∞

−∞
<  ∞,  (5.4) 

where 𝐶𝜙 is called admissibility constant. This (inequality 5.4) approximates that 𝜙(𝜔)=0, 

which can be presented as: 

∫ 𝜑(𝑡)𝑑𝑡
∞

−∞
= 0,  (5.5) 

and this requirement also makes clear that the mother function is a band-pass filter. The term 

‘wavelet’ implies a small oscillation wave as the finite length of the window function, and 

“mother function” can be understood as prototype function such as Morlet wavelet or 

Daubechies wavelet, whose variants are the wavelet window functions. The actual wavelets 

are generated from a mother wavelet by the following equation: 

𝜑𝑠,𝜏(𝑡) = |𝑠|−
1

2 𝜑 (
𝑡−𝜏

𝑠
),  (5.6) 

where, 𝜏 is the translation parameter and s represents dilation in Equation (5.6). The translation 

parameter represents time in the wavelet domain. The dilation is the inversion of frequency. 

This scale of wavelet technique is analogous to the scale of map architecture. A large scale in 

mapping indicates the globalized scenery, and a smaller scale indicates more detail Similar 

principles can be applied to the wavelet approach; the high scale (i.e., 𝑠 ≫ 1, 

low frequency) is used for observing the global features of a signal because the wavelets 

are expanded for extracting the low-frequency components, such as the large time window 

of STFT. In contrast, the low scale (i.e., high frequencies, 𝑠 ≪ 1) is used for observing more 

details of a signal, called local features. Consider the vibration sub-band x(t) and the given 

wavelet family 𝜑𝑠,𝜏(𝑡), the continuous wavelet transform of 𝑥(𝑡) ∈ 𝐿2(ℝ) is calculated [152] 

by following inner products equation: 

                 𝐶𝑊𝑇𝑥
𝜑(𝑠, 𝜏) =< 𝑥, 𝜑𝑠,𝜏 >= |𝑠|−

1

2 ∫ 𝑥(𝑡)𝜑∗ (
𝑡−𝜏

𝑠
) 𝑑𝑡

∞

−∞
.                               (5.7) 

Equation (5.7) represents the coefficients of CWT. CWT coefficients are the combination 

of translation series (time series) and scale (1/frequency) series, which can be utilized for 

constructing the vibration imaging feature spaces (scalograms). Through the use of the 

effective denoising technique from the previous process, the vibration image feature pools 
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are filled by condensed fault-related information that qualifies for the next identification 

step. The combination of the novel denoising technique and the CWT scalogram for the 

WVI are demonstrated in Figure 5.4 as the steps involved in the formation of WVI’s. 

 

5.3.3 The Deep Convolutional Neural Network Architecture 

DCNA comprises hidden layers (called convolutional layers), pooling layers, and 

fully connected layers [158][78]. The convolutional layer performs feature extraction from 

the input image data through a kernel-filter-based convolutional process; then, the pooling 

layer implements the down-sampling process. The pooling layer helps to reduce 

computational complexity and to recognize the learned extracted features. In addition, a 

variety of constraint-optimizing layers, such as rectified linear units (ReLU), dropout, and 

normalization, are integrated into the DCNA for classification improvement [163]. Afterward, 

 

Figure 5.4. Steps involved in the construction of wavelet-based vibration imaging.  
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the fully connected layer uses weighted-base wiring to connect the output of the final 

convolutional or pooling layer for transferring information to the classification layer, which 

outputs the likelihood decision for classifying the fault types, normally using a SoftMax 

function [164]. Figure 5.5 demonstrates the general structure of the DCNA. 

The convolutional layer (Cv) is responsible for the latent feature engineering processing. The 

Cv performs feature mapping through its layers for the extraction of representative attributes 

from input images that contain key information about gear states. To demonstrate the feature 

mapping process, we consider two consecutive layers as: jth and (j+1)th convolutional layers, 

there are k filters (or kernels) with the size of 𝑚 × 𝑛, which are utilized for extracting feature 

from the output of jth layer. The output space of the jth layer, with the dimension of 𝑚 × 𝑛, is 

locally swept to convolve with each filter of 𝐷 × 𝑅 size using w training weights for 

adjustment. Then, each result, which corresponds to single kernel, is added in scale 

computation with bias b, and functionalized by activation functions of nodes in (j+1)th layer, 

these are normally non-linear functions, such as the rectified linear unit function (ReLU), used 

to perform non-linear feature mapping through layers. Assuming that the parameter used in 

the convolutional calculation is a unity, then feature space with a dimension of (𝑚 − 𝐷 + 1) 

× (𝑛 − 𝑅 + 1) is formed corresponding to each filter. In general, the 𝑖-th feature mapping 

space (𝑓𝑚𝑠) of the convolutional layer k can be formulated as follows: 

                            𝑓𝑚𝑠𝑖
𝑘 = 𝑅𝐿(∑ 𝑓𝑚𝑠𝑟

𝑘−1 ⊛ 𝑤𝑖
𝑘

𝑟∈𝐴𝑘−1 + 𝑏𝑖
𝑘),                                       (5.8)   

with 𝑅𝐿 is the ReLU function: 𝑅𝐿(𝑥) = max(0, 𝑥). 

Where, 𝑤𝑖
𝑘 and 𝑏𝑖

𝑘 are the sets of weights and bias for ith filter in layer k, ⊛ indicates the 

convolution operator, 𝐴𝑘−1 denotes all feature mapping spaces in the (k-1)th layer. The feature 

spaces become more separable as it goes from lower convolutional layer to bottleneck layer 

network.  

Typically, the pooling layer (Pm) is used next to each convolutional layer for the down-

sampling process. It scans the whole range of a feature mapping space sequentially, and then 

applies the pooling operation on a defined pooling region by a non-overlapping searching 

method. The pooling operation that is most commonly used is the mean average, or maximum 

value in the defined pooling area [158].  
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Usually, many incorporated pairs of convolutional and pooling layers are employed in DCNA. 

After the final convolutional layer or pooling layer, several fully connected layers (Fc) are 

used to expand deep representation feature mapping spaces, as well as the concatenation of 

feature mapping spaces into a feature vector. Finally, the represented feature vectors are 

provided as an input to non-linear nodes for classifying the features into their corresponding 

categories (the fault states of a gearbox). The SoftMax function is typically used as the final 

activation function in the classification layer for classifying the input data into their 

corresponding categories.  

The learning process of the DCNA is based on the optimization of the loss function of the 

reconstruction error. The loss function is the function of the training error, which is the 

difference between predicted output (�̂�𝑞) and actual output (𝑦𝑞), it can be presented as follows: 

                                        ℮(𝑛) =
1

2
∑ (𝑦𝑞

𝑛 − �̂�𝑞
𝑛)2𝐾

𝑞=1 .                                                       (5.9)  

Here, 𝐾 signifies the number of neurons, n is the order of repetitive steps. The major purpose 

of the training process in building of the DCNA to fine-tune its parameters converging to 

reduce ℮(𝑛) through a back-propagation process based on the stochastic gradient descent 

method [165].  

 

Figure 5.5. Description of typical DCNA 
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5.4 The Accurate and Stable MDTF Fault Identification Framework and 

Its Experimental Evaluation  

 The key aim of this study was to identify defect types of MDTF gearbox systems under 

variable speed conditions. As mentioned in section 5.1, it has been observed that the existing 

models might not be able to differentiate those fault types due to the similar behavior of 

different degrees of tooth fault reflected in the vibration spectrum. To address this issue, in 

this paper, a new gearbox fault diagnosis scheme has been proposed. Figure 5.6 provides a 

block diagram of the proposed framework. From Figure 5.6 it can be seen that the proposed 

method consists of four main steps: (1) sensors and data acquisition (DAQ), (2) LADT, (3) 

WVI, and (4) DCNA. The preliminary section covered the main steps of the proposed method. 

This section will provide the experimental validation of the proposed method. 

 

 

Figure 5.6. Block diagram of the proposed accurate and stable MDTF gear fault identification 

framework. 
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5.4.1 The Gearbox Testbed and Data Acquisition 

 A gearbox testbed, self-developed at the Ulsan Industrial Artificial Intelligence laboratory, 

for acquiring vibration data is shown in Figure 5.7. The testbed can be explained as follows: 

an AC motor is directly connected to the pinion wheel through the drive shaft (DS), whereas 

the gear wheel is fixed with a non-drive shaft (NDS) and the adjustable blades (the load). The 

pinion wheel with 25 teeth, whose length is 9 mm, and the gear wheel (38 teeth) are engaged 

with each other and housed in the gearbox, creating a gear reduction ratio of 1:1.52. The 

rotation movement (torque) of the load is provided by the motion of the AC motor through 

the gearbox. Therefore, the rotational speed of the pinion wheel is equal to the rotational speed 

of AC motors, and the gear frequency is calculated by the pinion frequency and the gear ratio. 

The vibration sensor (the accelerometer) is placed at the end of the NDS, 72.5 mm from the 

gear wheel. The rotational speed of the DS (a pinion frequency) is measured by the 

displacement transducer, which is mounted for tracking the hole in DS once per revolution. 

The data acquisition system, which is the PCI-2 data acquisition board, is connected to the 

accelerometer (622B01) to measure and digitize vibration signals, and to store digital 

vibration samples. The specifications of the accelerometer, speed sensor, and data acquisition 

system are given in Table 5.1. 

 

Figure 5.7. Gearbox experimental testbed 
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Table 5.1 Specification of the sensors and data acquisition system. 

Devices Specification 

Vibration sensor  

(Accelerometer 

622B01) 

Sensitivity (V/g): 10.2 mV/(m/s2) 

Operational frequency range: 0.42 to 10 kHz 

Resonant frequency: 30 kHz 

Measurement range: ±490 m/s2 

4- Channel DAQ 

 PCI Board 

18-bit 40MHz AD conversion, a sampling frequency of 65.536 kHz 

is used for each of two channels simultaneously 

Displacement  

 transducer 

Distance from the head of a transducer to a hole: 1.0 mm 

Diameter of a hole: 12.80 mm 

Sensitivity: 0 to -3dB 

Frequency response: 0–10 kHz 

 

 The MDTF gearbox was created by cutting one tooth, mounted on the gear wheel, to different 

degrees. Figure 5.8 shows the degrees of cut teeth and the vibration signals obtained under 

each condition for all observed defect types in this study, including a normal or perfect 

condition gear (PC), 6.6% degree of tooth defect (DT1), 10% degree of tooth defect (DT2), 

20% degree of tooth defect (DT3), 30% degree of tooth defect (DT4), 40% degree of tooth 

defect (DT5), and 50% degree of tooth defect (DT6). These multiple degree tooth faults were 

seeded for simulation of the same behavior of the gear defects caused by long-term operation 

of a gearbox system (e.g., tooth spalling, tooth cracking, worn tooth, etc.). The vibration 

characteristic for fault states of a gearbox was analyzed in detail in Section 5.2. 

 

       (a)                    (b)                   (c)                    (d)                  (e)                   (f)                   (g) 

Figure 5.8. The observed defect types of the multi-degree tooth faults on the gear wheel and 

examples of vibration signals at 600 RPM: (a) PC, (b) DT1, (c) DT2, (d) DT3, (e) DT4, (f) DT5, and 

(g) DT6, respectively. 
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Table 5.2 demonstrates the configuration of the dataset used in this paper. The data acquisition 

system converts the analog vibration signal to a digital vibration signal with a sampling 

frequency of 65,536 Hz. Each sample is one second long, termed a one-sec sample. A total of 

200 samples were collected under each defect condition with variable rotating speed (four 

shaft rotational speeds are evaluated in this study). Therefore, there are 800 samples for each 

defect condition, and a total of 5600 samples are extracted from this testbed. 

Table 5.2. The configuration of the MDTF gearbox dataset. 

Gearbox Defect 

Type 

Description Number of one-second samples 

for specific rotation speed (RPM) 

Sampling  

frequency 

(Hz) 
300  600  900  1200  

Perfect Condition 

(PC) 

Normal or Perfect  

gearbox 

200 200 200 200 65,536 

Defect Type 1 

(DT1) 

 6.6% degree of tooth 

defect (0.6 mm/9 mm) 

200 200 200 200 65,536 

Defect Type 2 

(DT2) 

 10% degree of tooth 

defect (0.9 mm/9 mm) 

200 200 200 200 65,536 

Defect Type 3 

(DT3) 

 20% degree of tooth 

defect (1.8 mm/9 mm) 

200 200 200 200 65,536 

Defect Type 4 

(DT4) 

 30% degree of tooth 

defect (2.7 mm/9 mm) 

200 200 200 200 65,536 

Defect Type 5 

(DT5) 

 40% degree of tooth 

defect (3.6 mm/9 mm) 

200 200 200 200 65,536 

Defect Type 6 

(DT6) 

 50% degree of tooth 

defect (4.5 mm/9 mm) 

200 200 200 200 65,536 

 

5.4.2 LADT Performance for Effective Noise Removal of Vibration Signals of a MDTF 

Gearbox under Variable Speed Conditions 

The raw vibration signals were digitized at a high sampling frequency of 65,536 Hz in order 

to gather rich discrete vibration samples, and to capture the extent of feasible defect-related 

components in each one-sec vibration signal. The vibration data collected from the gearbox 

contain fault-related information and interference noise. By sampling the vibration signal at a 

frequency of 65,536 Hz, the frequency spectrum of a discrete vibration sample is from 0 Hz 

to 32,768 Hz (according to the Nyquist–Shannon sampling theorem). However, the 

accelerometer is capable of sensing the vibration oscillations in the frequency range of 0.42–

10,000 Hz (Table 5.1). Thus, the fault-related information is in the frequency range of 0.42–
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10,000 Hz. Therefore, rather than providing the raw vibration signal to LADT, the vibration 

signal is pre-processed by performing down-sampling using a low-pass filter to avoid aliasing 

[126]. After performing down-sampling, the vibration sub-bands are obtained, which have the 

time length of one second, the sampling frequency of 21,845 Hz (65,536/3), and frequency 

range from 0–10,922 Hz. 

The vibration sub-bands are provided as an input to LADT for reducing the noise and 

enhancing the useful fault-related information, which represents multi-degree tooth fault 

behaviors. LADT applies ANR-GRS to each PFS. Through localized adaptive optimization, 

the new denoising methodology tries to find the localized optimal parameter set of the noise-

simulated reference signal, which is appropriate to each specific PFS. The outputs of LADT 

are the optimized vibration sub-bands, which maintain the original defect-related frequency 

tones (meshing frequency harmonics and sideband frequencies) and reduced background 

noise. Those defect representative ingredients are key factors for identifying the defect types 

of an MDTF gearbox under the condition of the variable speed. Those fault types proceed as 

analogous behaviors reflecting the vibration characteristic, the differences between them 

might be degrees of amplitudes of informative tones, their proportions, or occurrence events 

in the tiny range of separation. Thus, the image-based enriching feature pool configuration 

methods are needed to sort them out for condensation.  

5.4.3 Wealthy Feature Pool Configuration Based on VWI  

In this step, a continuous wavelet transform is applied to the noise-free optimized sub-bands 

obtained from the LADT. The wavelet-based transforming method is used to convert time-

domain optimized sub-bands to the scalograms for the enriched visualized features pool. The 

CWT method in this paper employs the Morlet wavelet, which is the most effective technique 

in the fault diagnosis approach of the rotation machines [166], as a mother wavelet function. 

The signal is decomposed up to 16 octaves. Based on experiments, the optimal value of voices 

per octave parameter was chosen as 16. The wavelet coefficients for each input sub-band, 

which are derived from applying the wavelet family functions in Formula (5.5), are used to 

obtain a scalogram, which is an energy distribution map of the input sub-band on a time–

frequency scale. Those scalogram images of the vibration sub-bands are reshaped by the size 
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of 224×224×3 for compatibility with the input layer of DCNA in the next classification step 

and packed to configure the enriched visual image feature pool.  

5.4.4 DCNA Construction  

In this study, the contents of the enriched visualized feature pool, which are called WVIs are 

obtained from the CWT of low-noise optimized vibration sub-bands, are provided as an input 

to DCNA. The WVI contains fault-related information in the form of edges, lines, curves, 

spots, or pixels with various intensities (which are represented by the R, G, and B channels of 

the RGB image). The DCNA is used primarily to recognize images. Figure 5.9 demonstrates 

the architecture of the proposed DCNA used in this study. The proposed DCNA has fifteen 

layers, including five convolutional layers (Cv), three pooling layers (Pm), two drop-out 

layers (Do), three fully connected layers (Fc), one input layer, and one terminal output layer 

(Os). The DCNA makes a start with an input layer of size 224 × 224 × 3, according to the 

size of RGB images (224 × 224 indicates the values of length and width, and 3 denotes three 

R, G, B channels of the input image). Next, the features are extracted from fault-related images 

by the first convolutional layer with 96 kernels of size 11 × 11 × 3 and the stride of 4. The 

results of the first convolutional calculation are feature spaces of size 54×54×96. After the 

first convolution layer (Cv1), the max-pooling layer (Pm1) is applied for down-sampling. 

Moreover, the drop-out layer (Do1) is located in series to extenuate the over-fitting issue 

[163]. The second convolutional layer has 256 filters of size 5 × 5 × 48, and it is followed by 

pooling and dropout processing layers. The Cv3 and Cv4 layers consist of 384 filters with a 

size of 3 × 3 × 256 and 384 kernels with a size of 3 × 3 × 384, respectively. Next, Cv5 is 

down-sampled by the third max-pooling layer (Pm3), composed of 256 of 3 × 3 × 384 

kernels. All of the max-pooling layers employ 3 × 3 filters with a stride of 2. The output of 

the third max-pooling is used as an input to the fully connected layers (Fc1, Fc2, Fc3). Fc1 

tries to implement a flattening process to convert all feature matrices (6 × 6 × 256) from the 

output of layer Pm3 to the feature vectors (1 × 1 × 4096) through its operation as a weighted 

sum with bias terms. These output feature vectors then are passed through the activation 

function ReLU and input to the next layer (Fc2). The second fully connected layer, which is 

the penultimate layer, includes 1000 neurons and functions, similarly to Fc1, to output feature 

vectors of size 1 × 1 × 1000. The last flattened layer, Fc3, including 7 neurons, which are the 
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SoftMax activation functions, is the classification layer. It operates at a terminal spot of the 

DCNA for estimation of the probabilities of the categories. 

In this paper, the fifteen-layer DCNA has been conducted based on the original AlexNet 

architecture [167], with some modifications for this specific application. The AlexNet model 

has already achieved better feasibility than other models for recognizing images. This model 

has implemented training for 1.2 million high-resolution pictures of ImageNet for 

classification of up to 1000 differential species targets in the contest of LSVRC-2010 by 

training of 650 thousand neurons and 60 million parameters, with many optimizing processes 

in the network architecture. In our research, we have replaced two normalization layers with 

two drop-out layers in order to improve the capability of over-fitting avoidance [163][168]. 

Moreover, the last fully connected layers (Fc3), which include 1000 neurons from the original 

AlexNet, are replaced by the same fully connected layers with a reduced number of neurons 

(7), for suitable application in our research with seven classifying categories. The detailed 

description of the proposed DCNA is shown in Table 5.3.  

Table 5.3. The structural elements of the proposed DCNA. 

Layers Operating 

Parameters 

Number of 

Kernels 

Kernel 

Size 

Stride Padding 

Input layer 224×224×3     

1st Convolutional (Cv1)  55×55×96 96 11×11 4 0 

 

Figure 5.9. The applied DCNA model for implementing the fault type identification in this study. 
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1st Max Pooling (Pm1) 27×27×96 96 3×3 2 0 

1st Dropout (Do1) 27×27×96     

2nd Convolutional (Cv2)  27×27×256 256 5×5 1 2 

2nd Max Pooling (Pm2) 13×13×256 256 3×3 2 0 

2nd Dropout (Do2)  13×13×256     

3rd Convolutional (Cv3)  13×13×384 384 3×3 1 1 

4th Convolutional (Cv4) 13×13×384 384 3×3 1 1 

5th Convolutional (Cv5) 13×13×256 256 3×3 1 1 

3rd Max Pooling (Pm3) 6×6×256 256 3×3 2  

1st Fully Connected (Fc1) 1×1×4096     

2nd Fully Connected (Fc2) 1×1×4096     

3rd Fully Connected (Fc3) 1×1×7     

Output SoftMax Nodes     

 

5.4.5 The Experimental Classification for an MDTF Gearbox under Variable Speed 

Conditions 

The DCNA performs a fault-classifying process based on the input WVI imaging data for the 

MDTF gearbox under varying speed conditions. To verify the performance of the proposed 

DCNA for identifying seven MDTF fault types under varying speed conditions, we conducted 

an experimental setup of two scenarios, as shown in Table 5.4. In Scenario 1, all vibration 

data for four speeds were observed for classification. While in Scenario 2, four experiments 

were performed based on varying speed-related data. The configuration of the testing and 

training datasets for both of the scenarios is given in Table 5.4. 

Table 5.4. Description of the dataset for training and testing with RPM in the experiment setup. 

Scenarios The experiment Number of samples The RPM of data samples 

Scenario 1 Experiment 0 
Training samples: 3360 60% of All four speeds dataset 

Testing samples: 2240 40% of All four speeds dataset 

Scenario 2 

Experiment 1 
Training samples: 2800 The shaft speeds: 300 RPM, 600 RPM  

Testing samples: 1400 The shaft speed: 900 RPM 

Experiment 2 
Training samples: 2800 The shaft speeds: 600 RPM, 900 RPM 

Testing samples: 1400 The shaft speed: 1200 RPM 

Experiment 3 
Training samples: 2800 The shaft speeds: 900 RPM, 1200 RPM 

Testing samples: 1400 The shaft speed: 300 RPM  

Experiment 4 
Training sample: 2800 The shaft speeds: 1200 RPM, 300 RPM 

Testing samples: 1400 The shaft speed: 600 RPM 

 

For each speed (a total of four speeds: 300 RPM, 600 RPM, 900 RPM, and 1200 RPM), there 

were a total of 1400 one-second samples for all gear fault types (there were seven defect types 
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or seven categories, PC, DT1, DT2, DT3, DT4, DT5, DT6, and each of them was acquired by 

sampling for one second, repeated 200 times, to achieve 200 one-second samples). All these 

samples were first preprocessed using LADT. Next, the output optimized sub-bands obtained 

from LADT were converted by the CWT method to attain the enriched feature scalogram 

images. That speed-related image subset was used as input data for the DCNA. For each 

experiment, we used two speed-related datasets (2800 samples) to train the proposed DCNA 

several times with multitudinous epochs, targeted to optimize the network parameters based 

on minimizing orientation of the loss function (Equation (5.9)), and the dataset of another 

speed (1400 samples) was used as the testing dataset of the constructed model. These 

processes were circularly acted based on four speed-related datasets to conduct all four 

experiments.  

5.5 Results and discussion 

This section principally validates the proposed fault identification framework constructed in 

section 5.4 for an MDTF gearbox under inconsistent rotational speeds based on the data 

collected from a real-world testing platform. The effectiveness of this model is entirely 

evaluated based on the following operations: LADT, visual enriching feature configuration 

(WVI’s), and fault identification based on DCNA. 

5.5.1 Experimental Verification of the Effective Performance of LADT and Wealthy 

Feature Pool Configuration Created by WVI 

As explained in the introduction section, the real-world gearbox vibration signals originally 

contain informative components and random background noise. The disturbance noises 

appear randomly, and they can affect the informative components. Thus, in the raw form of 

the vibration signal, it is very difficult to separate the original informative components from 

the background noise. Furthermore, the operation behaviors of MDTF gear faults reflected in 

the vibration signal are too similar. In other words, to discriminate these kinds of faults, the 

use of enhanced techniques is required. The LADT approach is the key technique of this study 

for effective noise cancellation and for separating the original fault-related components from 

the high noise vibration signals. Before being fed to LADT, the raw vibration signals, gathered 
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from the experimental gearbox testbed, were processed by down-sampling and low-pass 

filtering to attain vibration signals with the frequency range of 0–10,922 Hz, according to the 

real frequency working range of the acceleration sensor for removing the redundancy 

fractions. These output signals are named raw-filtered vibration signals. LADT tries to divide 

each raw-filtered vibration signal into many sub-signals, so that their frequency spectrums are 

principal frequency segments, by applying the series of the non-overlapped band-pass filters 

along the frequency spectrum of the vibrations signal (0–10,922 Hz). Next, the ANR-GRS 

technique [126] is applied on each principle frequency segment to achieve a locally optimized 

sub-band from each input sub-signal based on the localized optimal parameters. The final 

optimized output of the LADT module is a summation of all locally optimized sub-bands 

corresponding to each input vibration signal.  

The visual analysis of frequency spectrums of three vibration signals (a raw-filtered vibration 

signal, the output signals of the ANR-GRS module, and optimized sub-bands from the LADT 

module) are illustrated in Figure 5.10. As shown in Figure 5.10, the superiority of the localized 

adaptive process of the LADT module for denoising is proven. Here, the noise disturbance 

areas, which were circled by red dotted lines in the spectrum of a raw-filtered vibration signal 

that inputs to ANR-GRS and LADT modules, were mostly removed in the output of the ANR-

GRS module and LADT module (the spaces with red narrows in the output spectra of ANR-

GRS and LADT modules). However, the output signal of LADT indicated outstanding 

efficiency in reducing noise relative to the ANR-GRS module; the noise areas of the second 

and fifth principal frequency segments (the segment contains the second and fifth harmonics 

of the meshing frequency) in the output sub-band of the LADT module were much lower than 

those in the output signal of ANR-GRS. This verifies the effectiveness of the localized 

adaptive optimization process of the LADT scheme. In addition, the fault-related components, 

which were marked by blue-dotted circles in the input and output of LADT, were exactly the 

same. In other words, the LADT approach reduces noise in the largest amount possible by 

obeying the principal rule of a condition-monitoring fault diagnosis system to preserve the 

original fault-informative elements, such as sideband frequency tones and meshing frequency 

harmonics inside of the raw vibration signals. 
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Figure 5.10. The frequency spectrum analysis of the input and output signal of LADT in comparison 

with the performance of ANR-GRS for an example vibration signal of DT3 at 900 RPM.  
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Figure 5.11. Frequency spectrum analysis of the vibration subband (for fault state D2 at 900 RPM) in 

the comparison between an input and output subband of the ANC module. 

The output optimized sub-bands from LADT were then converted to visualized feature spaces, 
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for better expression of defect-related components induced by vibration characteristic of 

MDTF defect types in the time–frequency domain, using the proposed WVI method. 

Similarly, to the example signal in Figure 5.4 (section 5.3.2), the wavelet-based vibration 

images carried the defect-correlated factorials and exposed the attributes through color 

images. Figure 5.11 demonstrates the scalograms of the seven defect types of a gearbox under 

four rotational speeds. Through visualization, the scalograms of the same defect type under 

four rotational speeds showed the proximate parallel zones with the different energy levels. 

In addition, the energy of the useful components (pixel illuminations) has grown according to 

the uptrend of rotational speeds. Those discriminate notifications were quantized in the 

massive process of feature extraction and optimization achieved from DCNA performance.   

5.5.2 DCNA-Based Identification Performance Analysis 

By applying the LADT method, the noise components of the vibration signals were mostly 

removed. The wealthy feature pool configuration based on CWT, then, translated the output 

of LADT as insignificant-noise vibration sub-bands to the scalogram images. These scalogram 

images carried enough information for fault discrimination. The wavelet-based vibration 

image datasets were used as input datasets for DCNA for the classification task. First, the 

proposed network tried to perform Scenario 1 to discover the effect of the quantity of input 

data on the time consumption and classification accuracy. The dataset, which contained all 

four speeds and seven categories, was randomly split into the training set and validation set. 

Each input sample was a colorized image with dimensions of 224 × 224 × 3, which met the 

demand of the input layer size of the proposed DCNA. From the numerous proportions of the 

training set, the computational consumptions and accuracies are listed in Table 5.5. It shows 

that when 50% to 60% of total samples were used for training, the best performances were 

obtained (by high accuracies in the acceptable time consumption) in the observed quantities. 

Thus, a ratio of 60% was used in this study.  

Table 5. 5. The classification accuracy and time consumption for various size of the training set. 

Training size     

(Percentages of 5600 

samples) 

Number of 

Epochs 

Time consumption 

(second) 

Overall 

Classification    

Result (%) 

1680 Samples (30%) 160 105.101 89.51 

2240 Samples (40%) 200 138.276 94.63 
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2800 Samples (50%) 210 147.846 99.79 

3360 Samples (60%) 250 165.569 100 

3920 Samples (70%) 300 375.497 100 

4480 Samples (80%) 360 458.990 100 

5040 Samples (90%) 410 546.832 100 

In scenario 2, four experiments (in Table 5.4) were executed in this study to analyze the 

accuracy and reliability of the proposed framework for an MDTF gearbox under differential 

speed conditions. In each of the four experiments, the training dataset was composed of two 

different speed samples (2800 samples), and the data samples of the validation set contained 

samples collected at speeds that differed from that of the training dataset (1400 samples). 

Following Scenario 2, the speed-varying datasets were alternately used for the training and 

testing process over a total of four observed rotational speeds in this paper. The learned 

features of the activation processes in different layers of the applied network model can be 

seen in Figure 5.12. From the input RGB image of the defect type 3 with a speed of 600 RPM 

(Figure 5.12a). through the beginning steps of the high-dimensional feature extraction process, 

performed by 96 kernel filters (Figure 5.12b) of the first convolutional layer (Cv1), the feature 

images of the Cv1 of one channel are shown in Figure 5.12c. With the help of this process, 

the one time-frequency domain vibration image is mapped to 96 feature images for observing 

the defect-related elements in high-dimensional feature spaces. Next, the several mapping 

values in feature images are reduced by the max-pooling layer (Pm1) as shown in Figure 

5.12d. Thus, the feature image in Figure 5.12d is inclined viewed-dubiously and softer than 

Figure 5.12c. From Figure 5.12e to Figure 5.12h, the complex learned feature images from 

Cv2 to Cv5 of an example channel are demonstrated the impacts of the kernels of those layers. 

After flowing through Cv and Pm layers of the applied DCNA network, the learned feature 

maps were flattened as feature vectors. Those feature vectors, which were outputs of the final 

fully connected layer (Fc3), were then used as input of a SoftMax layer or output layer for 

clustering. 

 The t-SNE (t-stochastic neighbor embedding) approach is popular in deep networks for 

exploring the feature spaces. Figure 5.13 depicts the three-dimensional distribution of the 

output feature vectors from the Fc3 layer according to seven defect categories through four 

experiments. As shown in Figure 5.13, the samples of the same defect type were close to each 

other, separate from the samples of another defect type. The clear discrimination between 
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defect types verifies the high accuracy and stable capability of the proposed framework 

through the condition of the inconsistent speed. Based on this, the classification process can 

identify the defect types of an MDTF gearbox more easily. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 5.12. The flowing learned feature images through layers of the proposed DCNA for one 

example channel, here, (a) RGB input image, (b) the 96 kernels of size 11 × 11 (c), the feature images 

of the Cv1, (d) the feature images of the Pm1, (e) the feature images of the Cv2, (f) the feature images 

of the Cv3, (g) the feature images of the Cv4, the feature images of the Cv5 (h). 
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Moreover, the confusion matrix, which is shown in Figure 5.14, provided perfect performance 

(100% accuracy) of fault identification for seven defect types of the experimental MDTF 

       

                                           (a)                                                                   (b)                 

       

                                         (c)                                                                        (d)             

 

            
(a)                                     (b)                                   (c)                                  (d)             

Figure 5.14. The confusion matrices of the experimental scenario 2: (a) Experiment 1, (b) 

Experiment 2, (c) Experiment 3, (d) Experiment 4. 

Figure 5.13. Three-dimensional clustering spaces of the four experiments: (a) experiment 1, (b) 

experiment 2, (c) experiment 3, (d) experiment 4. 
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gearbox under variable speed conditions through the four experiments in Scenario 2.  

For robustness analysis of the proposed methodology, a comparison was made between the 

proposed method and existing state-of-the-art methods such as ANR-GRS + SFE + GA + 

KNN (Fw1), LADT + GA + KNN (Fw2), LADT + FSE + SVM (Fw3), ANR-GRS + CWT + 

DCNA (Fw4), LADT + STHT + DCNA (Fw5). Those are explained in detail as follows: 

(1) ANR-GRS + SFE + GA + KNN (Fw1): This framework used the denoising method as 

an adaptive noise-reducer-based Gaussian reference for optimizing vibration signals. 

Next, the handcraft feature extraction technique was used to extract the statistical 

features in the time and frequency domain (SFE: statistical feature extraction). The 

achieved feature pool, then, was processed by a feature-selection-method-based 

genetic algorithm (GA) to fetch the most discriminate features in preparation for input 

into the learning model as k-nearest neighbors (KNN). KNN performed fault 

classification based on the selected features (reduced dimensionality) to identify the 

gear defect types for validating the accuracy of the constructed model (Fw1). The 

details of Fw1 can be found in [169]. 

(2) LADT+ GA + KNN (Fw2): To validate the improved denoising technique, the LADT 

module was used instead of the ANR-GRS module in the Fw1 to construct the Fw2. 

(3) LADT + FSE + SVM (Fw3): This observed framework was created to explore the 

noise reduction proficiency of LADT, incorporating the high-dimensional feature 

pool, which can be well-classified by a support vector machine (SVM). The proposed 

denoising approach (LADT) in this study was applied to optimize vibration signals. 

The FSE step tried to configure the feature pool. Then, an SVM was utilized to process 

fault diagnosis by using the extracted features to input learning data [126]. 

(4) ANR-GRS + CWT + DCNA (Fw4): By implementing this framework, the 

effectiveness of the LADT module was straightforwardly compared to the initial 

adaptive noise technique (ANR-GRS). In this situation, we only replaced the LADT 

module with ANR-GRS. 

(5) LADT + STHT + DCNA (Fw5): This framework was implemented by using short-

time Fourier transform (STHT) to extract the visualized image features as spectrogram 
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images. It was used for comparison with the proposed scheme in the process of 

enriching feature extraction. 

Those methodologies were selected to evaluate the performance of the proposed method in 

terms of the improvement of LADT for denoising in comparison with the initial method 

(ANR-GRS), the effective performance between the automatic feature engineering methods 

(feature extraction, feature selection, and classification) based on DNN from the enriched 

feature pool (CWT + DCNA), handcraft-method-aided shallow neural networks (SFE + GA 

+ KNN, SFE + SVM), and the effect of enriching feature pool configuration methods (CWT 

and STHT).  

To evaluate the proposed method against the reference methods, the overall classification 

accuracy (Rf) for each framework has been calculated using Equation (5.10). 

                                                             Rf =
∑ 𝑇𝑃

∑ 𝑇𝑆
. 100%                                                   (5.10) 

where, ∑ 𝑇𝑃 denotes the summation of the true positives, and ∑ 𝑇𝑆 refers to the total number 

of samples used in the classifying process. Each framework was executed several times to 

achieve the average results of overall classifying accuracies for seven defect types. The 

classification results of all frameworks through two scenarios are shown in Table 5.6.  

Table 5.6. The overall identification accuracies of the compared frameworks through two scenarios. 

The 

scenarios 

The 

experiment 

The Average Classification Accuracies of Frameworks (%) 

Fw1 Fw2 Fw3 Fw4 Fw5 Proposed Fw 

Scenario 

1 
Experiment 0 

62.18 65.13 54.71 83.50 91.68 100 

Scenario 

2 

Experiment 1 53.43 57.35 72.54 86.65 88.82 100 

Experiment 2 45.31 51.43 68.78 81.51 86.85 100 

Experiment 3 57.62 67.71 74.19 88.30 90.21 100 

Experiment 4 50.17 58.69 72.70 85.90 89.49 100 

 

As can be seen from Table 5.6, the LADT approach performed denoising better than the ANR-

GRS method in the three frameworks: Fw1, Fw2, Fw3; however, the identification accuracy 

results were lesser than the proposed method from 54.69% to 25.81% due to the limitations 

of those frameworks in engaging with handcraft feature extraction and shallow learning 

networks. The different results (from 12.7% to 18.49%) between Fw4 and the proposed 

framework in this paper confirm the high improvement in denoising delicacy of LADT. The 
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Fw5 results (from 13.15% to 8.32% as lower) demonstrate that the wavelet-based vibration 

imaging to configure the wealth feature pool achieved a better performance than using STFT. 

By comparative analysis, the applied framework in this paper outperformed the defect type 

identification for an MDTF gearbox under variable speeds condition in comparison with those 

state-of-the-art frameworks, yielding an average classification performance of 100% during 

two scenarios.  

To establish an accurate fault identification framework, an effective denoising technique for 

the complex gearbox vibration signals is critically needed. The disturbance noises in the 

vibration signals make the subsequent processes of feature engineering and classification less 

effective. Therefore, this paper combined LADT for highly effective denoising, VWI for 

wealthy visual feature pool configuration, and DCNA for high dimensional and automated 

feature extraction, feature-optimizing selection and classification, and to draw the accurate 

and stable fault identification framework for an MDTF gearbox under inconsistent speed 

conditions. Through analysis and experimentation, our proposed methodology achieved the 

highest classification result, verifying the effectiveness of the proposed model.  

5.6 Conclusions 

This paper proposed an accurate and stable fault diagnosis framework for multi-degree tooth 

faults in the gearbox under variable speed conditions. The raw vibration signal obtained from 

the gearbox contains fault-related information and background noises. To obtain information 

related to multi-degree tooth faults from the vibration signal, the proposed method 

preprocesses the raw vibration signal by using the newly developed localized adaptive 

denoising technique. The localized adaptive denoising technique results in optimized 

vibration sub-bands with reduced noise. To obtain fault-related information in the form of a 

time–frequency scale image, a wavelet-based vibration imaging approach is applied to the 

denoised vibration signal. Finally, these wavelet-based vibration images are provided as an 

input to a deep convolutional neural network model for fault classification. The deep 

convolutional neural network is specifically developed for fault diagnosis purposes. To verify 

the effectiveness of the proposed method, the proposed method was applied to two different 

datasets. The first dataset had a fixed speed; however, the second dataset consisted of variable 

speed conditions. On both datasets, the proposed method outperformed the existing state-of-
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the-art methods with an average classification accuracy of 100%. In the future, the goal is to 

apply the proposed fault diagnosis technique to the fault diagnosis of complex rotating 

machinery, such as centrifugal pumps. 
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Chapter 6 Summary of Contributions and Future Work 

 

Chapter 6  

Summary of Contributions and Future Work 

 

6.1 Introduction 

This chapter describes the summation of the main contributions of this thesis and the 

discussion of the possibilities for future study. The contributions are summarized in Section 

6.2, whereas the vision of further research in the future is illustrated in Section 6.3. 

6.2 Summary of Contributions 

In this thesis, the research works have been conducted to address the difficult and challenging 

problems appertained to noise reducing techniques of an enhanced VSA, which is an initial-

important process to construct a rotation machine conditional monitoring system. From 

analyzing the vibration characteristic of a gearbox system, the adaptive denoising 

methodologies have been developed to process nonlinear, nonstationary, and noisy gearbox 

vibration signals for reducing noise significantly and conserving the fault-related information. 

Those proposed techniques are well-applicable to construct the sensitive and reliable fault 

diagnosis models for a multi-level tooth cut gearbox under varying rotational speed 

conditions. Accordingly, Chapters 2 to 4 explain the procedure to build up the ANR-GRS 

methodology and its effectiveness in the proposed gearbox fault diagnosis while chapter 5 is 

about the LADT approach and its application for an accurate and stable fault identification 

model. The contributions in this dissertation for enhanced vibrations signal processing can be 

summarized below:  

 A reliable fault diagnosis method for a gearbox system with varying rotational speeds 

was described in Chapter 2. The Proposed method was established for identifying four 



Chapter 6: Summary of Contributions and Future Work                                                                                                                                                                                                                                      

  

134 

 

fault states of an MTCG gearbox when it operates in varying rotational speed 

conditions. Adaptive noise reducer based Gaussian reference signal (ANR-GRS) 

technique was proposed for optimizing gearbox vibration signals in terms of denoising 

and highlight fault informative elements. ANR-GRS uses the noise-simulated 

reference signal to access the space between two consecutive sideband frequencies of 

a vibration spectrum adaptively for removing noise. Next, the machine learning based 

classification method (OAOMCSVM) was applied to identify those health states of a 

gearbox using the statistical parameters, which were manually extracted from 

optimized vibration subbands, as input data. Thus, when those parameters were fed to 

the support vector machine classifier, the satisfactory accuracy of the classification 

result was achieved. This model was performed training and testing with the 

alternative speed-related vibration data for evaluating its reliable capability. Therefore, 

by the effectiveness of the novel noise reduction technique (ANR-GRS) for vibrations 

signals, this fault diagnosis framework verified the reliable performance and was well-

applicable for diagnosing four fault states of an MTCG gearbox in varying speed 

conditions.  

 Another demand in gearbox fault diagnosis is to investigate gear defects when there 

exist failures in multiple levels. The fault diagnosis mechanism in Chapter 3, combines 

the proposed effective noise reduction method ANR-GRS and optimal feature pool 

configuration based genetic algorithm for identifying six levels of tooth defects (six 

fault states) of an MTCG gearbox. The manual extraction method tried to extract many 

signal features in time and frequency domains from the optimized vibration subbands, 

which were obtained by the ANR-GRS approach and carried the fault information of 

six fault states, to configure a feature pool. ANR-GRS method is capable of reducing 

noise significantly and simultaneously keeping the fault-related ingredients in 

vibration signals of an MTCG gearbox. Then, the genetic algorithm (GA) was applied 

to perform a heuristic searching strategy in the extracted feature pool to select the most 

discriminative features for the configuration of an optimal feature pool. Thus, a simple 

classifying algorithm such as k-nearest neighbor was used for identifying fault states 

into the respective categories using the optimal subset outputted from a genetic 

algorithm based feature selection. Then, the combination model (ANR-GRS and GA) 
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yielded the superior performance result to identify the defects of multiple levels. The 

conclusion could be clarified that the proposed fault identification model can be well-

applied for discriminate fault states of an MTCG gearbox system. 

 

 In Chapter 4, the sensitive and speed invariant gearbox fault diagnosis scheme was 

constructed by incorporating and utilizing the advantages of the novel adaptive noise 

control (ANC) technique and a deep neural network. The vibration data collected from 

seven fault types of multi-level tooth cut faults under varying rotational speeds, which 

were observed in this chapter, are very heterogeneous. In addition to the 

aforementioned attributes as: nonlinear, nonstationary, and noisy, the vibration signals 

were to vibrate of similar behaviors of multi-level tooth faults. Thus, the process to 

highlight the representative features of each fault type for separating the fault types 

was much arduous. This incorporated model addressed those difficult problems. 

Firstly, ANC performed an optimization process of raw vibration signals to output the 

optimal vibration subbands, which comprise the plurality of fault-related frequency 

components. Next, a deep learning model as stacked sparse autoencoder-based deep 

neural network (SSA-DNN), which was established by stacking several sparse 

autoencoders as the network hidden layers and SoftMax activation function for output 

classification layer, was used for feature engineering and classification. Accordingly, 

SSA-DNN performed feature extraction automatically to numerous latent 

representation features, from the optimal vibration subbands, then the deep network 

architecture performed the fine-tuning process to select the most discriminating fault 

features based on a back-propagation algorithm and reconstruction error minimization. 

Those fault types representation features were highly-distinguishable and could be 

identified easily via the output SoftMax layer of the network architecture. Therefore, 

the proposed combination framework provided excellent diagnosis results and can be 

applied for various fault types of a gearbox under variable rotational speed conditions.    

 In Chapter 5, the novel localized adaptive denoising technique (LADT) was proposed. 

Then, the stable and accurate gearbox fault diagnosis scheme for multi-degree gear 

faults under inconsistent shaft speed conditions was built up by combining LADT, 

wavelet vibration imaging (WVI), and deep convolutional neural network architecture 
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(DCNA). The objective of this study is to develop more denoising techniques. Because 

of the dissimilarity between principle frequency segments (PFS) in a frequency 

spectrum of a vibration signal, for reducing more noise components, LADT was 

constructed by applying the ANR-GRS method on each PFS to figure out the localized 

optimal parameter. As the result, LADT could reduce noise better than ANR-GRS, 

and preserve original fault useful information, it was well-applicable in company with 

feature engineering and classification method for establishing a gearbox fault 

diagnosis model. Then a visualized feature pool configuration was formed by using 

wavelet based vibration imaging methods for optimized vibration subbands outputted 

from LADT. The scalogram images samples related to fault states were provided to 

DCNA for classification, which yielded satisfactory identification results. The 

efficiency of the reliable and accurate gearbox fault diagnosis framework verified the 

superiority of LADT for noise reduction, accurate and reliable performance, and 

qualification for identifying many fault types of multi-degree tooth fault under varying 

rotational speed conditions.          

6.3 Future Work 

As described in the previous chapters the main focus of this dissertation is to develop 

denoising techniques for condition monitoring of the industrial machinery. Although the 

effectiveness of the proposed noise reduction techniques (ANR-GRS and LADT) have 

outperformed the conventional methodologies, there are numerous demands related to 

vibration characteristic of the observed industrial machines as; bearing, centrifugal pumps, 

induction motors, pipelines … Thus those denoising methods are needed to improve for 

compliance. Moreover, condition monitoring fault diagnosis models are commonly 

constructed by combining signal processing, feature engineering, and machine learning based 

classification. The efficient denoising techniques and the deep neural network-based 

approaches are demonstrated the superiority performance for the establishment of fault 

identification models for multiple fault types under variable speeds conditions.  However, 

there exist many difficult problems of condition monitoring models for different industrial 

machines, those need to develop and improve more in future works. Some of these further 

research topics are listed below: 
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 The adaptive noise reducing methods should be developed more in future research for 

improving capabilities of noise reduction, online or real-time health monitoring. 

Accordingly, the adaptive algorithms in the proposed denoising models can be 

improved by examining other methods as fuzzy or machine learning based algorithms 

for replacement. Moreover, the data acquisition and signal processing systems should 

be communicated to the controlling systems of rotation machines for early fault 

detection and maintenance. For establishing online diagnosis and prognosis systems 

for rotation machines, the denoising techniques should be further investigated in 

practice for real time processing.     

 A possible and fascinating performance for future study of the works described in this 

thesis is a data fusion technique constructed by simultaneous monitoring of several 

sensors. Data fusion can be used to provide more fault-related information by 

accumulating data from each sensor channel. Indeed, the efficient denoising methods 

and data fusion approaches can be applied for fetching discriminative features, which 

are useful for the classification process of a fault diagnosis system. Therefore, data 

fuse by using multiple sensors is a practical concentration for better performance of 

condition monitoring of rotation machines.    

 Transfer learning is an advanced technique of machine learning and can be well-

applicable for fault identification of further researches. The transfer learning method 

focuses on knowledge-based performance, the knowledge gathered by solving a 

problem and using it for related problems. In that way, solution knowledge can be 

applied for different objects whose characteristics are analogous. In transfer learning, 

the properties of the source task are discovered and transferred to the target task (e.g. 

mapping function, weights…) for expanding the learning performance of the target 

from the knowledge of the source. By using transfer learning, the learning speed can 

be improved and the amount of required data can be reduced. Those are superiorities 

of transfer learning performance and can be applied for designing the real-time or 

online condition monitoring systems of rotation machines.
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