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Abstract 

Discovering a genetic regulatory network (GRN) from time series gene expression 

data plays an essential role in the field of biomedical research. This is because 

transcriptional regulation is a fundamental molecular mechanism that is involved in 

almost every aspect of life, from homeostasis to development, from metabolism to 

behavior, from reaction to stimuli to disease progression. So that many methods have 

been proposed for inferring GRNs. Among the proposed methods, Boolean networks 

are widely used. Although the Boolean network models give good results to some 

extent and are capable of handling data noise, information loss is their main drawback 

due to the simplicity of data representation, and this leads to the achieved results still 

being far from optimal. 

Thus, it is needed to develop an efficient method which can infer large networks with 

a reliable result in an acceptable run time. In this regard, we propose a new method 

namely the mutual information based on multiple level discretization network 

inference (MIDNI) from time-series gene expression profiles. For each gene in the 

input network, real-valued gene expression values are discretized into binary or 

ternary depending on its distribution before feeding to the reference algorithm.  

We validated MIDNI with four well-known inference methods, DBN, MICRAT, 

MIBNI, and GENIE3, through extensive simulations on both the artificial discretized 

and the artificial real-valued gene expression datasets. Our results illustrated that 

MIDNI significantly outperformed them in terms of both structural and dynamics 

accuracies. This implies that MIDNI is an efficient tool to reconstruct the gene 

regulatory networks, particularly, more efficiently for complex and large networks.  
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Chapter 1 

Introduction 

1.1. Motivation 

Gene regulatory networks (GRNs) determine the ensemble of underlying interactions 

among genes that carries out their expression. The clarification of GRNs is 

extensively important to understand the functioning and pathology of organisms and it 

still remains one of the major challenges of systems biology. Recently, due to the 

advent of high-throughput technologies, computational approaches have been 

proposed to infer GRNs from the measurement of gene expressions in various 

conditions (time-series and steady state) using statistical inference or machine 

learning techniques. Although the calculation speed is improved significantly, 

alternative data representation methods, however, are still used to speed up more the 

calculation process and also give high inference results. Within the methods of data 

representation, the binary representation is widely applied and has achieved many 

critical results. It is known as the Boolean network. Many exist methods have been 

proposed applying the binary data representation such as Best-Fit, MIBNI, etc. While 

these exist network inference methods have reached some maturity, their performance 

on real datasets remains far from optimal and calls for the permanent improvement of 

both inference result as well as computational speed. This is my motivation of this 

work. 
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1.2. Problem Statement 

To infer the GRNs, many methods used the Boolean network model which has only 

two levels of data discretization. “1” denotes the active state (or activator) of the gene 

value while “0” means the inactive one (or inhibitor). Although inferring results have 

been reliable with acceptable accuracy and the methods are fast and efficient to 

capture the dynamical interactions of genes, all Boolean network methods in some 

cases show the poor performance due to the simplicity (leading to high information 

loss) of the Boolean representation of the data. To overcome this, some methods [1-3] 

applied a higher order discretization for genes whose values are denoted by 1, 0, and -

1 meaning „upregulated‟, „no-change‟, and „downregulated‟. However, most of these 

methods always used three levels while discretizing the data. This sometime is not 

optimal since among genes, not all of them are suitable to be discretized into three 

states. In fact, some is more appropriate for binary discretization, others else are more 

applicable for three levels of discretization.  

To minimize the information loss while keeping the attractive advantages of the 

Boolean network for the network reconstruction problem, we propose a novel 

algorithm namely the mutual information based on multiple level discretization 

network inference from gene expression profiles (MIDNI) which used both the binary 

and ternary discretization depending upon the distribution of gene values. In this 

work, we will present how to determine which genes should be discretized into binary 

and which should not, and the most important stage is the proposed algorithm to infer 

the network and it results comparison.  
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1.3. Existing Solutions 

Attempts have been made by industry professionals and researchers alike to solve the 

problem of inferring GRNs. And through these attempts, several approaches have 

been proposed. Some of these approaches are included in the following: 

 Data-driven methods 

 Methods based on the correlation score 

 Methods based on the mutual information 

 Tree-based methods 

 Bayesian methods 

      Identifying the set of regulatory genes for the input network is a crucial step for 

the further understanding biological system. This topic has expectedly caught the 

interest of many researchers, who have gone ahead to publish their findings. From 

these things we find a more efficient and flexible approach which shows a better 

performance on large datasets. 

1.4. Research Objectives 

Using the representative data for inferring GRNs gives the result not much worse than 

those of using the raw expression data. Moreover, this leads the inference speed many 

times faster. The K-mean algorithm is widely used due to simple implementation and 

stably clustering. However, how to automatically determine the number of clusters is 

a tough question that is still challenging for many researchers. Many determine the 

optimal cluster according to plotting the Elbow score. This approach is emotional and 

for some cases, it is too difficult to choose which one is the best among the two. 
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Hence, the first goal of this study is to find the metric based on which we are able to 

determine the number of clusters as the parameter of the K-mean algorithm. When the 

data representation is done, the inference process is considered. Here, the aim is that it 

is necessary to develop an algorithm to find regulatory candidates for each target gene 

by considering all the interactions between genes instead of just considering the 

interaction of gene pairs relation between the target and the other genes in the network 

like the previous approaches. This is important because it resembles real biological 

systems. Finally, the algorithm not only gives a good performance in terms of the 

structure prediction but also should give adequate results in terms of dynamics 

accuracy, which other algorithms rarely evaluate. This is also important because the 

different structures of the networks might produce the same underlying dynamics. In 

short, the algorithm, in addition, to accurately predicting the network structure, also 

reveals the dynamic interactions among genes in the network. 

1.5. Thesis Outline 

This thesis is composed of five chapters, outlined as follows:  

Chapter 1, which is the current chapter, introduces the subject of the thesis. It states 

the problem and motivation towards solving the stated problem. It further outlines 

existing solutions to the problem and our objective for conducting this research  

Chapter 2 presents an overview and review of literature on referring GRNs. In this 

chapter I discuss some of the existing approaches to infer GRNs and works related to 

inference of GRNs that have been carried out in the past.  

Chapter 3 describes the proposed methodology namely the mutual information based 

on multiple level discretization network inference from gene expression profiles. It 
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gives a detailed-on data representation and how to find out a set of candidate 

regulatory genes for each target gene of the input network.  

Chapter 4 reports on the experiments carried out, and the results realized from these 

experiments. In this chapter, we will see how the proposed model performs in 

comparison to existing baselines, for both terms of structural and dynamic accuracies. 

Chapter 5 concludes this thesis with a summary of the work done in the course of the 

research and provides directions for future studies. 
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Chapter 2 

Backgrounds 

2.1. Overview of gene regulatory network inference 

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators 

that interact with each other and with other substances in the cell to govern the gene 

expression levels of mRNA and proteins which, in turn, determine the function of the 

cell. GRN also play a central role in morphogenesis, the creation of body structures, 

which in turn is central to evolutionary developmental biology. 

Gene regulatory network inference allows us to understand biological systems 

behaviors. After that disease characteristics can be revealed out and at the end of this 

process is that drug therapy will be produced to deal with epidemics. Hence, gene 

regulatory network reconstruction plays an important role in understanding biological 

systems. 

It can be said that gene regulatory networks are powerful abstractions of biological 

systems. In the late 1990s, thanks to the advent of high-throughput measurement 

technologies in biology, reconstructing the structure of such networks becomes a 

central computational challenge in systems biology. Although considerable progress 

has been made in the last two decades, however, the problem is certainly not solved in 

its entirely. Hence, researchers keep working hard to come up with better algorithms 

that give more positive results to solve the problem thoroughly. In this study, we 

propose a new approach to infer the network from Time-series gene expression 

profiles. 
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2.2. Related Works 

Many approaches using various computational models have been proposed for the 

network inference problem. A data-driven methods is a class of GRN reconstruction 

methods by estimating genes dependencies directly from the data. In this class, the 

correlation score is widely used to associate to a pair of vector-valued measurements. 

The weighted gene co expression network analysis (WGCNA) [4] is a well-known 

correlation score-based method that has proved consistently reliable and widely 

adopted. However, the correlation coefficient fails to capture more complex statistical 

dependencies (such as non-linear relations) between expression patterns. To resolve 

this limitation, the mutual information (MI) has been employed. MI is an efficient 

information theoretic score which frequently used in determination of the regulatory 

relations. The relevance network [5] is the simplest model which computes MI 

between all pairs of genes and infers the presence of a regulatory interaction when MI 

is larger than a given threshold. The context likelihood of relatedness (CLR) 

algorithm [6] is an extension of the relevance networks approach to replace the 

probability distributions with empirical distributions of all MI scores. CLR applies an 

adaptive background correction step to eliminate false correlations and indirect 

influences. Algorithm for the reconstruction of accurate cellular networks (ARACNE) 

[7] is another information-theoretic algorithm for the reverse engineering of 

transcriptional networks from microarray data. ARACNE defines an edge as an 

irreducible statistical dependency between gene expression profiles that cannot be 

explained as an artifact of other statistical dependencies in the network. Finally, 

MRNET [8] uses an effective information-theoretic technique for feature selection 

based on a maximum relevance/minimum redundancy criterion. Despite certain 

results, the computational complexity is the major limitation of the data-driven 



9 
 

approaches which leads to consuming a lot of computational resources as well as the 

running time. Another limitation is that most of them are applicable only to small-size 

networks. They are difficult to test or show the poor performance with large-size 

networks. 

In order to reduce the complexity of computation and speed up the running time, real-

valued expression data conversion of Boolean value is widely used in many methods 

and used that discretization data as an input for inferring systems. For example, the 

Best-Fit [9] is proposed to cope with the Consistency Problem and find one or all 

consistent Boolean networks that are relative to the given examples. Another example 

of binary data using [10] that present an inference approach for a Boolean Network 

model of a GRN from limited transcriptomic or proteomic time series data based on 

prior biological knowledge of connectivity, constraints on attractor structure and 

robust design. The method is able to illustrate that inference of a Boolean network 

from limited time series data with constraints on connectivity that explains the 

observed state transitions.  Mutual information-based Boolean network inference 

(MIBNI) method [11] also uses the binarized expression data as an input for inferring 

regulatory networks. MIBNI firstly identifies a set of initial regulatory genes using 

mutual information-based feature selection, and then improves the dynamics 

prediction accuracy by iteratively swapping a pair of genes between sets of the 

selected regulatory genes and the other genes. A genetic algorithm-based Boolean 

network inference (GABNI) method [12] is an upgrade approach from MIBNI. 

GABNI applies genetic algorithm (GA) to search an optimal set of regulatory genes in 

a wider solution space when MIBNI fails to find an optimal solution in a small-scale 

inference problem. Although GABNI shows a good performance for the large-scale 

networks, however, it employed a limited representation model of regulatory 
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functions. In this regard, a novel genetic algorithm combined with a neural network 

for the Boolean network inference was proposed [13], where a neural network is used 

to represent the regulatory function instead of an incomplete Boolean truth table used 

in the GABNI. In brief, although inferring results have been reliable with acceptable 

accuracy and the methods are fast and efficient to capture the dynamical interactions 

of genes, all Boolean network methods in some cases show the poor performance due 

to the simplicity (information loss) of the Boolean representation of the data. 

To minimize the information loss while keeping the attractive advantages of the 

Boolean network for the network reconstruction problem, we propose a novel 

algorithm namely the mutual information based on multiple level discretization 

network inference from gene expression profiles (MIDNI). The algorithm first 

discretizes gene expression data where the discretization level depends on the 

distribution of gene values. In this study, the discretization level is limited to two or 

three. This is because if the discretization level is greater than three, the 

computational cost will increase. Hence, in each network, some genes are discretized 

into three to avoid information loss. Other genes are discretized into two for the 

purpose of optimizing the computational speed and handling data noise. We use the 

validity index (more detail see literatures [14] [15] [16], [17]) to determine whether 

which genes should be discretized into two and which should be into three. It depends 

on the distribution of every single gene in the network. 

Subsequently, discretization genes are feed to the mutual information – based feature 

selection (MIFS) method [11]. We used MIFS to approximate the multi-variate 

mutual information between a target gene and a set of candidate regulatory genes. We 

also used a SWAP subroutine, which is a greedy algorithm wherein a gene in the set 

of regulatory genes selected by MIFS is iteratively swapped with another gene in the 
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set of unselected genes. This loop of MIFS and SWAP was presented in our earlier 

Boolean network inference (MIBNI) algorithm [11]. In this work, we modified them 

to adapt multi-level discretized expression values. We validated MIDNI performance 

with both the artificial and the real gene expression datasets in comparison with two 

well-known methods namely MICRAT, DBN and MIBNI. The experiment shows that 

our method outperformance them in term of dynamics accuracies. Furthermore, 

MIDNI is able to infer a network with noisy datasets and gives a reliable result. This 

indicates that MIDNI is a dependable method in inferring regulatory network from 

gene expression datasets. 
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Chapter 3 

Materials and Methodology 

3.1. Materials 

 A discretization network model 3.1.1.

In this study, we employed a discretization network model to represent gene 

regulatory networks. A discretized network is represented by a directed graph G(V, A) 

where                    is a set of nodes,     {(     )}      is a set of 

interactions, and a state value of gene   at time  ,     , is represented by   discrete 

values                . We note that it is a Boolean network if     for all genes in 

 . Consider a target node       which is regulated by   genes,                    

   . Let   and    are the sets of discretized expression values of genes   and   , 

respectively. The value        is updated by a discrete function            

     of the values of   regulatory genes            at time  . Hence, the update 

scheme of   can be described as the following formula: 

          (                     )   

We note that the update time lag used in this study is one and the number of all 

possible functions with respect to         
  

 where   and    the cardinalities of   and 

  , respectively. 

 The discretization network inference problem 3.1.2.

The discretization network inference problem is a problem to infer both a set of 

interactions and a set of update functions from a time-series gene expression data. The 
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inference performance can be evaluated by comparing the trajectory generated by the 

inferred network and the observed time-series gene expression. Let       the predicted 

value of the gene   at time   in the inferred discretization network. We define the 

gene-wise dynamics consistency         as the similarity between the discretization 

trajectories of the observed gene expression      and the estimated gene expression 

     , as follows: 

         
∑               

   

   
 

where   is the total number of time-steps,   is time lag = 1 and      is an indicator 

function that returns 1 if the condition is true, otherwise 0. In addition, the comparison 

starts at     by the assumed update time lag in this work. We finally define the 

dynamics accuracy of an inferred network as the average of gene-wise dynamics over 

all genes as follows: 

                  
∑          

 
   

 
 

, where   is the number of genes. 

 

 Structure performance metrics 3.1.3.

When the structure of a gold standard or correct network is known, we can further 

evaluate the inference performance with respect to the network structure. To this end, 

we used three measures, precision, recall and structural accuracy. Precision is the ratio 

of correctly inferred connections over the total number of predictions as follows: 
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where    (true positive) and    (false positive) denote the numbers of correctly and 

incorrectly predicted connections, respectively. Recall is the ratio of true predicted 

connections over the total number of actual connections: 

        
  

     
 

where    (false negative) means the number of non-inferred connections in       . 

Structural accuracy is the ratio of correct predictions out of all predictions as follows: 

                     
     

           
 

where    (true negative) is the number of correct negative predictions. 

 Mutual information 3.1.4.

Our method selects a set of regulatory variables for each target variable based on 

some concepts of information theory. First, the entropy      of a discrete random 

variable   is defined to measure the uncertainty of   as follows: 

      ∑            

   

 

In addition, the join entropy        of two discrete random variables   and   with a 

joint probability distribution        is defined as follows: 

         ∑ ∑                

      

 

Finally, we used the mutual information of two discrete variables as follows: 
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The larger the mutual information is, the more the variables are dependent on each 

other. 

3.2. Methodology 

In this study, we proposed a method called MIDNI for a multiple level discretization 

network inference from time-series gene expression data. Figure 1 demonstrates the 

overall structure of it. A real-valued time-series gene expression dataset is given as an 

input, and it is converted into a gene expression dataset using the K-means 

discretization method [14]. It divides all expression values of each gene into   

dicretized values where the discretization level   is determined according to the 

distribution of the gene expression values. In case that the discretization level is two, 

the converted values of genes are marked by 0 (low) and 1 (high). On the other hand, 

they are marked by 0 (low), 1 (normal) and 2 (high) when the discretization level is 

three. For each target gene  , whose entropy value is non-zero, the subroutine MIFS 

is used to select   genes in   that have the most informative variables with the gene 

 . Then, the subroutine SWAP is applied to improve the gene-wise dynamics 

consistency by swapping the same number of variables between   and      . Here,   

is a selected set of candidate regulatory genes achieved by MIFS, and   is a set of 

genes in the network. This procedure is repeated by increasing the number   until an 

optimal set   is found (the gene-wise dynamics consistency of the gene v has reached 

perfect and equals 1) or   reaches a user-parameter   which indicates the maximum 

number of regulatory genes for the gene   to be inferred. 
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Figure 1. The framework of MIDNI algorithm. A real-valued time-series gene 

expression dataset is converted into a discretized expression dataset using the K-

means discretization algorithm. K value is determined based on the validity index for 

each gene. The data is then fed into MIFS and SWAP subroutines. The result is the 

sets of regulatory genes for genes of the input network. Based on this result, we will 

reconstruct the network as a predictive network. 

3.2.1. Discretization 

Boolean discretization can speed up the inference process and some genes are suitable 

for such Boolean discretization. However, other genes are more appropriate for a 

higher-level discretization as shown in figure 2. In fact, there have been some 

previous studies to show the usefulness of level three discretization of gene 

expression. For example, Deep Neural Network [15] uses 1, 0 and -1 representing the 

genes value while calculating the individual gene's contribution. Some other methods 

[1-3]also applied a higher order discretization for genes whose values are denoted by 

1, 0, and -1 meaning `upregulated', `no-change' and `downregulated'. Hence, the 

MIDNI employed a hybrid approach for data discretization with both levels of two 
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and three. To determine the optimal level of discretization, we used the validity index 

(more detail see literatures [18] [16, 17]), which is defined as follows: 

          
     

     
  

where 

       
 

 
∑ ∑ ‖     ‖

 
    

 
    , and 

          
   

 ‖     ‖ 
  

where               ,   is the number of observed timepoints in the gene,   is 

the number of the clusters, and    denotes the center of the cluster   . The optimal 

number of clusters will be chosen as to minimize the validity index. 

More specifically, a gene is classified into two classes and three classes by using K-

means clustering. Next, the validity index is calculated for each classification case. 

Final, the gene will be classified in a way that has a smaller corresponding validity 

index. This process is executed for all the genes of the network. 
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Figure 2. The real-valued distribution of genes that are more appropriate for a higher 

level of discretization. The x-axis shows the time points while y-axis denotes the real 

value of genes. 

3.2.2. MIFS and SWAP subroutines 

Given a discretized time-series gene expression dataset, MIDNI executes two 

subroutines, MIFS, and SWAP, in sequence. We note that they were modified from 

the similar subroutines in MIBNI (18) because the latter can handle only binary 

expression values. For each target gene v of the network, the MIFS subroutine 

searches an initial set of regulatory genes        by evaluating an approximated 

multivariate mutual information (see Algorithm 1). Subsequently, the SWAP 

subroutine (see Algorithm 2) is used to iteratively search an improved set of 

regulatory genes starting at    . The search_update_rule function is a function that 

finds a set of update rules in the update table by which the input set    can perfectly 

transfer to the target gene v. More details about the search_update_rule function, see 
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an example in the Appendix. More specifically, the SWAP repeatedly tests a 

swapping between a selected candidate regulatory gene    (  in Algorithm 2) and the 

set of unselected genes        (  in Algorithm 2). The swapping process is repeated 

for every pair of variables in the selected and unselected sets of variables in the 

decreasing order of the mutual information with the target gene. As a result, the 

MIDNI returns a best-found set of regulatory genes for each target gene. 

 

Algorithm 1. Subroutine              where    - the target variable,   
             – the set of variables,   – the desired number of the input variables. 

Start 

𝑣 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑊𝐼 𝑣  𝑤  

𝑆 ≔ 𝑣 

𝑊 ≔ 𝑊 𝑣 

 

 

|𝑆| ≤ 𝑘 

𝑣 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑊 𝐼 𝑣  𝑤  Σ𝑠 𝑆𝐼 𝑤 𝑠   
𝑆 ≔ 𝑆 ⋃𝑣  
𝑊 ≔ 𝑊  𝑣  

 

 
 
 
 

End 

- 

+ 

S 
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Algorithm 2. Subroutine              where    – the target variable;   
             – the set of selected variables such that                   if     for 

all         ;               – the set of unselected variables such that 

                 if     for all         . 

.  

Start 

𝑣  ≔ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑢𝑝𝑑𝑎𝑡𝑒_𝑟𝑢𝑙𝑒 𝑣  𝑆  

𝐸𝑚𝑎𝑥 ≔ 𝐸 𝑣  𝑣    

𝑖 ≔   

 

𝑖 ≤ 𝑀 

𝑗 ≔   

𝑗 ≤ 𝐾 

𝑣  ≔ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑢𝑝𝑑𝑎𝑡𝑒_𝑟𝑢𝑙𝑒 𝑣  𝑆 ∪ {𝑤𝑗}  𝑠𝑗    

𝐸 𝑣  𝑣   > 𝐸𝑚𝑎𝑥 

𝑆 ≔ 𝑆 ∪  𝑤𝑖  
𝑆 ≔ 𝑆   𝑠𝑗   

𝑊 ≔ 𝑊 ∪  𝑠𝑗   

𝑊 ≔ 𝑊   𝑤𝑗   

𝐸𝑚𝑎𝑥 ≔ 𝐸 𝑣  𝑣     
 

 
End 

- 

+ 

- 

+ 

+ 

- 

𝐸𝑚𝑎𝑥 

S, 

𝑗 ≔ 𝑗    

𝑖 ≔ 𝑖    
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Chapter 4 

Experiments, Results, and Discussions 

4.1. Experiments 

The whole process can be divided into three stages: The first stage is to discretize the 

input data using the K-means algorithm. Then discretized data is fed into MIDNI, the 

result of this stage is the structure prediction of the network. This structure is 

compared with the real structure using a tool to evaluate the structure and dynamics 

accuracies. All stages are implemented with Python language and its libraries. 

To validate the performance of MIDNI, we tested it with two time-series gene 

expression datasets: the artificial discretized and the Hill function-based real-valued 

ones. These two datasets are generated by also using Python language. 

4.2. Results 

4.2.1. Case study 1: Artificial discretized dataset 

We generated an artificial dataset with 20 discretized network groups of |V| = 10, 20, 

...,190, and 200. Each group includes 20 different random networks, and a total of 400 

networks were tested in this simulation case. For each target gene, we randomly 

choose k genes from a set of all genes except the target while generating the structure 

of networks. The value k is also randomly generated ranging from 1 to the maximum 

number of regulators for each target gene (See Table 1). In addition, the state of every 

gene (node) was randomly initialized to a value of 0, 1, or 2 (i.e., three-level discrete 

value). It was updated over 29 time-steps by a discrete update function selected 

uniformly at random among a set of all possible update functions. Given a target gene 
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with k regulatory genes, there are    
 possible update functions. In this way, we 

created the artificial discretized gene expression dataset. We also note that no 

discretization method is required for this dataset. (See Table 1 for setup). The 

inference result of MIDNI is shown in Figure 3. As shown in the figure, the dynamics 

accuracy was almost 1.0 for all tested networks. This perfect performance might be 

due to the maximum number of regulatory genes being limited to 8. With respect to 

the structural performance, the precision and recall decreased whereas the structural 

accuracy increased as the network size increased. This is because the numbers of 

candidate genes and true negative cases increase along with the increase of network 

size. We further examined the effect of the number of incoming links (D) on the 

performance (Figure 4). In a gold-standard network, the number of incoming links 

means the number of regulatory genes incoming to the. target gene and it eventually 

represents the difficulty of the inference problem. As shown in the figure, the number 

of incoming links ranged from 1 to 8 in the random gold-standard networks. When D 

was 1 or 2, our method showed almost perfect performance in terms of all dynamics 

and structural metrics. The structural performances continuously decreased as D gets 

larger than 2. However, the dynamics accuracy kept almost 1.0 even when D = 8. This 

implies that the inference problem is multimodal where a lot of optimal solutions exist 

in terms of the dynamic‟s accuracy. Taken together, our method stably inferred the 

near-optimal network which can show the dynamics similar to the gold-standard 

network, but the structural inference cannot be excellent because of the intrinsic 

multi-modality of the problem. 
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Table 1: The setting while generating datasets 

 

Figure 3. The performance of MIDNI on the artificial discretized dataset. The x-axis 

means the network size denoted by the number of genes in the network. For each size, 

the y-axis shows the average value of each performance metric over 20 random 

networks. 
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Figure 4. Inference performance according to the number of incoming links (D) in the 

gold-standard network. 

4.2.2. Case study 2: Artificial real-valued dataset 

MIDNI was tested with a real-valued time-series gene expression dataset generated by 

using the Hill function [19]. The dataset consists of four network groups of |V | = 50, 

100, 200, and 300. Each group includes 20 different random networks, and thus a total 

of 80 networks were tested in this case study. The network structure was generated in 

the same way as for the artificial discretized dataset in the section 4.2.1. The used Hill 

function is described as follows (see Table 1 for the parameter setup): 

[       ]   

{
 
 

 
     (         

[  ] 

   [  ] 
)                

    (         
  

   [  ] 
)        ℎ       

 

where                 denote max expression value, basal expression, 

transcription factors, apparent dissociation constant and the Hill coefficient, 

respectively. As explained in section 3.2.1, a set of expression values of each gene 

was clustered by K-mean clustering where   equals to two or three depending on the 

distribution of expression values. 
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We first examined the proportion of genes which are three-level discretized, as shown 

in Figure 5. It noticed that apart from the 10-sized networks, the proportion of the 

two-level discretized genes and those of three-level discretized are relatively equal. 

This implies that ternary discretization is as frequent as binary one in our method. 

We compared the inference performance of MIDNI with DBN, MICRAT, MIBNI and 

GENIE3 methods on the generated datasets. DBN [20] selects potential regulators by 

determining the time points of the initial changes in the expression (up- or down-

regulation) of genes. MICRAT [21] builds an undirected graph representing the 

associations between genes based on the maximal information coefficient. Then, the 

directions of the edge in the undirected graph are determined by using average 

entropy. GENIE3 [22]is an approach inferring regulatory networks from expression 

data using tree-based methods and is the best performer in the DREAM4 In Silico 

Multifactorial challenge. MIBNI is our previous study that used Boolean values to 

infer the network. 

 

Figure 5. The proportion of three-level discretized genes in the networks. 

We compared the performance of MIDNI with DBN, MICRAT, MIBNI and GENIE3 

methods on the artificial Time-series gene expression datasets. DBN [20] selects 
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potential regulators by determining the time points of the initial changes in the 

expression (up- or down-regulation) of genes.  MICRAT [21] builds an undirected 

graph representing the associations between genes based on the maximal information 

coefficient. Then, the directions of the edge in the undirected graph are determined by 

using average entropy. GENIE3 [22] is an approach inferring regulatory networks 

from expression data using tree-based methods and is the best performer in the 

DREAM4 In Silico Multifactorial challenge. MIBNI is our previous study that used 

Boolean values to infer the network. 

4.2.3. Structural accuracy analysis 

We classified all of the target genes into eight groups according to the number of 

incoming links (D), which represents the number of regulatory genes for each target 

gene ranging from 1 to 8 as shown in Figure 6. As shown in the figure, the structural 

accuracy values of all methods reduced as D increased. This is because the number of 

incoming links represents the degree of difficulty of the inference problem. In the case 

of D = 1, all methods almost always found the optimal solution. However, as D 

increases, their performances linearly reduced. We note that our method showed the 

best structural accuracy in all cases except for D = 1 and 2 cases in the smallest 

network (|V | = 50). In particular, the performance gap was clearer when the network 

size and D are relatively large. This result can explain the efficiency of our method in 

a large-scale and difficult-to-solve inference problem. We also note that multi-level 

discretization was useful by comparison with our previous method, MIBNI. 
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Figure 6. Structural performance on the random real-valued networks. Four size 

groups of networks (|V | = 50, 100, 200, and 300) were considered, and 20 random 

networks were generated for each group. All target genes are grouped according to 

the number of incoming links (D) in the gold-standard network, and the x-axis means 

D values. The y-axis value shows the average structural accuracy. 

4.2.4. Dynamics accuracy analysis 

We notice that the different structures of the networks may produce the same 

underlying dynamics. Hence, it is also essential to verify the network inference 

performance in terms of the dynamics accuracy. We examined the dynamics 

accuracies of the inferred networks by MIDNI, DBN, MICRAT, MIBNI, and 

GENIE3 over the networks. Similar to structural accuracy, we also analyze the 

influence of the regulatory genes number of each target gene on dynamic accuracy for 

each method. The experiments are shown in Figure 7. As shown in the figure, most 

methods showed almost 1.0 dynamics accuracy when D = 1. As D increases, the 

inference problems get more difficult, and thus their dynamic accuracies decrease. 

However, MIDNI showed the best performance in all cases except for D = 3 in the 

network group of |V | = 300. Specifically, in the case of D = 8 for the network group 
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of sizes 200 and 300, the dynamics accuracy of MIDNI was about 0.6 whereas those 

of the other methods were around 0.5. This result also proves that our method has a 

notable inference ability for the more complex and larger networks. 

 

Figure 7. Dynamical performance on the random real-valued networks. Four size 

groups of networks (|V | = 50, 100, 200, and 300) were considered, and 20 random 

networks were generated for each group. All target genes are grouped according to 

the number of incoming links (D) in the gold-standard network, and the x-axis means 

D values. The y-axis value shows the average dynamics accuracy. 

4.2.5. Running time 

To compare the running time of MIDNI and other methods, the average running time 

was examined over a total of 80 random networks that were mentioned in the section 

4.2.2. The experiments are conducted on a PC with AMD Ryzen 5 3400G 3.70 GHz 

CPU and 16 GB RAM. The result is shown in Figure 8. In the figure, the Y-axis value 

means the average running time in milliseconds along with the network group with 

four different network sizes. Although MIDNI was clearly slower than DBN and 

MICRAT it was comparable with GENIE3 and MIBNI. MIDNI is slightly faster than 

MIBNI. This is because we have made some optimizations of computational 

commands of the MIFS, and SWAP subroutines used in MIDNI from the original 
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one. For example, we used build-on libraries such as sklearn and scipy to calculate the 

mutual information score and the entropy metrics. Build-on functions are well-

organized and more optimal than self-implemented ones. We also used computation 

on vectors which are executed much faster than those done by the for loop. 

Considering that the structural and dynamics inference accuracy of MIDNI 

outperformed the other methods, it is desirable to apply our method when the high 

accuracy is needed by sacrificing the running time cost. 

 

Figure 8. Comparison of running time. 

4.3. Discussions 

In this study, we proposed a new network inference method from time-series gene 

expression data, called MIDNI. It first converts the real-valued expression into 

multiple-level discretized expression adequately according to the distribution of 

expression values. We note that most previous discretization-based inference methods 

have employed a Boolean network model, and this can limit the inference 

performance due to the expression simplicity. In this study, our method outperformed 

the compared methods in both terms of structural and dynamical accuracies, 
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particularly in more dense and larger networks. Despite a successful result, MIDNI 

has some limitations to be improved. First, the precision and the recall values of 

MIDNI are not so high. We infer the reason because MIDNI relies on the mutual 

information to select a set of candidate regulatory genes which directly interact with a 

target gene. However, some genes may interact with others via an intermediate gene, 

and this can lead to erroneous selections. This implies that a hybrid approach to 

combine our method with a priori 

knowledge from the biological database can make more accurate predictions. Second, 

MIDNI uses the correlation coefficient to determine the type and direction of an 

interaction, which can also cause a reduction of inference accuracy. Finally, MIFS 

and SWAP subroutines used in MIDNI are greedy algorithms, so the performance can 

be improved if more efficient search algorithms are combined. 
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Chapter 5 

Conclusion & Future Studies 

5.1. Conclusion 

This research tried to solve one of the most challenging problem in the biological field 

that is regulatory gene inference. The distinguishes of the proposed method and the 

others is that instead of using the raw-data (real-values) or the Boolean, a multiple 

level data representation approach is used. As a result, the method not only avoids 

information loss during data representing, moreover, speeds up the inference process. 

It also gives better results than the previous methods both in terms of structural and 

dynamics accuracy, especially for the large size of networks. Here are some of the 

problems that have been solved by our method: 

- Determine the optimal number of clusters (discretization level) when 

conducting data representation for each gene in the network. This number 

depends on the distribution of the gene. 

- The algorithm finds the potential candidate regulatory gene by applying not 

only the mutual information between two genes but also the approximate 

dependency of the candidate gene to the set of the prior selected candidates. 

This made our algorithm different from major other approaches that consider 

only the pair-gene information. 

- MIDNI does not only improve the structural accuracy between the input and 

predictive networks, but also was implemented to increase the dynamics 

consistency within genes in the network. 
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5.2. Future Studies 

Although the proposed method outperformed other compared methods, it still has 

some limitations as mentioned in 4.2 section which should be done in the next stage 

of this research. In the future, I intend to carry out some work as follows: 

- Develop a new subroutine that can adapt to multimodal problem where there 

are a lot of optimal solutions. 

- Apply other metric to determine the interaction direction of genes during the 

inference instead of correlation coefficient which is relatively simple and 

inadequate for enhancing the accuracy. 

- Speed up the inference process by applying optimized search algorithms or 

parallel computation techniques. 

- Conduct an experiment of data representation by using other algorithms to 

compare with K-mean. 

- Try to infer the network with other kind of data like the steady state (in this 

study using only time-series) and combine with prior knowledge data to 

improve the inference accuracy. 
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Appendix 

Search_update_rule 

Assume that we have the target gene   and an initial set of regulatory genes    that 

consists of two regulatory genes    and   . The value of genes is shown in the table 

below: 

Target gene   
Set of regulatory genes    

      

0 1 1 

2 0 1 

1 1 1 

2 1 2 

0 0 2 

0 0 2 

2 1 0 

 

With two regulatory genes for the target gene, so we have the update table as follows:  

input output input output input output 

0 0 0 0 0 1 0 0 2 

0 1 0 0 1 1 0 1 2 

1 0 0 1 0 1 1 0 2 

1 1 0 1 1 1 1 1 2 

0 2 0 0 2 1 0 2 2 

2 0 0 2 0 1 2 0 2 

2 2 0 2 2 1 2 2 2 

1 2 0 1 2 1 1 2 2 

2 1 0 2 1 1 2 1 2 

 

With the time lag p = 1, the set of update rules as the output of the 

search_update_rule in the update table is shown in table below:  

input output 

1 1 2 

0 1 1 

1 2 0 
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With the set of update rules above, we can transfer any values of    and    to   

(except two last cases due to having different output with the same input) as shown by 

the color highlight in the table below: 

Target gene   
Set of regulatory genes    

      

0 1 1 

2 0 1 

1 1 1 

2 1 2 

0 0 2 

0 0 2 

2 1 0 

 


	Introduction
	1.1. Motivation
	1.2. Problem Statement
	1.3. Existing Solutions
	1.4. Research Objectives
	1.5. Thesis Outline

	Backgrounds
	2.1. Overview of gene regulatory network inference
	2.2. Related Works

	Materials and Methodology
	3.1. Materials
	3.1.1. A discretization network model
	3.1.2. The discretization network inference problem
	3.1.3. Structure performance metrics
	3.1.4. Mutual information

	3.2. Methodology
	3.2.1. Discretization
	3.2.2. MIFS and SWAP subroutines


	Experiments, Results, and Discussions
	4.1. Experiments
	4.2. Results
	4.2.1. Case study 1: Artificial discretized dataset
	4.2.2. Case study 2: Artificial real-valued dataset
	4.2.3. Structural accuracy analysis
	4.2.4. Dynamics accuracy analysis
	4.2.5. Running time

	4.3. Discussions

	Conclusion & Future Studies
	5.1. Conclusion
	5.2. Future Studies

	Bibliography
	Appendix
	Search_update_rule


<startpage>11
Introduction 1
 1.1. Motivation 1
 1.2. Problem Statement 2
 1.3. Existing Solutions 3
 1.4. Research Objectives 3
 1.5. Thesis Outline 4
Backgrounds 6
 2.1. Overview of gene regulatory network inference 6
 2.2. Related Works 7
Materials and Methodology 11
 3.1. Materials 11
  3.1.1. A discretization network model 11
  3.1.2. The discretization network inference problem 12
  3.1.3. Structure performance metrics 13
  3.1.4. Mutual information 13
 3.2. Methodology 14
  3.2.1. Discretization 15
  3.2.2. MIFS and SWAP subroutines 17
Experiments, Results, and Discussions 20
 4.1. Experiments 20
 4.2. Results 20
  4.2.1. Case study 1: Artificial discretized dataset 20
  4.2.2. Case study 2: Artificial real-valued dataset 23
  4.2.3. Structural accuracy analysis 25
  4.2.4. Dynamics accuracy analysis 26
  4.2.5. Running time 27
 4.3. Discussions 28
Conclusion & Future Studies 30
 5.1. Conclusion 30
 5.2. Future Studies 31
Bibliography 32
Appendix 34
Search_update_rule 34
</body>

