

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

TSCH-BASED SCHEDULING FOR THROUGHPUT

AND DELAY OPTIMIZATION OF IEEE 802.15.4e: A

DEEP LEARNING-BASED APPROACH

DISSERTATION

for the Degree of

MASTER OF SCIENCE
(Electrical Engineering)

MD. NIAZ MORSHEDUL HAQUE

OCTOBER 2021

TSCH-Based Scheduling for Throughput and Delay

Optimization of IEEE 802.15.4e: A Deep Learning-Based

Approach

DISSERTATION

Submitted in Partial Fulfilment

of the Requirements for the

Degree of

MASTER OF SCIENCE
(Electrical Engineering)

at the

UNIVERSITY OF ULSAN

by

Md. Niaz Morshedul Haque
October 2021

©2021- Md. Niaz Morshedul Haque

All rights reserved.

TSCH-Based Scheduling for Throughput and Delay Optimization of

IEEE 802.15.4e: A Deep Learning-Based Approach

School of Electrical, Electronic and Computer Engineering

University of Ulsan, South Korea

Date: October, 2021

1

VITA

Md. Niaz Morshedul Haque was born in Bangladesh. He received the B.Sc. degree

in electrical and electronic engineering (EEE) from the Ahsanullah University of Science

and Technology (AUST), Dhaka, Bangladesh, in 2012.

Since 2019, he is pursuing the Master degree from the University of Ulsan, South

Korea, under the supervision of Professor In-Soo Koo. He served as a network operation

center (NOC) engineer in the telecom industry from 2012 to 2013. He joined the Leading

University (LU), Sylhet, Bangladesh, as a Lecturer in 2015. His current research area

includes the industrial internet of things (IIoT), resource allocation of IEEE 802.15.4e

TSCH networks, and deep learning-based scheduling scheme.

2

Dedicated to Almighty Allah (for His countless blessings)

and

My family

(for their prayers, love, and support)

3

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor Prof. In-Soo Koo of the School of

Electrical, Electronic and Computer Engineering at the University of Ulsan for his

supervision, advice, continuous support, and constant encouragement throughout my Master

study and related research. His patience, motivation, immense knowledge, and continuous

guidance helped to conduct my research and writing of this thesis. Besides my advisors, I am

gratefully indebted to my other thesis committee members: Prof. Hyung-Yun Kong, Prof.

Sangjo Choi, for their efforts to go through my thesis, insightful comments, and suggestions.

 I would like to thank all members of the multimedia communication system laboratory

(MCSL) for their friendship and support. I am very much grateful to the University of Ulsan

for giving me an excellent research environment and financial support. My special thanks go

to BK21 Plus Program for the financial support throughout my Master's studies.

 I would like to express my heartiest thanks to all members of Bangladeshi community in

Ulsan, South Korea for their love, respect, and support.

 Finally, I am ever grateful to my parents Late Motaharul Haque and Naznin Haque for

raising me and helping me to achieve all that I have in my life. I am also grateful to my wife

Tamanna Hossain for her support and all the sacrifices, she has made, for my achievement.

MD. NIAZ MORSHEDUL HAQUE

October 2021

University of Ulsan

4

ABSTRACT

TSCH-Based Scheduling for Throughput and Delay Optimization of

IEEE 802.15.4e: A Deep Learning-Based Approach

By

Md. Niaz Morshedul Haque

Supervisor: Professor Insoo Koo

IEEE 802.15.4e time-slotted channel hopping (TSCH) sets a new standard for the

industrial internet of things (IIoT) due to its simple architecture and productiveness for

enhancing credibility in ultra-low-power absorption of industrial appliances. The

performance of TSCH is also mainly dominated by the media access control (MAC)

mechanism, which consists of refitment, enumeration, composition, and patronization of

data transmission schedules that are not accurately prescribed. Most researchers are

trying to establish many pragmatic scenarios. Their main approach is to schedule TSCH

networks in a centralized way while framing scheduling problems as the nature of

throughput and delay in the network.

The main approach of this dissertation is to find a quicker and more exact solution

for the scheduling of the TSCH network. We utilize the benefits of a deep learning scheme

to reduce the execution time of IEEE 802.15.4e TSCH network scheduling.

 Firstly, we propose a Hungarian-based scheduling solution for TSCH networks

5

by considering throughput and delay with fairness. The scheme proposed previously

considered the only throughput for a TSCH network. We utilize maximum link weight

alignment in a bipartite graph for TSCH networks to constitute the frames’ cell

scheduling. In this dissertation, the weight of the bipartite graph is computed by

considering both network throughput and delay. Here, we incorporate a window concept

to determine moving average network throughput and delay. The throughput and delay

parameters are multiplied by the corresponding moving average throughput and delay

values to ensure fairness in the bipartite edge weight.

Secondly, we propose a deep learning-based DNN scheme to reduce the execution

time of scheduling. The proposed DNN scheme uses the Hungarian solution's training

data. When the proposed DNN scheme accepts the weight of the bipartite edge as input,

it will offer cell assignments. The proposed DNN scheme is remarkably accurate by

learning the relationships between the Hungarian scheduling algorithm's input and

output. As a result, it provides quick and precise rational results compared to the

Hungarian-based scheduling algorithm.

Thirdly, we design a scheduling method considering a TSCH network in

coexistence method of interference network cluster (INC). The proposed dual-stage

Hungarian-based scheduling method can do the transmission schedule of the TSCH

network by avoiding collision from INC and made the throughput maximization of own

network with minimizing the INC throughput. The learning-based DNN scheme is also

utilized for reducing the execution time of scheduling.

6

 Contents

Vita……... 1

Dedication…………………………………………………………………………………………………... 2

Acknowledgements………………………………………………………………....................................... 3

Abstract……………………………………………………………………………………………………... 4

Contents………………………………………………………………………………………….................. 6

List of figures………………………………………………………………………………………….......... 9

List of Tables…………………………………………………………………………………………............ 11

Nomenclature…………………………………………………………………………………………......... 12

Chapter 1: Introduction 13

 1.1 Motivation ……………………………………………………………………………………………. 13

1.2 Thesis objective………………………………………………………………………………………. 14

1.3 Thesis outline…………………………………………………………………………………………. 15

Chapter 2: Deep Learning-Based Scheduling Scheme of IEEE 802.15.4e TSCH

Networks

16

2.1 Introduction………………………………………………………………………………………….. 16

2.2 System model ………………………………………………………………....................................... 21

 2.2.1 TSCH scheduling ………………………………………………………………................... 22

 2.2.2 TSCH network model ……………………………………………………………………… 22

 2.2.3 Traffic model ………………………………………………………………………………... 24

 2.2.4 Channel model ……………………………………………………………………………... 24

 2.2.5 Collision graph ……………………………………………………………………………... 26

7

2.3 The proposed Hungarian algorithm-based scheduling scheme ………………………………… 27

 2.3.1 Problem definition and objective function …………………………………………………... 29

 2.3.2 The Hungarian algorithm and solution technique …………………………………………. 30

2.4 Proposed deep learning-based scheduling scheme ……………………………………………….
33

 2.4.1 Proposed algorithm for generating a data set ………………………………………………. 33

 2.4.2 Structure of the DNN …………………………………………………………………………. 34

 2.4.3 The neural network training mechanism …………………………………………………… 36

2.5 Simulation results and performance evaluation…………………………………………………... 38

 2.5.1 TSCH network: bipartite network establishment …………………………………………... 39

 2.5.2 Construction of the DNN model …………………………………………................................ 39

 2.5.3 Performance evaluation …………………………………………... 41

 2.5.3.1 Determining the model accuracy………………………………………….................. 41

 2.5.3.2 Bipartite edge weight…………………………………………....................................... 42

 2.5.3.3 Throughput and delay impact on bipartite edge weight………………………....... 43

 2.5.3.4 Cell scheduling…………………………………………….………………………....... 45

 2.5.3.5 Execution time…………………………………………….………………………........ 45

2.6 Conclusions………………………………………………………………………............................... 46

Chapter 3: TSCH-Based Scheduling Method of IEEE 802.15.4e in coexistence

with INC: DNN Approach
48

3.1 Introduction……………………………………………………………………………………………. 48

3.2 System model…………………………………………………………………………………………... 51

 3.2.1 Network model………………………………………………………………………………. 51

 3.2.2 Problem formulation…………………………………………………………………………. 52

 3.2.3 Channel model………………………………………………………………………………... 53

3.3 The proposed dual-stage Hungarian based assignment algorithm………………………………... 55

 3.3.1 Bipartite graph model………………………………………………………………………... 55

 3.3.2 The dual stage Hungarian based algorithm and collision avoidance technique…………. 56

3.4 The proposed deep learning based DNN scheme…………………………………………………… 58

 3.4.1 Dataset distribution and training of DNN………………………………………………....... 58

8

3.5 Performance evaluation………………………………………………………………………………. 59

 3.5.1 TSCH network model coexistence with INC…………………………………………………… 60

 3.5.2 Building a DNN scheme…………………………………………………………………………. 60

 3.5.3 Assignment method……………………………………………………………………………... 61

 3.5.4 Throughput optimization………………………………………………………………………. 62

 3.5.5 Determining the model accuracy………………………………………………………………... 63

 3.5.6 DNN performance………………………………………………………………........................... 64

 3.5.7 Execution time……………………………………………………………….................................. 66

3.6 Conclusions……………………………………………………………………………………………. 66

Chapter 4: Summary of Contributions and Future Works 68

4.1 Introduction………………………………………………………………………………………….. 68

4.2 Summary of contributions…………………………………………………………………………. 68

4.3 Future direction……………………………………………………………………………………… 70

Publications 71

Bibliography 72

9

List of Figures

2.1 A simple network topology for a time-slotted channel hopping slot–channel matrix………. 24

2.2 Collision graph corresponding to the topology in Figure 2.1…………………………………... 27

2.3 Corresponding bipartite graph of our proposed model………………………………………... 29

2.4 Cell assignment by the proposed Hungarian algorithm–based scheme……………………… 32

2.5 Visualization of bipartite edge weight allocation in a single frame……………………………. 32

2.6 The proposed fully connected multi-layer DNN architecture, which comprises one input

layer, four hidden layers, and one output layer…………………………………………………

36

2.7 Training of the DNN………………………………………………….……………………………. 38

2.8 The bipartite edge weight from the previously proposed scheme [10] compared to the

scheme proposed in this paper…………………………………………………………………….

43

2.9 The impact of throughput and delay on bipartite links: (a) throughput according to

weighting factor ⍺; (b) delay according to weighting factor ⍺………………………………….. 44

2.10 Examples of cell scheduling pattern for proposed DNN scheme and HG scheme (a) all

link indexes in scheduling between the DNN and HG are similar; (b) dissimilarity

between the DNN and HG for link index 12……………………………………………………

45

2.11 Execution time according to the number of data samples for the Hungarian scheme and

the DNN scheme……………………………………………………………………………………
 46

3.1 Example of TSCH network coexistence with INC.……………………………………………… 51

3.2 Slot-frame matrix of TSCH network.……………………………………………………………... 52

3.3 Bipartite graph correspond to the slot-frame matrix in Figure: 3.2…………………………... 55

3.4 Training of our proposed DNN scheme…………………………………………………………. 59

3.5 Assignment method……………………………………………………………………………….. 62

10

3.6 Throughput optimization of own network and INC……………………………………………. 63

3.7 Accuracy of deep learning-based DNN scheme ………………………………………………... 64

3.8 Throughput optimization of own network between HG and DNN…………………………… 65

3.9 Throughput optimization of INC between HG and DNN ……………………………………... 65

3.10 Execution time between HG and DNN according to number of data samples ………………. 66

11

List of Tables

2.1 Parameter specifications for algorithm 2.2…………………………………………… 39

2.2 Parameter specifications for the DNN model………………………………………... 40

2.3 Accuracy of the proposed DNN scheme……………………………………………… 42

2.4 The impact of throughput and delay on bipartite edge weight……………………. 44

3.1 Parameter Specifications for Algorithm 3.1…………………………………………... 59

3.2 Parameter Specifications for the DNN scheme………………………………………. 61

12

Nomenclature

ASN Absolute slot number

CSI Channel state information

DL Deep learning

DNN Deep neural network

HG Hungarian

INC Interference network cluster

IoT Internet of things

IIoT Industrial internet of things

ISM Industrial, scientific, and medical

LCG Linear congruential generator

MAC Media access control

MSE Mean squared error

PDF Probability density function

ReLu Rectified linear unit

TSCH Time slotted channel hopping

13

Chapter 1

Introduction

1.1 Motivation

 The development of technologies has accelerated the expansion of the industrial

internet of things (IIoT). It provides an unprecedented potential for participants in various

industries. IEEE 802.15.4e is a rectification to the medium access control (MAC) protocol

established by IEEE 802.15.4, the pioneer standard of the internet of things (IoT). TSCH is

a feature of the IEEE 802.15.4 standard that allows appliances to accommodate ample

industrial applications.

 The IEEE 802.15.4e TSCH overcomes the drawbacks of IEEE 802.15.4 by

delivering excellent credibility and low consumption of power to various applications of

industries in extreme conditions. Furthermore, it improves network durability by adding

significant redundancy and increasing communication path by reducing interference and

multipath fading effects. Moreover, it is possible by utilizing the capabilities of channel

hopping and time allocation. TSCH's channel speed is the main component to its higher

14

reliability, and it has been called the "heart" of industrial low power wireless schemes like

Wireless HART ISA100.11a, and IETF 6TiSCH.

 The TSCH is a deterministic network, meaning that the actions that occur are

well-known in each time slot, and a schedule controls communication. Despite its

significance, the standard only specifies the procedures for executing a communication

schedule, how the schedule is created, progressed, or managed. The scheduling method,

or allocating links to cells for data transmission, is a fundamental feature of IEEE 802.15.4e.

It can be centralized or distributed, but it develops gingerly and according to its specific

application requirement. A network link follows a scheduling method that instructs what

is happening on each slot: send, receive, or idle. The question of how to construct a

schedule is still a burning issue and find a solution.

 In the pragmatic scenario, scheduling in TSCH specifies the frequency and slots

for each link of a node. In recent years, many researchers have addressed the scheduling

problem for the TSCH protocol, from centralized to distributed solutions.

1.2 Thesis objective

The main objective of this research is to incorporate a deep learning scheme to

TSCH network scheduling and utilize the advantages of DL to reduce the execution time

of scheduling. TSCH network schedules for links to cell assignment of a slot-frame can

be constructed as a maximum weighted bipartite matching approach. In this research, we

design bipartite weight composed of throughput and delay parameters, and we use the

Hungarian algorithm for proper cell assignment. We also design a dual-stage Hungarian-

based scheduling scheme that can smartly avoid the collision from INC. For both cases,

the training data is generated with the Hungarian scheduling algorithm and train a deep

15

neural network (DNN) accordingly. The simulation results show that the proposed deep

learning-based scheduling scheme can provide performance similar to Hungarian

algorithm–based schemes but with low execution time.

1.3 Thesis outline

 This thesis consists of four chapters as follows:

• Chapter 1 presents motivation, thesis objective, and thesis outline.

• Chapter 2 provides a technique, deep learning-based scheduling scheme for IEEE

802.15.4e TSCH networks

• Chapter 3 propose a method of TSCH-based scheduling method of IEEE 802.15.4e

in coexistence with INC: DNN Approach

• Chapter 4 concludes the thesis contributions and future works.

16

Chapter 2

Deep Learning-Based Scheduling Scheme of IEEE

802.15.4e TSCH Networks

2.1 Introduction

The internet of things (IoT) is gradually increasing in popularity due to its multi-

functionality and handy effectiveness [1]. The industrial internet of things (IIoT) is a

promising application of the internet of things (IoT). Many industrial appliances can

connect through the internet to perform necessary tasks such as real-time observation,

industrial automation, security monitoring, and distribution process control [2]. In 2012,

the IEEE 802.15.4e standard was announced by IEEE authorities [3] as an extension of

IEEE 802.15.4 [4], which can use media access control (MAC) functionality to invoke the

demands of industrial applications and operations [5]. Time-slotted channel hopping

(TSCH) is a basic MAC protocol for IEEE 802.15.4e. TSCH combines multi-channel time

17

slot schedule access (in units of slot-frames or super-frames) and a channel-hopping

mechanism to ensure low power consumption and high reliability [6-8].

The scheduling algorithm is an inevitable aspect of the IEEE 802.15.4e TSCH network.

It allocates links to the cells that are a fundamental resource for data transmission. It can

be centralized or not; however, it needs to be established based on the applications’

tangible demands. Here, nodes of the specific network follow a scheduling method that

clarifies what is happening in every slot, such as transmit, receive, or remain idle [9]. The

slot-frame is the central communication unit for TSCH, which needs a pair of nodes that

exchange data. The slot-frame consists of a set of time slots that repeats continuously over

a certain period. The slot-frame used in the TSCH protocol maintains synchronization in

network connections. Diverse channels are attributed pseudo-randomly in each time slot,

and the scheduling algorithm determines which nearby node to connect with, and which

channel offset is to be used [10]. In practical applications, TSCH scheduling specifies the

frequency and slots for every link of a node. Currently, we can see that most research

personnel have fixed their scheduling under the TSCH protocol [11]. Scheduling

algorithms depend upon non-causal information about instantaneous channel qualities,

such as the signal-to-noise ratio (SNR) [12,13]. Some other related scheduling algorithms

utilize previous statistical information on link qualities, such as the expected number of

transmissions (ETX) or the packet error rate (PER), to improve the average packet

delivery ratio (PDR) [14-16]. In a real scenario for wireless communication networks,

channel state information (CSI) is impacted by several factors in a deterministic and

random process, such as noise in the environment, signal dissipation, channel gain,

fading phenomena, and power loss ratio for the interval between transmitting and

receiving [17,18].

This chapter shows the scheduling problem as maximization of edge weights based

on throughput and delay effects. Here, both parameters consider radical assumptions

18

regarding CSI. We consider the main problem to be the scheduling of cells for links in the

TSCH network. A TSCH-based scheduling algorithm is executed by computing a

bipartite graph as the vertex of the upper side, with all subgroups of non-interfering links

and slot-frame matrix cells as the lower vertex. The edge weights consider the summing

of normalized throughput and delay to ensure a maximized edge weight with fairness

for a bipartite graph (details are discussed in Section 3) [19]. The throughput provides the

maximum data transfer, and delay is minimized to ensure the reliability of network. The

Hungarian algorithm performs cell assignment by adequately understanding the

bipartite edge weight [20].

In the last couple of years, in several fields of computing, deep machine learning has

arisen. With the advances in algorithms for big data and optimization techniques, and

with more significant computing resource opportunities, deep networks are the state-of-

the-art strategy for numerous issues at present [21]. Therefore, deep learning (DL) has

become one of the vital research routes. It has already played an essential role in machine

translation, human voice recognition, image processing and recognition, natural

language processing (NLP), computer vision (CV), medical image analysis, and online

games. Furthermore, scientists and researchers actively seek to expand these latest

technologies, including electric load forecasting [22], prediction of energy elements

[23,24], theft detection of electricity [25], energy storage system [26] and distinct field of

wireless communications [27-29].

Numerous recent reforms have concentrated on intelligent interactions to reap

significant potential benefits. DL is also used to achieve beneficent performance over

traditional methods in diverse current work in the wireless communication context [30-

32]. Several numerical optimization solutions to solve signal processing tasks have

already been suggested by distinguish scholars [33-35]. Besides, we have accessed the

abundant knowledge of experts in the growth of wireless communications over the past

19

couple of years to complement the data-driven methods of deep learning and to improve

data efficiency by using deep learning [36-40]. We got the motivation from research in

[41], in which the authors provided an outline for applying deep learning technology to

the allocation of wireless resources. Here, we address the constraints of conventional

optimization approaches and the scope of DL paradigms in wireless networks. Deep

learning also plays a tremendous role in increasing the quality of service (QoS) on the

internet of things [42]. Deep learning in radio communications for cloud computing, such

as the design of a training system for end-to-end wireless communications, has

demonstrated that it can outperform traditional wireless communications. The low

productivity from training time in 5G wireless networks and communication systems is

a constraint when implementing wireless system neural networks [43]. Deep learning is

not yet sophisticated in wireless communications. Still, it is regarded as a critical force

and a prominent research topic in several prospective application domains, such as

channel estimation, wireless data analysis, mobility analysis, complicated decision-

making, managed services, and quality enhancement [41,43]. Deep learning can assist

communication networks with complex operating conditions by accelerating massive

amounts of computation with assured outcomes. Besides, the authors identified some

difficulties and research directions in this critical technology, including a solid

mathematical structure, a moderate data set for training, and the need for additional

mathematical support to interpret case studies [44]. Authors have projected several DNN

methods for different network architectures with varying communication principles,

such as the fully connected network and the multilayer feed-forward neural network.

There are three layers: an input layer, a hidden layer, and an output layer. Furthermore,

all neurons in the previous layer are connected to each neuron in the last layer [45].

The proposed DNN is trained to learn non-linear mapping between optimal network

parameters, such as time slot allocation and transmit power [39]. Training data were

20

created using an iterative algorithm that is based on sequential parametric convex

approximation (SPCA). A DL-based scheme to estimate channel parameters for wireless

resource transfer was described in [46]. Based on input from the energy receivers, the

channel parameters are set autonomously at the energy transmitter. Authors have

exploited the deep learning ability to optimize the effective throughput of wireless

networks [47]. They have shown that their extensive experiments are much swifter than

the traditional systematic search method indicated in prior studies. Compared to other

conventional optimization systems, the convolutional neural network (CNN)-based

DNN attained high spectral efficiency [48] in less computational time when managing

interference.

Based on the discussion above, we intend to incorporate the DL method with IEEE

802.15.4e TSCH network and utilize the benefits of DL methods to reduce the execution

time of scheduling. The proposed deep neural network (DNN)-based scheme predicts

IEEE 802.15.4e TSCH network scheduling, where valuable information and data are

obtained from the Hungarian algorithm–based scheme.

Contributions of the chapter can be summarized as following.

• Firstly, we propose a Hungarian-based scheduling solution for TSCH networks by

considering throughput and delay with fairness. The scheme proposed previously is

[10] considered the only throughput for a TSCH network. We utilize maximum link

weight alignment in a bipartite graph for TSCH networks to constitute the frames’ cell

scheduling. In this chapter, the weight of the bipartite graph is computed by

considering both network throughput and delay. Here, we incorporate a window

concept to determine the moving average network throughput and delay. The

throughput and delay parameters are multiplied by the corresponding moving

average throughput and delay values to ensure fairness in the bipartite edge weight.

21

• Secondly, we propose a deep learning–based DNN scheme to reduce the execution

time of scheduling. The proposed DNN scheme uses the Hungarian solution's

training data. When the proposed DNN scheme accepts the weight of the bipartite

edge as input, it will offer cell assignments. The proposed DNN scheme is remarkably

accurate by learning the relationships between the Hungarian scheduling algorithm's

input and output. As a result, it provides quick and precise rational results compared

to the Hungarian-based scheduling algorithm.

• Lastly, the efficiency and performance of the DNN scheme are evaluated by

simulations. The simulation results show that the proposed DNN scheme can provide

similar outcomes to the conventional Hungarian algorithm but with low execution

time.

The remainder of the chapter is arranged as follows. In Section 2.2, we demonstrate

the system model and different parameters of our proposed model. In Section 2.3, we

describe the proposed Hungarian algorithm-based Scheduling scheme and objective

function. In Section 2.4, we delineate the learning-based scheme, the architecture of the

DL scheme, and the propagation of training and testing data. In Section 2.5, the proposed

method's outcomes are illustrated and verified by using simulation. Finally, Section 2.6

concludes this chapter.

2.2 System model

We present a process model that consists of TSCH scheduling, a TSCH network

model, a traffic model, a channel model, and a collision graph. Here, we discuss the

theoretical concepts, and introduce a mathematical explanation of the contents

mentioned above.

22

2.2.1 TSCH scheduling

 Scheduling in time-slotted channel hopping networks means specifying links for

nodes to transmit data, which allows for an efficient distribution of wireless connections

to enhance communications. The time slot and channel where each node should deliver

or receive information from nearby nodes are defined and set by the scheduling method.

Scheduling details significantly influence network performance, including throughput,

node resource utilization, stream latencies, and durability. The cell is considered the key

component of scheduling capacity. According to the IEEE 802.15.4e guidelines, the

duration of each cell is usually 15 ms [9]. The transmitter sends the data packet, and the

receiver returns the matching acknowledgment after successful reception.

It should be mentioned that by combining the channel offset and the absolute slot

number (ASN), a node pseudo-randomly switches the channel in each time slot. In

general, as expressed below, frequency f can be extracted as follows:

𝑓 = ℱ[(𝐴𝑆𝑁 + 𝐶ℎ𝑜𝑓𝑓𝑠𝑒𝑡) %𝑞ℎ] (2.1)

where 𝐶ℎ𝑜𝑓𝑓𝑠𝑒𝑡 represents the channel offset, 𝑞ℎ is the number of available channels, and

ℱ denotes the mapping function.

2.2.2 TSCH network model

A TSCH network that consists of a single gateway access point is considered, and

multiple nodes are represented in a network graph. The nodes are connected by a

gateway in order to synchronize each node on the network. In a centralized manner,

scheduling is carried out where the scheduler can be based on the network graph, and

the network path is determined by applying computational requirements. The scheduler

23

is installed in the gateway, and specifies the allocation of time slots and the frequency for

transmissions by each node.

The TSCH network can be designed as 𝒢 = (𝑉, 𝑀, 𝑑) where V is the set of nodes, 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝒩} in which 𝒩 is the total number of nodes, M is the set of links, and d

designates the set of physical distances between each pair of adjacent nodes in set V. An

accurate distance between node A and node B in the TSCH network is denoted 𝑑A,B. Each

node 𝑉𝒾 is configured by a radio while providing a contact range, ℛ𝒾, greater than the

interruption range, ℛ𝒾
́ . The signs 𝓉 ∊ {1, . . . , 𝒯} and 𝑓 ∊ {1, . . . , 𝐹} indicate the time of each

slot and the range of network frequencies, respectively; ∆ is the length of each slot.

An example of a slot-channel matrix of a simple TSCH network for five-node

structure graph 𝒢 is illustrated in Figure 2.1. Here, cells are accessed between two non-

interference links. In a slot-frame, links such as 𝐶 ⟶ 𝐸 and 𝐵 ⟶ 𝐴 both share the same

cells; here, the considered position is (𝑆𝑙𝑜𝑡 𝑜𝑓𝑓𝑠𝑒𝑡 , 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑜𝑓𝑓𝑠𝑒𝑡) = (4,4). This is

possible due to the non-interfering connection. Every connection is a computation that

appears in the slot-frame cell.

The nodes are presumed to have only one half-duplex radio module, and they use

the radio communication system for transmitting or receiving on diverse channels at

separate times, but are limited to sending or receiving on a single channel. An

independent connection for each slot must be chosen by a scheduling algorithm so that

neighboring nodes will not be triggered simultaneously.

24

Figure 2.1: A simple network topology for a time-slotted channel hopping slot–channel matrix.

2.2.3 Traffic model

In the sense that each node is still overburdened with traffic, we presume that all

nodes are based on a saturated model. A saturated path has flexible traffic so that it

obtains a transfer rate that is as fast as it can get for strict timeline requirements without

other considerations. To function effectively with this form of traffic, we require

optimization of throughput and delay that requires only information on the channel, a

thing that we address thoroughly in this work. We are conscious that a node may or may

not have data to send when channel is empty under more pragmatic, complex traffic

situations, based on the traffic load for each node. As time goes on, we will focus further

on the technological challenges associated with this hypothesis, and on preserving the

model-free existence of a TSCH scheduler.

2.2.4 Channel model

A combination of channel frequencies 𝑓 ∊ {1, . . . , 𝐹} and time of the slot 𝓉 ∊ {1, . . . , 𝒯}

constitutes a cell, 𝑐 ∈ ℂ(= {1, . . . , 𝑞ℂ}), where 𝑞ℂ indicates the number of cells. The state of

each channel for specific cell 𝑐 assigned to specific link 𝑚 ∈ 𝑀(= {1, . . . , 𝑞𝑀}) at frame 𝑛 is

25

defined by 𝑥𝑚,𝑐(𝑛) = |𝐻𝑚,𝑐(𝑛)| 2, where 𝑞𝑀 is the number of links and 𝐻𝑚,𝑐(𝑛) indicates

the channel gain of cell 𝑐 and link 𝑚 at frame 𝑛.

Rayleigh fading is a feasible model when there are numerous things in the

surrounding area that scatter the radio signal prior to it reaching the receiver. In this

paper, we assume that channel gain 𝐻𝑚,𝑐(𝑛) will follow Rayleigh fading, and it will be

determined by the following probability density function (pdf):

𝐹𝑅(𝑟) =
2𝑟

𝛺
𝑒

−𝑟2

𝛺 (2.2)

where 𝛺 = 𝐸[𝑅2], and R is a random variable.

When channel gain 𝐻𝑚,𝑐(𝑛) and transmission power 𝑝 are given, the number of

packets that can be delivered over link m and cell c in frame n are calculated, which is

considered as the throughput of network. Further it can be computed based on Shannon’s

formula such that we have.

𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)) =
𝛽

𝑙
𝑙𝑜𝑔(1 +

𝑥𝑚,𝑐(𝑛).𝑝

𝛽𝜂𝑜
) (2.3)

where β indicates the bandwidth of the receiver signal, l is the size of the packet, and 𝜂𝑜

is the variance of noise.

More specifically, in the proposed scheduling scheme, we consider delay according

to the cell position. The relation between delay and delay performance is inversely

proportional, which means delay performance is good when delay value is low. If the cell

index (𝑐 ∈ ℂ) increases, the delay performance will be decreased. According to our

network consideration of the slot frame as shown in Figure 1, the delay will be the same

in each slot. Specifically, the delay performance in each cell can be computed with the

following equation:

26

𝜓𝑚,𝑛
𝑁 (𝑐) = 𝑘𝑏𝑒𝑥𝑝(⌊

𝑞ℂ−𝑐

𝑞𝒯

⌋ − ⌊
𝑞ℂ

𝑞𝒯

⌋) (2.4)

where N indicates the normalization value of delay performance, 𝑞𝒯 is the number of slots,

and 𝑘𝑏 is a constant parameter for evenly adjusting the unit ratio between throughput

and delay.

2.2.5 Collision graph

A collision graph, ℚ = (𝑀, ∁), is defined to consider the interruption in the

conceptual model, where ∁ represents the links in collision graph. Its vertex refers to the

configuration of graph 𝒢. Its edges reveal the conflict between the two links. Figure 2

demonstrates the various ways to transmit data during a collision. The communication

mechanism is unicast, but transmission such as 𝐴 ⟶ 𝐵 and 𝐴 ⟶ 𝐶 do not occur

concurrently, and the collision graph has an edge between them. A legitimate schedule

thus allows such data to not be sent through the context of a common cell. In addition, in

the collision graph, a scheduling method can be chosen, such as an autonomous set of

vertexes to be allocated in a similar cell. Note that a pair of vertexes in a graph such that

there are no edges between either of a couple of vertexes. The purpose of scheduling is

that, in a similar communication medium, two colliding nodes are not allocated for

transmitting data.

27

Figure 2.2: Collision graph corresponding to the topology in Figure 1.

2.3 The proposed Hungarian algorithm-based scheduling scheme

In this section, we design and develop the cell scheduling of the frames by utilizing

maximum edge weight alignment in a bipartite graph for TSCH networks. Different from

the scheme proposed in [10], where only throughput is considered for the weighted

bipartite graph, in this paper, bipartite graph weights are computed based on network

throughput and delay. After that, we maximize the total network weight as a weighted

bipartite graph optimal assignment problem. The vertexes are separated into two

dissociated sets (upper and lower) as seen in Figure 2.3. Each subset of the non-

interference links obtained from collision graph is a vertex of the top of the bipartite graph

and each slot-frame cell is also considered the bottom vertex of the bipartite graph. Thus,

the edges connect a vertex from one set to a vertex from another set. A proper assignment

is one in which one vertex of the bottom range of the graph absolutely corresponds to

any top vertex of the bipartite graph.

Assume ℬ = (𝑀, ℂ, 𝐸) is a weighed bipartite graph in conjunction with Figure 3. The

set of links 𝑀 = {1, . . . , 𝑞𝑀} is correspond to the collision graph, ℚ , which is modeled as

the upper side of the bipartite graph. The set of cells ℂ = {1, . . . , 𝑞ℂ} corresponds to the

28

slot-frame matrix cell, 𝒢, which is also considered the bottom vertex of the bipartite graph.

The set 𝐸 = {𝑒 = (𝑚, 𝑐)| 𝑚 ∈ 𝑀, 𝑐 ∈ ℂ} consists of the edges of bipartite graph 𝓑. The

weight of edge 𝑒 = (𝑚, 𝑐) at frame n is given by 𝑊𝑚,𝑐(𝑛), calculated as follows:

𝑊𝑚,𝑐(𝑛) = ⍺𝑢𝑚
𝑁0𝜃𝑚,𝑐

𝑁 (𝑛) + (1 − ⍺)𝑢𝑚
𝑁1𝜓𝑚,𝑛

𝑁 (2.5)

where ⍺ is the weighting factor between throughput and delay. In this paper, we

calculate throughput by multiplying normalized throughput 𝜃𝑚,𝑐
𝑁 (𝑛) by the normalized

moving average for throughput, 𝑢𝑚
𝑁0. Similarly, we calculate the delay by multiplying

delay 𝜓𝑚,𝑐
𝑁 by the normalized moving average for delay, 𝑢𝑚

𝑁1. We consider this approach

to ensure fairness in edge weight.

Normalized throughput 𝜃𝑚,𝑐
𝑁 (n), for cell c and link m in frame n, can be achieved from the

ratio of each specific value to the maximum value of the corresponding frame by using

the following equation:

𝜃𝑚,𝑐
𝑁 (n)=

(𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)))

𝑚𝑎𝑥(𝜃𝑖,𝑗(𝑥𝑖,𝑗(𝑛)))𝑗єℂ
𝑖є𝑀 (2.6)

Moving average throughput 𝑢𝑚
0 and moving average delay 𝑢𝑚

1 are used in a

calculation to analyze data points by generating a sequence of averages for a finite-value

set of the various subsets of the complete data set. Only the recent values for through

put and delay use moving-average approaches with consideration for window size 𝑘𝑤.

The link-wise moving average throughput, 𝑢𝑚
0 , and the delay, 𝑢𝑚

1 , are illustrated by the

following equations:

𝑢𝑚
0 = 𝑢𝑚

0 (𝑛 − 1) = 𝑢𝑚
0 (𝑛 − 2) +

𝜃𝑚,𝑐∗(𝑛−1)−𝜃𝑚,𝑐∗(𝑛−𝑘𝑤−1)

𝑘𝑤
 (2.7)

𝑢𝑚
1 = 𝑢𝑚

1 (𝑛 − 1) = 𝑢𝑚
1 (𝑛 − 2) +

𝜓𝑚,𝑐∗(𝑛−1)−𝜓𝑚,𝑐∗(𝑛−𝑘𝑤−1)

𝑘𝑤
 (2.8)

29

where throughput at frame n is denoted as 𝜃𝑚,𝑐∗(𝑛) for link m and assigned cell

𝑐∗.Similarly, the delay performance at frame n is denoted as 𝜓𝑚,𝑐∗(𝑛).

Normalized moving averages for throughput 𝑢𝑚
𝑁0 and delay 𝑢𝑚

𝑁1 can be obtained with the

following equations:

 𝑢𝑚
𝑁0 = 1 −

𝑒𝑥𝑝(𝑢𝑚
0)

∑ 𝑒𝑥𝑝(𝑢𝑖
0)𝑖є𝑀

 (2.9)

𝑢𝑚
𝑁1 =

𝑒𝑥𝑝(𝑢𝑚
1)

∑ 𝑒𝑥𝑝(𝑢𝑖
1)𝑖є𝑀

 (2.10)

Figure 2.3: Corresponding bipartite graph of our proposed model.

2.3.1 Problem definition and objective function

In a defined channel random distribution, we visualize the problem of weight

maximization as a prologue to our strategy. Our objective is to assign corresponding

independent links 𝑚 ∈ 𝑀 to cells 𝑐 ∈ ℂ for edges 𝑒 ∈ 𝐸 of all data frames 𝑛 ∈ ℕ. This

maximizes the total network weight (corresponding to throughput and delay) by sending

data packets based on that schedule.

𝒲𝑇
̅̅ ̅̅ ̅ denotes the average weight that is obtained from edges e if a cell is allocated to

a link. It is expressed with the following equation:

30

 𝒲𝑇
̅̅ ̅̅ ̅ = 𝐸[𝑊𝑚,𝑐(𝑛)] =

1

ℕ
∑ ∑ ∑ 𝜉𝑚,𝑐 𝑊𝑚,𝑐(𝑛)𝑐∈ℂ 𝑚∈𝑀 𝑛∈ℕ (2.11)

If we characterize 𝜉 as a binary decision variable, it is possible to formulate the mean

weight-maximizing process with the following equation:

𝒲𝑇
∗ = lim

ℕ→∞
 𝒲𝑇

̅̅ ̅̅ ̅
𝜉

𝑚𝑎𝑥
 (2.12)

2.3.2 The Hungarian algorithm and solution technique

We use the Hungarian algorithm in graph theory, based on the bipartite graph, to

decide the optimal weighted task [23,52]—the Hungarian algorithm which operates in

polynomial time. We considered the negligible upper bounds, 2𝐿(L is the number of links

for the topology graph) [9,10]. It performs scheduling tasks based on the maximization of

bipartite edge weight. According to our consideration, the whole number of edges of a

bipartite graph is the multiplication of the total number of links (top vertexes of the

bipartite graph) and the total number of cells (the bottom vertexes bipartite graph). That

means the total number of edges of the bipartite graph is. The edge weight is calculated

by equation (5). The Hungarian-based scheduling algorithm is shown in Algorithm 2.1

Algorithm 2.1 The Hungarian based scheduling algorithm

Step 1: Insert data → Input edge weight from bipartite graph (|𝑞𝑀 ∗ 𝑞ℂ|)

Step 2: a = cost matrix % edge weight of bipartite graph

Step 3: b= max(a) % determine maximum value of cost matrix

31

Step 4: y=b-a % the process is to subtract all elements from the highest

value of the cost matrix

Step 5: Execute row operation % subtract row minima from each, row-

wise

Step 6: Execute column operation % subtract column minima from each,

column-wise

Step 7: Mark the lowest zero element and remove other zero elements

Step 8: Find the minimum value of all uncovered elements

Step 9: The minimum value is subtracted from uncovered elements and

added to intersect elements

Step 10: If column and row are uncovered, we update the predecessor

index

Step 11: Achieve optimal assignment with maximized edge weight

Visualization of a single frame's cell assignment is shown in Figure 2.4, and the

corresponding edge weight is depicted in Figure 2.5. Figure 2.4 reveals there is no conflict

in the assignment. Figure 2.5 illustrates the maximized weight allocation for every

corresponding link and cell assignment.

32

Figure 2.4: Cell assignment by the proposed Hungarian algorithm–based scheme.

Figure 2.5: Visualization of bipartite edge weight allocation in a single frame.

33

2.4 Proposed deep learning-based scheduling scheme

In this section, we propose a supervised deep neural network (DNN) that learns the

optimal assignment for under-identified CSI. This segment aims to establish a DNN

model that can achieve an optimal approximation of the Hungarian algorithm

assignment solution for a TSCH network.

2.4.1 Proposed algorithm for generating a data set

Algorithm 2.2 summarizes the proposed Hungarian-based scheduling scheme, and

will be used to generate data for DNN training.

Algorithm 2.2 Hungarian-based scheduling to generate DNN training

data

1: Initialize: constant parameters, β, l, p, 𝜂𝑜, 𝑞𝑀, 𝑞ℂ, ⍺, 𝑘𝑤 and 𝑘𝑏.

Make an enforceable level as the initial point for equation (2.5), for initial

moving average throughput 𝑢𝑚
0 (1), and for initial moving average

delay, 𝑢𝑚
1 (1) % needed for first schedule

2: //initial loop:

3: For each 𝑚 ∈ 𝑀 and 𝑐 ∈ ℂ of 𝑒 ∈ 𝐸:

4: Run pdf of Rayleigh distribution to determine channel gain 𝐻𝑚,𝑐(𝑛)

of the network

5: Update the channel state, 𝑥𝑚,𝑐(𝑛)

6: Accordingly, determine the throughput, 𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)), with equation

(2.3) and delay, 𝜓𝑚,𝑛
𝑁 (𝑐), with equation (2.4) % 𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)) changes for

every frame change, but delay is fixed for each frame

34

7: Normalized throughput, 𝜃𝑚,𝑐
𝑁 (n), is executed with equation (2.6)

8: Normalized moving average throughput, 𝑢𝑚
𝑁0, and delay, 𝑢𝑚

𝑁1, are

determined by equation (2.9) and equation (2.10), respectively % the first

frame develops by using the initial value of moving average parameters

after obtaining the first schedule, and ensures 𝑐∗; for 𝑛 ⟶ 𝑛 + 1, these

parameters will be updated with equation (2.7) and equation (2.8),

respectively

9: Build an edge weight, 𝑊𝑚,𝑐(𝑛), with equation (2.5)

10: Run Hungarian algorithm in Algorithm 1 to find a link to the cell,

matching it to get the maximum weighted matching, 𝒲𝑇
∗, of bipartite

graph ℬ = (𝑀, ℂ, 𝐸)

11: //main loop:

12: Generate 10,000 data frames for DNN training

2.4.2 Structure of the DNN

A simple multilayer perceptron (MLP) is part of the framework of the suggested

DNN. MLP is a neural network that is fully connected and comprises one input layer,

several hidden layers, and one output layer, as depicted in Figure 2.6. The input of the

DNN is bipartite edges 𝑒 ∈ 𝐸, weight 𝑊𝑚,𝑐(𝑛) for all links 𝑚 ∈ 𝑀 to cells 𝑐 ∈ ℂ, assigned

to all data frames 𝑛 ∈ ℕ. Here, the set of links is 𝑀 = {1, . . . , 𝑞𝑀}, the set of cells is

ℂ = {1, . . . , 𝑞ℂ}, and the set of data frames is ℕ = {1, . . . , 𝑞ℕ}, where 𝑞𝑀, 𝑞ℂ, and 𝑞ℕ are,

respectively, the number of links, the number of cells, and the number of data frames, or

the total number of samples for DNN training. The output of the DNN is cell assignment

𝑐∗, which is determined by the Hungarian assignment solution, which means links 𝑀

35

scheduled in cells ℂ. It now ensures that total input to the DNN per data frame is

 {𝐼1. . . , 𝐼𝑛} = 𝑞𝑀 ∗ 𝑞ℂ. Total output of the DNN per data frame is {𝑂1, . . . , 𝑂𝑛} = 𝑞𝑀.

Neurons in hidden layers and the number of hidden layers is hyperparameters in

the DNN and need to be modified to attain maximum accuracy in the optimal solution.

The output of each ℎ𝑡ℎ layer in the hidden layer can be described by the following

equation:

ℴℎ = ℊ(ℴℎ𝓌ℎ−1 + 𝒷ℎ) (2.13)

where 𝓌ℎ and 𝒷ℎ, respectively, are the weights and biases of the ℎ𝑡ℎ layer. Learning is a

question of determining the weights, 𝓌, within a specific possible set that will result in

the output that illustrates the best input mapping; and ℊ(.) implies an activation feature

that adopts each hidden layer’s output.

A DNN generally executes the sum of input products and their corresponding

weights, and executes the ℊ(.) activation function developed for each output of the

hidden layer. The activation function explicitly allows the network to acquire non-linear,

complicated input and output mapping functions. We use the rectified linear unit (ReLU)

activation function in this scheme for the output of any hidden layer. The ReLU is a

simple function to implement in DNN, is computationally efficient, and is quicker to

calculate [41,42]. The output of the ReLU activation function can be determined with

ℊ(𝓇) = 𝑚𝑎𝑥(0, 𝓇), such that if 𝓇 < 0, ℊ(𝓇) = 0; otherwise, ℊ(𝓇) = 𝓇.

36

Figure 2.6: The proposed fully connected multi-layer DNN architecture, which comprises one input

layer, four hidden layers, and one output layer.

2.4.3 The neural network training mechanism

The essential factor with deep learning is the training of the neural network. A

perfectly trained neural network learns the correlation between input and output. In

supervised learning, we require enough input and output data frames to train the neural

network, from which the DNN recognizes the kinship between input and output. We

equip the neural network from training data consisting of samples contained in an

iterative method developed using the Hungarian scheduling method as previously

discussed. The formation of neural networks is a mechanism by which the loss function

is reduced to classify network parameter 𝓌. Practically speaking, the loss function is

between the actual scheduling, 𝑐∗, from the trained data and the DNN output from 𝑐∗̂.

Thus, the loss function should reduce what we deem to be the mean squared error (MSE)

37

so that the output of the DNN, 𝑐∗̂, will approximate the optimal solution, 𝑐∗. A well-

trained DNN should therefore reduce the following equation:

𝐽(𝓌) = ℰ(|𝑐∗ − 𝑐∗̂|)2 (2.14)

We employed the Adam optimizer to mitigate the MSE loss function in our proposed

technique. The technique is simple to execute, effective in computing, and needs minimal

memory.

A total of 10,000 data samples were generated using Algorithm 2.2 based on the

Hungarian scheduling method. The training samples were divided into three data

segments. To train the DNN, we took 60% of the data, keeping 20% for validation and the

other 20% for testing. Validation is an unbiased method of testing the network when

training the model. Validation of the DNN model’s reliability on the training data set

biases the score outcomes; therefore, we used 20% of the data set to validate for unbiased

assessment that was unknown in the qualified model. This was used to assess how well

our scheme learned during training. Testing is an actual, unbiased analysis of the neural

network’s learned model. To prevent training and validation errors due to the overfitting

issue, we employed data normalization. After finishing the DNN training, we could use

it for every new value of the bipartite edge weights, 𝑊𝑚,𝑐, to trace the optimal solution,

𝑐∗.

Figure 2.7 shows the training process for the DNN. The network environment

generates corresponding data frames or sample data. The offline training is performed

under this process and will obtain an optimal interpretation of the IEEE 802.15.4e TSCH

network’s Hungarian scheduling solutions.

38

Figure 2.7: Training of the DNN.

2.5 Simulation results and performance evaluation

We compare the outcomes provided by the DNN with the iterative Hungarian

scheduling method described in the previous section to demonstrate the efficiency of our

proposed DNN scheme. For generating data, we used Algorithm 2.2, which projected our

whole system model. We generated 10,000 sample data for a different value for ⍺. After

obtaining corresponding data samples, we trained the neural network and found the

optimal solutions. The TSCH network simulation for data set generation was carried out

in MATLAB on a PC with an Intel Core i7 processor and 8 GB RAM. After extracting data

samples, the DNN offline training model was executed in Python utilizing the Keras and

NumPy libraries.

39

2.5.1 TSCH network: bipartite network establishment

This work’s fundamental goal is to establish a bipartite graph of our proposed

model, as described earlier. The model’s detailed pedagogy is illustrated in algorithm 2.2

to generate enough sample data to train the neural network correctly. Based on our

network model, we considered the parameters in Table 2.1 to establish the described

model.

Table 2.1: Parameter specifications for algorithm 2.2

Parameter Specification

1. Number of links, 𝑞𝑀 12

2. Set of links, M 1:12

3. Number of cells, 𝑞ℂ 16

4. Set of cells, ℂ 1:16

5. Number of slots, 𝑞𝒯 4

6. Number of data frames, 𝑞ℕ 10,000

7. Bandwidth, β 1 MHz

8. Bits in each packet l 1000

9. Transmission power, p 10 mw

10. Noise variance, 𝜂𝑜 1

2.5.2 Construction of the DNN model

In this section, we construct a DNN model that requires less computational effort.

The developed system can obtain a useful approximation of the Hungarian scheduling

method for an IEEE 802.15.4e TSCH network. A DNN with one input layer, multiple

40

hidden layers, and one output layer was considered. The input feature of the neural

network is given as bipartite link weight |𝑊𝑚,𝑐(𝑛) |. The number of input features should

be the total number of edges in the bipartite graph, which is a multiplication of the

number of links, |𝑞𝑀|, and the number of cells, |𝑞ℂ|. In our example, the number of input

features is |𝑞𝑀 ∗ 𝑞ℂ| = |12 ∗ 16| = 192. The output is set as the Hungarian cell scheduling

output for all links 𝑚 ∈ 𝑀. A total of 12 links in the example would be assigned to 16 cells,

which indicates that the number of outputs from the DNN will be 12. Specifications for

the proposed DNN model are given in Table 2.2. When ReLU activation is used in every

hidden layer, a minimal MSE is obtained with little difficulty.

Table 2.2: Parameter specifications for the DNN model

Parameter Specification

1. Number of input features 192

2. Number of hidden layers 4

3. Number of neurons in each layer 800,1600,1200, and 800

4. Number of outputs 12

5. Learning rate 0.001

6. Batch size 100

7. Number of epochs 1000

We trained the DNN on 6000 data samples for different weighting factors, ⍺, and

validated the outcomes in all training epochs on 2000 data samples. We conducted tests

on 2000 data samples, and propose that the scheme achieved an intuitive mechanism for

scheduling, as good as the Hungarian algorithm.

41

2.5.3 Performance evaluation

2.5.3.1 Determining the model accuracy

Accuracy is one of the most vital parts of the neural network. It indicates how much

the proposed model can precisely learn the conventional or previously proposed

techniques. We developed an accuracy metric based on the number of assigned cells

between traditional or original Hungarian (HG) scheduling and predicted DNN

algorithm scheduling. First, we measured accurate parameters. Based on our proposed

model, we measure accurate parameters by using the following method. The output of

HG scheduling is an integer, but the output of DNN or scheduling prediction is not an

integer value. For mitigating this problem, we use the round function to find integer

values predicted schedule.

If 𝑐∗ − 𝑟𝑜𝑢𝑛𝑑(𝑐∗̂) = 0, it is accurate, and 𝑐∗ − 𝑟𝑜𝑢𝑛𝑑(𝑐∗̂) ≠ 0 indicates it is not

accurate.

If test samples are ℕ𝑡, and non-zero or inaccurate parameters are indicated by ℙ,

accuracy can be determined with the following equation:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
ℕ𝑡∗𝑞𝑀 −ℙ

ℕ𝑡∗𝑞𝑀
∗ 100% (2.15)

We measured the accuracy for 1000 test samples as depicted in Table 2.3, such that

ℕ𝑡 = 1000. Accuracy can be determined with equation 2.15 for different values of

weighting factor ⍺. The significant of ⍺ is discussed in the next segment.

42

Table 2.3: Accuracy of the proposed DNN scheme

Weighting factor Accuracy (%)

⍺=0.1 92

⍺=0.5 93

⍺=0.9 92

2.5.3.2 Bipartite edge weights

Figure 2.8 shows the bipartite edge weights of the previously proposed scheme [10]

and the scheme proposed in this paper. As discussed earlier, bipartite edge weight in the

earlier scheme was considered the only throughput. One of the contributions of this

chapter is to ensure fairness on bipartite edge with considering throughput and delay.

We utilize window concepts to determine moving average parameters and multiply

corresponding normalized throughput and delay parameters to ensure fairness. The bar

chart shows the bipartite edge weight [10], the maximum value is 1.36, and the minimum

value is 0.7. The maximum value of the bipartite edge weight [this paper] is 1.3, and the

minimum value is 1.1. As a result, it is shown that our proposed scheme gives more

fairness than the scheme in [10].

43

Figure 2.8: The bipartite edge weights from the previously proposed scheme [10] compared to the scheme

proposed in this paper.

2.5.3.3 Throughput and delay impact on bipartite edge weight

Figure 2.9 shows the throughput and delay impact on the bipartite edge of 1000 test

samples for the Hungarian algorithm (HG) and the DNN. Figure 2.9(a) exhibits the

performance of weighting factor ⍺ according to the normalized average throughput from

HG and the DNN, and Figure 2.9(b) exhibits the performance of weighting factor ⍺

according to the normalized average delay from HG and the DNN. We generated several

data sets with different values for ⍺ and trained the deep neural network. Here, ⍺ informs

us of the effect on performance from throughput and delay on bipartite edge weights.

The significance of weighting factor ⍺ is reflected in Table 2.4. It reveals that when

weighting factor ⍺ is closer to zero, throughput impact is lower on the bipartite edge, and

delay performance is higher. If weighting factor ⍺ gets close to 1, it indicates throughput

44

impact is more elevated, and subsequently, delay performance is lower. Both parameters

exhibit balanced mode for weighting factor ⍺=0.5.

From Figure 2.9 it is also observed that the DNN shows a similar performance and

correctly emulate the conventional Hungarian(HG) algorithm. Due to the prediction and

accuracy metric (section 2.5.3.1), the DNN is slightly lower than HG.

Table 2.4: The impact of throughput and delay on bipartite edge weight

Weighting Factor Throughput Delay Performance

⍺ close to 0 Low High

⍺=0.5 Balanced Balanced

⍺ close to 1 High Low

(a) (b)

Figure 2.9: The impact of throughput and delay on bipartite links: (a) throughput according to weighting

factor ⍺; (b) delay according to weighting factor ⍺.

45

2.5.3.4 Cell scheduling

We randomly picked 20 test samples for scheduling and observed that on an average

17 times, our proposed DNN scheme performed similar cell scheduling as the HG

scheduling scheme. For the remaining 3 samples, only a few links were differently

assigned. Figure 2.10 depicts two examples of the cell scheduling pattern in our proposed

scheme. Figure 2.10(a) depicts one of the cases where the scheduling between HG and

the DNN is similar for all links. Figure 2.10(b) shows the case where only one link is

differently assigned. For HG scheduling, link index 12 is assigned in cell number 12, but

for DNN cases, it is assigned in cell number 11, and the rest of the links are assigned

accurately for both cases. This scenario supports achieving above 90% accuracy (section

2.5.3.1) for different weighting factor values ⍺.

(a) (b)

Figure 2.10: Examples of cell scheduling pattern for proposed DNN scheme and HG scheme (a) all link

indexes in scheduling between the DNN and HG are similar; (b) dissimilarity between the DNN and HG

for link index 12.

2.5.3.5 Execution time

Finally, the time needed for both schemes HG and DNN, based on the number of

data samples, is shown in Figure 2.11. it is observed that the execution time of DNN

46

scheme is much lower than the Hungarian scheme. As a result, utilizing the DNN for cell

scheduling in IEEE 802.15.4e TSCH networks is computationally efficient, compared to

the Hungarian algorithm.

Figure 2.11: Execution time according to the number of data samples for the Hungarian scheme and the

DNN scheme.

2.6 Conclusions

In this chapter, we proposed a deep learning–based algorithm for IEEE 802.15.4e

TSCH networks for which a DNN was trained to learn the non-linear mapping of

bipartite graph parameters, i.e., cell scheduling method, network parameters:

throughput, and delay. We executed scheduling based on maximized bipartite edge

weight. The data for training were generated by an iterative scheduling algorithm based

on the Hungarian scheduling scheme. The simulation results showed that the proposed

scheme attained almost the same accuracy as a traditional iterative Hungarian scheduling

algorithm. Deep learning–based algorithm has tremendous potential in scheduling in

47

IEEE 802.15.4e TSCH networks by offering low execution time and more competitive

efficiency than a conventional solution. However, if the data size increases, DNN requires

more time for training but not for testing. Moreover, the computation time of DNN

almost concentrates on training since testing of DNN is composed of simple calculations

such as sum and multiplication. Thus, we can easily say that the gap between HG and

DNN will increase if the data size increases.

48

Chapter 3

TSCH-Based Scheduling Method of IEEE 802.15.4e in

coexistence with INC: DNN Approach

3.1 Introduction

The scarcity of spectrum is a burning issue over the world. Spectrum scarcity has

occurred with the increasing use of the unlicensed industrial, scientific, and medical

(ISM) radio bands. According to the expert report, mobile devices have increased from 8

billion in 2016 to 11.5 billion in 2021. As a result, thedata flow from these devices is

estimated to grow from 7.2 to 49.0 exabytes per month [50]. In the meantime, the number

of internet of things (IoT) application is also growing. The industrial internet of things

(IIoT) is a potential application of IoT. IIoT uses the ISM band to develop new technology,

establish short-range communication, and implement device-to-device communication

[51].

IEEE 802.15.4e time-slotted channel hopping (TSCH) is one of the most reliable

resources of the industrial internet of things (IIoT). TSCH operates on the slot-frame

structure consisting of multiple channel offsets and slot-offsets. It is gaining acceptance

49

due to its simple architecture and consume low power in industrial application. The

performance of TSCH is mainly dominated by the media access control (MAC)

mechanism, which covers the refitment, enumeration, composition, and data

transmission [52]. The slot frame is the central communication unit of TSCH; a pair of

nodes is needed for data transmission. A slot frame is a series of time slots that are

repeated continually. A different channel is assigned pseudo-randomly to each timeslot.

The schedule specifies which neighbor to interact with and on what channel offset [53].

Due to the excessive use of the unlicensed band, cross-technology interference

such as wi-fi conflicts with Bluetooth is another vital issue at present. The IEEE 802.15.4e

standard proposes the TSCH mode, which utilizes the channel hopping method to solve

these coexistence issues [54,55]. Most of the network technologies of TSCH optimize their

own network performance without considering interference from other networks or

noise [56]. However, channel hopping from one to the next is not an effective manner

since all frequencies face different levels of interference [57,58]. We got some overviews

regarding wireless interference patterns with comprehensive analysis about channel

selection algorithm with considering random channel model [59].

In this chapter, we present a scheduling algorithm of the TSCH network that can

observe the behavior of the surroundings network, especially that make interference with

the own network. That is also considered as an interference network cluster (INC) [60,61].

We have proposed a bipartite graph solution of the TSCH network structure. We have

proposed dual-stage Hungarian-based scheduling schemes: one for INC and another for

our own network and established a relation between them. This will smartly mitigate the

collision by maximizing the own network throughput and minimizing INC's throughput.

We have also proposed a learning based DNN scheme that provides us the

additional benefit to reduce the computational time of scheduling. We trained the DNN

50

algorithm on a synthetic dataset captured from a Hungarian-based scheduling algorithm.

We trained our model offline approach and evaluated the algorithm in a more pragmatic

scenario.

The contributions of this chapter are summarized as follows:

• We model a TSCH network by considering INC and formulate algorithms to

produce their throughputs and make an interconnection between them.

• We propose a bipartite graph solution for the TSCH slot frame structure.

Based on the bipartite graph, we propose a dual stage scheduling algorithm

to protect collision between own network and INC, it can maximize the

throughput of own network, and minimize the throughput of INC.

• We propose a deep learning-based DNN scheme to reduce the computational

time of scheduling tasks. The proposed DNN scheme uses the training data

from Hungarian-based scheduling algorithms to avoid a collision from INC.

Thus, the proposed DNN scheme correctly emulates the dual-stage

Hungarian-based scheduling scheme and reduces the execution time of

scheduling.

• The performance of the DNN scheme is verified by Simulation. Furthermore,

the simulation results show that the proposed DNN scheme can be similar to

a dual-stage Hungarian-based scheduling algorithm for avoiding collision

between own network and INC.

To the best of our knowledge, this is the first work that addresses scheduling in IEEE

802.15.4e TSCH networks with considering INC and utilizes the advantages of a learning-

based DNN scheme to reduce computational time.

The remainder of the chapter is arranged as follows. In Section 3.2, we demonstrate

the system model and problem statement. In Section 3.3, we describe the proposed dual-

51

stage Hungarian algorithm-based scheduling scheme. In Section 3.4, we delineate the

training of the DNN scheme and the category of the dataset. In Section 3.5, the proposed

method's outcomes are illustrated and verified by using simulation. Finally, Section 3.6

concludes this chapter.

3.2 System model

 In this section, we describe the network model, state the mathematical equations

for the problem formulation and channel model.

3.2.1 Network model

In this work, we consider that the TSCH network consists of N nodes called the

own network and a second unknown network called the interfering network cluster

(INC), which may include noise from different sources (e.g., microwaves, noise

generators, and jammers) [60,61]. We presume that both networks will have similar

priorities and rights to use the spectrum because we focus on unlicensed bands. However,

as the INC is unknown, the own network has no idea about what technologies are being

used in INC, traffic types, channel state information (CSI), etc. The TSCH network

coexistence with INC is illustrated in Figure: 3.1.

Figure 3.1: Example of TSCH network coexistence with INC.

52

TSCH uses time and frequency diversity. It's the combination of time division

multiple access (TDMA) and frequency-division multiple access (FDMA) techniques. This

is core concept of TSCH network. Based on the concept, all N nodes of own TSCH

network can communicate with one another on channel 𝑐 ∈ ℂ. Each channel is separated

into time slots 𝑠 ∊ 𝑆. S time slots and ℂ channels are available for each slot-frame, 𝑓 ∈ 𝐹

in the TSCH schedule, as shown in Figure 3.2.

Figure 3.2: Slot-frame matrix of TSCH network.

3.2.2 Problem formulation

In the model, we consider that all nodes are on their own network because of the

number of interfering networks within the INC; any applied protocols features are all

unknown. Thus, we only know if one of the nodes of INC has used the channel at a given

time. We assume that 𝑃𝑠,𝑐
𝑓

= 1 only if the INC used channel c, at slot s, in frame f, at time (f ,s).

We assume that TSCH has a centralized scheduler, and the own network cannot

schedule two transmissions, TX actions between two nodes at the same times using the

same channel. We also consider that INC is strong enough to collide with own network

node transmission. We can define that transmission of the own network between two

nodes on a channel, c at a time (f, s), is successful only if own node is transmitting at the

53

same time in that channel and no INC node is transmitting. Every node, 𝑛 ∊ 𝑁 of own

network executes a transmission action, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 used channel c, at slot s, for slot-frame f. If

own node is transmitting at the time in that channel and no interfering node is

transmitting, we use 𝛾𝑠,𝑐
𝑓,𝑛

 to determine if an own packet could be successfully delivered

or not.

𝛾𝑠,𝑐
𝑓,𝑛

 = 1, 𝑖𝑓 𝑇𝑋𝑠,𝑐
𝑓,𝑛

= 1 ∧ 𝑃𝑠,𝑐
𝑓

= 0 (3.1)

Similarly, the communication of INC is successful if 𝛾𝑠,𝑐
′𝑓,𝑛

 = 1, where:

𝛾𝑠,𝑐
′𝑓,𝑛

 = 1, 𝑖𝑓 𝑇𝑋𝑠,𝑐
𝑓,𝑛

= 0 ∧ 𝑃𝑠,𝑐
𝑓

= 1 (3.2)

3.2.3 Channel model

 We design and develop a channel model to fulfill the condition of equation 3.1 and

equation 3.2. As we discussed earlier, our goal is to develop a bipartite graph-based

solution of the TSCH network. For the establishment of the bipartite graph, we need to

know the knowledge of throughput. Throughput is the main component for bipartite

edge weight, and that help us to solve the scheduling of TSCH [9,10].

As INC is unknown, we don’t know about their channel state information (CSI)

and other parameters [60,61]. In this work, we have considered the throughput of INC

as a random variable. We use the linear congruential generator for constituting INC

throughput. A linear congruential generator (LCG) is an algorithm that generates a series

of pseudorandom integers using a piecewise linear equation that is discontinuous. One

of the most well-known pseudorandom number generator algorithms is this one [62]. The

54

throughput of INC will be executed by the following equation of linear congruential

generator (LCG):

𝑌𝑖 = (𝑎𝑌𝑖−1 + 𝑞)(𝑚𝑜𝑑 𝑀) (3.3)

where, M is modular, 𝑖 = 𝑐𝑠, multiplicator, a and q are two suitable chosen integers and

the uniform random variable after scaling.

 𝑈𝑖 =
𝑌𝑖

𝑞
 (3.4)

Another goal is to minimize the INC throughput for enhancing the reliability of own

network. The following equation will minimize the INC throughput:

 𝑈∗ = 𝑚𝑖𝑛 ∑ ∑ 𝑈𝑖 𝑐∈ℂ 𝑠∈𝑆 (3.5)

The own network throughput can be determined by famous Shannon’s formula

[9,10] depends upon transmission slots for each node:

 𝑊𝑖(𝑥) =
𝛽

𝑙
𝑙𝑜𝑔(1 +

𝑥𝑝

𝛽𝜂𝑜+𝑈∗) (3.6)

where, 𝑖 = 𝑠𝑐 , channel state 𝑥 = 𝑋𝑐,𝑠 = |𝐻𝑐,𝑠|2 𝐻𝑐,𝑠 = channel gain, it can be determined

as before in chapter 2.

 We maximize the own network throughput by following:

𝑊∗ = 𝑚𝑎𝑥 ∑ ∑ 𝑊𝑖 𝑐∈ℂ 𝑠∈𝑆 (3.7)

55

3.3 The proposed dual-stage Hungarian based assignment algorithm

In this part, we describe the bipartite graph-based application of the TSCH slot-

frame matrix. It proposes a dual-stage Hungarian-based algorithm for transmission

scheduling of TSCH network, collision avoiding techniques from INC, maximizing the

own network throughput, and minimizing the INC throughput.

3.3.1 Bipartite graph model

According to graph theory-based mathematical structure, a bipartite graph has

two independent sets of vertices: top and bottom. Every edge connects a vertex in the top

to one on the bottom. It is used for modeling relationships between two different classes

of objects [19]. Now, the bipartite graph is a promising application of the TSCH network

for presenting an assignment of slots and channels for successful node pair transmission

(TX) [9,10]. Throughput is considered as the edge's weight of a bipartite graph [10].

We consider a bipartite graph ℬ = (𝑆, ℂ, 𝐸) correspond to the slot-frame matrix in

Figure: 3.1. The set of channels, 𝑐 ∈ ℂ is the top vertexes of bipartite graph, and the set of

slots 𝑠 ∊ 𝑆 is the bottom vertexes of bipartite graph ℬ. The set of edge weights is

considered 𝐸 = {𝑒 = (𝑠, 𝑐)| 𝑠 ∈ 𝑆, 𝑐 ∈ ℂ} as the throughputs of own network and INC

(details are in next segment).

Figure 3.3: Bipartite graph correspond to the slot-frame matrix in Figure: 3.2

56

3.3.2 The dual-stage Hungarian based algorithm and collision avoidance technique

We propose a dual-stage Hungarian-based assignment technique for avoiding

collision between own network and INC. The Hungarian assignment will be performed

according to the edge weight of the bipartite graph. We have considered here bipartite

edge weights are throughput of own network and INC. In this work, the throughput of

INC is computed by linear congruential generator (LCG), and own network throughput

is calculated by familiar Shannon’s formula (described in section 3.2.3). We considered

the negligible upper bounds 2𝐿 (L is the number of node-to-node edge Figure:1)[10].

The number of inputs of the Hungarian algorithm is the total number of edges

 𝑆 ∗ ℂ of the bipartite graph. Firstly, the INC throughput 𝑈𝑖 was considered as the edge

weight of the bipartite graph. The Hungarian algorithm performed the assignment

according to the minimization of edge weight of the bipartite graph and we obtained the

𝑃𝑠,𝑐
𝑓

 and minimization of INC throughput, 𝑈∗. Secondly, the own network throughput 𝑊𝑖

will be calculated based on the 𝑈∗, which was considered as the bipartite edge weight.

The Hungarian again performed the scheduling task based on maximization of bipartite

edge weight and we obtained the transmission of own network, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 and maximized

throughput of own network, 𝑊∗. Though most of the collisions between own network

and INC were mitigated by this technique, every transmission of own network 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 was

checked channel by channel and slot by slot. If INC used, 𝑃𝑠,𝑐
𝑓

 the specifically assigned

slot by own network, that means the duplicate schedule had found in that time own

network shifted their scheduling on the following slot based on the second highest edge

weight value.

57

The proposed algorithm is given below:

Algorithm 3.1: Dual-stage Hungarian-based scheduling scheme

1: Begin

2: //INITIALIZATION

3: for each 𝑐 ∈ ℂ, 𝑠 ∈ 𝑆 and 𝑓 ∈ 𝐹:

4: Run linear congruential generator (LCG) to obtain INC throughput 𝑈𝑖

5: Run Hungarian algorithm based on minimization 𝑈𝑖 of bipartite edge weight

 %where INC throughput used as bipartite edge weight

6: Obtain 𝑃𝑠,𝑐
𝑓

 and 𝑈∗

7: Own network throughput, 𝑊𝑖 can be calculated

8: Run Hungarian algorithm based on maximization 𝑊𝑖 of bipartite edge weight

 % where own network throughput used as bipartite edge weight

9: Obtain 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 and 𝑊∗

10: if 𝑇𝑋𝑠,𝑐
𝑓,𝑛

=𝑃𝑠,𝑐
𝑓

,

11: else 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 happen in the assigned slot according to step 8

12: end if

13: ensure: 𝑇𝑋𝑠,𝑐
𝑓,𝑛

= 1 ∧ 𝑃𝑠,𝑐
𝑓

= 0 and 𝑇𝑋𝑠,𝑐
𝑓

= 0 ∧ 𝑃𝑠,𝑐
𝑓

= 1

14: end for

15: //MAIN LOOP:

16: Generate 10,000 data frames for DNN training

58

3.4 The proposed deep learning based DNN scheme

In this section, we propose a deep learning-based supervised DNN scheme that

accepts the training data from a dual-stage Hungarian-based scheduling scheme

(Algorithm 3.1). The proposed DNN scheme performs the scheduling by learning the

kinship between the input and output of the scheduling algorithm of its own network.

That means input is the maximized throughput of own network (bipartite edge weight),

and the output is the transmission scheduling of own network, based on the learning

DNN performs the optimal scheduling of own network.

The structure of the DNN is the same as in chapter 2. In this part, we will discuss

the dataset division and training procedure of the proposed DNN scheme.

3.4.1 Dataset distribution and training of DNN

We have needed enough sample data for correctly training the DNN. We

generated a total of 10,000 data frames using algorithm 2 based on a dual-stage

Hungarian-based scheduling algorithm. We considered three parts of the dataset to train

the DNN. We fed 60% of the data for training, kept 20% for validation and 20% for testing.

Validation is the unbiased method, that is, assessment procedure as to how well our

model learns the knowledge during training. Testing is the actual procedure for analyzing

neural network performance. We employed data normalization techniques for avoiding

overfitting issues. When the DNN training was finished, we used the scheme for every

new value of the own network throughput, 𝑊𝑖 to find the optimal solution of, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

.

Figure 3.4 describes the training process of DNN. The network environment

generated enough samples of data frames based on TSCH information. The offline

59

supervised training was performed based on these data samples. We obtained the optimal

interpretation of dual-stage Hungarian-based transmission scheduling, and DNN

contributed to reduce the computational time of execution.

Figure 3.4: Training of our proposed DNN scheme.

3.5 Performance evaluation

We compared the outcomes of DNN with the Hungarian-based scheduling

algorithm to demonstrate our proposed scheme's efficiency. Here the simulations were

performed in two steps: first, we executed algorithm 1 for generating enough samples

data; second, after obtaining data samples, the DNN training was performed. Algorithm

3.1 for data set generation was carried out in MATLAB on a PC with an Intel Core i7

processor and 8 GB RAM. After getting data samples, the DNN offline training was

executed in Python utilizing the Keras and NumPy libraries.

60

3.5.1 TSCH network model coexistence with INC

The primary goal of this chapter is to design scheduling of the TSCH network

model to avoid Collison from INC. The details of the model are described in Algorithm

3.1. The DNN training data is generated from this model to train the DNN accurately.

The following parameters are considered in Table 3.1 for establishing the network model

in Algorithm 1.

Table 3.1: Parameter Specifications for Algorithm 1

Parameter Specification

1. Number of channels, ℂ 12

2. Number of slots, 𝑆 16

3. Number of data frames, 𝐹 10,000

4. Bandwidth, β 1 MHz

5. Bits in each packet l 1000

6. Transmission power, p 10 mw

7. Noise variance, 𝜂𝑜 1

3.5.2 Building a DNN scheme

We have considered a DNN a model with one input layer, multiple hidden layers,

and one output layer. The number of input features of DNN is the bipartite edge weight,

which means the throughput of own network. The total number of bipartite edge weights

is the multiplication of the total number of channels and the total number of slots, ℂ ∗ 𝑆.

The output is considered how many times the own network uses the channels; it means

the total number output of DNN is the total number of channels, ℂ . We have used the

61

rectified linear unit (ReLU) activation function for every hidden layer to obtain minimal

min square error (MSE) with little difficulty. The specification of the proposed DNN

scheme is given in Table 3.2.

Table 3.2. Parameter Specifications for the DNN scheme

Parameter Specification

1. Number of input features 192

2. Number of hidden layers 4

3. Number of neurons in each layer 800,1600,1200, and 800

4. Number of outputs 12

5. Learning rate 0.001

6. Batch size 100

7. Number of epochs 1000

3.5.3 Assignment method

Figure 3.5 illustrates the transmission, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 scheduling assignment of own

network that can avoid a collision from INC. Here green color indicates the transmission

assignment of own network executed based on the maximization of own network

throughput. The red color indicates that INC uses the slots 𝑃𝑠,𝑐
𝑓

; it was executed based on

the minimization of INC throughput. Lastly, the own network checked channel by

channel and slot by slot. For this frame, we observed that the duplicate assignment was

executed on channel 3. Both own network and INC were used slot 3 for the channel 3 but

using the above checking method when own network found INC in the same slot; then it

shifted its transmission schedule to the next slot 2 based on the second highest of own

network throughput.

62

Figure 3.5: Assignment method.

3.5.4 Throughput optimization

Figure 3.6 shows the average maximized throughput of own network and average

minimized throughput of INC for different channels. Our prosed dual-stage Hungarian-

based scheduling scheme can maximize the own network throughput based on the

minimization of INC throughput. It increases network reliability for data transmission.

63

Figure 3.6: Throughput optimization of own network and INC.

3.5.5 Determining the model accuracy

Accuracy determination is the key part of the deep learning-based DNN method.

It defines that how much the proposed learning-based scheme learns the original method.

We considered an accuracy metric based on the transmission of own network equation

3.8. Firstly, we determined the accurate parameters based on the following method. The

transmission assignment of own network 𝑇𝑋𝑠,𝑐
𝑓

 is the output of dual-stage Hungarian-

based scheme is an integer but predicted output DNN, 𝑇𝑋𝑠,𝑐
𝑓̂

 is not an integer value. For

alleviating this problem, we used the round function as follows:

If 𝑇𝑋𝑠,𝑐
𝑓

− 𝑟𝑜𝑢𝑛𝑑(𝑇𝑋𝑠,𝑐
𝑓̂

) = 0, it indicates as accurate, and

 𝑇𝑋𝑠,𝑐
𝑓

− 𝑟𝑜𝑢𝑛𝑑(𝑇𝑋𝑠,𝑐
𝑓̂

) = 0 indicates it is not accurate.

64

If test samples are ℕ𝑡, and non-zero or not accurate parameters are indicated by ℙ,

accuracy of DNN can be determined with the following equation:

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
ℕ𝑡∗ ℂ−ℙ

ℕ𝑡∗ℂ
∗ 100% (3.8)

We measured the accuracy for 1000 test samples as depicted in Figure 3.7. We have

achieved around 90% accuracy of the proposed deep learning-based DNN scheme.

Figure 3.7: Accuracy of deep learning-based DNN scheme

3.5.6 DNN performance

Figure 3.8 and Figure 3.9 show the performance of the proposed DNN scheme

based on optimization of throughput for own network and INC. It reveals that the

proposed deep learning-based DNN scheme correctly emulates the proposed dual-stage

Hungarian-based assignment scheme. DNN is a learning-based scheme and learns the

65

training data from a dual-stage Hungarian (HG) based scheduling scheme; that’s why

HG shows the optimal and DNN shows the suboptimal for the throughput optimization

of both networks.

Figure 3.8: Throughput optimization of own network between HG and DNN

Figure 3.9: Throughput optimization of INC between HG and DNN

66

3.5.7 Execution time

Figure 3.10 exhibits the execution time for both schemes HG and DNN. It was

determined according to the number of data samples. Here observe that the DNN

reduced almost 80% execution time than the original method. It is the additional

contribution from DNN that can enhance the efficiency of scheduling in the TSCH

network.

Figure 3.10: Execution time between HG and DNN according to number of data samples

3.6 Conclusion

In this chapter, we proposed a dual-stage Hungarian-based scheduling scheme

that can smartly assign the TSCH network without collision from INC. We have also

utilized a deep learning-based DNN scheme with this method that provided similar

67

performance to those of assignment techniques and contributed to reducing the execution

time of scheduling. The training data set was generated based on a dual-stage Hungarian-

based scheduling scheme with maximization of own network throughput and

minimization of INC throughput. The DNN was trained by this dataset; it achieved

almost 90% accuracy and reduced 80% execution time of original scheme. The deep

learning-based DNN scheme showed an efficient performance on TSCH network

assignment techniques with less computational time than the original method.

68

Chapter 4

Summary of Contributions and Future Works

4.1 Introduction

This chapter describes the contributions of this dissertation. The problem

statement, objective, methodologies, and results caried out by the proposed solutions are

presented in chapter 2 and chapter 3. The first section 4.2 of the current chapter

summarizes the primary contributions of those investigations, whereas the outline of the

future direction is given in section 4.3.

4.2 Summary of contributions

This dissertation investigated and proposed methods addressing the problem of

TSCH based scheduling of IEEE 802.15.4e. It was focused on solving the scheduling

problem based on the maximization of throughput with considering delay and moving

average throughput and delay to ensure network fairness. It also focused on determining

scheduling to avoid collision of interference network cluster (INC) based on the

69

maximization of own network throughput and minimization of INC throughput. The

deep learning-based DNN scheme was utilized to reduce the execution time of

scheduling.

The contributions of this dissertation, in the context of TSCH based scheduling of

IEEE 802.15.4e for a cooperative Hungarian based scheduling algorithm with a deep

learning-based DNN scheme, is illustrated below:

• This dissertation considered a TSCH network model for applying the

industrial internet of things (IIoT) that can utilize multiple channels and

multiple slots for dynamic operations.

• The bipartite graph of the TSCH network proposed that edge weights were

composed of network throughput and delay. Here also utilized the moving

average throughput and delay for ensuring fairness and moving average

delay satisfied the nature of TSCH as the delay between two slot-frames.

• The Hungarian-based algorithm performed the scheduling task based on

the maximization of the bipartite edge weight where throughput ensured

the maximum data transfer and delay ensured the network's reliability.

• Following that, a dual-stage Hungarian-based scheduling algorithm was

proposed. It performed the scheduling smartly by avoiding collision from

interference network cluster as well as maximizing the own network

throughput based on minimization of INC throughput.

• Furthermore, extensive simulations were conducted to prepare the training

dataset and demonstrate the efficiency of the proposed schemes. In both

cases, a deep learning-based DNN scheme was utilized that can perform

the same as the original scheduling method. It provided an extra

contribution to reducing the execution time of scheduling.

70

• Finally, the performance of the proposed techniques was evaluated by

widely used measures such as accuracy, throughput and delay

optimization, comparison for execution time, etc. These performance

evaluations revealed the efficiency of proposed schemes compared to the

original or previously proposed techniques and parameter considerations.

4.3 Future direction

In the future, it is aimed to work on further improvement of the scheduling of the

TSCH network. We will identify some other channel parameters that are important for

network design. In this work, we consider half-duplex communication of node pair.

Furthermore, our target is to consider full-duplex communication. In the future, we will

consider uplink/downlink characteristics to enhance network performance and provide

optimal scheduling resources and want to apply them in the physical implementation of

small applications.

71

Publications

International Journal

[1] Under Review: Md. Niaz Morshedul Haque, Young-Doo Lee, Insoo Koo* “Deep

Learning–Based Scheduling Scheme for IEEE 802.15.4e TSCH Networks”, Wireless

Communications and Mobile Computing.

Journal paper draft under preparation

[2] To be submitted: Md. Niaz Morshedul Haque, Young-Doo Lee, Insoo Koo* “TSCH-

Bases Scheduling Method of IEEE 802.15.4e in coexistence with INC: DNN Approach”

72

Bibliography

[1] Ud Din, I.; Guizani, M.; Hassan, S.; Kim, B.S.; Khurram Khan, M.; Atiquzzaman, M.;

Ahmed, S.H. The Internet of Things: A Review of Enabled Technologies and Future

Challenges. IEEE Access 2019, 7, 7606–7640, doi:10.1109/ACCESS.2018.2886601

[2] Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things:

Challenges, Opportunities, and Directions. IEEE Trans. Ind. Informatics 2018, 14, 4724–4734,

doi:10.1109/TII.2018.2852491.

[3] Standard, I.; Society, I.C.; Nguyen, H.Q.; Choi, J.; Kang, M.; Ghassemlooy, Z.; Kim, D.H.;

Lim, S.; Kang, T.; Lee, C.G. IEEE Standard for Local and Metropolitan Area Networks — Part

15 . 4 : Low-Rate Wireless Personal Area Networks (LR-WPANs) IEEE Computer Society S

Ponsored by The; 2010; Vol. 3600; ISBN 978-1-4244-8858-2.[

[4] IEEE 802.15.4-2006 - IEEE Standard for Information Technology-- Local and Metropolitan

Area Networks-- Specific Requirements-- Part 15.4: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area N.

[5] Nps, M.; Owner, D.; Medical, N.; Endorsed, S.; Pages, A.; Action, C.; Mccormack, N.C.;

Brearley, D.O.N.L. N Ursing P Ractice S Tandard F Or; 2010; Vol. 2015; ISBN 9781504408462.

[6] Bae, B.H.; Chung, S.H. Fast Synchronization Scheme Using 2-Way Parallel Rendezvous in

IEEE 802.15.4 TSCH. Sensors (Switzerland) 2020, 20, doi:10.3390/s20051303.

73

[7] Watteyne, T.; Mehta, A.; Pister, K. Reliability through Frequency Diversity: Why Channel

Hopping Makes Sense. PE-WASUN’09 - Proc. 6th ACM Int. Symp. Perform. Eval. Wirel. Ad-

Hoc, Sensor, Ubiquitous Networks 2009, 116–123, doi:10.1145/1641876.1641898.

[8] Oh, S.; Hwang, D.Y.; Kim, K.H.; Kim, K. Escalator: An Autonomous Scheduling Scheme for

Convergecast in TSCH. Sensors (Switzerland) 2018, 18, 1–25, doi:10.3390/s18041209.

[9] Ojo, M.; Giordano, S. An Efficient Centralized Scheduling Algorithm in IEEE 802.15.4e

TSCH Networks. 2016 IEEE Conf. Stand. Commun. Networking, CSCN 2016 2016,

doi:10.1109/CSCN.2016.7785164.

[10] Taheri Javan, N.; Sabaei, M.; Hakami, V. IEEE 802.15.4.e TSCH-Based Scheduling for

Throughput Optimization: A Combinatorial Multi-Armed Bandit Approach. IEEE Sens. J.

2020, 20, 525–537, doi:10.1109/JSEN.2019.2941012.

[11] Kharb, S.; Singhrova, A. A Survey on Network Formation and Scheduling Algorithms for

Time Slotted Channel Hopping in Industrial Networks. J. Netw. Comput. Appl. 2019, 126,

59–87, doi:10.1016/j.jnca.2018.11.004.

[12] Ojo, M.; Giordano, S.; Portaluri, G.; Adami, D.; Pagano, M. An Energy Efficient Centralized

Scheduling Scheme in TSCH Networks. 2017 IEEE Int. Conf. Commun. Work. ICC Work. 2017

2017, 570–575, doi:10.1109/ICCW.2017.7962719.

[13] Ojo, M.; Giordano, S.; Portaluri, G.; Adami, D. Throughput Maximization Scheduling

Algorithm in TSCH Networks with Deadline Constraints. 2017 IEEE Globecom Work. GC

Wkshps 2017 - Proc. 2018, 2018-January, 1–6, doi:10.1109/GLOCOMW.2017.8269114.

[14] Theoleyre, I.H. and F. No TitleAdaptive K-Cast Scheduling for HighReliability and Low-

Latency in IEEE802.15.4-TSCH. In Proceedings of the Int. Conf. on Ad Hoc Net. and

Wireless (ADHOC-NOW’ 18), pp. 3-18; 2018.

[15] Zorbas, D.; Kotsiou, V.; Th, F. LOST : Localized Blacklisting Aware Scheduling. 2018, 110–

115.

74

[16] Daneels, G.; Latre, S.; Famaey, J. Efficient Recurrent Low-Latency Scheduling in IEEE

802.15.4e TSCH Networks. 2019 IEEE Int. Black Sea Conf. Commun. Networking, BlackSeaCom

2019 2019, doi:10.1109/BlackSeaCom.2019.8812869.

[17] Mathew, V.; Manuel, E.M. Cognitive Scheduling in TSCH Based Mobile WSN Using

Wavelet Packet Analysis. 2015 IEEE Int. Conf. Signal Process. Informatics, Commun. Energy

Syst. SPICES 2015 2015, 2–6, doi:10.1109/SPICES.2015.7091440.

[18] Qiu, S.; Chen, D.; Qu, D.; Luo, K.; Jiang, T. Downlink Precoding with Mixed Statistical and

Imperfect Instantaneous CSI for Massive MIMO Systems. IEEE Trans. Veh. Technol. 2018,

67, 3028–3041, doi:10.1109/TVT.2017.2774836.

[19] Ma, J.; Qiao, Y.; Hu, G.; Li, T.; Huang, Y.; Wang, Y.; Zhang, C. Social Account Linking via

Weighted Bipartite Graph Matching. Int. J. Commun. Syst. 2018, 31, 1–14,

doi:10.1002/dac.3471.

[20] Date, K.; Nagi, R. GPU-Accelerated Hungarian Algorithms for the Linear Assignment

Problem. Parallel Comput. 2016, 57, 52–72, doi:10.1016/j.parco.2016.05.012.

[21] Samuel, N.; Diskin, T.; Wiesel, A. Learning to Detect. IEEE Trans. Signal Process. 2019, 67,

2554–2564, doi:10.1109/TSP.2019.2899805.

[22] Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal Deep Learning LSTM Model for

Electric Load Forecasting Using Feature Selection and Genetic Algorithm: Comparison

with Machine Learning Approaches. Energies 2018, 11, doi:10.3390/en11071636.

[23] Uselis, A.; Lukoševičius, M.; Stasytis, L. Localized Convolutional Neural Networks for

Geospatial Wind Forecasting. Energies 2020, 13, 1–21, doi:10.3390/en13133440.

[24] Praditia, T.; Walser, T.; Oladyshkin, S.; Nowak, W. Improving Thermochemical Energy

Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture. Energies

2020, 13, doi:10.3390/en13153873.

75

[25] Gong, X.; Tang, B.; Zhu, R.; Liao, W.; Song, L. Data Augmentation for Electricity Theft

Detection Using Conditional Variational Auto-Encoder. Energies 2020, 13, 1–14,

doi:10.3390/en13174291.

[26] Desportes, L.; Fijalkow, I.; Andry, P. Deep Reinforcement Learning for Hybrid Energy

Storage Systems: Balancing Lead and Hydrogen Storage. Energies 2021, 14,

doi:10.3390/en14154706.

[27] Wang, T.; Wen, C.K.; Wang, H.; Gao, F.; Jiang, T.; Jin, S. Deep Learning for Wireless Physical

Layer: Opportunities and Challenges. China Commun. 2017, 14, 92–111,

doi:10.1109/CC.2017.8233654.

[28] Farsad, N.; Goldsmith, A. Neural Network Detection of Data Sequences in Communication

Systems. arXiv 2018, 66, 5663–5678.

[29] Farsad, N.; Goldsmith, A. Detection Algorithms for Communication Systems Using Deep

Learning. arXiv 2017.

[30] Lee, W.; Kim, M.; Cho, D.H. Deep Power Control: Transmit Power Control Scheme Based

on Convolutional Neural Network. IEEE Commun. Lett. 2018, 22, 1276–1279,

doi:10.1109/LCOMM.2018.2825444.

[31] Wang, S.; Liu, H.; Gomes, P.H.; Krishnamachari, B. Deep Reinforcement Learning for

Dynamic Multichannel Access in Wireless Networks. arXiv 2018, 4, 257–265,

doi:10.1109/tccn.2018.2809722.

[32] Zappone, A.; Di Renzo, M.; Debbah, M. Wireless Networks Design in the Era of Deep

Learning: Model-Based, AI-Based, or Both? arXiv 2019, 67, 7331–7376.

[33] Ju, H.; Zhang, R. Throughput Maximization In. IEEE Trans. Wirel. Commun. 2014, 13, 418–

428.

76

[34] Yang, G.; Ho, C.K.; Zhang, R.; Guan, Y.L. Throughput Optimization for Massive MIMO

Systems Powered by Wireless Energy Transfer. IEEE J. Sel. Areas Commun. 2015, 33, 1640–

1650, doi:10.1109/JSAC.2015.2391835.

[35] Li, Q.; Wang, L.; Xu, D. Resource Allocation in Cognitive Wireless Powered

Communication Networks under Outage Constraint. 2018 IEEE 4th Int. Conf. Comput.

Commun. ICCC 2018 2018, 683–687, doi:10.1109/CompComm.2018.8780604.

[36] Bi, S.; Zhang, R.; Ding, Z.; Cui, S. Wireless Communications in the Era of Big Data. IEEE

Commun. Mag. 2015, 53, 190–199, doi:10.1109/MCOM.2015.7295483.

[37] Zappone, A.; Di Renzo, M.; Debbah, M.; Lam, T.T.; Qian, X. Model-Aided Wireless

Artificial Intelligence: Embedding Expert Knowledge in Deep Neural Networks for

Wireless System Optimization. IEEE Veh. Technol. Mag. 2019, 14, 60–69,

doi:10.1109/MVT.2019.2921627.

[38] Sun, H.; Chen, X.; Shi, Q.; Hong, M.; Fu, X.; Sidiropoulos, N.D. Learning to Optimize:

Training Deep Neural Networks for Wireless Resource Management. arXiv 2017, 66, 5438–

5453.

[39] Hameed, I.; Tuan, P.V.; Koo, I. Exploiting a Deep Neural Network for Efficient Transmit

Power Minimization in a Wireless Powered Communication Network. Appl. Sci. 2020, 10,

doi:10.3390/app10134622.

[40] Gron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build1st Ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2017 Intelligent Systems,;

[41] Liang, L.; Ye, H.; Yu, G.; Li, G.Y. Deep-Learning-Based Wireless Resource Allocation with

Application to Vehicular Networks. Proc. IEEE 2020, 108, 341–356,

doi:10.1109/JPROC.2019.2957798.

[42] Kimbugwe, N.; Pei, T.; Kyebambe, M.N. Application of Deep Learning for Quality of

Service Enhancement in Internet of Things : A Review. 2021.

77

[43] Wu, H.; Li, X.; Deng, Y. Deep Learning-Driven Wireless Communication for Edge-Cloud

Computing: Opportunities and Challenges. J. Cloud Comput. 2020, 9, doi:10.1186/s13677-

020-00168-9.

[44] Dai, L.; Jiao, R.; Adachi, F.; Vincent Poor, H.; Hanzo, L. Deep Learning for Wireless

Communications: An Emerging Interdisciplinary Paradigm. arXiv 2020, 133–139.

[45] Li, M.; Li, H. Application of Deep Neural Network and Deep Reinforcement Learning in

Wireless Communication. PLoS One 2020, 15, 1–15, doi:10.1371/journal.pone.0235447.

[46] Kang, J.M.; Chun, C.J.; Kim, I.M. Deep-Learning-Based Channel Estimation for Wireless

Energy Transfer. IEEE Commun. Lett. 2018, 22, 2310–2313,

doi:10.1109/LCOMM.2018.2871442.

[47] He, D.; Liu, C.; Wang, H.; Quek, T.Q.S. Learning-Based Wireless Powered Secure

Transmission. IEEE Wirel. Commun. Lett. 2019, 8, 600–603, doi:10.1109/LWC.2018.2881976.

[48] Lee, W.; Kim, M.; Cho, D.H. Transmit Power Control Using Deep Neural Network for

Underlay Device-to-Device Communication. IEEE Wirel. Commun. Lett. 2019, 8, 141–144,

doi:10.1109/LWC.2018.2864099.

[49] Kuhn, H.W. NThe Hungarian Method for the Assignment Problemo Title. Nav. Res. Logist.

2005, 52, 7–21.

[50] Index, Cisco Visual Networking, "Global mobile data traffic forecast update, 2016-2021

white paper," Cisco: San Jose, CA, USA, 2017.

[51] Natarajan, R.; Zand, P.; Nabi, M. Analysis of Coexistence between IEEE 802.15.4, BLE and

IEEE 802.11 in the 2.4 GHz ISM Band. IECON Proc. (Industrial Electron. Conf. 2016, 6025–

6032, doi:10.1109/IECON.2016.7793984.

[52] D. De Guglielmo, S.B. and G.A. Ieee 802.15.4e: A Survey. Comput. Commun. 2016, 88, 1–24.

78

[53] Kharb, S.; Singhrova, A. A Survey on Network Formation and Scheduling Algorithms for

Time Slotted Channel Hopping in Industrial Networks. J. Netw. Comput. Appl. 2019, 126,

59–87, doi:10.1016/j.jnca.2018.11.004.

[54] Alkama, L.; Bouallouche-Medjkoune, L. IEEE 802.15.4 Historical Revolution Versions: A

Survey. Computing 2021, 103, 99–131, doi:10.1007/s00607-020-00844-3.

[55] Watteyne, T.; Mehta, A.; Pister, K. Reliability through Frequency Diversity: Why Channel

Hopping Makes Sense. PE-WASUN’09 - Proc. 6th ACM Int. Symp. Perform. Eval. Wirel. Ad-

Hoc, Sensor, Ubiquitous Networks 2009, 116–123, doi:10.1145/1641876.1641898.

[56] Hammoudi, S.; Harous, S.; Aliouat, Z. External Interference Free Channel Access Strategy

Dedicated to TSCH. IEEE Int. Conf. Electro Inf. Technol. 2018, 2018-May, 350–355,

doi:10.1109/EIT.2018.8500259.

[57] Kurunathan, H.; Severino, R.; Koubaa, A.; Tovar, E. IEEE 802.15.4e in a Nutshell: Survey

and Performance Evaluation. IEEE Commun. Surv. Tutorials 2018, 20, 1989–2010,

doi:10.1109/COMST.2018.2800898.

[58] D. De Guglielmo, G. Anastasi, and A.S. No TitFrom IEEE 802.15. 4 to IEEE 802.15. 4e: A

Step towards the Internet of Thingsle. , Springer Int. Publ. 2014, 135–152.

[59] Ansari, J.; Mähönen, P. Channel Selection in Spectrum Agile and Cognitive MAC Protocols

for Wireless Sensor Networks. MobiWac’10 - Proc. 8th ACM Int. Symp. Mobil. Manag. Wirel.

Access, Co-located with MSWiM’10 2010, 83–90, doi:10.1145/1868497.1868511.

[60] Mennes, R.; Claeys, M.; De Figueiredo, F.A.P.; Jabandzic, I.; Moerman, I.; Latre, S. Deep

Learning-Based Spectrum Prediction Collision Avoidance for Hybrid Wireless

Environments. IEEE Access 2019, 7, 45818–45830, doi:10.1109/ACCESS.2019.2909398.

[61] Mennes, R.; De Figueiredo, F.A.P.; Latré, S. Multi-Agent Deep Learning for Multi-Channel

Access in Slotted Wireless Networks. IEEE Access 2020, 8, 95032–95045,

doi:10.1109/ACCESS.2020.2995456.

79

[62] Tong, Q.; Zou, X.; Tong, H. A RFID Authentication Protocol Based on Infinite Dimension

Pseudo Random Number Generator. Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. CSO 2009

2009, 1, 292–294, doi:10.1109/CSO.2009.436

	Chapter 1: Introduction
	1.1 Motivation
	1.2 Thesis objective
	1.3 Thesis outline

	Chapter 2: Deep Learning-Based Scheduling Scheme of IEEE 802.15.4e TSCH Networks
	2.1 Introduction
	2.2 System model
	2.2.1 TSCH scheduling
	2.2.2 TSCH network model
	2.2.3 Traffic model
	2.2.4 Channel model
	2.2.5 Collision graph

	2.3 The proposed Hungarian algorithm-based scheduling scheme
	2.3.1 Problem definition and objective function
	2.3.2 The Hungarian algorithm and solution technique

	2.4 Proposed deep learning-based scheduling scheme
	2.4.1 Proposed algorithm for generating a data set
	2.4.2 Structure of the DNN
	2.4.3 The neural network training mechanism

	2.5 Simulation results and performance evaluation
	2.5.1 TSCH network: bipartite network establishment
	2.5.2 Construction of the DNN model
	2.5.3 Performance evaluation
	2.5.3.1 Determining the model accuracy
	2.5.3.2 Bipartite edge weight
	2.5.3.3 Throughput and delay impact on bipartite edge weight
	2.5.3.4 Cell scheduling
	2.5.3.5 Execution time

	2.6 Conclusions

	Chapter 3: TSCH-Based Scheduling Method of IEEE 802.15.4e in coexistence with INC: DNN Approach
	3.1 Introduction
	3.2 System model
	3.2.1 Network model
	3.2.2 Problem formulation
	3.2.3 Channel model

	3.3 The proposed dual-stage Hungarian based assignment algorithm
	3.3.1 Bipartite graph model
	3.3.2 The dual stage Hungarian based algorithm and collision avoidance technique

	3.4 The proposed deep learning based DNN scheme
	3.4.1 Dataset distribution and training of DNN

	3.5 Performance evaluation
	3.5.1 TSCH network model coexistence with INC
	3.5.2 Building a DNN scheme
	3.5.3 Assignment method
	3.5.4 Throughput optimization
	3.5.5 Determining the model accuracy
	3.5.6 DNN performance
	3.5.7 Execution time

	3.6 Conclusions

	Chapter 4: Summary of Contributions and Future Works
	4.1 Introduction
	4.2 Summary of contributions
	4.3 Future direction

	Publications
	Bibliography

<startpage>6
Chapter 1: Introduction 13
 1.1 Motivation 13
 1.2 Thesis objective 14
 1.3 Thesis outline 15
Chapter 2: Deep Learning-Based Scheduling Scheme of IEEE 802.15.4e TSCH Networks 16
 2.1 Introduction 16
 2.2 System model 21
 2.2.1 TSCH scheduling 22
 2.2.2 TSCH network model 22
 2.2.3 Traffic model 24
 2.2.4 Channel model 24
 2.2.5 Collision graph 26
 2.3 The proposed Hungarian algorithm-based scheduling scheme 27
 2.3.1 Problem definition and objective function 29
 2.3.2 The Hungarian algorithm and solution technique 30
 2.4 Proposed deep learning-based scheduling scheme 33
 2.4.1 Proposed algorithm for generating a data set 33
 2.4.2 Structure of the DNN 34
 2.4.3 The neural network training mechanism 36
 2.5 Simulation results and performance evaluation 38
 2.5.1 TSCH network: bipartite network establishment 39
 2.5.2 Construction of the DNN model 39
 2.5.3 Performance evaluation 41
 2.5.3.1 Determining the model accuracy 41
 2.5.3.2 Bipartite edge weight 42
 2.5.3.3 Throughput and delay impact on bipartite edge weight 43
 2.5.3.4 Cell scheduling 45
 2.5.3.5 Execution time 45
 2.6 Conclusions 46
Chapter 3: TSCH-Based Scheduling Method of IEEE 802.15.4e in coexistence with INC: DNN Approach 48
 3.1 Introduction 48
 3.2 System model 51
 3.2.1 Network model 51
 3.2.2 Problem formulation 52
 3.2.3 Channel model 53
 3.3 The proposed dual-stage Hungarian based assignment algorithm 55
 3.3.1 Bipartite graph model 55
 3.3.2 The dual stage Hungarian based algorithm and collision avoidance technique 56
 3.4 The proposed deep learning based DNN scheme 58
 3.4.1 Dataset distribution and training of DNN 58
 3.5 Performance evaluation 59
 3.5.1 TSCH network model coexistence with INC 60
 3.5.2 Building a DNN scheme 60
 3.5.3 Assignment method 61
 3.5.4 Throughput optimization 62
 3.5.5 Determining the model accuracy 63
 3.5.6 DNN performance 64
 3.5.7 Execution time 66
 3.6 Conclusions 66
Chapter 4: Summary of Contributions and Future Works 68
 4.1 Introduction 68
 4.2 Summary of contributions 68
 4.3 Future direction 70
Publications 71
Bibliography 72
</body>

