
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

TSCH-BASED SCHEDULING FOR THROUGHPUT 

AND DELAY OPTIMIZATION OF IEEE 802.15.4e: A 

DEEP LEARNING-BASED APPROACH 

________________ 

 

 

DISSERTATION 

 

 

for the Degree of 

 

 

MASTER OF SCIENCE 
(Electrical Engineering) 

 

 

________________ 

 

 

 

MD. NIAZ MORSHEDUL HAQUE 

 

OCTOBER 2021 

 

 



 

TSCH-Based Scheduling for Throughput and Delay 

Optimization of IEEE 802.15.4e: A Deep Learning-Based 

Approach 

 

 

DISSERTATION 

Submitted in Partial Fulfilment  

of the Requirements for the  

Degree of  

 

 

MASTER OF SCIENCE 
(Electrical Engineering) 

 

at the 

 

UNIVERSITY OF ULSAN 

 

 

by 

 

 

Md. Niaz Morshedul Haque 
October 2021 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

©2021- Md. Niaz Morshedul Haque 

 

All rights reserved. 

 

 

 

 

 

 

 

 

 



 

 

 

 

TSCH-Based Scheduling for Throughput and Delay Optimization of 

IEEE 802.15.4e: A Deep Learning-Based Approach 

 

 

 

 
 

 

 

School of Electrical, Electronic and Computer Engineering 

University of Ulsan, South Korea 

Date: October, 2021 

 



 
 

1 
 

 

VITA 
 

 

Md. Niaz Morshedul Haque was born in Bangladesh. He received the B.Sc. degree 

in electrical and electronic engineering (EEE) from the Ahsanullah University of Science 

and Technology (AUST), Dhaka, Bangladesh, in 2012. 

Since 2019, he is pursuing the Master degree from the University of Ulsan, South 

Korea, under the supervision of Professor In-Soo Koo. He served as a network operation 

center (NOC) engineer in the telecom industry from 2012 to 2013. He joined the Leading 

University (LU), Sylhet, Bangladesh, as a Lecturer in 2015. His current research area 

includes the industrial internet of things (IIoT), resource allocation of IEEE 802.15.4e 

TSCH networks, and deep learning-based scheduling scheme. 

 

 

 

 

 

 

 

 



 
 

2 
 

 

 

 

 

 

 

Dedicated to Almighty Allah (for His countless blessings) 

and  

My family 

(for their prayers, love, and support) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3 
 

 

ACKNOWLEDGEMENT 

       

I would like to express my sincere gratitude to my advisor Prof. In-Soo Koo of the School of 

Electrical, Electronic and Computer Engineering at the University of Ulsan for his 

supervision, advice, continuous support, and constant encouragement throughout my Master 

study and related research. His patience, motivation, immense knowledge, and continuous 

guidance helped to conduct my research and writing of this thesis. Besides my advisors, I am 

gratefully indebted to my other thesis committee members: Prof. Hyung-Yun Kong, Prof. 

Sangjo Choi, for their efforts to go through my thesis, insightful comments, and suggestions.  

      I would like to thank all members of the multimedia communication system laboratory 

(MCSL) for their friendship and support. I am very much grateful to the University of Ulsan 

for giving me an excellent research environment and financial support. My special thanks go 

to BK21 Plus Program for the financial support throughout my Master's studies. 

     I would like to express my heartiest thanks to all members of Bangladeshi community in 

Ulsan, South Korea for their love, respect, and support. 

      Finally, I am ever grateful to my parents Late Motaharul Haque and Naznin Haque for 

raising me and helping me to achieve all that I have in my life. I am also grateful to my wife 

Tamanna Hossain for her support and all the sacrifices, she has made, for my achievement.  

 

 

       

 

 

MD. NIAZ MORSHEDUL HAQUE 

October 2021 

University of Ulsan 

 



 
 

4 
 

 

 

ABSTRACT 

 

TSCH-Based Scheduling for Throughput and Delay Optimization of 

IEEE 802.15.4e: A Deep Learning-Based Approach 

By  

Md. Niaz Morshedul Haque 

Supervisor: Professor Insoo Koo 

 

IEEE 802.15.4e time-slotted channel hopping (TSCH) sets a new standard for the 

industrial internet of things (IIoT) due to its simple architecture and productiveness for 

enhancing credibility in ultra-low-power absorption of industrial appliances. The 

performance of TSCH is also mainly dominated by the media access control (MAC) 

mechanism, which consists of refitment, enumeration, composition, and patronization of 

data transmission schedules that are not accurately prescribed. Most researchers are 

trying to establish many pragmatic scenarios. Their main approach is to schedule TSCH 

networks in a centralized way while framing scheduling problems as the nature of 

throughput and delay in the network. 

The main approach of this dissertation is to find a quicker and more exact solution 

for the scheduling of the TSCH network. We utilize the benefits of a deep learning scheme 

to reduce the execution time of IEEE 802.15.4e TSCH network scheduling. 

 Firstly, we propose a Hungarian-based scheduling solution for TSCH networks 
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by considering throughput and delay with fairness. The scheme proposed previously 

considered the only throughput for a TSCH network. We utilize maximum link weight 

alignment in a bipartite graph for TSCH networks to constitute the frames’ cell 

scheduling. In this dissertation, the weight of the bipartite graph is computed by 

considering both network throughput and delay. Here, we incorporate a window concept 

to determine moving average network throughput and delay. The throughput and delay 

parameters are multiplied by the corresponding moving average throughput and delay 

values to ensure fairness in the bipartite edge weight.  

Secondly, we propose a deep learning-based DNN scheme to reduce the execution 

time of scheduling. The proposed DNN scheme uses the Hungarian solution's training 

data. When the proposed DNN scheme accepts the weight of the bipartite edge as input, 

it will offer cell assignments. The proposed DNN scheme is remarkably accurate by 

learning the relationships between the Hungarian scheduling algorithm's input and 

output. As a result, it provides quick and precise rational results compared to the 

Hungarian-based scheduling algorithm. 

Thirdly, we design a scheduling method considering a TSCH network in 

coexistence method of interference network cluster (INC). The proposed dual-stage 

Hungarian-based scheduling method can do the transmission schedule of the TSCH 

network by avoiding collision from INC and made the throughput maximization of own 

network with minimizing the INC throughput. The learning-based DNN scheme is also 

utilized for reducing the execution time of scheduling.  
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Chapter   1 

 

Introduction 

 

1.1   Motivation 

     The development of technologies has accelerated the expansion of the industrial 

internet of things (IIoT). It provides an unprecedented potential for participants in various 

industries. IEEE 802.15.4e is a rectification to the medium access control (MAC) protocol 

established by IEEE 802.15.4, the pioneer standard of the internet of things (IoT). TSCH is 

a feature of the IEEE 802.15.4 standard that allows appliances to accommodate ample 

industrial applications. 

     The IEEE 802.15.4e TSCH overcomes the drawbacks of IEEE 802.15.4 by 

delivering excellent credibility and low consumption of power to various applications of 

industries in extreme conditions. Furthermore, it improves network durability by adding 

significant redundancy and increasing communication path by reducing interference and 

multipath fading effects. Moreover, it is possible by utilizing the capabilities of channel 

hopping and time allocation. TSCH's channel speed is the main component to its higher 
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reliability, and it has been called the "heart" of industrial low power wireless schemes like 

Wireless HART ISA100.11a, and IETF 6TiSCH. 

 The TSCH is a deterministic network, meaning that the actions that occur are 

well-known in each time slot, and a schedule controls communication. Despite its 

significance, the standard only specifies the procedures for executing a communication 

schedule, how the schedule is created, progressed, or managed. The scheduling method, 

or allocating links to cells for data transmission, is a fundamental feature of IEEE 802.15.4e. 

It can be centralized or distributed, but it develops gingerly and according to its specific 

application requirement. A network link follows a scheduling method that instructs what 

is happening on each slot: send, receive, or idle. The question of how to construct a 

schedule is still a burning issue and find a solution. 

 In the pragmatic scenario, scheduling in TSCH specifies the frequency and slots 

for each link of a node. In recent years, many researchers have addressed the scheduling 

problem for the TSCH protocol, from centralized to distributed solutions. 

 

1.2   Thesis objective 

 

The main objective of this research is to incorporate a deep learning scheme to 

TSCH network scheduling and utilize the advantages of DL to reduce the execution time 

of scheduling. TSCH network schedules for links to cell assignment of a slot-frame can 

be constructed as a maximum weighted bipartite matching approach. In this research, we 

design bipartite weight composed of throughput and delay parameters, and we use the 

Hungarian algorithm for proper cell assignment. We also design a dual-stage Hungarian-

based scheduling scheme that can smartly avoid the collision from INC. For both cases, 

the training data is generated with the Hungarian scheduling algorithm and train a deep 
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neural network (DNN) accordingly. The simulation results show that the proposed deep 

learning-based scheduling scheme can provide performance similar to Hungarian 

algorithm–based schemes but with low execution time. 

1.3   Thesis outline 

 

 This thesis consists of four chapters as follows: 

• Chapter 1 presents motivation, thesis objective, and thesis outline. 

• Chapter 2 provides a technique, deep learning-based scheduling scheme for IEEE 

802.15.4e TSCH networks 

• Chapter 3 propose a method of TSCH-based scheduling method of IEEE 802.15.4e 

in coexistence with INC: DNN Approach 

• Chapter 4 concludes the thesis contributions and future works. 
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Chapter   2 

 

Deep Learning-Based Scheduling Scheme of IEEE 

802.15.4e TSCH Networks 

 

2.1   Introduction 

 

The internet of things (IoT) is gradually increasing in popularity due to its multi-

functionality and handy effectiveness [1]. The industrial internet of things (IIoT) is a 

promising application of the internet of things (IoT). Many industrial appliances can 

connect through the internet to perform necessary tasks such as real-time observation, 

industrial automation, security monitoring, and distribution process control [2]. In 2012, 

the IEEE 802.15.4e standard was announced by IEEE authorities [3] as an extension of 

IEEE 802.15.4 [4], which can use media access control (MAC) functionality to invoke the 

demands of industrial applications and operations [5]. Time-slotted channel hopping 

(TSCH) is a basic MAC protocol for IEEE 802.15.4e. TSCH combines multi-channel time 
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slot schedule access (in units of slot-frames or super-frames) and a channel-hopping 

mechanism to ensure low power consumption and high reliability [6-8]. 

The scheduling algorithm is an inevitable aspect of the IEEE 802.15.4e TSCH network. 

It allocates links to the cells that are a fundamental resource for data transmission. It can 

be centralized or not; however, it needs to be established based on the applications’ 

tangible demands. Here, nodes of the specific network follow a scheduling method that 

clarifies what is happening in every slot, such as transmit, receive, or remain idle [9]. The 

slot-frame is the central communication unit for TSCH, which needs a pair of nodes that 

exchange data. The slot-frame consists of a set of time slots that repeats continuously over 

a certain period. The slot-frame used in the TSCH protocol maintains synchronization in 

network connections. Diverse channels are attributed pseudo-randomly in each time slot, 

and the scheduling algorithm determines which nearby node to connect with, and which 

channel offset is to be used [10]. In practical applications, TSCH scheduling specifies the 

frequency and slots for every link of a node. Currently, we can see that most research 

personnel have fixed their scheduling under the TSCH protocol [11]. Scheduling 

algorithms depend upon non-causal information about instantaneous channel qualities, 

such as the signal-to-noise ratio (SNR) [12,13]. Some other related scheduling algorithms 

utilize previous statistical information on link qualities, such as the expected number of 

transmissions (ETX) or the packet error rate (PER), to improve the average packet 

delivery ratio (PDR) [14-16]. In a real scenario for wireless communication networks, 

channel state information (CSI) is impacted by several factors in a deterministic and 

random process, such as noise in the environment, signal dissipation, channel gain, 

fading phenomena, and power loss ratio for the interval between transmitting and 

receiving [17,18]. 

This chapter shows the scheduling problem as maximization of edge weights based 

on throughput and delay effects. Here, both parameters consider radical assumptions 
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regarding CSI. We consider the main problem to be the scheduling of cells for links in the 

TSCH network. A TSCH-based scheduling algorithm is executed by computing a 

bipartite graph as the vertex of the upper side, with all subgroups of non-interfering links 

and slot-frame matrix cells as the lower vertex. The edge weights consider the summing 

of normalized throughput and delay to ensure a maximized edge weight with fairness 

for a bipartite graph (details are discussed in Section 3) [19]. The throughput provides the 

maximum data transfer, and delay is minimized to ensure the reliability of network. The 

Hungarian algorithm performs cell assignment by adequately understanding the 

bipartite edge weight [20]. 

In the last couple of years, in several fields of computing, deep machine learning has 

arisen. With the advances in algorithms for big data and optimization techniques, and 

with more significant computing resource opportunities, deep networks are the state-of-

the-art strategy for numerous issues at present [21]. Therefore, deep learning (DL) has 

become one of the vital research routes. It has already played an essential role in machine 

translation, human voice recognition, image processing and recognition, natural 

language processing (NLP), computer vision (CV), medical image analysis, and online 

games. Furthermore, scientists and researchers actively seek to expand these latest 

technologies, including electric load forecasting [22], prediction of energy elements 

[23,24], theft detection of electricity [25], energy storage system [26] and distinct field of 

wireless communications [27-29]. 

Numerous recent reforms have concentrated on intelligent interactions to reap 

significant potential benefits. DL is also used to achieve beneficent performance over 

traditional methods in diverse current work in the wireless communication context [30-

32]. Several numerical optimization solutions to solve signal processing tasks have 

already been suggested by distinguish scholars [33-35]. Besides, we have accessed the 

abundant knowledge of experts in the growth of wireless communications over the past 
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couple of years to complement the data-driven methods of deep learning and to improve 

data efficiency by using deep learning [36-40]. We got the motivation from research in 

[41], in which the authors provided an outline for applying deep learning technology to 

the allocation of wireless resources. Here, we address the constraints of conventional 

optimization approaches and the scope of DL paradigms in wireless networks. Deep 

learning also plays a tremendous role in increasing the quality of service (QoS) on the 

internet of things [42]. Deep learning in radio communications for cloud computing, such 

as the design of a training system for end-to-end wireless communications, has 

demonstrated that it can outperform traditional wireless communications. The low 

productivity from training time in 5G wireless networks and communication systems is 

a constraint when implementing wireless system neural networks [43]. Deep learning is 

not yet sophisticated in wireless communications. Still, it is regarded as a critical force 

and a prominent research topic in several prospective application domains, such as 

channel estimation, wireless data analysis, mobility analysis, complicated decision-

making, managed services, and quality enhancement [41,43]. Deep learning can assist 

communication networks with complex operating conditions by accelerating massive 

amounts of computation with assured outcomes. Besides, the authors identified some 

difficulties and research directions in this critical technology, including a solid 

mathematical structure, a moderate data set for training, and the need for additional 

mathematical support to interpret case studies [44]. Authors have projected several DNN 

methods for different network architectures with varying communication principles, 

such as the fully connected network and the multilayer feed-forward neural network. 

There are three layers: an input layer, a hidden layer, and an output layer. Furthermore, 

all neurons in the previous layer are connected to each neuron in the last layer [45]. 

The proposed DNN is trained to learn non-linear mapping between optimal network 

parameters, such as time slot allocation and transmit power [39]. Training data were 
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created using an iterative algorithm that is based on sequential parametric convex 

approximation (SPCA). A DL-based scheme to estimate channel parameters for wireless 

resource transfer was described in [46]. Based on input from the energy receivers, the 

channel parameters are set autonomously at the energy transmitter. Authors have 

exploited the deep learning ability to optimize the effective throughput of wireless 

networks [47]. They have shown that their extensive experiments are much swifter than 

the traditional systematic search method indicated in prior studies. Compared to other 

conventional optimization systems, the convolutional neural network (CNN)-based 

DNN attained high spectral efficiency [48] in less computational time when managing 

interference. 

Based on the discussion above, we intend to incorporate the DL method with IEEE 

802.15.4e TSCH network and utilize the benefits of DL methods to reduce the execution 

time of scheduling. The proposed deep neural network (DNN)-based scheme predicts 

IEEE 802.15.4e TSCH network scheduling, where valuable information and data are 

obtained from the Hungarian algorithm–based scheme. 

Contributions of the chapter can be summarized as following. 

• Firstly, we propose a Hungarian-based scheduling solution for TSCH networks by 

considering throughput and delay with fairness. The scheme proposed previously is 

[10] considered the only throughput for a TSCH network. We utilize maximum link 

weight alignment in a bipartite graph for TSCH networks to constitute the frames’ cell 

scheduling. In this chapter, the weight of the bipartite graph is computed by 

considering both network throughput and delay. Here, we incorporate a window 

concept to determine the moving average network throughput and delay. The 

throughput and delay parameters are multiplied by the corresponding moving 

average throughput and delay values to ensure fairness in the bipartite edge weight.  
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• Secondly, we propose a deep learning–based DNN scheme to reduce the execution 

time of scheduling. The proposed DNN scheme uses the Hungarian solution's 

training data. When the proposed DNN scheme accepts the weight of the bipartite 

edge as input, it will offer cell assignments. The proposed DNN scheme is remarkably 

accurate by learning the relationships between the Hungarian scheduling algorithm's 

input and output. As a result, it provides quick and precise rational results compared 

to the Hungarian-based scheduling algorithm.   

• Lastly, the efficiency and performance of the DNN scheme are evaluated by 

simulations. The simulation results show that the proposed DNN scheme can provide 

similar outcomes to the conventional Hungarian algorithm but with low execution 

time.  

The remainder of the chapter is arranged as follows. In Section 2.2, we demonstrate 

the system model and different parameters of our proposed model. In Section 2.3, we 

describe the proposed Hungarian algorithm-based Scheduling scheme and objective 

function. In Section 2.4, we delineate the learning-based scheme, the architecture of the 

DL scheme, and the propagation of training and testing data. In Section 2.5, the proposed 

method's outcomes are illustrated and verified by using simulation. Finally, Section 2.6 

concludes this chapter. 

 

2.2   System model 

 

We present a process model that consists of TSCH scheduling, a TSCH network 

model, a traffic model, a channel model, and a collision graph. Here, we discuss the 

theoretical concepts, and introduce a mathematical explanation of the contents 

mentioned above. 
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2.2.1   TSCH scheduling 

 

 Scheduling in time-slotted channel hopping networks means specifying links for 

nodes to transmit data, which allows for an efficient distribution of wireless connections 

to enhance communications. The time slot and channel where each node should deliver 

or receive information from nearby nodes are defined and set by the scheduling method. 

Scheduling details significantly influence network performance, including throughput, 

node resource utilization, stream latencies, and durability. The cell is considered the key 

component of scheduling capacity. According to the IEEE 802.15.4e guidelines, the 

duration of each cell is usually 15 ms [9]. The transmitter sends the data packet, and the 

receiver returns the matching acknowledgment after successful reception. 

It should be mentioned that by combining the channel offset and the absolute slot 

number (ASN), a node pseudo-randomly switches the channel in each time slot. In 

general, as expressed below, frequency f can be extracted as follows: 

 

𝑓 = ℱ[(𝐴𝑆𝑁 + 𝐶ℎ𝑜𝑓𝑓𝑠𝑒𝑡) %𝑞ℎ]                                                                    (2.1) 

 

where 𝐶ℎ𝑜𝑓𝑓𝑠𝑒𝑡 represents the channel offset, 𝑞ℎ is the number of available channels, and 

ℱ denotes the mapping function. 

 

2.2.2   TSCH network model 

 

A TSCH network that consists of a single gateway access point is considered, and 

multiple nodes are represented in a network graph. The nodes are connected by a 

gateway in order to synchronize each node on the network. In a centralized manner, 

scheduling is carried out where the scheduler can be based on the network graph, and 

the network path is determined by applying computational requirements. The scheduler 
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is installed in the gateway, and specifies the allocation of time slots and the frequency for 

transmissions by each node. 

The TSCH network can be designed as 𝒢 = (𝑉, 𝑀, 𝑑) where V is the set of nodes, 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝒩} in which  𝒩 is the total number of nodes, M is the set of links, and d 

designates the set of physical distances between each pair of adjacent nodes in set V. An 

accurate distance between node A and node B in the TSCH network is denoted 𝑑A,B. Each 

node 𝑉𝒾 is configured by a radio while providing a contact range, ℛ𝒾, greater than the 

interruption range, ℛ𝒾
́ . The signs 𝓉 ∊  {1, . . . , 𝒯} and 𝑓 ∊  {1, . . . , 𝐹} indicate the time of each 

slot and the range of network frequencies, respectively; ∆ is the length of each slot. 

An example of a slot-channel matrix of a simple TSCH network for five-node 

structure graph 𝒢 is illustrated in Figure 2.1. Here, cells are accessed between two non-

interference links. In a slot-frame, links such as 𝐶 ⟶ 𝐸 and 𝐵 ⟶ 𝐴 both share the same 

cells; here, the considered position is (𝑆𝑙𝑜𝑡 𝑜𝑓𝑓𝑠𝑒𝑡 , 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑜𝑓𝑓𝑠𝑒𝑡) = (4,4). This is 

possible due to the non-interfering connection. Every connection is a computation that 

appears in the slot-frame cell. 

The nodes are presumed to have only one half-duplex radio module, and they use 

the radio communication system for transmitting or receiving on diverse channels at 

separate times, but are limited to sending or receiving on a single channel. An 

independent connection for each slot must be chosen by a scheduling algorithm so that 

neighboring nodes will not be triggered simultaneously. 
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Figure 2.1: A simple network topology for a time-slotted channel hopping slot–channel matrix. 

 

2.2.3   Traffic model 

 

In the sense that each node is still overburdened with traffic, we presume that all 

nodes are based on a saturated model. A saturated path has flexible traffic so that it 

obtains a transfer rate that is as fast as it can get for strict timeline requirements without 

other considerations. To function effectively with this form of traffic, we require 

optimization of throughput and delay that requires only information on the channel, a 

thing that we address thoroughly in this work. We are conscious that a node may or may 

not have data to send when channel is empty under more pragmatic, complex traffic 

situations, based on the traffic load for each node. As time goes on, we will focus further 

on the technological challenges associated with this hypothesis, and on preserving the 

model-free existence of a TSCH scheduler. 

 

2.2.4   Channel model 

 

A combination of channel frequencies 𝑓 ∊  {1, . . . , 𝐹} and time of the slot 𝓉 ∊  {1, . . . , 𝒯} 

constitutes a cell, 𝑐 ∈ ℂ(= {1, . . . , 𝑞ℂ}), where 𝑞ℂ  indicates the number of cells. The state of 

each channel for specific cell 𝑐 assigned to specific link 𝑚 ∈ 𝑀(= {1, . . . , 𝑞𝑀}) at frame 𝑛 is 
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defined by 𝑥𝑚,𝑐(𝑛) = |𝐻𝑚,𝑐(𝑛)| 2, where 𝑞𝑀 is the number of links and 𝐻𝑚,𝑐(𝑛) indicates 

the channel gain of cell 𝑐 and link 𝑚 at frame 𝑛. 

Rayleigh fading is a feasible model when there are numerous things in the 

surrounding area that scatter the radio signal prior to it reaching the receiver. In this 

paper, we assume that channel gain 𝐻𝑚,𝑐(𝑛) will follow Rayleigh fading, and it will be 

determined by the following probability density function (pdf): 

 

𝐹𝑅(𝑟) =
2𝑟

𝛺
𝑒

−𝑟2

𝛺                                                                                          (2.2) 

where 𝛺 = 𝐸[𝑅2], and R is a random variable. 

 

When channel gain 𝐻𝑚,𝑐(𝑛) and transmission power 𝑝 are given, the number of 

packets that can be delivered over link m and cell c in frame n are calculated, which is 

considered as the throughput of network. Further it can be computed based on Shannon’s 

formula such that we have. 

 

𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)) =
𝛽

𝑙
𝑙𝑜𝑔(1 +

𝑥𝑚,𝑐(𝑛).𝑝

𝛽𝜂𝑜
)                                                                (2.3) 

 

where β indicates the bandwidth of the receiver signal, l is the size of the packet, and 𝜂𝑜 

is the variance of noise. 

More specifically, in the proposed scheduling scheme, we consider delay according 

to the cell position. The relation between delay and delay performance is inversely 

proportional, which means delay performance is good when delay value is low. If the cell 

index (𝑐 ∈ ℂ) increases, the delay performance will be decreased. According to our 

network consideration of the slot frame as shown in Figure 1, the delay will be the same 

in each slot. Specifically, the delay performance in each cell can be computed with the 

following equation: 
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𝜓𝑚,𝑛
𝑁 (𝑐) = 𝑘𝑏𝑒𝑥𝑝(⌊

𝑞ℂ−𝑐

𝑞𝒯

⌋ − ⌊
𝑞ℂ

𝑞𝒯

⌋)                                                          (2.4) 

 

where N indicates the normalization value of delay performance, 𝑞𝒯 is the number of slots, 

and 𝑘𝑏 is a constant parameter for evenly adjusting the unit ratio between throughput 

and delay. 

 

2.2.5   Collision graph 

 

A collision graph, ℚ = (𝑀, ∁), is defined to consider the interruption in the 

conceptual model, where ∁ represents the links in collision graph. Its vertex refers to the 

configuration of graph 𝒢. Its edges reveal the conflict between the two links. Figure 2 

demonstrates the various ways to transmit data during a collision. The communication 

mechanism is unicast, but transmission such as 𝐴 ⟶ 𝐵  and 𝐴 ⟶ 𝐶 do not occur 

concurrently, and the collision graph has an edge between them. A legitimate schedule 

thus allows such data to not be sent through the context of a common cell. In addition, in 

the collision graph, a scheduling method can be chosen, such as an autonomous set of 

vertexes to be allocated in a similar cell. Note that a pair of vertexes in a graph such that 

there are no edges between either of a couple of vertexes. The purpose of scheduling is 

that, in a similar communication medium, two colliding nodes are not allocated for 

transmitting data. 
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Figure 2.2: Collision graph corresponding to the topology in Figure 1. 

 

 

2.3   The proposed Hungarian algorithm-based scheduling scheme 

 

In this section, we design and develop the cell scheduling of the frames by utilizing 

maximum edge weight alignment in a bipartite graph for TSCH networks. Different from 

the scheme proposed in [10], where only throughput is considered for the weighted 

bipartite graph, in this paper, bipartite graph weights are computed based on network 

throughput and delay. After that, we maximize the total network weight as a weighted 

bipartite graph optimal assignment problem. The vertexes are separated into two 

dissociated sets (upper and lower) as seen in Figure 2.3. Each subset of the non-

interference links obtained from collision graph is a vertex of the top of the bipartite graph 

and each slot-frame cell is also considered the bottom vertex of the bipartite graph. Thus, 

the edges connect a vertex from one set to a vertex from another set. A proper assignment 

is one in which one vertex of the bottom range of the graph absolutely corresponds to 

any top vertex of the bipartite graph. 

Assume ℬ = (𝑀, ℂ, 𝐸) is a weighed bipartite graph in conjunction with Figure 3. The 

set of links 𝑀 = {1, . . . , 𝑞𝑀} is correspond to the collision graph, ℚ , which is modeled as 

the upper side of the bipartite graph. The set of cells ℂ = {1, . . . , 𝑞ℂ} corresponds to the 
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slot-frame matrix cell, 𝒢, which is also considered the bottom vertex of the bipartite graph. 

The set 𝐸 = {𝑒 = (𝑚, 𝑐)| 𝑚 ∈ 𝑀, 𝑐 ∈ ℂ} consists of the edges of bipartite graph 𝓑. The 

weight of edge  𝑒 = (𝑚, 𝑐) at frame n is given by 𝑊𝑚,𝑐(𝑛), calculated as follows: 

 

𝑊𝑚,𝑐(𝑛) = ⍺𝑢𝑚
𝑁0𝜃𝑚,𝑐

𝑁 (𝑛) + (1 − ⍺)𝑢𝑚
𝑁1𝜓𝑚,𝑛

𝑁                                                         (2.5) 

 

where ⍺ is the weighting factor between throughput and delay. In this paper, we                      

calculate throughput by multiplying normalized throughput 𝜃𝑚,𝑐
𝑁 (𝑛) by the normalized 

moving average for throughput, 𝑢𝑚
𝑁0. Similarly, we calculate the delay by multiplying 

delay 𝜓𝑚,𝑐
𝑁  by the normalized moving average for delay, 𝑢𝑚

𝑁1. We consider this approach 

to ensure    fairness in edge weight. 

Normalized throughput 𝜃𝑚,𝑐
𝑁 (n), for cell c and link m in frame n, can be achieved from the 

ratio of each specific value to the maximum value of the corresponding frame by using 

the following equation: 

 

𝜃𝑚,𝑐
𝑁 (n)= 

(𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)))

𝑚𝑎𝑥(𝜃𝑖,𝑗(𝑥𝑖,𝑗(𝑛)))𝑗єℂ
𝑖є𝑀                                                                                  (2.6) 

Moving average throughput 𝑢𝑚
0  and moving average delay 𝑢𝑚

1  are used in a                        

calculation to analyze data points by generating a sequence of averages for a finite-value 

set of      the various subsets of the complete data set. Only the recent values for through

put and delay use moving-average approaches with consideration for window size 𝑘𝑤.  

The link-wise moving average throughput, 𝑢𝑚
0 , and the delay, 𝑢𝑚

1 , are illustrated by the 

following equations: 

 

𝑢𝑚
0 = 𝑢𝑚

0 (𝑛 − 1) = 𝑢𝑚
0 (𝑛 − 2) +

𝜃𝑚,𝑐∗(𝑛−1)−𝜃𝑚,𝑐∗(𝑛−𝑘𝑤−1)

𝑘𝑤
                                                        (2.7) 

𝑢𝑚
1 = 𝑢𝑚

1 (𝑛 − 1) = 𝑢𝑚
1 (𝑛 − 2) +

𝜓𝑚,𝑐∗(𝑛−1)−𝜓𝑚,𝑐∗(𝑛−𝑘𝑤−1)

𝑘𝑤
                                             (2.8) 
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where throughput at frame n is denoted as 𝜃𝑚,𝑐∗(𝑛) for link m and assigned cell 

𝑐∗.Similarly, the delay performance at frame n is denoted as 𝜓𝑚,𝑐∗(𝑛). 

Normalized moving averages for throughput 𝑢𝑚
𝑁0 and delay 𝑢𝑚

𝑁1 can be obtained with the 

following equations: 

 

 𝑢𝑚
𝑁0 = 1 −

𝑒𝑥𝑝(𝑢𝑚
0 )

∑ 𝑒𝑥𝑝(𝑢𝑖
0)𝑖є𝑀

                                                                (2.9) 

𝑢𝑚
𝑁1 =

𝑒𝑥𝑝(𝑢𝑚
1 )

∑ 𝑒𝑥𝑝(𝑢𝑖
1)𝑖є𝑀

                                                                       (2.10) 

 

 

Figure 2.3: Corresponding bipartite graph of our proposed model. 

 

 

2.3.1   Problem definition and objective function 

 

In a defined channel random distribution, we visualize the problem of weight 

maximization as a prologue to our strategy. Our objective is to assign corresponding 

independent links 𝑚 ∈ 𝑀 to cells 𝑐 ∈ ℂ for edges 𝑒 ∈ 𝐸 of all data frames 𝑛 ∈ ℕ. This 

maximizes the total network weight (corresponding to throughput and delay) by sending 

data packets based on that schedule. 

𝒲𝑇
̅̅ ̅̅ ̅ denotes the average weight that is obtained from edges e if a cell is allocated to 

a link. It is expressed with the following equation: 
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  𝒲𝑇
̅̅ ̅̅ ̅ = 𝐸[𝑊𝑚,𝑐(𝑛)] =

1

ℕ
∑ ∑ ∑ 𝜉𝑚,𝑐 𝑊𝑚,𝑐(𝑛)𝑐∈ℂ   𝑚∈𝑀  𝑛∈ℕ                  (2.11) 

 

If we characterize 𝜉 as a binary decision variable, it is possible to formulate the mean 

weight-maximizing process with the following equation: 

 

 

𝒲𝑇
∗ = lim

ℕ→∞
  𝒲𝑇

̅̅ ̅̅ ̅
𝜉

𝑚𝑎𝑥  
                                                                    (2.12) 

 

 

2.3.2   The Hungarian algorithm and solution technique 

 

We use the Hungarian algorithm in graph theory, based on the bipartite graph, to 

decide the optimal weighted task [23,52]—the Hungarian algorithm which operates in 

polynomial time. We considered the negligible upper bounds, 2𝐿(L is the number of links 

for the topology graph) [9,10]. It performs scheduling tasks based on the maximization of 

bipartite edge weight. According to our consideration, the whole number of edges of a 

bipartite graph is the multiplication of the total number of links (top vertexes of the 

bipartite graph) and the total number of cells (the bottom vertexes bipartite graph). That 

means the total number of edges of the bipartite graph is. The edge weight is calculated 

by equation (5). The Hungarian-based scheduling algorithm is shown in Algorithm 2.1 

 

Algorithm 2.1 The Hungarian based scheduling algorithm 

Step 1: Insert data → Input edge weight from bipartite graph (|𝑞𝑀 ∗ 𝑞ℂ|) 

Step 2: a = cost matrix % edge weight of bipartite graph 

Step 3: b= max(a) % determine maximum value of cost matrix 
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Step 4: y=b-a % the process is to subtract all elements from the highest 

value of the cost matrix   

Step 5: Execute row operation % subtract row minima from each, row-

wise 

Step 6: Execute column operation % subtract column minima from each, 

column-wise 

Step 7: Mark the lowest zero element and remove other zero elements 

Step 8: Find the minimum value of all uncovered elements 

Step 9: The minimum value is subtracted from uncovered elements and 

added to intersect elements 

Step 10: If column and row are uncovered, we update the predecessor 

index 

Step 11: Achieve optimal assignment with maximized edge weight 

 

Visualization of a single frame's cell assignment is shown in Figure 2.4, and the 

corresponding edge weight is depicted in Figure 2.5. Figure 2.4 reveals there is no conflict 

in the assignment. Figure 2.5 illustrates the maximized weight allocation for every 

corresponding link and cell assignment. 
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Figure 2.4: Cell assignment by the proposed Hungarian algorithm–based scheme. 

 

 

 
 

Figure 2.5: Visualization of bipartite edge weight allocation in a single frame. 
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2.4   Proposed deep learning-based scheduling scheme 

 

 

In this section, we propose a supervised deep neural network (DNN) that learns the 

optimal assignment for under-identified CSI. This segment aims to establish a DNN 

model that can achieve an optimal approximation of the Hungarian algorithm 

assignment solution for a TSCH network.    

 

2.4.1   Proposed algorithm for generating a data set   

 

Algorithm 2.2 summarizes the proposed Hungarian-based scheduling scheme, and 

will be used to generate data for DNN training. 

 

Algorithm 2.2 Hungarian-based scheduling to generate DNN training 

data 

1: Initialize: constant parameters, β, l, p, 𝜂𝑜, 𝑞𝑀, 𝑞ℂ, ⍺, 𝑘𝑤 and 𝑘𝑏. 

Make an enforceable level as the initial point for equation (2.5), for initial 

moving average throughput 𝑢𝑚
0 (1), and for initial moving average 

delay, 𝑢𝑚
1 (1) % needed for first schedule 

2: //initial loop: 

3: For each 𝑚 ∈ 𝑀 and 𝑐 ∈ ℂ of 𝑒 ∈ 𝐸:  

4: Run pdf of Rayleigh distribution to determine channel gain 𝐻𝑚,𝑐(𝑛) 

of the network 

5: Update the channel state, 𝑥𝑚,𝑐(𝑛) 

6: Accordingly, determine the throughput, 𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)), with equation 

(2.3) and delay, 𝜓𝑚,𝑛
𝑁 (𝑐), with equation (2.4) % 𝜃𝑚,𝑐(𝑥𝑚,𝑐(𝑛)) changes for 

every frame change, but delay is fixed for each frame 
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7: Normalized throughput, 𝜃𝑚,𝑐
𝑁 (n), is executed with equation (2.6) 

8: Normalized moving average throughput, 𝑢𝑚
𝑁0, and delay, 𝑢𝑚

𝑁1, are 

determined by equation (2.9) and equation (2.10), respectively % the first 

frame develops by using the initial value of moving average parameters 

after obtaining the first schedule, and ensures 𝑐∗; for 𝑛 ⟶ 𝑛 + 1, these 

parameters will be updated with equation (2.7) and equation (2.8), 

respectively  

9: Build an edge weight, 𝑊𝑚,𝑐(𝑛), with equation (2.5) 

10: Run Hungarian algorithm in Algorithm 1 to find a link to the cell, 

matching it to get the maximum weighted matching, 𝒲𝑇
∗, of bipartite 

graph ℬ = (𝑀, ℂ, 𝐸)  

11: //main loop: 

12: Generate 10,000 data frames for DNN training 

 

2.4.2   Structure of the DNN  

 

A simple multilayer perceptron (MLP) is part of the framework of the suggested 

DNN. MLP is a neural network that is fully connected and comprises one input layer, 

several hidden layers, and one output layer, as depicted in Figure 2.6. The input of the 

DNN is bipartite edges 𝑒 ∈ 𝐸, weight 𝑊𝑚,𝑐(𝑛) for all links 𝑚 ∈ 𝑀 to cells 𝑐 ∈ ℂ, assigned 

to all data frames 𝑛 ∈  ℕ. Here, the set of links is 𝑀 = {1, . . . , 𝑞𝑀}, the set of cells is                

ℂ = {1, . . . , 𝑞ℂ}, and the set of data frames is ℕ = {1, . . . , 𝑞ℕ}, where 𝑞𝑀, 𝑞ℂ, and 𝑞ℕ are, 

respectively, the number of links, the number of cells, and the number of data frames, or 

the total number of samples for DNN training. The output of the DNN is cell assignment 

𝑐∗, which is determined by the Hungarian assignment solution, which means links 𝑀 
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scheduled in cells ℂ. It now ensures that total input to the DNN per data frame is 

 {𝐼1. . . , 𝐼𝑛} = 𝑞𝑀 ∗ 𝑞ℂ. Total output of the DNN per data frame is {𝑂1, . . . , 𝑂𝑛} = 𝑞𝑀. 

Neurons in hidden layers and the number of hidden layers is hyperparameters in 

the DNN and need to be modified to attain maximum accuracy in the optimal solution. 

The output of each ℎ𝑡ℎ layer in the hidden layer can be described by the following 

equation: 

ℴℎ =  ℊ(ℴℎ𝓌ℎ−1 + 𝒷ℎ)                                                                 (2.13) 

 

where 𝓌ℎ and 𝒷ℎ, respectively, are the weights and biases of the ℎ𝑡ℎ layer. Learning is a 

question of determining the weights, 𝓌, within a specific possible set that will result in 

the output that illustrates the best input mapping; and ℊ(. ) implies an activation feature 

that adopts each hidden layer’s output. 

A DNN generally executes the sum of input products and their corresponding 

weights, and executes the ℊ(. ) activation function developed for each output of the 

hidden layer. The activation function explicitly allows the network to acquire non-linear, 

complicated input and output mapping functions. We use the rectified linear unit (ReLU) 

activation function in this scheme for the output of any hidden layer. The ReLU is a 

simple function to implement in DNN, is computationally efficient, and is quicker to 

calculate [41,42]. The output of the ReLU activation function can be determined with 

ℊ(𝓇) = 𝑚𝑎𝑥(0, 𝓇), such that if 𝓇 < 0, ℊ(𝓇) = 0; otherwise, ℊ(𝓇) =  𝓇. 
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Figure 2.6: The proposed fully connected multi-layer DNN architecture, which comprises one input 

layer, four hidden layers, and one output layer. 

 

2.4.3   The neural network training mechanism 

 

The essential factor with deep learning is the training of the neural network. A 

perfectly trained neural network learns the correlation between input and output. In 

supervised learning, we require enough input and output data frames to train the neural 

network, from which the DNN recognizes the kinship between input and output. We 

equip the neural network from training data consisting of samples contained in an 

iterative method developed using the Hungarian scheduling method as previously 

discussed. The formation of neural networks is a mechanism by which the loss function 

is reduced to classify network parameter 𝓌. Practically speaking, the loss function is 

between the actual scheduling, 𝑐∗, from the trained data and the DNN output from 𝑐∗̂. 

Thus, the loss function should reduce what we deem to be the mean squared error (MSE) 
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so that the output of the DNN, 𝑐∗̂, will approximate the optimal solution, 𝑐∗. A well-

trained DNN should therefore reduce the following equation: 

 

𝐽(𝓌) = ℰ(|𝑐∗ − 𝑐∗̂|)2                                                                  (2.14) 

 

We employed the Adam optimizer to mitigate the MSE loss function in our proposed 

technique. The technique is simple to execute, effective in computing, and needs minimal 

memory. 

A total of 10,000 data samples were generated using Algorithm 2.2 based on the 

Hungarian scheduling method. The training samples were divided into three data 

segments. To train the DNN, we took 60% of the data, keeping 20% for validation and the 

other 20% for testing. Validation is an unbiased method of testing the network when 

training the model. Validation of the DNN model’s reliability on the training data set 

biases the score outcomes; therefore, we used 20% of the data set to validate for unbiased 

assessment that was unknown in the qualified model. This was used to assess how well 

our scheme learned during training. Testing is an actual, unbiased analysis of the neural 

network’s learned model. To prevent training and validation errors due to the overfitting 

issue, we employed data normalization. After finishing the DNN training, we could use 

it for every new value of the bipartite edge weights, 𝑊𝑚,𝑐, to trace the optimal solution, 

𝑐∗.  

Figure 2.7 shows the training process for the DNN. The network environment 

generates corresponding data frames or sample data. The offline training is performed 

under this process and will obtain an optimal interpretation of the IEEE 802.15.4e TSCH 

network’s Hungarian scheduling solutions. 
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Figure 2.7: Training of the DNN. 

 

2.5   Simulation results and performance evaluation 

 

We compare the outcomes provided by the DNN with the iterative Hungarian 

scheduling method described in the previous section to demonstrate the efficiency of our 

proposed DNN scheme. For generating data, we used Algorithm 2.2, which projected our 

whole system model. We generated 10,000 sample data for a different value for ⍺. After 

obtaining corresponding data samples, we trained the neural network and found the 

optimal solutions. The TSCH network simulation for data set generation was carried out 

in MATLAB on a PC with an Intel Core i7 processor and 8 GB RAM. After extracting data 

samples, the DNN offline training model was executed in Python utilizing the Keras and 

NumPy libraries. 
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2.5.1   TSCH network: bipartite network establishment 

 

 

This work’s fundamental goal is to establish a bipartite graph of our proposed 

model, as described earlier. The model’s detailed pedagogy is illustrated in algorithm 2.2 

to generate enough sample data to train the neural network correctly. Based on our 

network model, we considered the parameters in Table 2.1 to establish the described 

model. 

Table 2.1: Parameter specifications for algorithm 2.2 

Parameter Specification 

1. Number of links, 𝑞𝑀 12 

2. Set of links, M 1:12 

3. Number of cells, 𝑞ℂ 16 

4. Set of cells, ℂ 1:16 

5. Number of slots, 𝑞𝒯 4 

6. Number of data frames, 𝑞ℕ 10,000 

7. Bandwidth, β 1 MHz 

8. Bits in each packet l 1000 

9. Transmission power, p 10 mw 

10. Noise variance, 𝜂𝑜 1 

 

 

2.5.2   Construction of the DNN model 

 

In this section, we construct a DNN model that requires less computational effort. 

The developed system can obtain a useful approximation of the Hungarian scheduling 

method for an IEEE 802.15.4e TSCH network. A DNN with one input layer, multiple 
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hidden layers, and one output layer was considered. The input feature of the neural 

network is given as bipartite link weight |𝑊𝑚,𝑐(𝑛) |. The number of input features should 

be the total number of edges in the bipartite graph, which is a multiplication of the 

number of links, |𝑞𝑀|, and the number of cells, |𝑞ℂ|. In our example, the number of input 

features is |𝑞𝑀 ∗ 𝑞ℂ| = |12 ∗ 16| = 192. The output is set as the Hungarian cell scheduling 

output for all links 𝑚 ∈ 𝑀. A total of 12 links in the example would be assigned to 16 cells, 

which indicates that the number of outputs from the DNN will be 12. Specifications for 

the proposed DNN model are given in Table 2.2. When ReLU activation is used in every 

hidden layer, a minimal MSE is obtained with little difficulty.  

Table 2.2: Parameter specifications for the DNN model 

Parameter Specification 

1. Number of input features 192 

2. Number of hidden layers 4 

3. Number of neurons in each layer 800,1600,1200, and 800 

4. Number of outputs 12 

5. Learning rate 0.001 

6. Batch size 100 

7. Number of epochs 1000 

 

We trained the DNN on 6000 data samples for different weighting factors, ⍺, and 

validated the outcomes in all training epochs on 2000 data samples. We conducted tests 

on 2000 data samples, and propose that the scheme achieved an intuitive mechanism for 

scheduling, as good as the Hungarian algorithm. 
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2.5.3   Performance evaluation 

 

2.5.3.1 Determining the model accuracy 

 

Accuracy is one of the most vital parts of the neural network. It indicates how much 

the proposed model can precisely learn the conventional or previously proposed 

techniques. We developed an accuracy metric based on the number of assigned cells 

between traditional or original Hungarian (HG) scheduling and predicted DNN 

algorithm scheduling. First, we measured accurate parameters. Based on our proposed 

model, we measure accurate parameters by using the following method. The output of 

HG scheduling is an integer, but the output of DNN or scheduling prediction is not an 

integer value. For mitigating this problem, we use the round function to find integer 

values predicted schedule. 

If 𝑐∗ − 𝑟𝑜𝑢𝑛𝑑(𝑐∗̂) = 0, it is accurate, and  𝑐∗ − 𝑟𝑜𝑢𝑛𝑑(𝑐∗̂) ≠ 0 indicates it is not 

accurate. 

If test samples are ℕ𝑡, and non-zero or inaccurate parameters are indicated by ℙ, 

accuracy can be determined with the following equation: 

 

                                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
ℕ𝑡∗𝑞𝑀 −ℙ

ℕ𝑡∗𝑞𝑀
∗ 100%                                                               (2.15)     

 

We measured the accuracy for 1000 test samples as depicted in Table 2.3, such that 

ℕ𝑡 = 1000. Accuracy can be determined with equation 2.15 for different values of 

weighting factor ⍺. The significant of ⍺ is discussed in the next segment. 
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Table 2.3: Accuracy of the proposed DNN scheme 

Weighting factor Accuracy (%) 

⍺=0.1 92 

⍺=0.5 93 

⍺=0.9 92 

 
 

2.5.3.2 Bipartite edge weights 

 

Figure 2.8 shows the bipartite edge weights of the previously proposed scheme [10] 

and the scheme proposed in this paper. As discussed earlier, bipartite edge weight in the 

earlier scheme was considered the only throughput. One of the contributions of this 

chapter is to ensure fairness on bipartite edge with considering throughput and delay. 

We utilize window concepts to determine moving average parameters and multiply 

corresponding normalized throughput and delay parameters to ensure fairness. The bar 

chart shows the bipartite edge weight [10], the maximum value is 1.36, and the minimum 

value is 0.7. The maximum value of the bipartite edge weight [this paper] is 1.3, and the 

minimum value is 1.1. As a result, it is shown that our proposed scheme gives more 

fairness than the scheme in [10]. 
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Figure 2.8: The bipartite edge weights from the previously proposed scheme [10] compared to the scheme 

proposed in this paper. 

 

 

2.5.3.3 Throughput and delay impact on bipartite edge weight 

 

Figure 2.9 shows the throughput and delay impact on the bipartite edge of 1000 test 

samples for the Hungarian algorithm (HG) and the DNN. Figure 2.9(a) exhibits the 

performance of weighting factor ⍺ according to the normalized average throughput from 

HG and the DNN, and Figure 2.9(b) exhibits the performance of weighting factor ⍺ 

according to the normalized average delay from HG and the DNN. We generated several 

data sets with different values for ⍺ and trained the deep neural network. Here, ⍺ informs 

us of the effect on performance from throughput and delay on bipartite edge weights. 

The significance of weighting factor ⍺ is reflected in Table 2.4. It reveals that when 

weighting factor ⍺ is closer to zero, throughput impact is lower on the bipartite edge, and 

delay performance is higher. If weighting factor ⍺ gets close to 1, it indicates throughput 
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impact is more elevated, and subsequently, delay performance is lower. Both parameters 

exhibit balanced mode for weighting factor ⍺=0.5. 

From Figure 2.9 it is also observed that the DNN shows a similar performance and 

correctly emulate the conventional Hungarian(HG) algorithm. Due to the prediction and 

accuracy metric (section 2.5.3.1), the DNN is slightly lower than HG.   

Table 2.4: The impact of throughput and delay on bipartite edge weight 

Weighting Factor Throughput Delay Performance 

⍺ close to 0 Low High 

⍺=0.5 Balanced Balanced 

⍺ close to 1 High Low 

 

 

  

(a) (b) 

Figure 2.9: The impact of throughput and delay on bipartite links: (a) throughput according to weighting 

factor ⍺; (b) delay according to weighting factor ⍺. 
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2.5.3.4 Cell scheduling 

 

We randomly picked 20 test samples for scheduling and observed that on an average 

17 times, our proposed DNN scheme performed similar cell scheduling as the HG 

scheduling scheme. For the remaining 3 samples, only a few links were differently 

assigned. Figure 2.10 depicts two examples of the cell scheduling pattern in our proposed 

scheme. Figure 2.10(a) depicts one of the cases where the scheduling between HG and 

the DNN is similar for all links. Figure 2.10(b) shows the case where only one link is 

differently assigned. For HG scheduling, link index 12 is assigned in cell number 12, but 

for DNN cases, it is assigned in cell number 11, and the rest of the links are assigned 

accurately for both cases. This scenario supports achieving above 90% accuracy (section 

2.5.3.1) for different weighting factor values ⍺.   

 

  

(a) (b) 

Figure 2.10: Examples of cell scheduling pattern for proposed DNN scheme and HG scheme (a) all link 

indexes in scheduling between the DNN and HG are similar; (b) dissimilarity between the DNN and HG 

for link index 12. 

 

2.5.3.5 Execution time 

Finally, the time needed for both schemes HG and DNN, based on the number of 

data samples, is shown in Figure 2.11. it is observed that the execution time of DNN 
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scheme is much lower than the Hungarian scheme. As a result, utilizing the DNN for cell 

scheduling in IEEE 802.15.4e TSCH networks is computationally efficient, compared to 

the Hungarian algorithm. 

 

Figure 2.11: Execution time according to the number of data samples for the Hungarian scheme and the 

DNN scheme. 

 

 

2.6    Conclusions 

 

In this chapter, we proposed a deep learning–based algorithm for IEEE 802.15.4e 

TSCH networks for which a DNN was trained to learn the non-linear mapping of 

bipartite graph parameters, i.e., cell scheduling method, network parameters: 

throughput, and delay. We executed scheduling based on maximized bipartite edge 

weight. The data for training were generated by an iterative scheduling algorithm based 

on the Hungarian scheduling scheme. The simulation results showed that the proposed 

scheme attained almost the same accuracy as a traditional iterative Hungarian scheduling 

algorithm. Deep learning–based algorithm has tremendous potential in scheduling in 
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IEEE 802.15.4e TSCH networks by offering low execution time and more competitive 

efficiency than a conventional solution. However, if the data size increases, DNN requires 

more time for training but not for testing. Moreover, the computation time of DNN 

almost concentrates on training since testing of DNN is composed of simple calculations 

such as sum and multiplication. Thus, we can easily say that the gap between HG and 

DNN will increase if the data size increases.  
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Chapter   3 

 

TSCH-Based Scheduling Method of IEEE 802.15.4e in 

coexistence with INC: DNN Approach 

 

3.1   Introduction 

 

The scarcity of spectrum is a burning issue over the world. Spectrum scarcity has 

occurred with the increasing use of the unlicensed industrial, scientific, and medical 

(ISM) radio bands. According to the expert report, mobile devices have increased from 8 

billion in 2016 to 11.5 billion in 2021. As a result, thedata flow from these devices is 

estimated to grow from 7.2 to 49.0 exabytes per month [50]. In the meantime, the number 

of internet of things (IoT) application is also growing. The industrial internet of things 

(IIoT) is a potential application of IoT. IIoT uses the ISM band to develop new technology, 

establish short-range communication, and implement device-to-device communication 

[51]. 

IEEE 802.15.4e time-slotted channel hopping (TSCH) is one of the most reliable 

resources of the industrial internet of things (IIoT). TSCH operates on the slot-frame 

structure consisting of multiple channel offsets and slot-offsets. It is gaining acceptance 
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due to its simple architecture and consume low power in industrial application.  The 

performance of TSCH is mainly dominated by the media access control (MAC) 

mechanism, which covers the refitment, enumeration, composition, and data 

transmission [52]. The slot frame is the central communication unit of TSCH; a pair of 

nodes is needed for data transmission. A slot frame is a series of time slots that are 

repeated continually.  A different channel is assigned pseudo-randomly to each timeslot. 

The schedule specifies which neighbor to interact with and on what channel offset [53]. 

Due to the excessive use of the unlicensed band, cross-technology interference 

such as wi-fi conflicts with Bluetooth is another vital issue at present. The IEEE 802.15.4e 

standard proposes the TSCH mode, which utilizes the channel hopping method to solve 

these coexistence issues [54,55]. Most of the network technologies of TSCH optimize their 

own network performance without considering interference from other networks or 

noise [56]. However, channel hopping from one to the next is not an effective manner 

since all frequencies face different levels of interference [57,58]. We got some overviews 

regarding wireless interference patterns with comprehensive analysis about channel 

selection algorithm with considering random channel model [59]. 

In this chapter, we present a scheduling algorithm of the TSCH network that can 

observe the behavior of the surroundings network, especially that make interference with 

the own network. That is also considered as an interference network cluster (INC) [60,61].  

We have proposed a bipartite graph solution of the TSCH network structure. We have 

proposed dual-stage Hungarian-based scheduling schemes: one for INC and another for 

our own network and established a relation between them. This will smartly mitigate the 

collision by maximizing the own network throughput and minimizing INC's throughput.  

We have also proposed a learning based DNN scheme that provides us the 

additional benefit to reduce the computational time of scheduling. We trained the DNN 
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algorithm on a synthetic dataset captured from a Hungarian-based scheduling algorithm. 

We trained our model offline approach and evaluated the algorithm in a more pragmatic 

scenario.  

The contributions of this chapter are summarized as follows: 

• We model a TSCH network by considering INC and formulate algorithms to 

produce their throughputs and make an interconnection between them. 

• We propose a bipartite graph solution for the TSCH slot frame structure. 

Based on the bipartite graph, we propose a dual stage scheduling algorithm 

to protect collision between own network and INC, it can maximize the 

throughput of own network, and minimize the throughput of INC. 

• We propose a deep learning-based DNN scheme to reduce the computational 

time of scheduling tasks. The proposed DNN scheme uses the training data 

from Hungarian-based scheduling algorithms to avoid a collision from INC. 

Thus, the proposed DNN scheme correctly emulates the dual-stage 

Hungarian-based scheduling scheme and reduces the execution time of 

scheduling. 

• The performance of the DNN scheme is verified by Simulation. Furthermore, 

the simulation results show that the proposed DNN scheme can be similar to 

a dual-stage Hungarian-based scheduling algorithm for avoiding collision 

between own network and INC. 

 

To the best of our knowledge, this is the first work that addresses scheduling in IEEE 

802.15.4e TSCH networks with considering INC and utilizes the advantages of a learning-

based DNN scheme to reduce computational time. 

The remainder of the chapter is arranged as follows. In Section 3.2, we demonstrate 

the system model and problem statement. In Section 3.3, we describe the proposed dual-
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stage Hungarian algorithm-based scheduling scheme. In Section 3.4, we delineate the 

training of the DNN scheme and the category of the dataset. In Section 3.5, the proposed 

method's outcomes are illustrated and verified by using simulation. Finally, Section 3.6 

concludes this chapter. 

 

3.2   System model  

 

 In this section, we describe the network model, state the mathematical equations 

for the problem formulation and channel model. 

 

3.2.1   Network model 

 

In this work, we consider that the TSCH network consists of N nodes called the 

own network and a second unknown network called the interfering network cluster 

(INC), which may include noise from different sources (e.g., microwaves, noise 

generators, and jammers) [60,61]. We presume that both networks will have similar 

priorities and rights to use the spectrum because we focus on unlicensed bands. However, 

as the INC is unknown, the own network has no idea about what technologies are being 

used in INC, traffic types, channel state information (CSI), etc.  The TSCH network 

coexistence with INC is illustrated in Figure: 3.1. 

 

Figure 3.1: Example of TSCH network coexistence with INC. 
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TSCH uses time and frequency diversity. It's the combination of time division 

multiple access (TDMA) and frequency-division multiple access (FDMA) techniques. This 

is core concept of TSCH network. Based on the concept, all N nodes of own TSCH 

network can communicate with one another on channel 𝑐 ∈ ℂ. Each channel is separated 

into time slots 𝑠 ∊ 𝑆. S time slots and ℂ channels are available for each slot-frame, 𝑓 ∈ 𝐹 

in the TSCH schedule, as shown in Figure 3.2.  

 

Figure 3.2:  Slot-frame matrix of TSCH network.  

 

 

3.2.2   Problem formulation 

 

In the model, we consider that all nodes are on their own network because of the 

number of interfering networks within the INC; any applied protocols features are all 

unknown. Thus, we only know if one of the nodes of INC has used the channel at a given 

time. We assume that   𝑃𝑠,𝑐
𝑓

= 1  only if the INC used channel c, at slot s, in frame f, at time (f ,s).  

We assume that TSCH has a centralized scheduler, and the own network cannot 

schedule two transmissions, TX actions between two nodes at the same times using the 

same channel. We also consider that INC is strong enough to collide with own network 

node transmission. We can define that transmission of the own network between two 

nodes on a channel, c at a time (f, s), is successful only if own node is transmitting at the 
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same time in that channel and no INC node is transmitting. Every node, 𝑛 ∊ 𝑁 of own 

network executes a transmission action, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 used channel c, at slot s, for slot-frame f. If 

own node is transmitting at the time in that channel and no interfering node is 

transmitting, we use 𝛾𝑠,𝑐
𝑓,𝑛

  to determine if an own packet could be successfully delivered 

or not.  

𝛾𝑠,𝑐
𝑓,𝑛

  = 1,  𝑖𝑓  𝑇𝑋𝑠,𝑐
𝑓,𝑛

= 1 ∧   𝑃𝑠,𝑐
𝑓

= 0                                                               (3.1) 

 

Similarly, the communication of INC is successful if  𝛾𝑠,𝑐
′𝑓,𝑛

  = 1, where: 

 

𝛾𝑠,𝑐
′𝑓,𝑛

  = 1,  𝑖𝑓  𝑇𝑋𝑠,𝑐
𝑓,𝑛

= 0 ∧   𝑃𝑠,𝑐
𝑓

= 1                                                    (3.2) 

 

3.2.3   Channel model 

 

 We design and develop a channel model to fulfill the condition of equation 3.1 and 

equation 3.2. As we discussed earlier, our goal is to develop a bipartite graph-based 

solution of the TSCH network. For the establishment of the bipartite graph, we need to 

know the knowledge of throughput. Throughput is the main component for bipartite 

edge weight, and that help us to solve the scheduling of TSCH [9,10].  

As INC is unknown, we don’t know about their channel state information (CSI) 

and other parameters [60,61].  In this work, we have considered the throughput of INC 

as a random variable. We use the linear congruential generator for constituting INC 

throughput. A linear congruential generator (LCG) is an algorithm that generates a series 

of pseudorandom integers using a piecewise linear equation that is discontinuous. One 

of the most well-known pseudorandom number generator algorithms is this one [62]. The 
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throughput of INC will be executed by the following equation of linear congruential 

generator (LCG):  

𝑌𝑖 = (𝑎𝑌𝑖−1 + 𝑞)(𝑚𝑜𝑑 𝑀)                                                                            (3.3) 

 

where, M is modular, 𝑖 = 𝑐𝑠, multiplicator, a and q are two suitable chosen integers and 

the uniform random variable after scaling. 

 

                                                           𝑈𝑖 =
𝑌𝑖

𝑞
                                                                                        (3.4) 

 

 

Another goal is to minimize the INC throughput for enhancing the reliability of own 

network. The following equation will minimize the INC throughput:  

 

          𝑈∗ = 𝑚𝑖𝑛 ∑ ∑  𝑈𝑖 𝑐∈ℂ  𝑠∈𝑆                                                              (3.5)         

 

The own network throughput can be determined by famous Shannon’s formula 

[9,10] depends upon transmission slots for each node: 

 

                         𝑊𝑖(𝑥) =
𝛽

𝑙
𝑙𝑜𝑔(1 +

𝑥𝑝

𝛽𝜂𝑜+𝑈∗)                                                                  (3.6) 

 

 

where, 𝑖 = 𝑠𝑐 , channel state 𝑥 = 𝑋𝑐,𝑠 = |𝐻𝑐,𝑠|2   𝐻𝑐,𝑠 =  channel gain, it can be determined 

as before in chapter 2. 

 

 We maximize the own network throughput by following: 

 

𝑊∗ = 𝑚𝑎𝑥 ∑ ∑  𝑊𝑖 𝑐∈ℂ  𝑠∈𝑆                                                         (3.7) 
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3.3  The proposed dual-stage Hungarian based assignment algorithm 

 

In this part, we describe the bipartite graph-based application of the TSCH slot-

frame matrix. It proposes a dual-stage Hungarian-based algorithm for transmission 

scheduling of TSCH network, collision avoiding techniques from INC, maximizing the 

own network throughput, and minimizing the INC throughput. 

 

3.3.1   Bipartite graph model 

 

According to graph theory-based mathematical structure, a bipartite graph has 

two independent sets of vertices: top and bottom. Every edge connects a vertex in the top 

to one on the bottom. It is used for modeling relationships between two different classes 

of objects [19]. Now, the bipartite graph is a promising application of the TSCH network 

for presenting an assignment of slots and channels for successful node pair transmission 

(TX) [9,10]. Throughput is considered as the edge's weight of a bipartite graph [10].  

We consider a bipartite graph ℬ = (𝑆, ℂ, 𝐸) correspond to the slot-frame matrix in 

Figure: 3.1. The set of channels, 𝑐 ∈ ℂ is the top vertexes of bipartite graph, and the set of 

slots 𝑠 ∊ 𝑆 is the bottom vertexes of bipartite graph  ℬ. The set of edge weights is 

considered  𝐸 = {𝑒 = (𝑠, 𝑐)| 𝑠 ∈ 𝑆, 𝑐 ∈ ℂ}  as the throughputs of own network and INC 

(details are in next segment). 

 

Figure 3.3:  Bipartite graph correspond to the slot-frame matrix in Figure: 3.2 
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3.3.2  The dual-stage Hungarian based algorithm and collision avoidance technique 

 

 

We propose a dual-stage Hungarian-based assignment technique for avoiding 

collision between own network and INC. The Hungarian assignment will be performed 

according to the edge weight of the bipartite graph. We have considered here bipartite 

edge weights are throughput of own network and INC. In this work, the throughput of 

INC is computed by linear congruential generator (LCG), and own network throughput 

is calculated by familiar Shannon’s formula (described in section 3.2.3). We considered 

the negligible upper bounds 2𝐿 (L is the number of node-to-node edge Figure:1)[10]. 

The number of inputs of the Hungarian algorithm is the total number of edges       

 𝑆 ∗ ℂ of the bipartite graph. Firstly, the INC throughput 𝑈𝑖 was considered as the edge 

weight of the bipartite graph. The Hungarian algorithm performed the assignment 

according to the minimization of edge weight of the bipartite graph and we obtained the 

𝑃𝑠,𝑐
𝑓

 and minimization of INC throughput, 𝑈∗. Secondly, the own network throughput 𝑊𝑖 

will be calculated based on the  𝑈∗, which was considered as the bipartite edge weight. 

The Hungarian again performed the scheduling task based on maximization of bipartite 

edge weight and we obtained the transmission of own network, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 and maximized 

throughput of own network, 𝑊∗.  Though most of the collisions between own network 

and INC were mitigated by this technique, every transmission of own network 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 was 

checked channel by channel and slot by slot. If INC used, 𝑃𝑠,𝑐
𝑓

 the specifically assigned 

slot by own network, that means the duplicate schedule had found in that time own 

network shifted their scheduling on the following slot based on the second highest edge 

weight value.  
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The proposed algorithm is given below:  

 

Algorithm 3.1: Dual-stage Hungarian-based scheduling scheme 

1: Begin 

2: //INITIALIZATION 

3: for each  𝑐 ∈ ℂ, 𝑠 ∈ 𝑆 and 𝑓 ∈ 𝐹: 

4:        Run linear congruential generator (LCG) to obtain INC throughput 𝑈𝑖 

5:        Run Hungarian algorithm based on minimization 𝑈𝑖 of bipartite edge weight  

           %where INC throughput used as bipartite edge weight 

6:        Obtain 𝑃𝑠,𝑐
𝑓

 and 𝑈∗ 

7:        Own network throughput, 𝑊𝑖 can be calculated 

8:        Run Hungarian algorithm based on maximization 𝑊𝑖 of bipartite edge weight 

          % where own network throughput used as bipartite edge weight 

9:        Obtain 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 and 𝑊∗ 

10:      if 𝑇𝑋𝑠,𝑐
𝑓,𝑛

=𝑃𝑠,𝑐
𝑓

,  

11:          else 𝑇𝑋𝑠,𝑐
𝑓,𝑛

  happen in the assigned slot according to step 8 

12:      end if 

13:     ensure:  𝑇𝑋𝑠,𝑐
𝑓,𝑛

= 1 ∧   𝑃𝑠,𝑐
𝑓

= 0 and    𝑇𝑋𝑠,𝑐
𝑓

= 0 ∧   𝑃𝑠,𝑐
𝑓

= 1 

14: end for 

15: //MAIN LOOP: 

16: Generate 10,000 data frames for DNN training 
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3.4  The proposed deep learning based DNN scheme 

 

In this section, we propose a deep learning-based supervised DNN scheme that 

accepts the training data from a dual-stage Hungarian-based scheduling scheme 

(Algorithm 3.1). The proposed DNN scheme performs the scheduling by learning the 

kinship between the input and output of the scheduling algorithm of its own network. 

That means input is the maximized throughput of own network (bipartite edge weight), 

and the output is the transmission scheduling of own network, based on the learning 

DNN performs the optimal scheduling of own network.  

The structure of the DNN is the same as in chapter 2.  In this part, we will discuss 

the dataset division and training procedure of the proposed DNN scheme. 

 

3.4.1   Dataset distribution and training of DNN 

 

We have needed enough sample data for correctly training the DNN. We 

generated a total of 10,000 data frames using algorithm 2 based on a dual-stage 

Hungarian-based scheduling algorithm. We considered three parts of the dataset to train 

the DNN. We fed 60% of the data for training, kept 20% for validation and 20% for testing. 

Validation is the unbiased method, that is, assessment procedure as to how well our 

model learns the knowledge during training. Testing is the actual procedure for analyzing 

neural network performance. We employed data normalization techniques for avoiding 

overfitting issues. When the DNN training was finished, we used the scheme for every 

new value of the own network throughput, 𝑊𝑖  to find the optimal solution of,  𝑇𝑋𝑠,𝑐
𝑓,𝑛

. 

Figure 3.4 describes the training process of DNN. The network environment 

generated enough samples of data frames based on TSCH information. The offline 
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supervised training was performed based on these data samples. We obtained the optimal 

interpretation of dual-stage Hungarian-based transmission scheduling, and DNN 

contributed to reduce the computational time of execution. 

 

 

Figure 3.4:  Training of our proposed DNN scheme. 

 

 

3.5 Performance evaluation 

 

We compared the outcomes of DNN with the Hungarian-based scheduling 

algorithm to demonstrate our proposed scheme's efficiency. Here the simulations were 

performed in two steps: first, we executed algorithm 1 for generating enough samples 

data; second, after obtaining data samples, the DNN training was performed.  Algorithm 

3.1 for data set generation was carried out in MATLAB on a PC with an Intel Core i7 

processor and 8 GB RAM. After getting data samples, the DNN offline training was 

executed in Python utilizing the Keras and NumPy libraries. 
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3.5.1   TSCH network model coexistence with INC 

 

The primary goal of this chapter is to design scheduling of the TSCH network 

model to avoid Collison from INC. The details of the model are described in Algorithm 

3.1. The DNN training data is generated from this model to train the DNN accurately. 

The following parameters are considered in Table 3.1 for establishing the network model 

in Algorithm 1. 

Table 3.1: Parameter Specifications for Algorithm 1 

Parameter Specification 

1. Number of channels, ℂ 12 

2. Number of slots, 𝑆 16 

3. Number of data frames, 𝐹 10,000 

4. Bandwidth, β 1 MHz 

5. Bits in each packet l 1000 

6. Transmission power, p 10 mw 

7. Noise variance, 𝜂𝑜 1 

 

3.5.2   Building a DNN scheme 

 

We have considered a DNN a model with one input layer, multiple hidden layers, 

and one output layer. The number of input features of DNN is the bipartite edge weight, 

which means the throughput of own network. The total number of bipartite edge weights 

is the multiplication of the total number of channels and the total number of slots, ℂ ∗ 𝑆. 

The output is considered how many times the own network uses the channels; it means 

the total number output of DNN is the total number of channels, ℂ . We have used the 
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rectified linear unit (ReLU) activation function for every hidden layer to obtain minimal 

min square error (MSE) with little difficulty. The specification of the proposed DNN 

scheme is given in Table 3.2.  

 

Table 3.2. Parameter Specifications for the DNN scheme 

Parameter Specification 

1. Number of input features 192 

2. Number of hidden layers 4 

3. Number of neurons in each layer 800,1600,1200, and 800 

4. Number of outputs 12 

5. Learning rate 0.001 

6. Batch size 100 

7. Number of epochs 1000 

 

3.5.3   Assignment method 

 

Figure 3.5 illustrates the transmission, 𝑇𝑋𝑠,𝑐
𝑓,𝑛

 scheduling assignment of own 

network that can avoid a collision from INC. Here green color indicates the transmission 

assignment of own network executed based on the maximization of own network 

throughput. The red color indicates that INC uses the slots 𝑃𝑠,𝑐
𝑓

; it was executed based on 

the minimization of INC throughput. Lastly, the own network checked channel by 

channel and slot by slot. For this frame, we observed that the duplicate assignment was 

executed on channel 3. Both own network and INC were used slot 3 for the channel 3 but 

using the above checking method when own network found INC in the same slot; then it 

shifted its transmission schedule to the next slot 2 based on the second highest of own 

network throughput. 
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Figure 3.5:  Assignment method.  

 

3.5.4   Throughput optimization 

 

Figure 3.6 shows the average maximized throughput of own network and average 

minimized throughput of INC for different channels. Our prosed dual-stage Hungarian-

based scheduling scheme can maximize the own network throughput based on the 

minimization of INC throughput. It increases network reliability for data transmission. 
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Figure 3.6:  Throughput optimization of own network and INC. 

3.5.5   Determining the model accuracy 

 

Accuracy determination is the key part of the deep learning-based DNN method. 

It defines that how much the proposed learning-based scheme learns the original method. 

We considered an accuracy metric based on the transmission of own network equation 

3.8. Firstly, we determined the accurate parameters based on the following method. The 

transmission assignment of own network 𝑇𝑋𝑠,𝑐
𝑓

 is the output of dual-stage Hungarian-

based scheme is an integer but predicted output DNN, 𝑇𝑋𝑠,𝑐
𝑓̂

     is not an integer value. For 

alleviating this problem, we used the round function as follows:   

If 𝑇𝑋𝑠,𝑐
𝑓

− 𝑟𝑜𝑢𝑛𝑑(𝑇𝑋𝑠,𝑐
𝑓̂

) = 0, it indicates as accurate, and 

 𝑇𝑋𝑠,𝑐
𝑓

− 𝑟𝑜𝑢𝑛𝑑(𝑇𝑋𝑠,𝑐
𝑓̂

) = 0 indicates it is not accurate. 
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If test samples are ℕ𝑡, and non-zero or not accurate parameters are indicated by ℙ, 

accuracy of DNN can be determined with the following equation: 

 

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
ℕ𝑡∗ ℂ−ℙ

ℕ𝑡∗ℂ
∗ 100%                                                                                        (3.8) 

 

We measured the accuracy for 1000 test samples as depicted in Figure 3.7. We have 

achieved around 90% accuracy of the proposed deep learning-based DNN scheme. 

 

 

Figure 3.7:  Accuracy of deep learning-based DNN scheme 

 

3.5.6   DNN performance 

 

Figure 3.8 and Figure 3.9 show the performance of the proposed DNN scheme 

based on optimization of throughput for own network and INC. It reveals that the 

proposed deep learning-based DNN scheme correctly emulates the proposed dual-stage 

Hungarian-based assignment scheme. DNN is a learning-based scheme and learns the 
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training data from a dual-stage Hungarian (HG) based scheduling scheme; that’s why 

HG shows the optimal and DNN shows the suboptimal for the throughput optimization 

of both networks. 

 

Figure 3.8:  Throughput optimization of own network between HG and DNN 

 

 

Figure 3.9:  Throughput optimization of INC between HG and DNN 
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3.5.7   Execution time 

 

Figure 3.10 exhibits the execution time for both schemes HG and DNN. It was 

determined according to the number of data samples. Here observe that the DNN 

reduced almost 80% execution time than the original method. It is the additional 

contribution from DNN that can enhance the efficiency of scheduling in the TSCH 

network. 

 

Figure 3.10:  Execution time between HG and DNN according to number of data samples 

 

3.6 Conclusion 

 

In this chapter, we proposed a dual-stage Hungarian-based scheduling scheme 

that can smartly assign the TSCH network without collision from INC. We have also 

utilized a deep learning-based DNN scheme with this method that provided similar 



 
 

67 
 

performance to those of assignment techniques and contributed to reducing the execution 

time of scheduling. The training data set was generated based on a dual-stage Hungarian-

based scheduling scheme with maximization of own network throughput and 

minimization of INC throughput. The DNN was trained by this dataset; it achieved 

almost 90% accuracy and reduced 80% execution time of original scheme. The deep 

learning-based DNN scheme showed an efficient performance on TSCH network 

assignment techniques with less computational time than the original method. 
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Chapter   4 

 

Summary of Contributions and Future Works 

 

4.1 Introduction 

 

This chapter describes the contributions of this dissertation. The problem 

statement, objective, methodologies, and results caried out by the proposed solutions are 

presented in chapter 2 and chapter 3. The first section 4.2 of the current chapter 

summarizes the primary contributions of those investigations, whereas the outline of the 

future direction is given in section 4.3. 

 

4.2 Summary of contributions 

 

This dissertation investigated and proposed methods addressing the problem of 

TSCH based scheduling of IEEE 802.15.4e. It was focused on solving the scheduling 

problem based on the maximization of throughput with considering delay and moving 

average throughput and delay to ensure network fairness. It also focused on determining 

scheduling to avoid collision of interference network cluster (INC) based on the 
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maximization of own network throughput and minimization of INC throughput. The 

deep learning-based DNN scheme was utilized to reduce the execution time of 

scheduling.  

The contributions of this dissertation, in the context of TSCH based scheduling of 

IEEE 802.15.4e for a cooperative Hungarian based scheduling algorithm with a deep 

learning-based DNN scheme, is illustrated below: 

• This dissertation considered a TSCH network model for applying the 

industrial internet of things (IIoT) that can utilize multiple channels and 

multiple slots for dynamic operations. 

• The bipartite graph of the TSCH network proposed that edge weights were 

composed of network throughput and delay. Here also utilized the moving 

average throughput and delay for ensuring fairness and moving average 

delay satisfied the nature of TSCH as the delay between two slot-frames.  

• The Hungarian-based algorithm performed the scheduling task based on 

the maximization of the bipartite edge weight where throughput ensured 

the maximum data transfer and delay ensured the network's reliability. 

• Following that, a dual-stage Hungarian-based scheduling algorithm was 

proposed. It performed the scheduling smartly by avoiding collision from 

interference network cluster as well as maximizing the own network 

throughput based on minimization of INC throughput. 

• Furthermore, extensive simulations were conducted to prepare the training 

dataset and demonstrate the efficiency of the proposed schemes. In both 

cases, a deep learning-based DNN scheme was utilized that can perform 

the same as the original scheduling method. It provided an extra 

contribution to reducing the execution time of scheduling. 
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• Finally, the performance of the proposed techniques was evaluated by 

widely used measures such as accuracy, throughput and delay 

optimization, comparison for execution time, etc. These performance 

evaluations revealed the efficiency of proposed schemes compared to the 

original or previously proposed techniques and parameter considerations. 

 

4.3 Future direction  

 

In the future, it is aimed to work on further improvement of the scheduling of the 

TSCH network. We will identify some other channel parameters that are important for 

network design. In this work, we consider half-duplex communication of node pair. 

Furthermore, our target is to consider full-duplex communication. In the future, we will 

consider uplink/downlink characteristics to enhance network performance and provide 

optimal scheduling resources and want to apply them in the physical implementation of 

small applications. 
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