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Abstract 

A new high-order projection method for simulating incompressible turbulent flows is presented 

based on the weighted essentially non-oscillatory scheme (WENO) schemes.  In such a sense, this 

paper can be considered an extension of Zhang and Jackson’s work (Zhang & L. Jackson, 2009) 

in terms of solution accuracy and computational efficiency.  Unlike the previous work, the present 

method employed the Adams-Bashforth scheme for the nonlinear convection and the Crank-

Nicolson scheme for the viscous term. For the spatial discretization, the WENO scheme is 

employed for the convection and standard central differences are used for the viscous.  By the 

combination of successively higher orders of WENO and CD schemes, the desired order of 

accuracy was achieved without appreciable extra CPU time or memory overhead. More 

specifically the combination of WENO3/CD2, WENO5/CD4, and WENO7/CD6 achieved the 

third, fifth, and seventh order of spatial accuracies respectively.  A verification study was presented 

both in space and time by using the 2D Taylor Green vortex problem. More challenging turbulent 

flows are simulated by solving the 3D Taylor-Green vortex problem for successively raised 

Reynolds numbers of 𝑅𝑒 = 1,600, 16,000, and 160,000.  The results, including the evolution of 

total kinetic energy, enstrophy, energy spectra, and local and global vortex field, support that the 

proposed method can be utilized for simulating the higher Reynolds number turbulent flows. 
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1 Introduction 

Ever since the birth of the numerical methods for the Navier-Stokes equations for incompressible 

flows in the 1960s (Harlow & Welch, 1965; Chorin, A numerical method for solving 

incompressible viscous flow problems, 1967; Chorin, Numerical solution of the Navier-Stokes 

equations, 1968) the algorithm has been continuously developed for higher accuracy and efficiency.  

Roughly speaking the solution method for the incompressible flows could be categorized into 

either a pressure-based method which solves the pressure-Poisson equation (Chorin, Numerical 

solution of the Navier-Stokes equations, 1968) for enforcing the divergence-free condition or the 

artificial compressibility method which allows the compressibility momentarily until it reaches the 

steady-state in pseudo-time where the divergence-free velocity field is recovered (Chorin, A 

numerical method for solving incompressible viscous flow problems, 1967). The representative 

pressure-based methods are the projection methods (Chorin, Numerical solution of the Navier-

Stokes equations, 1968; Kim & Moin, 1985; Bell, Colell, & MGlaz, 1989; Brown, Cortez, & 

Minion, 2001). By utilizing the efficient MAC grid (Harlow & Welch, 1965) system on the 

Cartesian grid and efficient and scalable solution algorithms for Poisson-type equations, the 

method has been the primary choice of the incompressible flow community. On the other hand, 

the method of artificial compressibility has been developed by adopting the high-order algorithms 

originally developed for the compressible flow communities (Kwak, Chang, Shanks, & 

Chakravarthy, 1986; Kwak & Kiris, Computation of Viscous Incompressible Flows, 1989; Rogers 

& Kwak, Upwind differencing scheme for the time-accurate incompressible Navier-Stokes 

equations, 1990; Rogers, Kwak, & Kiris, Steady and unsteady solutions of the incompressible 

Navier-Stokes equations, 1991; Kiris, Kwak, Rogers, & Chang, 1997; Kallinderis & Ahn, 2005) 

far, both the methods attract the flow simulation practitioners based on their advantages, depending 

on the target application, grid system, and efficiency in their own linear and non-linear algebraic 

solvers. 

The focus of our interest is on the first type of method, namely the projection method. More 

specifically a higher-order accurate and efficient projection method on the Cartesian MAC grid 

system. Since the introduction of the first projection method by Chorin (Chorin, Numerical 

solution of the Navier-Stokes equations, 1968) the second-order accuracy in time for the projection 

method has been successfully established by several researchers (Guermonda, Minev, & Shen, 

2006; Kim & Moin, 1985). One of the first attempts was made by Kim and Moin (Kim & Moin, 

1985), and their methods are widely applied to incompressible turbulent flows as well (Kim, Moin, 

& Moser, 1987). Later the method has been extended by adopting the upwinding idea based on the 

Godunov-type method. Such a method has been applied and proven to be stable for the convection-

dominated high-speed incompressible flows. More recently, Brown et al. (Brown, Cortez, & 

Minion, 2001) presented a fully second-order projection method not only for the velocity but also 

for the pressure, which would be considered such as the standard second-order projection method. 

Even though the consistent effort for achieving the second-order projection methods in time, the 

algorithms for higher-order (> 2nd order) accuracy in space was relatively scarce, hance a few 

pioneering attempts (Henshaw & Schwendeman, 2006; Zhang & L. Jackson, 2009) can be easily 
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accounted for. Henshaw achieved fourth-order accuracy in space using central differences on 

overlapping grids. In his approaches, the laminar flows with moderate Reynolds numbers are 

successfully simulated. For simulating high-Reynolds number turbulent flows on the meshes not 

as fine enough as a DNS (direct numerical simulation) level, pure central difference without any 

numerical or sub-grid scale eddy viscosity would likely incur numerical instabilities.  Perhaps the 

natural choice for resolving this issue would be introducing the upwind effect like Bell et al. (Bell, 

Colell, & MGlaz, 1989) in the late 1980s. However, the formal introduction of the high-order 

upwind scheme to the projection method was first made by Zhang and Jackson (Zhang & L. 

Jackson, 2009) based on the weighted essentially non-oscillatory (WENO) scheme (Jiang & Shu, 

1996).  

WENO scheme is a general high-order scheme originally developed for the hyperbolic type of 

conservation laws in the framework of finite volume (Liu, Osher, & Chan, 1994), the finite 

difference (Jiang & Shu, 1996; Cockburn, Shu, Johnson, & Tadmor, 1997; Shu, Essentially non-

oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, 

1998; Shu, High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated 

Problems, 2009), and even discontinuous Galerkin method at least for limiters (Qiu & Shu, 2005; 

Luo, D.Baum, & Löhner, 2007; Zhu, Zhong, Shu, & Qiu, 2013). The method was originally 

evolved from its predecessor ENO scheme (Shu & Osher, Efficient implementation of essentially 

non-oscillatory shock-capturing schemes, 1988; Shu & Osher, Efficient implementation of 

essentially non-oscillatory shock-capturing schemes, II, 1989) which adaptively selected 

numerical stencils among several candidate stencils nearby. Instead of selecting only one of the 

candidate neighbouring stencils, the WENO scheme combines all of them with optimal weights 

for accurate yet non-oscillatory solution interpolation and reconstruction for finite difference and 

finite volume framework, respectively. Through this WENO process, one can achieve 2𝑟 − 1  

order of accuracy, where r is the number of solution points within each stencil, i.e., a combination 

of four adjacent 4-points stencils can achieve 7th order accuracy in space. 

Even for the great success of the WENO scheme for the compressible flow communities (Jiang & 

Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal 

Magnetohydrodynamics, 1999) and artificial compressibility-based incompressible flow 

simulations (Chen, Yang, & Yang, 1999), the application of projection-type incompressible flow 

simulation has been awaited until Zhang and Jackson (Zhang & L. Jackson, 2009). They applied 

the fifth-order WENO scheme both in advective and conservative form for the discretization of 

the nonlinear convective term and the sixth-order compact finite difference scheme for the linear 

viscous term (K. Lele, 1992). For time advancement, they employed an alternating 4/6 stages of 

low-dissipation and low-dispersion Runge-Kutta (LDDRK) scheme (Hu, Hussaini, & Manthey, 

1996) where each RK stage involves a separate Poisson problem and an additional linear system 

incurred by the compact scheme, i.e., at each time step four or six Poisson solutions in addition to 

the velocity derivatives from the compact finite differences. 

This paper is about an extension of Zhang and Jackson’s work in terms of both the accuracy 

perspective and efficiency point of view.  Unlike their previous work, the baseline projection 

method is presented as Pm2 in Brown et al. (Brown, Cortez, & Minion, 2001) which is second-
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order accurate in time for both velocity and pressure. With this method, the convective term is 

discretized by the explicit Adams-Bashforth scheme and viscous terms are with the implicit Crank-

Nicolson scheme. In short, this scheme is commonly referred to as the ABCN (Kim & Moin, 1985; 

Perot, 1993; Johnston & Liu, 2004) method for the incompressible Navier-Stokes equations. The 

beauty of this method is that it requires just a single solution of intermediate velocity field and a 

Poisson solution at each time step. We then apply a series of high-order spatial discretization 

schemes, namely the third, fifth, and seventh order WENO schemes (WENO3, WENO5, WENO7) 

for the nonlinear convection terms, and the second, fourth, and sixth-order standard central 

differences (CD2, CD4, CD6) for the viscous term. Among the various combination of WENO 

schemes and central differences, an optimal combination, which is WENO(𝑘)/CD(𝑘 − 1) is 

presented. The optimal combination of WENO (𝑘) /CD (𝑘 − 1)  is supported by the error 

convergence based on 𝐿2 and infinity norms by simulating the 2D Taylor-Green vortex (TGV2d) 

problem. The performance of the proposed methods for turbulent flow simulation is demonstrated 

by simulating triply periodic homogenous decaying turbulent flows of the 3D Taylor-Green vortex 

(TGV3d) problem with successively higher Reynolds numbers, i.e., 𝑅𝑒 = 1,600, 16,000, and 

160,000. The result compared the evolution of turbulent kinetic energy history, dissipation rate, 

local vorticity fields, global vortex structure, and kinetic energy spectra at various time moments. 
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2 Numerical method 

2.1 Time discretization 

Incompressible Newtonian viscous flows are governed by the Navier-Stokes equations 

{𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖) = −∇𝑝 + 𝜇∇2𝒖 + 𝑓

∇ ∙ 𝒖 = 0                                                 

 (2.1) 

where 𝒖 = (𝑢, 𝑣, 𝑤), 𝑝, 𝜌 and 𝑡 are Cartesian velocity components, pressure, fluid density, and 

time, and then 𝜇 is dynamic viscosity, and 𝑓 is body forces respectively. In three-dimensional 

space and time, there are four equations (3 momenta, one continuity) and four unknowns (3 

velocity components and 1 pressure). The system of equations may be solved sequentially or all at 

the same time. Either way, the equations need to be discretized in both space and time. Here we 

consider methods for discretization in time and space. 

For simplifying or reducing the parameters of the equation we use the non-dimensional equation 

(2.1). Following an appropriate selection of scales for the non-dimensional process, leads to the 

identification of small terms in the equation. Neglecting the smaller terms against the bigger ones 

allows for the simplification of the situation. For the case of flow without heat transfer, the non-

dimensional Navier–Stokes equation depends only on the Reynolds Number and hence all physical 

realizations of the related experiment will have the same value of non-dimensional variables for 

the same Reynolds Number (Salvi, 2002). We used scale parameters 𝐿, 𝑈, which are the reference 

length and velocity, to construct the momentum equations non-dimensional. The scale parameters 

for non-dimensional variables are as follows 

𝒖∗ =
𝒖

𝑈
, 𝑡∗ =

𝑡

𝐿/𝑈
, 𝑝∗ =

𝑝 − 𝑝∞
𝜌𝑈2

, 𝑥∗ =
𝑥

𝐿
, 𝑦∗ =

𝑦

𝐿
, 𝑧∗ =

𝑧

𝐿
 

Substituting these non-dimensional variables into equation (2.1) to obtain 

{
 
 

 
 (

𝑈

𝐿/𝑈
)
𝜕𝒖∗

𝜕𝑡∗
+ (

𝑈2

𝐿
) (𝒖∗ ∙ ∇)𝒖∗ = −(

𝜌𝑈2

𝜌𝐿
)∇𝑝∗ + (

𝜈𝑈

𝐿2
) ∇2𝒖∗ + 𝑓

(
𝑈

𝐿
)∇ ∙ 𝒖∗ = 0                                                                                           

 (2.2) 

Dropping ∗ as a sign of dimensionless variables and dividing both sides for  𝑈2/𝐿, we get 

{
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
∇2𝒖 + 𝑓

∇ ∙ 𝒖 = 0                                                  

 (2.3) 

The Reynolds number (𝑅𝑒) is defined as 𝑅𝑒 = 𝑈𝐿/𝜈, respectively.  
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We used an explicit scheme with the 𝑟𝑡ℎ order Adams-Bashforth scheme for the convection term 

and an implicit scheme with the 𝑟𝑡ℎ order Adams-Moulton scheme for the diffusion term. 

Adams-Bashforth scheme: 

(𝒖∗ ∙ ∇)𝒖∗ =∑𝛾𝑖(𝒖
𝑛+1−𝑖 ∙ ∇)𝒖𝑛+1−𝑖

𝑟

𝑖=0

 (2.4) 

where 𝛾𝑖 is the appropriate weight. Some situations are as follows 

𝑟 = 1 𝛾1 = 1 Explicit Euler 

𝑟 = 2 𝛾1 =
3

2
, 𝛾2 = −

1

2
 2nd order Adams-Bashforth 

𝑟 = 3 𝛾1 =
23

12
, 𝛾2 = −

16

12
, 𝛾3 =

5

12
 3rd order Adams-Bashforth 

Adams-Moulton scheme: 

∇2𝒖∗ = 𝛼𝑖∇
2𝒖𝑛+1 +∑𝛽𝑖∇

2𝒖𝑛+1−𝑖
𝑟−1

𝑖=0

 (2.5) 

where 𝛼𝑖 and 𝛽𝑖 are the appropriate weights. Some situations are as follows 

𝑟 = 1 𝛼1 = 1, 𝛽1 = 0 Implicit Euler 

𝑟 = 2 𝛼1 =
1

2
, 𝛽1 =

1

2
 Crank-Nicolson 

𝑟 = 3 𝛼1 =
5

12
, 𝛽1 =

8

12
, 𝛽2 = −

1

12
 3rd order Adams-Moulton 

We use the Crank-Nicolson (CN) for diffusion term and the second-order Adams-Bashforth (AB) 

for convection term to get the second order of accuracy. This has the advantage of achieving 

overall Ο(Δ𝑡2)  accuracy while still allowing for a reasonable size of Δ𝑡. Now, the equation (2.1) 

can be written as 

{

𝒖𝑛+1 − 𝒖𝑛

∆𝑡
+
3

2
(𝒖 ∙ ∇𝒖)𝑛 +

1

2
(𝒖 ∙ ∇𝒖)𝑛−1 = −∇𝑝𝑛+1 +

1

𝑅𝑒
∇2 (

𝒖𝑛+1 + 𝒖𝑛

2
) + 𝑓

∇ ∙ 𝒖𝑛+1 = 0                                                                                                                 

 (2.6) 

The superscripts 𝑛 + 1 , 𝑛 , and 𝑛 − 1  denote the next, current, and previous time steps, 

respectively. 

2.2 Projection method 

The projection method (or fractional step method, time splitting method) is employed for the 

pressure-velocity decoupling, which is non-iterative and based on a mathematical foundation. The 

evolution of the velocity only consists of two sub-steps at each time level, i.e., the prediction and 

the projection. We will present this method in detail in the following content along with the error 

analysis (Shang-Gui, Abdellatif, Julien, & Yannick, 2017). 
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2.2.1 Helmholtz-Hodge decomposition 

The projection method is based on the mathematical foundation of Helmholtz-Hodge 

decomposition, which indicates that any smooth vector 𝒖 can be decomposed into a divergence-

free component 𝑢𝑑 and a curl-free component 𝑢𝑐 

𝑢 = 𝑢𝑑 + 𝑢𝑐 (2.7) 

Where ∇. 𝑢𝑑 = 0, ∇ × 𝑢𝑐 = 0 and the curl-free component can be further expressed as a gradient 

of a potential field 𝑢𝑐 = ∇𝜙. The divergence-free component 𝑢𝑑 can be obtained by taking the 

divergence operator (2.1), we get 

∇2𝜙 = ∇. 𝑢 (2.8) 

 

𝑢𝑑 = 𝑢 − ∇𝜙 (2.9) 

In projection methods, 𝑢 is usually obtained in the prediction step and then projected into the 

divergence-free field in the projection step (Shang-Gui, Abdellatif, Julien, & Yannick, 2017). 

2.2.2 The non-incremental pressure correction scheme 

The first projection method is proposed by Chorin (Chorin, Numerical solution of the Navier-

Stokes equations, 1968) and Téman (Témam, 1969). We consider the following two steps for 

solving equations (2.4) in a computational domain bounded by the wall Γ 

𝒖∗ − 𝒖𝑛

∆𝑡
+
3

2
(𝒖 ∙ ∇𝒖)𝑛 +

1

2
(𝒖 ∙ ∇𝒖)𝑛−1 =

1

𝑅𝑒
∇2 (

𝒖𝑛+1 + 𝒖𝑛

2
) + 𝑓 (2.10) 

 

{

𝒖𝑛+1 − 𝒖∗

∆𝑡
= −∇𝑝𝑛+1                                                                                                  

∇ ∙ 𝒖𝑛+1 = 0, 𝒖𝑛+1 ∙ 𝑛|Γ = 0                                                                                

 (2.11) 

Here represents a step where it is solved for a tentative velocity vector 𝒖∗ with no slip on the 

boundary. The pressure takes no part in the first step. The second step corrects velocity using the 

pressure gradient. The second step is implemented by taking the divergence of the correction and 

using the divergence-free condition. This leads to the following equation to be solved for 𝑝𝑛+1  

∇2𝑝𝑛+1 =
1

Δ𝑡
∇ ∙ 𝒖∗, ∇𝑝𝑛+1. 𝑛|Γ = 0 (2.12) 

Followed by velocity being updated as 

𝒖𝑛+1 = 𝒖∗ − ∆𝑡∇𝑝𝑛+1 (2.13) 

Note that velocity update is performed without boundary conditions and as such it is only ensured 

that 𝒖𝑛+1 ∙ 𝑛 = 0  and in principle one may obtain non-zero velocities on Γ . For this reason, 

boundary conditions are often enforced also after the velocity update, which is a slight 
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inconsistency with the formulation in equations (2.8) and (2.9). This is a direct consequence of the 

splitting, and for the current scheme, the splitting error is of order 𝒪(∆𝑡). In other words, our 

originally second-order temporal discretization error has been degraded to first order because of 

the splitting. 

2.2.3 The incremental pressure correction scheme  

We may improve the splitting error by including the pressure gradient in the tentative velocity step. 

By observing that the pressure gradient is not used in equation (2.8), we add and known old value 

of the pressure gradient in the prediction step to obtain a formally second-order accurate scheme. 

This formally second-order scheme is called the standard incremental pressure correction scheme 

in Guermond et al. (Guermonda, Minev, & Shen, 2006). The formally second-order method can 

be expressed as 

𝒖∗ − 𝒖𝑛

∆𝑡
+
3

2
(𝒖 ∙ ∇𝒖)𝑛 +

1

2
(𝒖 ∙ ∇𝒖)𝑛−1 = −∇𝑝𝑛 +

1

𝑅𝑒
∇2 (

𝒖𝑛+1 + 𝒖𝑛

2
) + 𝑓 (2.14) 

 

{

𝒖𝑛+1 − 𝒖∗

∆𝑡
= −∇𝜙𝑛+1                                                                                                  

∇ ∙ 𝒖𝑛+1 = 0, 𝒖𝑛+1 ∙ 𝑛|Γ = 0                                                                                

 (2.15) 

Where 𝜙𝑛+1 is a pressure correction. By applying the divergence operator to equation (2.14) along 

with the divergence-free condition 

∇2𝜙𝑛+1 =
1

Δ𝑡
∇ ∙ 𝒖∗, ∇ϕ𝑛+1 ∙ 𝑛|Γ = 0 (2.16) 

 

𝒖𝑛+1 = 𝒖∗ − ∆𝑡∇𝜙𝑛+1 (2.17) 

where the homogeneous Neumann boundary condition is enforced on 𝜙. The final pressure is then 

updated by 

𝑝𝑛+1 = 𝑝𝑘 + 𝜙𝑛+1 (2.18) 

We sum up the equation (2.12) and (2.13) and then compare them to the original system equation 

(2.4). Since the pressure correction is the approximation of 𝜙𝑛+1 = 𝑝𝑛+1 − 𝑝𝑛 = ∆𝑡
𝜕𝑝

𝜕𝑡
, the 

splitting error is found to be of second-order (Perot, 1993; Armfield & Street, 2002). 

1

2𝑅𝑒
∇2(𝒖∗ − 𝒖𝑛+1) =

Δt

2
∇2(∇𝜙𝑛+1) =

∆𝑡2

2
∇2(∇𝑝) (2.19) 

However, the tentative velocity step is closer to the optimal, and as such the tentative velocity 𝒖∗ 

is closer to the final 𝒖𝑛+1 and thus the convective and diffusive terms are closer to the optimal 

(where 𝒖𝑛+1 is used instead of 𝒖∗). It may be shown that the splitting error is now second-order 

accurate in time, which is the same as the temporal discretization. 
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2.2.4 Incremental pressure correction in rotational form 

In (Timmermans, Minev, & Vosse, 1996; Guermonda, Minev, & Shen, 2006) describes a rotational 

incremental pressure correction. The basic idea behind this method is to incorporate the splitting 

error into the pressure, resulting in a sum of sub-steps that is consistent with the discretized 

momentum equation (2.6). By considering the identity ∇2𝒖 =  ∇(∇ ∙ 𝒖) − ∇ × ∇ × 𝒖, the error 

term can be rewritten as 

1

2𝑅𝑒
∇2(𝒖∗ − 𝒖𝑛+1) =

1

2𝑅𝑒
∇(∇ ∙ 𝒖∗) (2.20) 

where ∇ × ∇ × 𝒖∗ = ∇ × ∇ × 𝒖𝑛+1  is used, which can be verified by the Helmholtz-Hodge 

decomposition. Now the error term in this form is absorbed into the pressure 

𝑝𝑛+1 = 𝑝𝑛 + 𝜙𝑛+1 −
1

2𝑅𝑒
∇ ∙ 𝒖∗ (2.21) 

In this study, we have used the non-dimensional form of Navier-Stokes equations as equation (2.3). 

Applied the ABCN scheme and projection method for the equation above, we obtained the 

incremental pressure correction scheme in rotational form may be formulated as 

{
 
 
 

 
 
 
𝒖∗ − 𝒖𝑛

Δ𝑡
+
3

2
(𝒖 ∙ ∇𝒖)𝑛 −

1

2
(𝒖 ∙ ∇𝒖)𝑛−1 = −∇𝑝𝑛 +

1

2𝑅𝑒
[∇2𝒖∗ + ∇2𝒖𝑛] + 𝑓

∇2𝜙𝑛+1 =
1

∆𝑡
∇ ∙ 𝒖∗                                                                                                       

𝒖𝑛+1 = 𝒖∗ − ∆𝑡∇𝜙𝑛+1,                                                                                               

𝑝𝑛+1 = 𝑝𝑛 + 𝜙𝑛+1 −
1

2𝑅𝑒
∇ ∙ 𝒖∗                                                                               

 (2.22) 

 

Algorithm 1 Rotational incremental pressure-correction projection method 

Initialize 𝒖−1, 𝒖0, 𝑝0 and 𝑡 = 0, iteration 

For n = 1: iteration 

       Solving the Helmholtz equations to get 𝒖∗ 
       𝒖𝑛−1 ← 𝒖𝑛  

       Solving the Poisson equation to get 𝜙𝑛+1 

       Update 𝒖𝑛+1 and 𝑝𝑛+1 

       𝑝𝑛 ← 𝑝𝑛+1 

end 

 

2.3 Courant-Friedrichs-Lewy Condition 

The Courant-Friedrichs-Lewy (CFL) condition is a necessary condition for the stability of any 

explicit one-level numerical scheme (Courant & Lewy, 1928). It establishes that the domain of 

dependence on the solution is contained in the numerical domain of dependence on the numerical 

method. In this work, for the low Reynolds, the CFL as 
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Δ𝑡 ≤
𝑅𝑒

2
(
1

∆𝑥2
+

1

∆𝑦2
)
−1

 (2.23) 

For the high Reynolds, the CFL as 

Δ𝑡 ≤ 𝑚𝑖𝑛 {
∆𝑥

max (𝑢)
,

∆𝑦

max (𝑣)
 } (2.24) 

where 𝑅𝑒 =
𝑈𝐿

𝜈
, 𝐿, 𝑈 are the reference length and velocity, to construct the momentum equations 

non-dimensional. The 𝑢 and 𝑣 are velocities along 𝑥-direction and 𝑦-direction. 

2.4 Weighted Essentially Non-Oscillatory scheme (WENO) 

The convective term expressed in the advective form is discretized by using a series of high-order 

WENO schemes.  The 3rd, 5th, and 7th order WENO schemes are illustrated for finite difference 

discretization of the convective terms. Finite difference WENO scheme is concerned with the 

accurate and stable solution interpolation at the cell-midpoint based on the combination of the 

reconstructions on the selected sub-stencils. Depending on the sign of the convective velocity, the 

appropriate upwind biased sub-stencil construction is illustrated for a series of high-order WENO 

schemes.  

 

Fig. 1. The staggered mesh in two dimensions 

Based on the 3rd, 5th, and 7th WENO schemes, the gradients of the convection term can be expressed 

as 
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𝜕𝑓

𝜕𝜂
=
𝑓𝑖+1/2 − 𝑓𝑖−1/2

ℎ
 (2.25) 

where ℎ is the distance between node 𝑖 + 1/2 and node 𝑖 − 1/2. The fluxes reconstructed 𝑓 can 

be written in the following form [11, 12, 13, 14]. 

𝑓
𝑖+
1
2

𝐿 =∑𝑤𝑘𝑓𝑖+1/2
𝑘

𝑁

𝑘=0

, 𝑓
𝑖−
1
2

𝑅 =∑𝑤𝑘𝑓𝑖−1/2
𝑘

𝑁

𝑘=0

  

Where 𝑓
𝑖+

1

2

𝐿 , 𝑓
𝑖−

1

2

𝑅 , and 𝑤𝑘  are polynomial reconstructed of 𝑓  on the 𝑘𝑡ℎ  set of stencils, the 

nonlinear weight of each sub-stencils. Nonlinear weights are defined as 

𝑤𝑘 =
𝛼𝑘

∑ 𝛼𝑘
𝑁
𝑘=0

 , 𝛼𝑘 =
𝑑𝑘

(𝐼𝑆𝑘
𝐿/𝑅

+ 𝜖)
2 

Where 𝐼𝑆𝑘
𝐿/𝑅
 , 𝑑𝑘 and 𝑁 donate smoothness indicators, the optimal linear weighting coefficients, 

and polynomials of degree. It is typical to set 𝜖 = 10−6 for eliminating zero denominators. 

As previously stated, the signs of velocities in convective terms can naturally determine upwinding 

(Zhang & L. Jackson, 2009; A.Shetty, C.Fisher, Chunekar, & Frankel, 2010; Mishra, Par´es-Pulido, 

& Pressel, 2021). We use 𝑢𝑖,𝑗 to calculate 𝑓
𝑖+

1

2

𝐿  and 𝑓
𝑖−
1

2

𝑅  , following the upwind with a sign of 𝑢𝑖,𝑗 

as 

𝑓𝑖+1/2 = {

𝑓
𝑖+
1
2

𝐿                     𝑖𝑓 𝑢𝑖,𝑗 ≥ 0

𝑓
𝑖+
1
2
 

𝑅                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, 𝑓𝑖−1/2 = {

𝑓
𝑖−
1
2

𝐿               𝑖𝑓 𝑢𝑖,𝑗 ≥ 0

𝑓
𝑖−
1
2
 

𝑅             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

A polynomial is reconstructed from the solution's cell averages in each stencil, and then a weighted 

combination of all these polynomials is created. The smoothness of each polynomial in each stencil 

is considered when calculating the nonlinear weights. 

In this section, we are going to present the WENO reconstruction in third, fifth, and seventh order 

for the following interpolation points 𝑖 + 1/2 and 𝑖 − 1/2. 

2.4.1 Third-order of WENO scheme 

The 3rd WENO scheme (WENO3) employs two sub-stencils, and each has two-point. To 

approximate the value of the function 𝑓 at the points 𝑖 + 1/2 and 𝑖 − 1/2 by using polynomials 

of degree 𝑁 = 1 with the final numerical flux resulting from a convex combination of two local 

solutions on the sub-stencils.  

The stencil to get the corresponding values:  𝑆0 = {𝑖 − 1, 𝑖}, 𝑆1 = {𝑖, 𝑖 + 1}  
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Fig. 2. Interpolation stencil for the WENO3 scheme, 𝑆0, 𝑆1 are the 2 stencils 

The corresponding interpolated values for the point at 𝑖 + 1/2 and 𝑖 − 1/2 are 

𝑓𝑖+1/2
0 = −

1

2
𝑓𝑖−1 +

3

2
𝑓𝑖 , 𝑓𝑖−1/2

0 = −
1

2
𝑓𝑖+1 +

3

2
𝑓𝑖 

𝑓𝑖+1/2
1 =

1

2
𝑓𝑖 +

1

2
𝑓𝑖+1, 𝑓𝑖−1/2

1 =
1

2
𝑓𝑖 +

1

2
𝑓𝑖−1 

Thus, the reconstruction can be written as 

𝑓
𝑖+
1
2

𝐿 = 𝑤0𝑓𝑖+1/2
0 + 𝑤1𝑓𝑖+1/2

1  

𝑓
𝑖−
1
2

𝑅 = 𝑤0𝑓𝑖−1/2
0 + 𝑤1𝑓𝑖−1/2

1  

The smoothness indicators  

𝐼𝑆0
𝐿 = (𝑓𝑖 − 𝑓𝑖−1)

2, 𝐼𝑆0
𝑅 = (𝑓𝑖+1 − 𝑓𝑖)

2 

𝐼𝑆1
𝐿 = (𝑓𝑖+1 − 𝑓𝑖)

2, 𝐼𝑆1
𝑅 = (𝑓𝑖 − 𝑓𝑖−1)

2 

Where 𝑓 is a local solution on each sub-stencil. The optimal linear weighting coefficients are 𝑑0 =
1/3 and 𝑑1 = 2/3.  

2.4.2 Fifth-order of the WENO scheme  

The 5th order WENO scheme (WENO5) employs three sub-stencils, and each has three-point. To 

approximate the value of the function 𝑓 at the points 𝑖 + 1/2 and 𝑖 − 1/2 by using polynomials 

of degree 𝑁 = 2 with the final numerical flux resulting from a convex combination of two local 

solutions on the sub-stencils.  

The stencil to get the corresponding values:  𝑆0 = {𝑖 − 2, 𝑖 − 1, 𝑖}, 𝑆1 = {𝑖 − 1, 𝑖, 𝑖 + 1}, 𝑆2 =
{𝑖, 𝑖 + 1, 𝑖 + 2}. 
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Fig. 3. Interpolation stencil for the WENO5 scheme, 𝑆0, 𝑆1, 𝑆2 are the 3 stencils  

The corresponding interpolated values for the point at 𝑖 + 1/2 and 𝑖 − 1/2 are 

𝑓𝑖+1/2
0 =

2

6
𝑓𝑖−2 −

7

6
𝑓𝑖−1 +

11

6
𝑓𝑖, 𝑓𝑖−1/2

0 =
2

6
𝑓𝑖+2 −

7

6
𝑓𝑖+1 +

11

6
𝑓𝑖 

𝑓𝑖+1/2
1 = −

1

6
𝑓𝑖−1 +

5

6
𝑓𝑖 +

2

6
𝑓𝑖+1, 𝑓𝑖−1/2

1 = −
1

6
𝑓𝑖+1 +

5

6
𝑓𝑖 +

2

6
𝑓𝑖−1 

𝑓𝑖+1/2
2 =

2

3
𝑓𝑖 +

5

6
𝑓𝑖+1 −

1

6
𝑓𝑖+2, 𝑓𝑖−1/2

2 =
2

6
𝑓𝑖 +

5

6
𝑓𝑖−1 −

1

6
𝑓𝑖−2 

Thus, the reconstruction can be written as 

𝑓
𝑖+
1
2

𝐿 = 𝑤0𝑓𝑖+1/2
0 + 𝑤1𝑓𝑖+1/2

1 + 𝑤2𝑓𝑖+1/2
2  

𝑓
𝑖−
1
2

𝑅 = 𝑤0𝑓𝑖−1/2
0 + 𝑤1𝑓𝑖−1/2

1 + 𝑤2𝑓𝑖−1/2
2  

The smoothness indicators are defined as, for the point at 𝑖 + 1/2 

𝐼𝑆0
𝐿 =

13

12
(𝑓𝑖−2 − 2𝑓𝑖−1 + 𝑓𝑖)

2    +
1

4
(𝑓𝑖−2 − 4𝑓𝑖−1 + 3𝑓𝑖)

2 

𝐼𝑆1
𝐿 =

13

12
(𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1)

2 +
1

4
(𝑓𝑖−1 − 𝑓𝑖+1)

2 

𝐼𝑆2
𝐿 =

13

12
(𝑓𝑖 − 2𝑓𝑖+1 + 𝑓𝑖+2)

2 +
1

4
(3𝑓𝑖 − 4𝑓𝑖+1 + 𝑓𝑖+2)

2 

 

For the point at 𝑖 − 1/2 are  

𝐼𝑆0
𝑅 =

13

12
(𝑓𝑖+2 − 2𝑓𝑖+1 + 𝑓𝑖)

2  +
1

4
(𝑓𝑖+2 − 4𝑓𝑖+1 + 3𝑓𝑖)

2 

𝐼𝑆1
𝑅 =

13

12
(𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1)

2 +
1

4
(𝑓𝑖+1 − 𝑓𝑖−1)

2 

𝐼𝑆2
𝑅 =

13

12
(𝑓𝑖 − 2𝑓𝑖−1 + 𝑓𝑖−2)

2  +
1

4
(3𝑓𝑖 − 4𝑓𝑖−1 + 𝑓𝑖−2)

2 

 

The optimal linear weighting coefficients are 𝑑0 =
1

10
, 𝑑1 =

6

10
, 𝑑2 =

3

10
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2.4.3 Seventh-order of the WENO scheme 

The 7th order WENO scheme (WENO7) employs four sub-stencils, and each has four-point. To 

approximate the value of the function 𝑓 at the points 𝑖 + 1/2 and 𝑖 − 1/2 by using polynomials 

of degree 𝑁 = 2 with the final numerical flux resulting from a convex combination of two local 

solutions on the sub-stencils.  

The stencil to get the corresponding values:  𝑆0 = {𝑖 − 3, 𝑖 − 2, 𝑖 − 1, 𝑖}, 𝑆1 = {𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 +
1}, 𝑆2 = {𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2}, 𝑆3 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3}. 

 

Fig. 4. Interpolation stencil for the WENO7 scheme, 𝑆0, 𝑆1, 𝑆2, 𝑆3 are the 4 stencils 

The corresponding interpolated values for the point at 𝑖 + 1/2 are  

𝑓𝑖+1/2
0 = −

3

12
𝑓𝑖−3 +

13

12
𝑓𝑖−2 −

23

12
𝑓𝑖−1 +

25

12
𝑓𝑖 

𝑓𝑖+1/2
1 =

1

12
𝑓𝑖−2 −

5

12
𝑓𝑖−1 +

13

12
𝑓𝑖 +

3

12
𝑓𝑖+1 

𝑓𝑖+1/2
2 = −

1

12
𝑓𝑖−1 +

7

12
𝑓𝑖 +

7

12
𝑓𝑖+1 −

1

12
𝑓𝑖+2 

𝑓𝑖+1/2
3 =

1

4
𝑓𝑖 +

13

12
𝑓𝑖+1 −

5

12
𝑓𝑖+2 +

1

12
𝑓𝑖+3 

The corresponding interpolated values for the point at 𝑖 − 1/2 are  

𝑓𝑖−1/2
0 = −

3

12
𝑓𝑖+3 +

13

12
𝑓𝑖+2 −

23

12
𝑓𝑖+1 +

25

12
𝑓𝑖 

𝑓𝑖−1/2
1 =

1

12
𝑓𝑖+2 −

5

12
𝑓𝑖+1 +

13

12
𝑓𝑖 +

3

12
𝑓𝑖−1 

𝑓𝑖−1/2
2 = −

1

12
𝑓𝑖+1 +

7

12
𝑓𝑖 +

7

12
𝑓𝑖−1 −

1

12
𝑓𝑖−2 

𝑓𝑖−1/2
3 =

1

4
𝑓𝑖 +

13

12
𝑓𝑖−1 −

5

12
𝑓𝑖−2 +

1

12
𝑓𝑖−3 
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Thus, the reconstruction can be written as 

𝑓
𝑖+
1
2

𝐿 = 𝑤0𝑓𝑖+1/2
0 + 𝑤1𝑓𝑖+1/2

1 + 𝑤2𝑓𝑖+1/2
2 + 𝑤3𝑓𝑖+1/2

3  

𝑓
𝑖−
1
2

𝑅 = 𝑤0𝑓𝑖−1/2
0 + 𝑤1𝑓𝑖−1/2

1 + 𝑤2𝑓𝑖−1/2
2 + 𝑤3𝑓𝑖−1/2

3  

In which the smoothness indicators for the four-candidate-stencil of  𝑓
𝑖+

1

2

𝐿   is defined as 

𝐼𝑆0
𝐿 = 𝑓𝑖−3(547𝑓𝑖−3 − 3882𝑓𝑖−2 + 4642𝑓𝑖−1 − 185𝑓𝑖) 

            +𝑓𝑖−2(7043𝑓𝑖−2 − 17246𝑓𝑖−1 + 7042𝑓𝑖) 

            +𝑓𝑖−1(11003𝑓𝑖−1 − 9402𝑓𝑖) + 𝑓𝑖(2107𝑓𝑖) 
 

𝐼𝑆1
𝐿 = 𝑓𝑖−2(267𝑓𝑖−2 − 1642𝑓𝑖−1 + 1602𝑓𝑖 − 494𝑓𝑖+1) 

            +𝑓𝑖−1(2843𝑓𝑖−1 − 5966𝑓𝑖 + 1922𝑓𝑖+1) 

            +𝑓𝑖(3443𝑓𝑖 − 2522𝑓𝑖+1) + 𝑓𝑖+1(547𝑓𝑖+1) 
 

𝐼𝑆2
𝐿 = 𝑓𝑖−1(547𝑓𝑖−1 − 2522𝑓𝑖 + 1922𝑓𝑖+1 − 494𝑓𝑖+2) 

            +𝑓𝑖(3443𝑓𝑖 − 5966𝑓𝑖+1 + 1602𝑓𝑖+2) 

            +𝑓𝑖+1(2843𝑓𝑖+1 − 1642𝑓𝑖+2) + 𝑓𝑖+2(267𝑓𝑖+2) 
 

𝐼𝑆3
𝐿 = 𝑓𝑖(2107𝑓𝑖 − 9402𝑓𝑖+1 + 7042𝑓𝑖+2 − 1854𝑓𝑖+3) 

            +𝑓𝑖+1(11003𝑓𝑖+1 − 17246𝑓𝑖+2 + 4642𝑓𝑖+3) 

            +𝑓𝑖+2(7043𝑓𝑖+2 − 3882𝑓𝑖+3) + 𝑓𝑖+3(547𝑓𝑖+3) 
 

The smoothness indicators for the 𝑓
𝑖−

1

2

𝑅  

𝐼𝑆0
𝑅 = 𝑓𝑖+3(547𝑓𝑖+3 − 3882𝑓𝑖+2 + 4642𝑓𝑖+1 − 185𝑓𝑖) 

            +𝑓𝑖+2(7043𝑓𝑖+2 − 17246𝑓𝑖+1 + 7042𝑓𝑖) 

            +𝑓𝑖+1(11003𝑓𝑖+1 − 9402𝑓𝑖) + 𝑓𝑖(2107𝑓𝑖) 
 

𝐼𝑆1
𝑅 = 𝑓𝑖+2(267𝑓𝑖−2 − 1642𝑓𝑖+1 + 1602𝑓𝑖 − 494𝑓𝑖−1) 

            +𝑓𝑖+1(2843𝑓𝑖+1 − 5966𝑓𝑖 + 1922𝑓𝑖−1) 

            +𝑓𝑖(3443𝑓𝑖 − 2522𝑓𝑖−1) + 𝑓𝑖−1(547𝑓𝑖−1) 
 

𝐼𝑆2
𝑅 = 𝑓𝑖+1(547𝑓𝑖+1 − 2522𝑓𝑖 + 1922𝑓𝑖−1 − 494𝑓𝑖−2) 

             +𝑓𝑖(3443𝑓𝑖 − 5966𝑓𝑖−1 + 1602𝑓𝑖−2) 

             +𝑓𝑖−1(2843𝑓𝑖−1 − 1642𝑓𝑖−2) + 𝑓𝑖−2(267𝑓𝑖−2) 
 

𝐼𝑆3
𝑅 = 𝑓𝑖(2107𝑓𝑖 − 9402𝑓𝑖−1 + 7042𝑓𝑖−2 − 1854𝑓𝑖−3) 

            +𝑓𝑖−1(11003𝑓𝑖−1 − 17246𝑓𝑖−2 + 4642𝑓𝑖−3) 

            +𝑓𝑖−2(7043𝑓𝑖−2 − 3882𝑓𝑖−3) + 𝑓𝑖−3(547𝑓𝑖−3) 
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The optimal linear weights are given by 𝑑0 =
1

35
, 𝑑1 =

12

35
, 𝑑2 =

18

35
, 𝑑3 =

4

35
 

2.5 Central difference scheme (CD) 

The diffusive terms are temporally discretized by the implicit Crank-Nicolson scheme.  Hence, a 

linear system must be solved for the intermediate velocity fields. The standard central difference 

scheme is selected for the spatial discretization of the viscous term mainly because of its simplicity 

and computational efficiency.  Depending on the choice of the WENO scheme for the nonlinear 

convection term, the order of the central difference (CD) scheme is also increased accordingly, i.e., 

second, fourth, and sixth orders. To be presented in the next section, this combination of WENO 

and CD is indeed quite efficient yet preserves the expected accuracy.   

For the completeness of the discretization scheme, the central difference formulas of successive 

order of accuracy are presented briefly. By the symmetric Taylor series expansions concerning the 

point of interest (𝑖), one can obtain central difference approximations of the second derivative 

𝑓𝑖+3 = 𝑓𝑖 +
𝜕𝑓

𝜕𝜂
3ℎ +

1

2!

𝜕2𝑓

𝜕𝜂2
9ℎ2 +

1

3!

𝜕3𝑓

𝜕𝜂3
27ℎ3 +

1

4!

𝜕4𝑓

𝜕𝜂4
81ℎ4 +⋯ 

𝑓𝑖+2 = 𝑓𝑖 +
𝜕𝑓

𝜕𝜂
2ℎ +

1

2!

𝜕2𝑓

𝜕𝜂2
4ℎ2 +

1

3!

𝜕3𝑓

𝜕𝜂3
8ℎ3 +

1

4!

𝜕4𝑓

𝜕𝜂4
16ℎ4 +⋯ 

𝑓𝑖+1 = 𝑓𝑖 +
𝜕𝑓

𝜕𝜂
ℎ +

1

2!

𝜕2𝑓

𝜕𝜂2
ℎ2 +

1

3!

𝜕3𝑓

𝜕𝜂3
ℎ3 +

1

4!

𝜕4𝑓

𝜕𝜂4
ℎ4 +⋯ 

𝑓𝑖−1 = 𝑓𝑖 −
𝜕𝑓

𝜕𝜂
ℎ +

1

2!

𝜕2𝑓

𝜕𝜂2
ℎ2 −

1

3!

𝜕3𝑓

𝜕𝜂3
ℎ3 +

1

4!

𝜕4𝑓

𝜕𝜂4
ℎ4 +⋯ 

𝑓𝑖−2 = 𝑓𝑖 −
𝜕𝑓

𝜕𝜂
2ℎ +

1

2!

𝜕2𝑓

𝜕𝜂2
4ℎ2 −

1

3!

𝜕3𝑓

𝜕𝜂3
8ℎ3 +

1

4!

𝜕4𝑓

𝜕𝜂4
16ℎ4 +⋯ 

𝑓𝑖+3 = 𝑓𝑖 −
𝜕𝑓

𝜕𝜂
3ℎ +

1

2!

𝜕2𝑓

𝜕𝜂2
9ℎ2 −

1

3!

𝜕3𝑓

𝜕𝜂3
27ℎ3 +

1

4!

𝜕4𝑓

𝜕𝜂4
81ℎ4 +⋯ 

For instance, adding the two expansions 𝑓𝑖+1 and 𝑓𝑖−1, gives 

𝑓𝑖+1 + 𝑓𝑖−1 = 2𝑓𝑖 +
𝜕2𝑓

𝜕𝜂2
ℎ2 +

1

16

𝜕4𝑓

𝜕𝜂4
ℎ4 +⋯ 

 

(2.26) 

So that,  

𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1
ℎ2

−
𝜕2𝑓

𝜕𝜂2
=
1

16

𝜕4𝑓

𝜕𝜂4
ℎ4 +⋯ 
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Hence, 
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2
=

𝜕2𝑓

𝜕𝜂2
 is a second-order centred differential approximation of the second 

derivative 
𝜕2𝑓

𝜕𝜂2
, so second-order centred differential (CD2) as 

𝜕2𝑓

𝜕𝜂2
=
𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

ℎ2
 

Similarly, adding the two expansions  𝑓𝑖+2, 𝑓𝑖−2, gives 

𝑓𝑖+2 + 𝑓𝑖−2 = 2𝑓𝑖 +
𝜕2𝑓

𝜕𝜂2
4ℎ2 +

1

16

𝜕4𝑓

𝜕𝜂4
16ℎ4 +⋯ 

 

(2.27) 

Taking equation (2.26) multiple by 16, we get 

16𝑓𝑖+1 + 16𝑓𝑖−1 = 32𝑓𝑖 +
𝜕2𝑓

𝜕𝜂2
16ℎ2 +

1

16

𝜕4𝑓

𝜕𝜂4
16ℎ4 +⋯ 

 

(2.28) 

Subtracting equations (2.28) and (2.27), we obtained the fourth-order centred differential 

approximation (CD4) for the second derivative 

𝜕2𝑓

𝜕𝜂2
=
−𝑓𝑖+2 + 16𝑓𝑖+1 − 30𝑓𝑖 + 16𝑓𝑖−1 − 𝑓𝑖−2

12ℎ2
 

By adding the two expansions  𝑓𝑖+3 and 𝑓𝑖−3, and time with 2 gives 

2𝑓𝑖+3 + 2𝑓𝑖−3 = 4𝑓𝑖 +
𝜕2𝑓

𝜕𝜂2
18ℎ2 +

1

24

𝜕4𝑓

𝜕𝜂4
162ℎ4 +⋯ 

 

(2.29) 

In the equations (2.27) and (2.26) donated multiple by 27 and 270, we obtained 

27𝑓𝑖+2 + 27𝑓𝑖−2 = 54𝑓𝑖 +
𝜕2𝑓

𝜕𝜂2
108ℎ2 +

1

16

𝜕4𝑓

𝜕𝜂4
432ℎ4 +⋯ 

 

(2.30) 

270𝑓𝑖+1 + 270𝑓𝑖−1 = 540𝑓𝑖 +
𝜕2𝑓

𝜕𝜂2
270ℎ2 +

1

16

𝜕4𝑓

𝜕𝜂4
270ℎ4 +⋯ 

 

(2.31) 

Subtracting equation (2.31) and (2.30), so 

And then adding equation (2.29), we obtained the sixth order of centred differential approximation 

(CD6) for the second derivative 

𝜕2𝑓

𝜕𝜂2
=
2𝑓𝑖+3 − 27𝑓𝑖+2 + 270𝑓𝑖+1 − 490𝑓𝑖 + 270𝑓𝑖−1 − 27𝑓𝑖−2 + 2𝑓𝑖−3

180ℎ2
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3 Parallel computing 

3.1 Overview of PETSc 

This thesis uses PETSc for the parallel implementation of simulation. PETSc (Portable, Extensible 

Tool kit for Scientific Computation) is a software library for parallel computing developed at 

Argonne National Laboratory. Implementing efficient algorithms for modern scientific 

applications requires the use of a swath of concepts in computer science and numerical analysis, 

and it would be impractical and ineffective for one person to implement everything. PETSc 

provides data structures and routines for creating efficient, scalable solution methods for problems 

that can be modelled by partial differential equations (Balay, et al., 2015). Since very many 

problems in science can be modelled by PDEs, PETSc has been used frequently in the academic 

community (Balay, et al., 2015). Some of the basic data structures in PETSc include matrices, 

vectors, and index sets. Higher-level objects like unstructured mesh utilities, iterative linear solvers, 

and preconditioners take the basic data structures as inputs. Parallelism of data structures and 

numerical routines is accomplished with the Message Passing Interface (MPI), which PETSc uses 

behind the scenes. MPI is a message passing library for parallel computing based on the consensus 

and input of industry leaders in high-performance computing. Programming a scientific 

application from scratch using MPI is a difficult endeavour, and PETSc aims to hide most of that 

effort from the scientist. For an accomplished PETSc programmer, few if any calls to MPI are 

required to design a parallel program. 

3.2 Parallel Implementation 

Principally, PETSc is used to solve the linear systems resulting from the Navier-Stokes equations. 

The linear system coefficients into PETSc matrices and vectors, which can then be used with 

PETSc Krylov Subspace (KSP) routines. There are several challenges to this approach that are 

closely related:  

(1) Storing the data associated with each nodal point in the grid  

(2) Communicating these data between processors when necessary  

(3) Relating the 3D mesh of nodal points with the resulting matrix of coefficients in parallel and 

extensible. PETSc provides a set of data management routines for distributed array (𝐷𝑀𝐷𝐴) that 

addresses all three challenges. 

PETSc 𝐷𝑀𝐷𝐴 object must be provided with the number of nodal points in each direction, the 

stencil type and width, and the boundary condition in each direction. Given this information, 

PETSc determines an efficient way of partitioning the mesh among processors. The 𝐷𝑀𝐷𝐴 object 

is initialized using 𝐷𝑀𝐷𝐴𝐶𝑟𝑒𝑎𝑡𝑒1() for one-dimensional, 𝐷𝑀𝐷𝐴𝐶𝑟𝑒𝑎𝑡𝑒2()for two-dimensional, 

and 𝐷𝑀𝐷𝐴𝐶𝑟𝑒𝑎𝑡𝑒3() for three-dimensional. 𝐷𝑀𝐷𝐴 creation as 

𝐷𝑀𝐷𝐴𝐶𝑟𝑒𝑎𝑡𝑒2𝑑(𝑀𝑃𝐼_𝐶𝑜𝑚𝑚 𝑐𝑜𝑚𝑚,𝐷𝑀𝐷𝐴𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑇𝑦𝑝𝑒 𝑋𝑝𝑒𝑟𝑖𝑜𝑑, 

 𝐷𝑀𝐷𝐴𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑇𝑦𝑝𝑒 𝑌𝑝𝑒𝑟𝑖𝑜𝑑, 𝐷𝑀𝐷𝐴𝑆𝑡𝑒𝑛𝑐𝑖𝑙𝑇𝑦𝑝𝑒 𝑠𝑡,               
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 𝑖𝑛𝑡 𝑁𝑥, 𝑖𝑛𝑡 𝑁𝑦, 𝑖𝑛𝑡 𝑛, 𝑛𝑖𝑡 𝑚, 𝑖𝑛𝑡 𝑑𝑜𝑓, 𝑖𝑛𝑡 𝑠, 𝑖𝑛𝑡 𝑙𝑥, 𝑖𝑛𝑡 𝑙𝑦, 𝐷𝑀 𝑑𝑎)  

with 𝑐𝑜𝑚𝑛  is PETSc communicator (PETSC_COMM_WORLD and PETSC_COMM_SELF). 

𝑋𝑝𝑒𝑟𝑖𝑜𝑑  and 𝑌𝑝𝑒𝑟𝑖𝑜𝑑  are the types of ghost nodes such as DM_BOUNDARY_PERIODIC, 

DM_BOUNDARY_NODE, and DM_BOUNDARY_GHOSTED.  

Stencil type is 𝑠𝑡 as DMDA_STENCIL_STAR or DMDA_STENCIL_BOX, and where 𝑁𝑥, 𝑁𝑦, 

𝑛 , 𝑚 , 𝑑𝑜𝑓  and 𝑠  donated global dimension in each direction, number of processors in each 

direction, number of degrees of freedom per node, and stencil width. 

Example: 

𝐷𝑀𝐷𝐴𝐶𝑟𝑒𝑎𝑡𝑒2𝑑(𝑃𝐸𝑇𝑆𝐶_𝐶𝑂𝑀𝑀_𝑊𝑂𝑅𝐿𝐷,𝐷𝑀_𝐵𝑂𝑈𝑁𝐷𝐴𝑅𝑌_𝑃𝐸𝑅𝐼𝑂𝐷𝐼𝐶, 

𝐷𝑀_𝐵𝑂𝑈𝑁𝐷𝐴𝑅𝑌_𝑃𝐸𝑅𝐼𝑂𝐷𝐼𝐶, 𝐷𝑀𝐷𝐴_𝑆𝑇𝐸𝑁𝐶𝐼𝐿_𝑆𝑇𝐴𝑅, 𝑛𝑥, 𝑛𝑦,               

𝑃𝐸𝑇𝑆𝐶_𝐷𝐸𝐶𝐼𝐷𝐸, 𝑃𝐸𝑇𝑆𝐶_𝐷𝐸𝐶𝐼𝐷𝐸, 1, 𝑠𝑡𝑒𝑛𝑐𝑖𝑙_𝐶𝐷,𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, &𝑑𝑎); 

𝐷𝑀𝑆𝑒𝑡𝐹𝑟𝑜𝑚𝑂𝑝𝑡𝑖𝑜𝑛𝑠(𝑑𝑎); 

𝐷𝑀𝑆𝑒𝑡𝑈𝑝(𝑑𝑎); 

𝐷𝑀𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑎𝑡𝑟𝑖𝑥(𝑑𝑎, &𝐴); 

𝑀𝑎𝑡𝑆𝑒𝑡𝐹𝑟𝑜𝑚𝑂𝑝𝑡𝑖𝑜𝑛𝑠(𝐴); 

𝐷𝑀𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟(𝑑𝑎, &𝑏); 

𝑉𝑒𝑐𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝑏, &𝑥); 

The details of the resulting decomposition will depend on the number of nodes and the number of 

processors used. For a four processors case, 𝐷𝑀𝐷𝐴 might decompose the domain as follows 

 

Fig. 5. Local position on each process for four processors 
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One of the more useful features of 𝐷𝑀𝐷𝐴 is the ability to associate matrices and vectors with 

domain decomposition. A matrix A, solution vector x and right-hand side vector b can be 

associated with the da object created in Example 1. 

Normally, the user must manually decompose and parallelize the computational domain and then 

parallelize matrices and vectors in a manner that is conformal with the domain parallelization. In 

example 1, this process is handled automatically. Furthermore, when constructing the matrix, it is 

usually necessary to carefully map the domain indices to matrix rows and columns. PETSc offers 

the MatStencil data structure as a way to automatically compute these index transformations. For 

example, at node (𝑖, 𝑗) in the interior of the domain, a matrix row corresponding to the discrete 2D 

Laplacian could be entered as follows 

𝑃𝑒𝑡𝑠𝑐𝐼𝑛𝑡 𝑚𝑥,𝑚𝑦, 𝑥𝑚, 𝑦𝑚, 𝑥𝑠, 𝑦𝑠; 

𝑃𝑒𝑡𝑠𝑐𝑆𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙[5], 𝑙ℎ𝑠[5]; 

𝑀𝑎𝑡𝑆𝑡𝑒𝑛𝑐𝑖𝑙 𝑟𝑜𝑤, 𝑐𝑜𝑙[5]; 

𝑓𝑜𝑟 (𝑗 = 𝑦𝑠;  𝑗 < (𝑦𝑠 + 𝑦𝑚);  𝑗 + +){ 

 𝑓𝑜𝑟 (𝑖 = 𝑥𝑠;  𝑖 < (𝑥𝑠 + 𝑥𝑚);  𝑖 + +){ 

  𝑟𝑜𝑤. 𝑖 =  𝑖;  𝑟𝑜𝑤. 𝑗 =  𝑗; 

  𝑣𝑎𝑙[0]  =  𝑙ℎ𝑠[0];  𝑐𝑜𝑙[0]. 𝑖 =  𝑖;    𝑐𝑜𝑙[0]. 𝑗 =  𝑗 − 1; 

  𝑣𝑎𝑙[1]  =  𝑙ℎ𝑠[1];  𝑐𝑜𝑙[1]. 𝑖 =  𝑖 − 1;  𝑐𝑜𝑙[1]. 𝑗 =  𝑗; 

  𝑣𝑎𝑙[2] =  𝑙ℎ𝑠[2];  𝑐𝑜𝑙[2]. 𝑖 =  𝑖;    𝑐𝑜𝑙[2]. 𝑗 =  𝑗; 

  𝑣𝑎𝑙[3]  =  𝑙ℎ𝑠[3];  𝑐𝑜𝑙[3]. 𝑖 =  𝑖 + 1;  𝑐𝑜𝑙[3]. 𝑗 =  𝑗; 

  𝑣𝑎𝑙[4]  =  𝑙ℎ𝑠[4];  𝑐𝑜𝑙[4]. 𝑖 =  𝑖;    𝑐𝑜𝑙[4]. 𝑗 =  𝑗 + 1; 

  𝑀𝑎𝑡𝑆𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠𝑆𝑡𝑒𝑛𝑐𝑖𝑙(𝑈, 1, &𝑟𝑜𝑤, 5, 𝑐𝑜𝑙, 𝑣𝑎𝑙, 𝐼𝑁𝑆𝐸𝑅𝑇_𝑉𝐴𝐿𝑈𝐸𝑆); 

 } 

} 

𝑀𝑎𝑡𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝐵𝑒𝑔𝑖𝑛(𝑈,𝑀𝐴𝑇_𝐹𝐼𝑁𝐴𝐿_𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌); 

𝑀𝑎𝑡𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝐸𝑛𝑑(𝑈,𝑀𝐴𝑇_𝐹𝐼𝑁𝐴𝐿_𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌); 

Because matrix A was associated with the 𝐷𝑀𝐷𝐴 object da at initialization, PETSc can map the 

node indices (𝑖, 𝑗) to the corresponding matrix rows and columns. In addition, boundary conditions 

are more easily implemented using 𝐷𝑀𝐷𝐴 . For periodic boundary conditions, 𝐷𝑀𝐷𝐴  maps 

indices that are too large or small to the other edge of the domain. 

For high-fidelity simulations, the numerical solution of these systems is intractable without the use 

of parallel computing. PETSc and MPI are used to parallelize the data structures and iteratively 
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solve the linear systems. However, special care is required for the all-Neumann boundary condition 

case for the Poisson equation, which results in a singular system. This occurs, for example, when 

velocities are prescribed at all boundaries of the domain. To remedy this, PETSc allows the 

removal of the null space of constant functions, which makes the problem nonsingular. 

𝑀𝑎𝑡𝑁𝑢𝑙𝑙𝑆𝑝𝑎𝑐𝑒𝐶𝑟𝑒𝑎𝑡𝑒(𝑃𝐸𝑇𝑆𝐶_𝐶𝑂𝑀𝑀_𝑊𝑂𝑅𝐿𝐷, 𝑃𝐸𝑇𝑆𝐶_𝑇𝑅𝑈𝐸, 0,0, &𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒); 

𝑀𝑎𝑡𝑁𝑢𝑙𝑙𝑆𝑝𝑎𝑐𝑒𝑅𝑒𝑚𝑜𝑣𝑒(𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒, 𝑏); 

𝑀𝑎𝑡𝑁𝑢𝑙𝑙𝑆𝑝𝑎𝑐𝑒𝐷𝑒𝑠𝑡𝑟𝑜𝑦(&𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒); 

3.3 A solution method for discretized linear system 

The Semi-Implicit method was used to solve the Navier-Stokes equations. To solve the linear 

systems used PETSc library (Balay, et al., 2015), was known as a library to solve the linear 

equation and for parallel computing used MPI for communications between the CPU cores. In this 

study, we used PETSc Krylov solver (KSP) as iterative methods, which Conjugate Gradient (CG), 

Generalized Minimal Residual (GMRES), Bi-Conjugate Gradient (BICG), etc. As (Shang-Gui, 

Abdellatif, Julien, & Yannick, 2017) shows, CG has the best convergence speed then we decided 

to use the CG method to solve the linear system for both Helmholtz and Poisson equations (shown 

in Algorithm 1) in this study.  

Algorithm 2 The Conjugate Gradient method 

Initial 𝑟 = 𝑏 − 𝐴𝑥, 𝑝 = 𝑟, 𝐸1 = 𝑟𝑇 ∗ 𝑟 

For i = 1: length(b) 

      𝐴𝑝 = 𝐴 ∗ 𝑝 

      𝛼 =
𝐸1

𝑝𝑇∗𝐴𝑝
, 𝑥 = 𝑥 + 𝛼𝑝; 𝑟 = 𝑟 − 𝛼𝐴𝑝  

      𝐸2 = 𝑠𝑞𝑟𝑡(𝑟𝑇 ∗ 𝑟) 
      If 𝐸2 ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

          break 

      end 

      𝑝 = 𝑟 +
𝐸2∗𝐸2

𝐸1
𝑝, 𝐸1 = 𝐸2 

end 

 

The tolerance was set to 1e-15 for relative and 1e-50 for absolute. Additionally, the preconditioners 

can be employed to get more efficiency while solving the linear system, such as Jacobi, Incomplete 

LU factorization (ILU), Multigrid (MG), Algebraic Multigrid (AMG), etc. 
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4 Simulation results 

To achieve the high accuracy of the numerical method described above, the Taylor Green Vortex 

problem (Taylor & Green, 1937) was simulated in this study. To ensure that the methods described 

in the numerical methods section are accurate, first, simulate the Taylor Green Vortex problem in 

two dimensional and then compare the simulation results with the analytical results. Then, choose 

the high-precision methods listed in the previous section to simulate the Taylor Green Vortex 

problem in three-dimensional. 

Boundary conditions applied for this case is periodic boundary condition and body force 𝑓 = 0. 

 

Fig. 6. Boundary condition 

4.1 Two dimensional 

The analytical solution of the two-dimensional Taylor-Green Vortex, unsteady incompressible 

Navier–Stokes equations is given as 

𝑢 = sin(𝑥) cos (𝑦)𝑒−2𝑡/𝑅𝑒 

𝑣 = −cos(𝑥) sin(𝑦) 𝑒−
2𝑡
𝑅𝑒 

𝑝 =
1

4
(cos(2𝑥) + cos(2𝑦))𝑒−4𝑡/𝑅𝑒 

We use  𝑢, 𝑣 and 𝑝 at 𝑡 = 0 as an initial condition for our simulation. The domain is a square of 

length 𝐿 = 2𝜋 as [0, 𝐿] x [0, 𝐿], the time dimensionless interval is 0 ≤ 𝑡 ≤ 𝑇 = 𝜋, and the 𝑅𝑒 =

10000. The periodic boundary condition is applied. 
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Fig. 7. Velocity magnitude and Pressure at t=0 

To measure the order of accuracy, the 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error is computed to assess the order 

of accuracy. 

𝐿2 = √|∑(𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝑢)
2
| /𝑁 

 

(4.1) 

𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 = 𝑚𝑎𝑥|𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝑢| 

 

(4.2) 

where 𝑁 = 𝑁𝑥 × 𝑁𝑦 represents the total number of nodes (with 𝑁𝑥 number of nodes along 𝑥 

direction and 𝑁𝑦 number of nodes along 𝑦 direction). Time step is a varied following number of 

nodes along the x-direction, Δ𝑡 = 𝑇/𝑁𝑥  with 𝑁𝑥 = 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 

𝑁𝑥 = 𝑁𝑦. 

4.1.1 Mesh convergence study with fixed 𝐶𝐹𝐿 

The order of accuracy is measured in all combinations of the discretization schemes, namely 3rd, 

5th, and 7th order WENO schemes and 2nd, 4th, and 6th order CD schemes, which results in a total 

of 9 different discretization schemes.  For each of the schemes, the order of accuracy is measured 

by a mesh refinement study. A series of successively refined meshes of 𝑁𝑥 = 8, 12, 16,⋯ , 256, 

are prepared and the TGV2d problem was solved until 𝑇𝑒𝑛𝑑 = 𝜋.  Due to the semi-implicit nature 

of the time-advancement scheme, the time step must be refined also with the condition of fixed 

𝐶𝐹𝐿 which is 1 4⁄ .  

The errors are measured for the velocity, 𝑢-component only as 𝑣 is almost identical, and pressure 

in the sense of both the 𝐿2 and maximum norms.  By increasing the order of the WENO scheme, 

the results are displayed in Figs. 8-16.  For WENO3, all combination of CD schemes shows 

expected 3rd order accurate velocity both in the 𝐿2 and infinity norms.  Hence the WENO3/CD2 
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would be sufficient for the expected accuracy.  For the pressure, the order of accuracy stays in the 

second-order, which is expected to be so due to the second-order accurate Poisson solver.   

For WENO5, as shown in Fig. 11-13, the trend differs from the previous one. For WENO5/CD2 

case, the order of accuracy starts with fifth-order but as mesh refines the slope plateaus and loses 

the expected order of accuracy. This is due to the low order accuracy of the central difference part. 

As the scheme changes to WENO5/CD4, it shows the expected fifth-order accuracy until the last 

stage of mesh refinement. The WENO5/CD6 shows the same trends, which tells that WENO5/CD4 

would suffice for the accuracy.    

Finally, the most accurate WENO7 schemes are presented in Fig. 14-16. WENO7/CD2 

combination shows the interesting transition. At the early stage of refinement, it starts with the full 

seventh order of accuracy, but as mesh refines the degrade to the second which is the order of 

accuracy from the central counterpart. A similar trend is also observable for the last stage of the 

WENO7/CD4 combination. The best combination for the most accuracy would be concluded as 

the WENO7/CD6 scheme and this is supported by the last plot in Fig. 16. 

 

 

Fig. 8. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO3 with CD2 
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Fig. 9. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO3 with CD4 

 

Fig. 10. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO3 with CD6 
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Fig. 11. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO5 with CD2 

 

Fig. 12. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO5 with CD4 
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Fig. 13. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO5 with CD6 

 

Fig. 14. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO7 with CD2 
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Fig. 15. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO7 with CD4 

 

Fig. 16. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 norm error of WENO7 with CD6 
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To verify the aforementioned results, the raw data of convergence rate is shown in Table 1-3, the 

designed order of accuracy is demonstrated for the third, fifth, and seventh sequence for the 

WENO3, WENO5, and WENO7 schemes when it was coupled with proper CD schemes, i.e., 

WENO(𝑘)/CD(𝑘 − 1).  It should be noted that the order of accuracy applies for the velocities, not 

for the pressure which is second-order due to the Poisson discretization. 

Table 1. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 of the u, p component, and the convergence rate of CD2/WENO3 

Nx 𝑢𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑢∞ 𝑅𝑎𝑡𝑒∞ 𝑝𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑝∞ 𝑅𝑎𝑡𝑒∞ 

8 1.06e-01 - 2.07e-01 - 1.07e-01 - 3.14e-02 - 

16 2.82e-02 1.91 5.86e-02 1.82 2.91e-02 1.88 5.25e-03 1.59 

32 4.86e-03 2.54 1.13e-02 2.37 4.83e-03 2.59 1.88e-03 2.14 

64 8.78e-04 2.47 2.98e-03 1.92 9.01e-04 2.42 4.98e-04 1.97 

128 1.55e-04 2.50 7.28e-04 2.03 1.64e-04 2.46 5.65e-05 1.95 

256 1.59e-05 3.29 6.81e-05 3.42 2.23e-05 2.88 3.19e-05 2.94 

 

Table 2. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 of the u, p component, and the convergence rate of CD4/WENO5 

Nx 𝑢𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑢∞ 𝑅𝑎𝑡𝑒∞ 𝑝𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑝∞ 𝑅𝑎𝑡𝑒∞ 

8 2.06e-02 - 4.24e-02 - 1.84e-02 - 3.14e-02 - 

16 1.13e-03 4.19 2.26e-03 4.23 2.54e-03 2.86 5.25e-03 2.58 

32 4.46e-05 4.66 9.58e-05 4.56 7.03e-04 1.85 1.88e-03 1.48 

64 1.48e-06 4.91 3.09e-06 4.95 1.81e-04 1.96 4.98e-04 1.92 

128 4.70e-08 4.98 9.61e-08 5.01 4.55e-05 1.99 5.65e-05 1.98 

256 1.47e-09 5.00 3.00e-09 5.00 1.15e-05 1.98 3.19e-05 1.98 

 

Table 3. The 𝐿2 and 𝐿𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 of the u, p component, and the convergence rate of CD6/WENO7 

Nx 𝑢𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑢∞ 𝑅𝑎𝑡𝑒∞ 𝑝𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑝∞ 𝑅𝑎𝑡𝑒∞ 

8 4.93e-03 - 9.59e-03 - 8.90e-03 - 1.02e-02 - 

16 4.92e-05 6.65 1.04e-04 6.53 2.91e-03 1.61 7.12e-03 0.51 

32 3.85e-07 7.00 8.71e-07 6.90 7.28e-04 2.00 1.96e-03 1.86 

64 3.72e-09 6.69 1.09e-08 6.32 1.82e-04 2.00 5.01e-04 1.97 

128 4.26e-11 6.45 2.14e-10 5.67 4.55e-05 2.00 1.26e-04 1.99 

256 5.02e-13 6.41 4.44e-12 5.59 1.15e-05 1.98 3.19e-05 1.98 

 

To compare the simulation time of all schemes shown above, we calculated the computational time 

for the resolution of mesh is 256×256, which is the highest mesh in this study. As mentioned in 

the section on numerical method, the conjugate gradient (CG) of Krylov solver with multi-grid 

(MG) as a pre-conditioner is used in this case. The MG method is found to be more efficient when 

used as a preconditioner in conjunction with Krylov solvers instead of a pure solver (Balay, et al., 

2015). The code was run with 4 processors on the desktop, which has device information is “Intel® 

Core™ i7-6700 CPU @ 3.40Ghz 3.41GHz and installed RAM 32.0GB”. The time elapsed wall 

clock time is given in the table below, 
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Table 4. Accuracy preserving capability of the various combination between WENO and CD 

schemes 

Order of accuracy CD2 CD4 CD6 

WENO3 O O O 

WENO5 × O O 

WENO7 × × O 

 

Table 4 summarizes the order of accuracy preservation capability throughout the mesh refinement 

study, where the O stands for the scheme preserving the design accuracy and × for the scheme 

which failed to preserve. The combination corresponds to the diagonal components in the table, 

namely WENO(𝑘) /CD(𝑘 − 1), would be recommended in terms of accuracy and efficiency.  As 

shown in Figs. 8-16, any combination above the diagonal will not lose accuracy but also will not 

gain either.  This is because the dominant error originated from the nonlinear convection term 

discretization where WENO directly concerns, at least for the present test cases.  This implies that 

WENO (𝑘)  /CD (𝑘 − 1)  the combination would be the recommended choice and the upper 

diagonal combination would be just an over-kill. 

4.1.2 Spatial (by fixing ∆𝑡) and temporal accuracy (by fixing ∆𝑥) in an independent 

manner 

In general, the error of a transient flow simulation comes from both the spatial (∆𝑥) and temporal 

(∆𝑡) discretization.  To measure the spatial and temporal order of accuracies independently, the 

mesh refinement and timestep refinement study are presented by fixing the ∆𝑡 and ∆𝑥 respectively.   

For the successful demonstration of the spatial or temporal accuracies independently, the error of 

the other counterpart must remain small enough so that, the ∆𝑥  or  ∆𝑡 refinement exclusively 

affects the spatial and temporal accuracies respectively.       

To guarantee this situation (for the spatial accuracy measurement the temporal error must be small 

enough, and vice versa), the following test case set-up was utilized. The TGV2d problem is 

designed for a longer period of simulation in time simply by lowering the Reynolds number which 

controls the decay rate of the vortex from 𝑅𝑒 = 10,000 to 𝑅𝑒 = 100 with the same end time of 

𝑇𝑒𝑛𝑑 = 𝜋. This change results in essentially an identical case of 𝑅𝑒 = 10,000 simulation until 

𝑇𝑒𝑛𝑑 = 100𝜋, which can be easily verified by the analytical solution.  

For measuring the spatial accuracy exclusively, the time step is a fixed value ∆𝑡 = 2.5 × 10−4 and 

this guarantees the 𝐶𝐹𝐿 ≤ 1 even on the coarsest mesh. As shown in the left columns of Figs. 11-

12, the slope of the plots shows that current algorithms have spatial order of accuracy of 3, 5 and 

close to 7 both in 𝐿2 and infinity norms. These are consistent with those of the previous section.    

For the measurement of pure temporal accuracy, the situation is a bit trickier. The other counterpart, 

i.e., the spatial error must be far below the temporal error to measure. For this purpose, the finest 

mesh of  𝑁𝑥 = 256 is prepared and the time step is successively refined from 𝑁𝑡 = 144 to 𝑁𝑡 =

1024. 



 

30 

 

 

Fig. 17. The 𝐿2 norm error of u component 

 

Fig. 18. The 𝐿∞ norm error of u component 

The right column of Figs. 17-18 is a bit interesting.  To measure the temporal order accuracy 

exclusively, the error due to the spatial discretization must stay below the temporal one.   All three 

recommended combinations of the schemes, i.e., WENO3/CD2, WENO5/CD4, and WENO7/CD6 

are tested on the finest mesh of 2562 grid. The timestep refinement is conducted reversely by 

starting with the finest time step of ∆𝑡 = 𝜋 1,024⁄  whose 𝐶𝐹𝐿 = 0.125  back to the largest 

timestep of ∆𝑡 = 𝜋 144⁄   whose 𝐶𝐹𝐿 = 0.89.  

As shown in Figs. 17-18 and confirmed by the raw data presented in Table 5, the expected temporal 

order of accuracy is observed in the most accurate spatial discretization scheme, which is 

WENO7/CD6.  The other schemes, i.e., WENO3/CD2 and WENO5/CD4, show essentially no 
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change in the measurement error. This can be interpreted as the temporal error turning out to be 

hidden below the spatial error that is the dominant error component which indeed must not change 

because ∆𝑥 is fixed.    

This tells that the second-order accuracy of the temporal discretization (the ABCN method) is 

adequate for the present WENO(𝑘)/CD(𝑘 − 1) spatial discretization schemes provided that the 

stability satisfying timesteps, i.e., 𝐶𝐹𝐿 < 1. In other words, the expected spatial order of accuracy 

is supposed to be obtained if the time step satisfies the stability condition of 𝐶𝐹𝐿 < 1.   

Table 5. Timestep refinement result of WENO7/CD6. Error measured at 𝑇𝑒𝑛𝑑 = 𝜋 for 𝑅𝑒 = 100 

𝑁𝑡 𝑢𝐿2 𝑅𝑎𝑡𝑒𝐿2 𝑢∞ 𝑅𝑎𝑡𝑒∞ 

176 3.13e-10 − 6.26e-10 − 

192 2.63e-10 2.00 5.26e-10 2.00 

224 1.93e-10 2.01 3.87e-10 1.99 

256 1.48e-10 1.98 2.96e-10 2.01 

284 1.20e-10 2.02 2.40e-10 2.02 

512 3.69e-11 2.00 7.37e-11 2.00 

768 1.64e-11 2.00 3.26e-11 2.01 

1,024 9.21e-12 2.01 1.81e-11 2.05 

 

4.1.3 Execution time and memory requirement 

The computational efficiency is presented in two different aspects, namely CPU time and memory 

requirement for simulation.  The total computational time of the simulation for the 2562 grid with 

total time steps of 𝑁𝑡 = 512 (corresponding to 𝐶𝐹𝐿 = 0.25) was measured by the wall-clock time. 

The code was compiled with GCC ver. 5.4.0 and run on a standard commodity desktop, whose 

CPU is 3.40Ghz Intel® Core™ i7-6700 running on the total RAM of 32GB.  The total execution 

time and memory footprint are presented in Table 6.  

Table 6. Executed time and the total memory spent for 𝑁𝑡 = 512 time stepping on 2562 grid. 

Interpolation 
CD2 CD4 CD6 

Time MEM Time MEM Time MEM 

WENO3 8m33.044s 0.07G 8m53.456s 0.10G 9m18.456s 0.12G 

WENO5 8m4.370s 0.10G 8m17.224s 0.11G 8m59.520s 0.13G 

WENO7 8m6.116s 0.11G 8m30.149s 0.12G 9m8.111s 0.19G 

 

One very interesting point is that regardless of the spatial order of accuracy of the chosen scheme, 

the expected execution time is virtually the same, which means the highest order scheme 

(WENO7/CD6) among the various combinations delivers the most accurate result, without 

demanding an appreciable computation overhead.  In terms of memory slight increase was 

observed mostly depending on the choice of the central differences, which can be expected due to 

the stencil width of the velocity Helmholtz solver.  The mild increase in the total memory usage 

for the higher-order WENO scheme could be attributed to the increasing overlapped region in each 
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decomposed sub-domain utilized for the four-MPI parallel processing on the quad-core CPU. In a 

conclusion, one can obtain the highest order accuracy without extra cost. 

4.2 Three dimensional 

As a test case for the turbulent flows, the Taylor green vortex in the 3D problem is simulated for 

various Reynolds numbers, i.e. 𝑅𝑒 = 1.6 × 103, 1.6 × 104, and 1.6 × 105   The computational 

domain [0, 𝐿𝑥] × [ 0, 𝐿𝑦] × [0, 𝐿𝑧]  with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 2𝜋  and the boundary is treated as 

periodic in all directions. The initial solution for the three-dimensional Taylor-Green vortex 

problem is given as 

𝑢 = sin(𝑥) cos(𝑦) cos (𝑧) 

𝑣 = −cos(𝑥) sin(𝑦) cos (𝑧) 

𝑤 = 0, 𝑝 = 0 

The time dimensionless simulation interval is 0 < 𝑡 ≤ 𝑇 = 20.  The simulations are run on three 

different grids with 643, 1283 and 2563 grid nodes which are run with 𝐶𝐹𝐿 = 0.25. For all test 

cases, the initially isolated vortex starts to break and a transition to a turbulent flow takes place.  

The results are compared in terms of the evolution of total kinetic energy, enstrophy, local vorticity 

field, vortex structures visualization, and energy spectra at multiple time moments. 

From the velocity fields, we generated the three-dimensional energy spectrum using the code from 

(Navah, Plata, & Couaillier, 2020).  The three-dimensional Fourier transform of such as correlation 

produces a spectrum that depends only on one wavenumber 𝑘 (Dietzsch, 2018). The expression of 

the three-dimensional energy spectrum by integrating over spherical shells 

{
 
 

 
 𝐸𝑢(𝑘) = ∯|Φ𝑢

2|𝑑𝑆(𝑘),

𝐸𝑣(𝑘) = ∯|Φ𝑣
2|𝑑𝑆(𝑘),

𝐸𝑤(𝑘) = ∯|Φ𝑤
2|𝑑𝑆(𝑘),

   

 

(4.3) 

where the 3D wavenumber is defined as 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)
1/2

 based on the one-dimensional 

ones of 𝑘𝑥 =
𝜋𝑁𝑥

𝐿𝑥
, 𝑘𝑦 =

𝜋𝑁𝑦

𝐿𝑦
, and 𝑘𝑧 =

𝜋𝑁𝑧

𝐿𝑧
.  As the surface of a sphere is completely determined 

by its radius the surface integral can be certainly evaluated. Thus, the energy spectrum 

𝐸(|𝑘|) =
1

2
(𝐸𝑢 + 𝐸𝑣 + 𝐸𝑤) 

 
(4.4) 

where 𝑘 is the wavenumber and Φ𝑢, Φ𝑣 and Φ𝑤 donated Fourier transform of velocity 𝑢, 𝑣, 𝑤. 

Lambda2 (𝜆2) (Jeong & Hussain, 1995) vortex criterion, is a vortex core line detection algorithm 

that can adequately identify vortices from a three-dimensional fluid velocity field. 
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The Lambda2 (𝜆2) method consists of several steps. First, we define the velocity gradient tensor 𝐉 

𝐉 ≡ 𝛻𝑢 =

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

= [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑙

] 

The velocity gradient tensor is then decomposed into its symmetric and antisymmetric parts with 

the transpose of tensor 𝐉 as 

𝐉𝐓 = [

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑙

] 

𝐒 =
𝐉+𝐉𝐓

2
=

1

2
[

2𝑎 𝑏 + 𝑑 𝑐 + 𝑔
𝑏 + 𝑑 2𝑒 𝑓 + ℎ
𝑐 + 𝑔 𝑓 + ℎ 2𝑙

] and 𝛀 =
𝐉−𝐉𝐓

2
=

1

2
[

0 𝑏 − 𝑑 𝑐 − 𝑔
𝑑 − 𝑏 0 𝑓 − ℎ
𝑔 − 𝑐 ℎ − 𝑓 0

] 

the three eigenvalues of 𝐒𝟐 + 𝛀𝟐 are calculated so that for each point in the velocity field there are 

three corresponding eigenvalues: 𝜆1, 𝜆2and 𝜆3. The eigenvalues are ordered in such a way that 

𝜆1 > 𝜆2 > 𝜆3. A point in the velocity field is part of a vortex core only if at least two of its 

eigenvalues are negative i.e., if 𝜆2 < 0. 

4.2.1 Moderate Reynolds number case, 𝑅𝑒 = 1,600 

Several diagnostic quantities can be computed from the flow as it evolves in time, allowing the 

characteristics of the numerical scheme to be observed. The evolution of the kinetic energy of the 

flow is obtained by integrating the square of the velocity norm over the domain.  

𝐸𝑘 =
1

2Ω
∫‖𝑢2 + 𝑣2 + 𝑤2‖𝑑Ω

Ω

 (4.5) 

 

Similarly, the enstrophy is calculated by integrating the square of the vorticity norm over the 

domain as 

𝜁 =
1

2Ω
∫‖𝜔2‖𝑑Ω

Ω

 (4.6) 

where Ω is the volume of the computational domain. 

The dissipation rate 𝜖(𝐸𝑘) of the evolution of the kinetic energy by differencing time  

 

𝜖(𝐸𝑘) = −
𝑑𝐸𝑘
𝑑𝑡

 (4.7) 
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The result from the Pseudo-Spectral method (Rees, Leonard, Pullin, & Koumoutsakos, 2011) is 

taken as a reference solution which we consider to be sufficiently accurate for this study. 

Table 7. The total memory requirement of the TGV3d problem for various combinations of 

schemes and grids 

Scheme/Grid 643 1283 2563 

WENO3/CD2 0.28G 1.57G 14.01G 

WENO5/CD4 0.31G 1.98G 16.31G 

WENO7/CD6 0.35G 2.21G 17.34G 

 

The total memory required for various schemes on a series of successively refined meshes is 

summarized in Table 7. As mesh refines by half, the total number of cells increases by a multiple 

of eight.  This is directly observed in the memory requirement of the simulation, which tells the 

linear growth of the memory requirement of the current solution method.  This growth of memory 

requirement does not apply to the solution order elevation. From the lowest order scheme of 

WENO3/CD2 to the most accurate scheme of WENO7/CD6, the memory usage increment is very 

mild.  This is attributed to the wider stencil of the higher-order schemes, which in turn requires a 

wider overlapping layer and message passing from the distributed memory parallel processing.  

Overall, like in the 2D simulations, the computational overhead due to the order elevation is minute. 

 

 

 

 
 

Fig. 19. The kinetic energy of mesh 643 
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Fig. 20. Kinetic energy dissipation rate (left), the enstrophy (right) of mesh 643 

 

 

 

 
 

Fig. 21. The kinetic energy of mesh 1283 
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Fig. 22. Kinetic energy dissipation rate (left), the enstrophy (right) of mesh 1283 

 

 

 

 
 

Fig. 23. The kinetic energy of mesh 2563 
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Fig.  24. Kinetic energy dissipation rate (left), the enstrophy (right) of mesh 2563 

The simulation results are presented in the order of successive mesh refinements.  Figs. 19-24, 

shows the time history of the total kinetic energy decay and dissipation rates computed both by the 

direct computation of time derivative and also by the enstrophy.  The results are compared for all 

three combinations of the schemes, i.e., WENO3/CD2, WENO5/CD4, and WENO7/CD6.  The 

overall trends of the results can be summarized that the current simulation rapidly approaches the 

pseudo-spectral results (Rees, Leonard, Pullin, & Koumoutsakos, 2011) as the mesh refines and 

the order of the scheme improves. 

The detail of the comparative study can be discussed as follows.  Figs. 19, 21, and 23 show the 

history of total kinetic energy decay.  It starts with relatively mild slopes and then it decays rapidly 

as the turbulence develops until the final stage of simulation.  For all three levels of meshes, all 

three combinations of the scheme show fast convergence to the reference solution of pseudo-

spectral code. The small difference between the results is better noticeable for the dissipation rates 

presented in Figs. 20, 22, and 24. Faster convergence of kinetic energy dissipation rate −𝑑𝐸𝑘 𝑑𝑡⁄  

to the enstropy 𝜁  history seems due to the post-processing techniques. The kinetic energy 

dissipation rate  −𝑑𝐸𝑘 𝑑𝑡⁄  were obtained by the finite-difference of it in time.  The time histories 

of 𝐸𝑘 displayed in Figs. 19, 21, and 23 were firstly interpolated by cubic splines and the slope of 

the splines is approximated by the finite differences.  The enstrophy history is obtained in simpler 

ways.  The vorticity fields are firstly approximated by the standard second-order central difference 

and then integrated over the domain for the enstrophy.  In doing so, it should be admitted that there 

is a possibility that higher-order accuracy may be contaminated by the low-order vorticity 

computation method.  Nevertheless, the present results show the solution quality of the raw 

velocity field certainly affects the accuracy of global enstrophy history.       
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The turbulent decay process has been mentioned in previous studies (DeBonis, 2013; Mimeau, 

Mortazavi, & Cottet, 2019). The laminar stage is maintained until 𝑡 = 3 , after which the 

dissipation rate begins to increase and peaks around 𝑡 = 9. The developed turbulent flow occurs 

from 9 < 𝑡 ≤ 13, after which the turbulent flow decays. In general, our methods, particularly the 

WENO7/CD6 and WENO5/CD4 methods, have produced results that are consistent with the above 

statement. However, our WENO3/CD2 method appears to have picked a bit early 𝑡 = 8.5. We can 

see from the comparison of enstrophy that the WENO7/CD6 scheme produced the closest to the 

PS result. 

The qualitative comparison can be made further by the local vorticity fields at a specific time 

moment.  In Figs. 25-30, the performance of the present simulation is compared to the reference 

vorticity field of the pseudo-spectral solution (Rees, Leonard, Pullin, & Koumoutsakos, 2011). 

The vorticity in the WENO3/CD2 scheme is shaped like an oval over a large area, but the structure 

is not well defined. The structure becomes less oval, the curve of the shape becomes clearer and 

more defined, and the peak vorticity level increases as the scheme is used higher as WENO5/CD4 

and WENO7/CD6. The WENO5/CD4 and WENO7/CD6 solutions differ only slightly, and the 

plots closely resemble the reference solution. Compared with the solution of the Pseudo-Spectral 

method, the solution of WENO7/CD6 detected the local extremum (indicated by a closed contour) 

around region 𝑦 = 0.8, while the other schemes cannot do that. 

 

  

Fig. 25. Contours of the vorticity norm from grid resolution 643(left),  1283(right) of 

WENO3/CD2 scheme at 𝑡 = 8 on the plane 𝑥 = 0 , in the region 𝑧 =
3𝜋

2
 to 2𝜋 and 𝑦 = 0 to 

𝜋

2
, 

compared with PS 512 (black solid). 
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Fig. 26. Contours of the vorticity norm from grid resolution 643(left),  1283(right) of 

WENO5/CD4 scheme at 𝑡 = 8 on the plane 𝑥 = 0 , in the region 𝑧 =
3𝜋

2
 to 2𝜋 and 𝑦 = 0 to 

𝜋

2
, 

compared with PS 512 (black solid). 

  

Fig. 27. Contours of the vorticity norm from grid resolution 643(left),  1283(right) of 

WENO7/CD6 scheme at 𝑡 = 8 on the plane 𝑥 = 0 , in the region 𝑧 =
3𝜋

2
 to 2𝜋 and 𝑦 = 0 to 

𝜋

2
, 

compared with PS 512 (black solid). 
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Fig. 28. Contours of the vorticity norm from grid resolution 2563 of CD2/WENO3 scheme 

 

Fig. 29. Contours of the vorticity norm from grid resolution 2563 CD4/WENO5 scheme 
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Fig. 30. Contours of the vorticity norm from grid resolution 2563 CD6/WENO7 scheme 

In Figs. 31-36, the energy spectra of the present methods are shown at the two different time 

moments, i.e., one relatively early stage of the turbulence onset 𝑡 = 5 and the other slight after the 

peak of turbulence dissipation 𝑡 = 10. As turbulence develops, the width of the inertial subrange 

whose slop is parallel to Kolmogorov’s −5/3 expectation becomes extends further and this trend 

is reproduced by the present schemes as mesh refines and also solution order increases. 
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Fig. 31. The Kinetic energy spectra of WENO3/CD2 at t = 5 

 

Fig. 32. The Kinetic energy spectra of WENO5/CD4 at t = 5 
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Fig. 33. The Kinetic energy spectra of WENO7/CD6 at t = 5 

 

Fig. 34. The Kinetic energy spectra of WENO3/CD2 at t = 10 

 



 

44 

 

 

Fig. 35. The Kinetic energy spectra of WENO5/CD4 at t = 10 

 

Fig. 36. The Kinetic energy spectra of WENO7/CD6 at t = 10 

The vortex structure of the flow field is also visualized by using the 𝜆2 method using the flow field 

at 𝑡 = 9, which corresponds to the peak of the dissipation rate.  As noticeable from the graphics, 

the vortex structures become finer and stronger as mesh refines and the order of accuracy improves.  

It also needs to be mentioned that for the vorticity computation, which is the raw data for the 𝜆2 

computation, merely the second-order central differences are utilized for all schemes.  This implies 
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that such a vorticity field could be many finers depending on higher-order post-processing 

techniques, which is not the major subject of this paper. 

 

Fig. 37. The temporal evolution of the flow field of WENO3/CD2 (left), WENO5/CD4 (mid) and 

WENO7/CD6 (right) from grid resolution 643 at t = 9. The colored with the velocity magnitude. 

 

Fig. 38. The temporal evolution of the flow field of WENO3/CD2 (left), WENO5/CD4 (mid) and 

WENO7/CD6 (right) from grid resolution 643 at t = 9. The colored with the velocity magnitude. 

 

Fig. 39. The temporal evolution of the flow field of WENO3/CD2 (left), WENO5/CD4 (mid) and 

WENO7/CD6 (right) from grid resolution 643 at t = 9. The colored with the velocity magnitude. 



 

46 

 

4.2.2 The higher Reynolds number cases,  𝑅𝑒 = 16,000 and 160,000 

Perhaps one of the major advantages of the present WENO-based method is that the high Reynolds 

number turbulent flows could be simulated without any user-specified modification or parameter 

adjustment.  The stable and accurate turbulent simulation capability is demonstrated for even 

higher Reynolds numbers, i.e.  𝑅𝑒 = 1.6 × 104 and 1.6 × 105. No modification has been made 

from the previous 𝑅𝑒 = 1,600 case, except the Reynolds numbers. 

 

 

Fig. 40. The Kinetic spectra energy of high 𝑅𝑒 at 𝑡 = 9 of WENO7/CD6 scheme with mesh 

resolution 2563 
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Fig. 41. The Kinetic spectra energy of high 𝑅𝑒 at 𝑡 = 20 of WENO7/CD6 scheme with mesh 

resolution 2563 

The results are presented in Figs. 40-42.  To the best of the authors’ knowledge, there are no DNS 

results available for such a high Reynolds case, and no comparison was made with a reference 

solution.  Nevertheless, a relative comparison between our results is presented which is directly 

attributed to the Reynolds number effect resolved by current methods.  As shown in Fig. 22, the 

inertial subrange extends and this trends down to the highest wavenumber 𝑘𝑚𝑎𝑥 = 2𝜋 𝜆𝑚𝑖𝑛⁄ , 

where 𝜆𝑚𝑖𝑛 is the minimum size of the vortex 2563 mesh can represent. This is far larger than 

Kolmogorov’s microscale, and hence the current WENO-based simulation without any sub-grid 

scale (SGS) eddy viscosity would be considered an implicit large-eddy simulation (iLES). Even 

without any explicit SGS eddy viscosity model, the current simulation shows stable results.  The 

scale resolving capability is also confirmed by the vortex structure displayed in Fig. 23.  It is quite 

self-explanatory that the wider spectrum of vortex sizes as Reynolds number increased. The 

relatively smaller difference in vortex structures at the initial stage amplifies to a wider disparity 

in the vortex size as the flow evolves.  The similarity of energy spectra between the 𝑅𝑒 = 16,000 

and 𝑅𝑒 = 160,000 delineated in Figs. 40-41 is also reproduced by a similarity in vortex structure 

between the two higher Reynolds number cases as displayed in Fig. 42. This could be an indication 

that the present WENO-based projection method affects little dissipation on the energy saccade 

within the resolved viscous subrange, but mostly dampens out the smaller size eddies below that 

of the grid cell.  In other words, the WENO-based scheme seems to be implicitly equipped with 

just the right amount of dissipation so that the simulation remains to be stable and perhaps accurate 

too.  
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Fig. 42. Scale resolving capability of the present WENO-based scheme (WENO7/CD6) for 

increasing Reynolds numbers.  The vortex structure is visualized using 𝜆2 method at 𝑡 = 9 (left) 

and 𝑡 = 20 (right), where the iso-surfaces of the 𝜆2 = −10−5. The colored with the velocity 

magnitude. 
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5 Conclusions 

In this presentation, we have shown the successful development and implementation of the high-

order WENO-based semi-implicit projection method for incompressible turbulent flows. In 

general, WENO(𝑘)/CD(𝑘 − 1) the scheme is recommended for preserving the intended order of 

accuracy.   The formal orders of accuracy were demonstrated by solving the TGV2d problems, 

and the third, fifth, and seventh order of accuracies are confirmed for WENO3/CD2, WENO5/CD4, 

and WENO7/CD6 schemes respectively. Based on the given meshes, the highest order 

combination, i.e., WENO7/CD6 is recommended due to its little computational overhead. Such 

methods are demonstrated for a series of higher Reynolds number turbulent flows and the results 

are compared to the pseudo-spectral reference data available. The present method is expected to 

be used as an efficient simulation tool for high Reynolds number turbulent flow in various cases. 
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