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by
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Doctor of Philosophy (Electrical, Electronic and Computer Engineering)

May 2022

Nowadays, wireless communications systems have grown significantly. Therefore,

using the radio frequency (RF) spectrum is increasing more dramatically in order to meet the

growth in applications requiring broadband. Because of the spectrum scarcity, new spectrum

management models are being developed to opportunistically utilize the dynamic spectrum

access. Currently, the cognitive radio network (CRN) was developed and is considered one

of the most promising technologies for improving spectrum efficiency. Cognitive radio (CR)

was recognized as an enabling technology to mitigate the abuse of scarce RF spectrum

in which dynamic spectrum access was proposed to share the available spectrum through

opportunistic usage of the frequency bands by secondary operators without interfering with

the primary networks. When CRN is installed, it enables secondary networks to perform

the following tasks: spectrum sensing, spectrum management, and mobility management.

CR technology offers the opportunity to optimize spectrum access, assists in preventing

interference, and adapts to instant spectrum slot availability from the unused spectrum pool.

Along with rapid developments of mobile applications as well as expanding net-

work infrastructure (transmission lines, terminal equipment, and base stations), efficient

energy management is becoming an issue that deserves special attention. Efficient energy

management helps to overcome the bottleneck of wireless network applications operating

under battery and energy constraints. It not only helps to reduce a device’s dependence on

battery power and power consumption, but also provides a continuous power source for the

long-term operation of devices on the network. As a result, wireless communications powered
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Abstract vii

by external harvested energy and the simultaneous wireless information and power transfer

(SWIPT) transmission have become promising techniques to solve the energy-constrained

problem. Regarding external harvested energy, radio frequency-energy harvesting (RF-EH)

is a potential solution for energy-constrained issue in wireless networking, where the wireless

devices can harvest energy from ambient RF signals. Along with RF-EH, non-RF energy

resources (e.g., solar, wind, etc.) can also provide perpetual energy and higher power density

for rechargeable batteries of wireless users. Regarding the SWIPT system, both information

and energy of the common transmit signal are transmitted to the receivers. Therefore, the

received signal can be used for energy harvesting (EH) and information decoding (ID).

In addition, artificial intelligence (AI), which is defined as any process or device

that perceives its environment and takes actions that maximize the chances of success for

some predefined goal, is a feasible solution for the emerging complex communication system

design. The recent advances in reinforcement learning (RL) and deep learning (DL) hold

significant promise for solving very complex problems considered intractable until now. It

is now appropriate to apply AI technology to advanced wireless communication networks

(WCNs) to tackle optimized complicated decision making, physical layer design, network

management and resource optimization tasks in such networks. In the study of wireless

technologies and communication systems, AI will be a powerful tool and hot research topic

with many potential application areas, e.g., channel modeling, wireless signal processing, and

resource management. Motivated by the aforementioned survey, this dissertation will focus

on these remaining issues about applying AI to radio resource management for advanced

WCNs, such as CRN and SWIPT, as follows:

Firstly, in CRN, secondary users (SUs) are able to sense the absence of primary

users (PUs) in the spectrum. Then, SUs use this information to opportunistically access

the licensed spectrum. In this work, we utilize a software-defined radio testbed of energy

detection (ED)-based spectrum sensing. The testbed was built based on the GNU’s Not

Unix (GNU) Radio software platform and Universal Software Radio Peripheral (USRP)

National Instruments 2900 devices. In this case, a new block of energy detection is developed

by using an out-of-tree module from GNU Radio. To successfully integrate CR into the

cloud computing paradigm, we also implement cloud computing-based spectrum sensing by

utilizing a cloud server with ThingSpeak, such that we can store, process, and share the

sensing information more efficiently in a centralized way in the cloud server. In addition, we

also present an implementation of real-time video transmission with spectrum-sensing among
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two USRP devices. In this work, spectrum-sensing is implemented at both transmitter and

receiver. The transmitter senses the channel, and if the channel is free, a video signal (which

could be a real-time signal from a video file) will be modulated and processed by GNU Radio

and transmitted using a USRP. A USRP receiver also senses the channel, but in contrast, if

the channel is busy, the signal is demodulated to reproduce the transmitted video signal.

These works brings in several challenges, like spectrum-sensing in the devices’ environment,

and packets getting lost or corrupted over the air.

Secondly, although a CRN is a novel solution that promises to solve the spectrum

scarcity problem and enhance spectrum utilization, unsecured CRN can easily be manip-

ulated in order to attack legacy users on the communication channel. As a result, the

network’s performance significantly degrades. Therefore, communication channel security is

an important issue that needs to be addressed in a CRN. In this work, we focus on improving

the security of multi-channel communication in a CRN, while various jammers try to access

channels of interest to prevent SUs from using them. By using game-theoretic concepts and

by defining states, actions, and players’ rewards, we propose game-based schemes that find

the best channel for the SUs in order to avoid jammer’s attacks on communication channels.

Accordingly, the problem is finding the optimal channel to maximize the long-term reward

of the SU where communication channels are not used by the PUs and are not jammed

by attackers. In addition, the idea of transfer learning might be applied to the problem

under consideration, and thus, a transfer Game-Actor-Critic (TGACT) scheme is proposed,

which uses the transferred knowledge in a double-game period to accelerate the learning

process and provide performance improvement in channel selection. The simulation results

show that the proposed schemes are quite resistant to jammer attacks, and achieve better

performance compared to other channel selection schemes.

Thirdly, the SWIPT systems can supply efficiently throughput and energy, have

emerged as a potential research area in fifth-generation (5G) system. In this work, We

investigate the SWIPT system with multi-user, single-input single-output (SISO) system.

First, we solve the transmit power optimization problem, which provides the optimal strategy

for getting minimum power while satisfying sufficient signal-to-interference-plus-noise ratio

(SINR) and harvested energy requirements to ensure receiver circuits work in SWIPT systems

where receivers are equipped with a power-splitting (PS) structure. Although optimization

algorithms are able to achieve relatively high performance, they often entail a significant

number of iterations, which raises many issues in computation costs and time for real-time
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applications. Therefore, we aim at providing a DL-based approach, which is a promising

solution to address this challenging issue. DL architectures used include a type of Deep

Neural Network (DNN): the Feed-Forward Neural Network (FFNN) and three types of

Recurrent Neural Network (RNN): the Layer Recurrent Network (LRN), the Nonlinear

AutoRegressive network with eXogenous inputs (NARX), and Long Short-Term Memory

(LSTM). Through simulations, we show that the DL-based approach can approximate a

complex optimization algorithm that optimizes transmit power in SWIPT systems with

much less computation time.

Then, the demand for spectral and energy efficiency has significantly been increased

along with new breakthroughs in programmable meta-material techniques. The integration

of an intelligent reflecting surface (IRS) into the SWIPT systems has attracted much

attention from operators in advanced WCNs such as 5G and sixth-generation (6G) networks.

In addition, an IRS-assisted SWIPT system faces many security risks that can easily be

compromised by eavesdroppers. In this work, we investigate the physical-layer secure and

transmission optimization problem in an IRS-assisted SWIPT system where a PS scheme is

installed in the user equipment (UE). In particular, our purpose is to maximize the system

secrecy rate by jointly finding optimal solutions for transmitter power, PS factor of UE, and

phase shifts matrix of IRS under the required minimum harvested energy and maximum

transmitter power. We propose the alternating optimization (AO)-based scheme to obtain

optimal solutions. The proposed AO-based scheme can effectively solve both convex and non-

convex problems; however, applying them in practice still poses some difficulties due to the

complexity and long computation time. This is because many mathematical transformations

are used and the optimal solution needs a number of iterations to achieve convergence.

Therefore, we also propose 5 types of data and DNN structures to potentially achieve

efficiency in computations by using a DL-based approach. The simulation results indicate

that the proposed IRS scheme provides an improvement in terms of the average secrecy

rate (ASR) by up to 38.91% when the number of reflecting elements is high (30 elements)

compared to a scheme without an IRS. We also observe that the DL-based approach not

only provides similar performance to the AO-based scheme but it also significantly reduces

computation time.

Consequently, we end up this dissertation by summarizing its main contributions

and opening a new door for RL, DL techniques and AI algorithms in future wireless networks.
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Chapter 1

Introduction

1.1 Background

1.1.1 Cognitive Radio Network and Simultaneous Wireless Information

and Power Transfer

Over the past few years, due to the rapid growth of mobile devices, there has

been a dramatic increase in the number of wireless services and applications. Consequently,

the demand for spectrum resources has increased, and spectrum scarcity has become a

more and more serious problem. To address these emerging issues, researchers have been

developing new paradigms in network design. Hence, emerging wireless technologies, such

as cognitive radio networks (CRNs) [1, 2], were introduced to improve the efficiency in the

spatial utilization of the radio spectrum [3]. The basic idea of a CR network is to allow

unlicensed radio users, called secondary users (SUs), to share frequencies assigned to licensed

users, called the primary users (PUs). In order to avoid interfering with the operations

of the licensed user, the SU is allowed to be active when the frequency is not used by the

corresponding PU. However, when the presence of the PU is detected, the SU has to vacate

the occupied frequency. In addition, in order to access the licensed spectrum, the SUs need

to perform the spectrum sensing to identify the available spectrum bands, where temporally

no PUs are active.

On the other hand, energy harvesting (EH) is a promising approach to prolong the

lifetime of energy constrained wireless networks. Among other renewable energy sources

such as wind and solar, background radio-frequency (RF) signals can be a potential new

1
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source for wireless power transfer which radiated by ambient transmitters. In addition, RF

signals have been widely used as a vehicle for wireless information transmission. As a result,

simultaneous wireless information and power transfer (SWIPT) becomes attractive due to its

ability to perform wireless power transfer and information transmission simultaneously [4,5].

It not only brings convenience to mobile users, but also achieves significant benefits in terms

of energy consumption, time delay, spectral efficiency, and interference management by

superposing power transfer and information.

1.1.2 Machine Learning and deep learning

Machine learning (ML) is a branch of artificial intelligence (AI) and computer

science which focuses on the use of data and experience to imitate the way that humans

learn, gradually improving its accuracy. ML is an important component of the growing

field of data science. Through building a model based on sample data, known as training

data, algorithms are trained to make classifications, predictions, or decisions without being

explicitly programmed. Moreover, it is able to explore insights among the data due to its

ability to process and analyze a numerous amounts of data. In addition, based on different

algorithms, the machine can make intelligent decisions through learning from its experiences.

ML covers three paradigms which are known as a) supervised learning: where the learning

of the model is to be carried out by using input samples and their corresponding outputs, b)

unsupervised learning, in which the model learns to distinguish the input samples without

any output labels and, c) reinforcement learning (RL), where an agent communicates with an

environment and learns to map any input to an action. In this dissertation, we will focus on

RL. RL focuses on making suitable decisions that are generated by mapping the situations

to actions and evaluating which actions have to be considered for maximizing a long-term

reward without prior knowledge of the dynamic of the environment. The techniques for

RL are Markov decision process (MDP), Q-Learning, policy learning, actor-critic (AC) and

multi-armed bandit (MRB).

In addition, we also focus on deep learning (DL) which can be regarded both as a

sophisticated and mathematically complex evolution of ML algorithms. DL is a function

of AI that understands the function of human brains and use that understanding to create

patterns based on artificial neural networks that contain neurons in multiple layers. Some of

the common techniques used for DL are Deep Neural Network (DNN), Recurrent Neural
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Network (RNN), Long Short Term Memory (LSTM) and Convolutional Neural Network

(CNN).

The main differences between ML and DL are in the following aspects: the ANN

algorithm structure, the lower need for human intervention, and the larger data requirements.

First and foremost, while traditional ML algorithms have a rather simple structure, such

as linear regression or a decision tree, DL is based on an artificial neural network. This

multi-layered ANN is, like a human brain, complex and intertwined. Secondly, in DL, the

features are extracted automatically, and the algorithm learns from its own errors. Therefore,

it requires much less human intervention. Finally, DL requires much more data than a

traditional ML algorithm to function properly. ML works with a thousand data points, DL

oftentimes only with millions. Due to the complex multi-layer structure, a DL system needs

a large dataset to eliminate fluctuations and make high-quality interpretations.

1.2 Thesis Motivation and Objective

In the last few decades, the shortage of radio spectrum resources has become

increasingly serious due to the rapid development of multimedia applications and mobile

communications. Therefore, network operators are always urged to develop a new network

paradigm to effectively implement spectrum allocation. From this perspective, CRN has

been emerged as a potential solution that allows SUs to opportunistically access the licensed

spectrum when it is temporally unoccupied by PUs [1].

In energy-constrained wireless networks, the user equipments (UEs) are typically

powered by batteries that have limited operation time. Although the batteries can be

replaced and recharged so that they can prolong the lifetime in the network to a certain

extent, it often incurs inconvenient and high costs, e.g., in malicious environments and

embedded systems in structure. A safer and more convenient solution is to harvest energy

from the surrounding environment, which can provide energy almost perpetually to wireless

devices. In addition to non-RF energy sources such as wind and solar, ambient RF signals

can be a viable new source for EH. On the other hand, RF signals are also commonly used

as a vehicle to transmit information. Therefore, in this case, the RF signals can carry energy

and information at the same time. As a result, SWIPT becomes an interesting new area

of research that attracts attention. Hence, it is essential to allocate the radio and energy

resources efficiently based on AI to improve the lifetime and performance of the network.
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The main objective of this dissertation is to solve the aforementioned issues by

using AI-based methods, such as the iteration-based dynamic programming, reinforcement

learning, and DL. The contributions of this dissertation are summarized as follows:

(i) First, we implement spectrum sensing and share the local spectrum sensing results

from the device to the cloud server, and vice versa, using Universal Software Radio

Peripheral (USRP) 2900 devices. We also utilize a spectrum sensing system with video

transmission on such devices.

(ii) Second, we propose a transfer game-AC learning framework for the security of multi-

channel communication in a CRN where various jammers try to access channels of

interest to prevent SUs from using them.

(iii) Third, we study the single-input single-output (SISO) SWIPT system with multi-user

and aim to optimize transmission power. In addition, the DL-based approach is also

proposed to solve the problems of computational power and time.

(iv) Finally, we investigate the physical-layer secure and transmission optimization problem

in an IRS-assisted SWIPT system, which aims to maximize the system secrecy rate

under energy and power constraints of the UE and transmitter, respectively. The DL

is also proposed to improve the computation time.

1.3 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 presents testbed

implementations of spectrum sensing in CRN using USRP devices. Chapter 3 introduces a

transfer games AC learning framework for anti-jamming in multi-channel CRNs. Chapter 4

studies the transmit power optimization problem in a SISO power splitting (PS)-SWIPT

system and DL. Chapter 5 investigates a secure-transmission scheme for IRS-assisted SWIPT

system and DL. Chapter 6 discusses about the future directions of research. A brief

description of each chapter is given below.

Chapter 2 utilizes testbed implementations of spectrum sensing with cloud service

and video transmission in CRN. In these implementations, the first one performs collect

sensing information and make local sensing decisions at the receiver. Then, the raw sensing

information and the temp-sensing decision at the receiver will be uploaded to the ThingSpeak
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cloud. Meanwhile, the other implements a spectrum sensing system with video transmission

in which the video is transmitted and received after spectrum-sensing is implemented at

both transceivers. The testbed implementations are developed using USRP and GNU’s Not

Unix (GNU) Radio as hardware and software platforms, respectively.

Chapter 3 studies the optimal channel selection for the SU in a communication

channels CRN under jamming attack. In this network, an SU is transmitting data to a

receiver SU while multiple jammers independently perform jamming on legitimate link

of transceiver communication. Each jammer attacks a random channel of interest. The

security problem is finding the optimal channel to maximize the long-term reward of the SU

where communication channels are not used by the PUs and are not jammed by attackers.

The problem is formulated and solved by game theory and the transfer game-AC learning

framework.

Chapter 4 proposes DL-based approach to fast power allocation in SISO SWIPT

systems with a PS scheme. In this network, we first solve the transmit power minimiza-

tion problem while satisfying sufficient signal-to-interference-plus-noise ratio (SINR) and

harvested energy requirements to ensure receiver circuits work in SWIPT systems. Then,

we aim to provide a DL solution, which is a promising solution to overcome limitations on

computation costs and time of optimization algorithm. DL architectures used in this work

include a type of DNN: the Feed-Forward Neural Network (FFNN) and three types of RNN:

the Layer Recurrent Network (LRN), the Nonlinear AutoRegressive network with eXogenous

inputs (NARX), and LSTM.

Chapter 5 employs an IRS-assisted SWIPT system with PS scheme is installed in

the UE. In this network, the system secrecy rate is maximized by jointly finding optimal

solutions for transmitter power, PS factor of UE, and phase shifts matrix of IRS under

the required minimum energy harvesting and maximum transmitter power. The optimal

solutions are obtained by using the alternating optimization (AO)-based scheme. In addition,

the DL approach is also proposed to improve the computation time.

Chapter 6 concludes this dissertation and gives a discussion on future research

directions.





Chapter 2

Experiments of Spectrum-Sensing,

Cloud Uploading and Video

Transmission for Cognitive Radio

using USRP with GNU Radio

2.1 Introduction

Wireless communications systems have multiplied significantly over the last two

decades. However, the radio spectrum used for wireless communications is a finite resource.

Therefore, it is necessary to find other systems that can use spectrum efficiently. Currently,

technologists are interested in CR because overall efficiency of spectrum utilization can in-

crease significantly. CR enables the usage of temporarily unused frequency bands, commonly

known as spectrum holes [6, 7]. Spectrum holes are generally categorized into temporal and

spatial spectrum holes. A temporal spectrum hole, which is unoccupied by the PU during

certain times, can be used by SUs in the unused time slots. A spatial spectrum hole is a

band that is unoccupied by the PU in some geographic areas. Therefore, it can be used by

SUs [8–10].

In CR, spectrum sensing is essential, since SUs must determine whether PUs are

utilizing the channel or not, and furthermore, SUs opportunistically access the licensed

channel when the PU is absent. So far, various approaches have been proposed for spectrum

7
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sensing, such as the matched filter, energy detection (ED), feature detection, and more

recently, wavelet detection [11]. In these methods, ED uses the energy of the received

signal at the SU to determine the presence of signals from the PU [12]. This simple

method can gather spectrum occupancy information quickly. It does not require prior

information about the behavior (modulation) of the received signal or excessive analog-

to-digital converter (ADC) and signal-processing capabilities of the matched filter and

cyclostationary detector, respectively; or other features to recognize the primary signal when

it appears. Due to the complexity of matched filters, feature detection, and cyclostationary

spectrum sensing approaches, those approaches are more precise than ED, but they consume

more computational resources in a CRN. Besides, spectrum sensing via ED in CR is

included in the IEEE 802.22 standard. Hence, an energy detector is an optimal choice when

information about the channel is not available. Table 2.1 lists the schemes used to detect

the transmitter signal, along with their pros and cons.

Table 2.1: Primary transmitter detection schemes

Sensing schemes Pros Cons

Energy detection Easy to implement, no

information about the

primary signal required

False alarms, uncertainty in noise

power

Matched filter Fewer samples required,

less noise effects

Primary signal information is

required, synchronization between

SUs

Feature Robustness, fewer false

alarms

Cyclostationary signal, consumes

computational power

There has been tremendous growth in the fields of multimedia and mobile commu-

nications. The convergence of these two fields has resulted in mobile multimedia communica-

tions, which has attracted the attention of the research community around the world [13]. A

lot of research has been done in this area to find new methodologies to improve or innovate

ways to implement the technology with better bandwidth and energy efficiency, because

these two resources are limited.

USRP is a hardware platform that allows general-purpose computers to function as
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high-bandwidth software radios [13]. The application layer communicates with the physical

layer through some intermediate layers. For a stationary host, this activity seems to be a

good option where the communications protocol is systematic and defined according to the

environment where it is located. But for a mobile node, the environment conditions change

over time, and hence, the transmit power, bandwidth, and quality of the channel have to be

continuously monitored and passed on to the application layer in order to select a suitable

algorithm. In turn, the physical layer has to change per the suggestions from the application

layer from time to time. GNU Radio and USRP bring the application developer as close to

the hardware as to the antenna itself, and provides the user with the flexibility to change

the communications parameters on the fly [14].

Besides that, users sometimes do not have the ability to sense the channel, or users

may need sensing information for performance analysis. To do this, the sensing information

should be saved where everyone can easily access spectrum sensing results to further utilize

them. The cloud server is the solution to this problem. A cloud server allows users to

store data online, which they can access from any location via the internet. So, the sensed

information can be shared with other users. From that, users can use the sensed information

that is uploaded to the cloud server to estimate the statistics of the primary network, such

as the probability of absence and the transition probability for the PU. Then, users can

analyze and improve the performance of local sensing. To successfully integrate CRs into

the cloud computing paradigm, we also implement cloud computing–based spectrum sensing

by utilizing a cloud server with ThingSpeak, such that we can store, process, and share the

sensed information more efficiently in a centralized way. In addition, due to the dynamics

of the primary network, if the time for delivering sensing information to the cloud server

involves a long delay, the immediate sensed information/global decision may be meaningless.

Therefore, in order to utilize the sensed information/global decisions that are shared in the

cloud, the delay time should be very short in comparison with the whole time slot. Because

of the limit in the time delay until sensing information is delivered to the cloud server, in

this chapter, we mainly focus on ways to implement local spectrum sensing on the user side

to upload to, and share the local spectrum sensing results from, the cloud server and to

estimate the performance of local sensing based on absence and transition probabilities.

The contributions of this chapter are summarized as follows:

• We implement a CR system by using USRP National Instruments (NI) 2900 devices,
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and we evaluate the sensing performance of ED such as the probability of detection,

and the probability of false alarm at USRP receiver in a real environment.

• We also focus on ways to implement local spectrum sensing on the user side to upload

and share the local spectrum sensing results to the cloud server, and vice versa to

estimate the performance of spectrum sensing.

• In addition, to utilize mobile multimedia communications, a spectrum sensing system

based on ED combined with video transmission is developed using USRP and GNU

Radio as hardware and software platforms, respectively. The video is transmitted and

received after spectrum sensing is implemented at both the transmitter and receiver.

This chapter is organized as follows. Section 2.2 presents related works and

background. In Section 2.3, we describe system design and experiments. In Section 2.4, we

evaluate experiment results and discussions. Finally, we provide a conclusion in Section 2.5.

2.2 Related Works and Background

In CR, spectrum-sensing based on ED has been proposed and widely used because

it does not require transmitted signal properties, channel information, or even the type

of modulation. Abdulsattar and Hussein [6] presented a survey of energy detectors over

additive white Gaussian noise (AWGN) on different fading channels for spectrum-sensing

methodologies in CR. Theoretical analysis of time domain ED and threshold setting was

investigated.

Ma et al. [8] described the fundamental signal-processing aspects involved in

developing a fully functional CR network, including basic techniques of spectrum-sensing

such as energy, cyclostationary, pilot-based coherent, covariance-based, and wavelet-based

detection, that can effectively improve the overall detection capability of a CR network.

Besides that, spectrum sculpting was also discussed for avoiding interference with the PUs.

Cabric et al. [11] explored the new field of CR with a special emphasis on one unique

aspect: spectrum sensing. Three digital signal processing techniques (matched filtering, ED,

and cyclostationary feature detection) were investigated, which identified two key issues

related to the CR front end: dynamic range reduction and wideband frequency agility.

The USRP platform is a low-cost and high-quality realization of SDR. It allows

users various functionalities to achieve efficient, real-time realization of very complicated
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wireless systems that operate in the RF band. The USRP platform converts the digital

baseband signal delivered from the computer to an analog signal in the RF band. USRP

includes two main boards: the daughterboard and the motherboard [13]. A programmable

USB 2.0 controller communicates between USRP and GNU Radio and a field programmable

gate array (FPGA) for implementing four digital down converters (DDCs) and high-rate

signal processing. In our experiments, two USRP boards were used: the PU signal was

a generated signal for the first board, whereas the second was used for spectrum-sensing

purposes, and acted as the SU. The USRP NI 2900 device is an RF transceiver capable

of transmitting and receiving signals from 70 MHz to 6 GHz, which means that many

applications can be available by utilizing the frequency band from FM radio through to

Wi-Fi bands. The USRP NI 2900 has two connectors: RX2 (input terminal for the RF

signal) and TX1 RX1 (input and output terminals for the RF signal). These connectors go

to an RF switch on board, which allows transmit and receive operations to occur on the

same shared antenna.

Unlike other off-the-shelf options, the USRP family provides a complete and

versatile solution with software that accelerates development. All software processing was

realized in the open-source GNU Radio environment [15]. These libraries, together with

the appropriate drivers for manipulating the USRP boards and graphical programming

environment, allow efficient and accurate implementation of the selected spectrum-sensing

algorithms. All signal processing was realized in the GNU Radio environment with the

graphical tool called GNU Radio Companion (GRC), where the whole system is built from

blocks. Besides that, applications can be created using the Python script language behind

the blocks. The performance-critical signal processing path is implemented in C++. A

simplified wrapper and interface generator (SWIG) interface, which is an interface compiler,

is used to link C++ with Python.

Sowmiya and Sangeetha [16] analyzed a CR system based on ED with modulation

by using USRP NI 2920 devices. In that experiment, the quadrature phase-shift keying

(QPSK) modulated signal was received and the energy analyzed to detect the presence of

PUs.

Sensing performance in a real-time testbed of a GNU Radio and USRP software-

defined radio (SDR) communications platform was implemented [17]. Rashid et al. investi-

gated two main performance metrics for spectrum-sensing: probability of false alarm (Pfa)

and probability of detection, Pd. Pfa is used to determine the threshold of the CR dynamic
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spectrum access (DSA) system, while Pd is used to determine how many samples are needed

by CR DSA to meet the desired performance.

The ThingSpeak application programming interface (API) is an open source in-

terface that listens to incoming data, timestamps it, and outputs it for both human users

(through visual graphs) and machines (through easily parseable code) [18,19]. The cloud

brings everything together and allows us to interact with things and, even more interestingly,

allows things to interact with other things. For connection to the cloud server, we focus on

the ThingSpeak API. The interface for ThingSpeak capabilities communicates with objects,

as well as interesting additional applications. Moreover, ThingSpeak allows us to collect

data using sensors and display them in graphs. It offers near–real-time data collection,

data processing, and simple visualizations for users. Data are stored in so-called channels,

which provide the user with a list of features [19]. Each channel can store up to eight fields

of data, using up to 255 alphanumeric characters each. All incoming data are time- and

date-stamped, and receive sequential IDs. When a channel has been created, data can be

published by accessing the ThingSpeak API with a write key. Consequently, a read key is

used to access channel data when it is set to keep the data private (the default setting).

Channels can change to public status, in which case no read key is required. The first steps

to setting up ThingSpeak are always the same. After signing up for a new user account,

we can log in and create new channels [19]. After that, we can create a new channel by

selecting Channels, then choosing My Channels and Create New Channel. The channel has

a unique identifier key that is used to identify the channel when reading or uploading data.

According to the ThingSpeak website, the API works as noted in Fig. 2.1 [19].

Things are objects, such as data, that are collected from sensors. Data are sent and received

via simple Hypertext Transfer Protocol (HTTP) POSTs, much like going to a web page and

filling out a form. This communication is implemented through plain text, JavaScript Object

Notation (JSON) or Extensible Markup Language (XML). The data are then uploaded to

the cloud and, from there, can be used for a variety of purposes.

2.3 System Design and Experiments

In this section, we first present the local spectrum sensing. Secondly, we implement

cloud-based spectrum sensing where a USRP NI 2900 receiver with GNU is used to collect

sensing information and make local sensing decisions for local/immediate usage. The raw
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Figure 2.1: ThingSpeak with a cloud interface.

sensing information and the temp-sensing decision at the URSP receiver will be uploaded

to the ThingSpeak cloud. After that, the cloud will process the received information to

make a global decision in order to share it with in-demand users on the network. Finally, we

implement a spectrum sensing system based on ED combined with video transmission in

which the video is transmitted and received after spectrum-sensing is implemented at both

the transmitter and receiver.

2.3.1 Local Spectrum Sensing

Energy detection is used for spectrum sensing in the USRP device, in which two

hypotheses about the PU signal (absence (H0) and presence (H1)) are considered [16]. The

received signal, x (n), can be expressed as:

x (n) =

 w (n) H0,

hs (n) + w (n) H1,
(2.1)

where n = 1, . . . , N ; N is the number of samples; h is the amplitude gain of the channel,

which is assumed to be 0 and 1 under hypothesis H0 and H1, respectively; w (n) is AWGN

with zero mean and variance σ2
w; and s (n) is the transmitted signal. The principle of the

spectrum sensing operation is to decide between H0 and H1 based on observation of received

signal x (n).

The presence of the PU can be detected simply by calculating the amount of

received power in the considered frequency band and comparing it with a set threshold. The

algorithm for ED will make a decision on spectrum occupancy by the PU if the received

signal power is greater than the threshold. The mean power of N samples is collected and
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can be represented as random variable:

PN =
1

N

N−1∑
n=0

|x (n)|2, (2.2)

where PN is the mean output of the energy detector. In traditional ED, the reliability of the

spectrum sensing algorithm is crucially influenced by the threshold. Then, based on (2.2),

generic decision rule DN can then be modified to the considered case:

DN =

 H0, if PN ≤ γ,
H1, otherwise PN > γ.

(2.3)

The performance of the energy detector is characterized by two metrics: probability

of detection, Pd, which occurs when decision DN is H1, and the PU signal is practically

present (H1); and probability of false alarm, Pfa, which corresponds to the decision H1 but

the PU signal is absent (H0) [16]:

Pfa = P (PN > γ|H0) , (2.4)

Pd = P (PN > γ|H1) . (2.5)

If the noise term is assumed to be a circularly symmetric complex Gaussian (CSCG),

using Gaussian distribution approximation for the probability density function of PN , it can

be derived from (2.4) and (2.5) [20]:

Pfa = Q

(
γ − 2Nσ2

w√
4Nσ4

w

)
, (2.6)

Pd = Q

(
γ − 2N (SNR+ 1)√

4N (2SNR+ 1)

)
, (2.7)

where SNR and Q (·) represent signal-to-noise ratio and the Q-function, respectively. The

challenge in local spectrum-sensing is to reliably decide on the two hypotheses to achieve

high Pd for good protection of the PU, and low Pfa to provide satisfactory access for SUs.

2.3.2 Spectrum Sensing Implementation and ThingSpeak Uploading

In this section, two USRP boards were used: the PU signal was a generated signal

for the first board, whereas the second was used for spectrum-sensing purposes, and acted as
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the SU, was also used to upload data to ThingSpeak. The schematic diagram and dedicated

photographs of the experiment are shown in Fig. 2.2 and Fig. 2.3, respectively. The

experimental system consists of two USRP devices, one laptop, and one PC.

Figure 2.2: Schematic diagram of the system.

Figure 2.3: PU transmitter and SU receiver with USRP hardware and GNU Radio software.

The laptop with USRP A acts as the transmitter while the PC with USRP B acts

as the receiver. There is interference at neighboring access points, which can affect the USRP

frequencies. Therefore, the USRP center frequency was set at 2.48 GHz to avoid interference

and jamming with the said access point operating in the 2.4 GHz band. The energy detector

was implemented using 1024-point fast Fourier transform (FFT). Each block of FFT output

was averaged and stored inside a buffer. N averaged FFT blocks were collected and then

averaged again to acquire the final result used to make the decision on the presence of the

PU.

On the transmitter side, the spectrum of the multicarrier signal was tested in
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Figure 2.4: The PU transmitter with OFDM modulation in the GNU Radio Companion

(GRC).

Figure 2.5: The SU receiver with energy detection and data uploading function block in the

GRC.

this research work–the orthogonal frequency division multiplexing (OFDM) symbol with

NOFDM = 512 subcarriers. The PU transmitter side with OFDM modulation in the GRC is

shown in Fig. 2.4. The signal source block (Random Source) generated repeatedly random

data, which were mapped to QPSK symbols and were then subject to the OFDM modulation

block (realized in OFDM Mod). Finally, after power was adjusted properly, the signal was

sent to the local spectrum analyzer block (FFT Sink) and to the USRP block (USRP Sink)

responsible for sending data. Notice that the complex sampling frequency is set to 2 MHz,

the antenna gain is set to 40 dB, and the center frequency is set to 2.48 GHz. Analogous to

the PU transmitter, the SU receiver was also realized in the GNU Radio environment. A

schematic diagram of the SU receiver is shown in Fig. 2.5. The parameters at the receiver

were also set to the same center frequency, sample rate, gain, and FFT size. In addition,
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the receiver included parameters like the given Pfa (Pfa = 0.05) and the number of sensing

samples (N = 300) for local spectrum sensing. Data from the RF spectrum were collected by

the USRP Source block. It operates at the center frequency equal to 2.48 GHz. Afterwards,

the signal goes through chains with ED. We can observe the received signal through the

FFT Sink block.

Next, we focus on the ED algorithm. The signal is transformed to the frequency

domain by the FFT block. After that, these data can be analyzed and stored in the Detect

upload block, which has two main functions: (i) processing and storing data into a data file,

and then, performance of the ED algorithm is estimated by using Matlab; and (ii) providing

a connection between the GNU system and ThingSpeak to upload Pd to ThingSpeak.

The Detect upload block not only implements the ED algorithm but also connects the

ED system and ThingSpeak. This block will use a write API key (“VLZAO7DVD8Z9AKEN”)

to connect to ThingSpeak. All the collected data are stored in text files, which are integrated

into the Detect upload block and will be uploaded to ThingSpeak. Transmitter and receiver

parameters are shown in Table 2.2. The Detect upload block is shown in Fig. 2.6.

Table 2.2: Parameters for the transmitter and receiver

Parameter Transmitter Receiver

Center frequency (GHz) 2.48 2.48

Sample rate (MHz) 2 2

Gain (dB) 40 40

FFT 1024 1024

Number of sensing samples 300

Given propability of false alarm 0.05

Noise (dB) 0.003

Write API key VLZA07DVD8Z9AKEN

2.3.3 Spectrum Sensing Implementation and Video Transmission

A schematic diagram and dedicated photograph of spectrum sensing with video

transmission and reception which consisted of two USRPs, one laptop, and one PC are

shown in Fig. 2.7 and Fig. 2.8, respectively. Note that ED in this case is already built into
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Figure 2.6: The detect upload function block.

the python script file. Therefore, the schematic system diagram in Fig. 2.7 has no energy

detector block as compared with Fig. 2.2. The whole system of spectrum sensing with video

transmission and reception is shown in Fig. 2.9.

Figure 2.7: Schematic system diagram.

Figure 2.8: Spectrum sensing, video transmission and reception with USRP hardware and

GNU Radio software.
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Figure 2.9: The whole system of spectrum sensing with video transmission and reception.

2.3.3.1 Spectrum Sensing Implementation

The script usrp spectrum sense.py was considered for the design of the spectrum-

sensing functionality implemented in the testbed; it can be found in the toolkit provided

by the GNU Radio software. This script has been used as basic code for implementing a

wideband spectrum analyzer to properly sense the desired spectrum bands. However, it

was extended to properly sense the spectrum bands considered in the different spectrum

management strategies implemented in the testbed. The script receives different input

parameters from the user, such as the lowest and highest frequencies of the band to be

sensed; the FFT size parameter for the number of samples; the bandwidths considered in

performing the magnitude analysis of the sensed signal; gain; and threshold. Then, the

script computes the signal energy detected in each sample during execution of the spectrum

sensing functionality. Finally, the output of the script provides the center frequency at the

sensed channel.

Both transmitter and receiver also implemented spectrum sensing for the sensed

channel that is free or detected to transmit or receive video. The transmitter will sense the

channel, and if the channel is free (its mean average signal is less than a given threshold

based on measurements), a video signal is transmitted on the sensed frequency. Conversely,

if the channel is busy, a video signal will be transmitted on the next frequency [21]. The

USRP receiver also senses the channel, but in contrast, if the channel is detected, the signal

is demodulated to reproduce the transmitted video signal. Fig. 2.10 shows the flow chart
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for sensing the channel in the system.

Figure 2.10: The flow charts of video transmission and reception that are integrated for

sensing the channel in the system.

2.3.3.2 Video Transmission

The data transmission and receiving functionalities were implemented through

GNU Radio’s benchmark tx.py and benchmark rx.py scripts, respectively. They are

also found in the toolkit provided by the GNU Radio software. In this section, we

integrated usrp spectrum sense.py, benchmark tx.py, and benchmark rx.py scripts into

benchmark tx modified.py and benchmark rx modified.py scripts, so implementation of

spectrum sensing with video transmission and receiving is more convenient. These scripts

take the following input parameters from users: lowest and highest frequency, FFT size,

transmitter and receiver gain, and threshold for the spectrum-sensing functionality; a modu-

lation scheme for Gaussian minimum shift keying (GMSK); the sensed frequency from the

spectrum sensing; and packet size (only for the script benchmark tx.py).

On the transmitter side, after implementation of spectrum sensing, tasks of the

benchmark tx Python file are as follows.

• Data files are read frame by frame from hard disk, and then each frame is packed with

packet sequence numbers as the application layer header.

• The application layer packets are sent to the data link layer and the physical layer,
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where information on the preamble, access codes, cyclical redundancy checking, etc. is

assembled.

• In the last step, the assembled packets are modulated with GMSK and sent to the

USRP through a USB interface. USRP then transmits each packet on the sensed

channel frequency.

On the receiver side, after the signal is processed with spectrum sensing, the

benchmark rx Python file will be implemented. Tasks of this script are as follows.

• Read data from the USRP through the USB interface, which are demodulated with

GMSK

• Then, the received link layer packets are disassembled into application layer packets

with packet sequence numbers.

• In the last step on the receiver side, all correctly received packets are saved to a file,

displaying the decoded video sequences in real time on a display terminal.

In this research, we set statements at the transmitter as ./benchmark tx modified.py

893M 911M - -fft 512 -g 60 -q 10 and at the receiver as ./benchmark rx modified.py 893M

911M - -fft 512 -g 30 -q 4, where 893M and 911M are the lowest and highest frequency in

megahertz (MHz), fft is FFT size, g is gain in decibels (dB), and q is the threshold in dB.

All parameters can change for each requirement from users.

2.4 Experiments Results and Discussions

2.4.1 Experiments on Spectrum Sensing Implementation and ThingSpeak

Uploading

We tested a QPSK signal centered on the 2.48 GHz carrier frequency. From the

experiment, power transmission is shown in Fig. 2.11. On the receiver side, the sensing

information, when there is no signal transmission from the PU, is shown in Fig. 2.12. Fig.

2.13 shows the SU signal on the receiver side when the PU transmitter utilizes the channel.

In GNU Radio, we can observe received signals based on the FFT sink block.

Moreover, the processed signal at the SU is also stored in a data file that is integrated

into the Detect upload block, and then, we used this data file for analysis in Matlab. Fig.
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Figure 2.11: Transmitted power at the PU transmitter.

Figure 2.12: The received signal power at center frequency fc = 2.48 GHz when the signal

of the PU is absent.

2.14 shows the probability of detection according to the number of sensing samples. It

shows that if we use more samples, the performance of the energy detector is better. Fig.

2.14 also shows that practical and theoretical results are almost similar. Fig. 2.15 shows

the probabilities of detection and false alarm according to SNR. When SNR is higher, the

performance in probability of detection and probability of false alarm improves more.

In the next step, using ThingSpeak, we integrated data uploading assigned to the

Detect upload block with ED. As a result of the experiment, the probability of detection

versus the number of sensing samples was uploaded to ThingSpeak for saving and sharing

via the cloud, as shown in Fig. 2.16. Data that can be downloaded from the cloud by the
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Figure 2.13: The received signal power at center frequency fc = 2.48 GHz when the signal

of the PU is present.
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Figure 2.14: The probability of detection according to the number of sensing samples when

Pfa = 0.05.

end user are shown in Fig. 2.17.
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Figure 2.15: The probabilities of detection and false alarm based on SNR.

Figure 2.16: The probability of detection uploaded via ThingSpeak to the cloud. From top

to bottom: the first line is for SNR = -5 dB and the second line is for SNR = -6 dB.
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Figure 2.17: The spectrum sensing data received from the cloud by the end user.

2.4.2 Experiments on Spectrum Sensing Implementation and Video Trans-

mission

2.4.2.1 Implementation of Video Transmission with H.264 and MP4 on a

Specific Channel

In this testbed, we used two computers, one PC (the receiver) had the Linux

operating (OS) system installed, and one laptop (the transmitter), also had the Linux OS.

For more conveniently displayed video, we used a ffplay platform to show the video. In this

scheme, we transmitted under two scenarios: first, a video in H.264 format was 225,235

bytes in size, and second was a video in MP4 format in a higher resolution at 9.3 MB in size,

setting statements as ./benchmark tx.py –f 900M and ./benchmark rx.py –f 900M for the

transmitter and the receiver, respectively. The received videos in H.264 and MP4 formats

with information about received packets, file length, and status of reception are shown in

Fig. 2.18 and Fig. 2.19, respectively.

For evaluation of performance in the testbed, we considered received packet and

right received packet parameters. At the transmitter, we assembled the 225,235 bytes into

350 packets, and we then estimated performance of the testbed based on the number of

received packets and right received packets. We estimated performance of the testbed under

two scenarios: first, the distance between transmitter and receiver was fixed at 2 meters,

with increasing transmitter gain; second, transmitter gain was fixed, but with changes in
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Figure 2.18: Video received in real time in H.264 format on the specific channel (frequency

= 900 MHz).

Figure 2.19: Video received in real time at a higher resolution and in MP4 format on the

specific channel (frequency = 900 MHz).

transmit distance. In both cases, receiver gain was fixed at 30 dB. The results of the two

scenarios are shown in Fig. 2.20 and 2.21, respectively. Fig. 2.20 and 2.21 show number

of transmitted packets (left side column), received packets (middle column), and right

received packets (right side column) in the same considered value. Due to influence of some

factors such as transmission distance, receiver and transmission gains, some packets will

be lost in transmission process. In case receiver can not decode packets, number of right

received packets will be less than number of received packets. Fig. 2.20 shows that the more

transmitter gain we use, the lower the packet error rate. Besides that, packet error rate

can also be estimated based on the transmission distance between transmitter and receiver:

the farther the distance, the higher the packet error rate as shown in Fig. 2.21. Note that,
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packet error rate can be calculated based on the number of received packets compared to

the number of transmitted packets.
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Figure 2.20: Number of received packets, right received packets, and transmitted packets

with changes in transmitter gain but a fixed receiver gain of 30 dB.
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Figure 2.21: Number of received packets, right received packets, and transmitted packets

with changes in transmission distance, but with fixed receiver and transmitter gain (30 dB

and 50 dB, respectively).
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2.4.2.2 Implementation of Spectrum Sensing with Video Transmission at Trans-

mitter and Receiver

We set up the system with input parameters for transmitter and receiver as

explained in the video transmission part of Section 2.3.3.2. The input of transmitter Python

script and the results of spectrum sensing on the transmitter side at thresholds equal to 8

dB and 4 dB are shown in Fig. 2.22 and Fig. 2.23, respectively.

Figure 2.22: Spectrum sensing and video transmission at the transmitter with a threshold

of 8 dB.

Figure 2.23: Spectrum sensing and video transmission at the transmitter with a threshold

of 4 dB.

In Fig. 2.22, we can see that at a channel frequency of 894 MHz, the mean power

(equal to 5.615 dB) is less than the threshold (8 dB), so the transmitter will transmit the

video on the same channel. Conversely, in Fig. 2.23, if mean power (equal to 6.131 dB) is

greater than the threshold (4 dB), the transmitter transmits the video on the next channel

(a frequency of 896 MHz). At the receiver, the input of receiver Python script and the results

of spectrum sensing on the receiver side with a threshold of 10 dB and 7 dB, are shown in

Fig. 2.24 and Fig. 2.25, respectively.

In Fig. 2.24, we can see that the mean power on the channels is less than the

threshold (10 dB), so the receiver will continue to sense the channel. Conversely, Fig. 2.25
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Figure 2.24: Spectrum sensing at the receiver with a threshold of 10 dB.

Figure 2.25: Spectrum sensing at the receiver with a threshold of 7 dB.

shows that the mean power (9.927 dB) is greater than the threshold (7 dB), so the receiver

downloads the video on the same channel (a frequency of 894 MHz).

2.5 Conclusion

In this chapter, we implemented a spectrum-sensing system with ED in a USRP

NI 2900 and GNU Radio environment. Two main performance metrics for spectrum sensing

were measured in real environments: the probability of false alarm Pfa and the probability of

detection Pd. Pfa is used to determine the sensing threshold, whereas Pd is used to determine

the desired performance. We observed that ED-based spectrum sensing can achieve higher

performance when the number of sensing samples is larger. In addition, the results showed

that evaluation of the probability of detection and the probability of false alarm can improve

more when SNR is higher. Besides, in this chapter, ThingSpeak is also utilized to upload

data to the cloud, which is measured in a local CR node, such that we can store, process,

and share the sensed information more efficiently in a centralized way.

In addition, this chapter also presents the results of research into the implementation

of USRP and GNU Radio for a spectrum-sensing system with video transmission. In this
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research, video in H.264 and MP4 formats can be transmitted on a specific channel or on a

sensed channel. Performance of the video transmission is evaluated through packets error

rate, which is based on the number of received packets compared to the number of transmitted

packets. Performance on the testbed was evaluated based on exploring parameters, such

as gain and distance between USRPs. We anticipate that gain and distance between two

USRPs plays an important role. Results show that the transmission and reception of the

video files is smooth and successful when the testbed is implemented at high gain and over

a short distance. There could be distortion in the video as the distance increases due to a

loss of packets or from packet errors.



Chapter 3

A Transfer Games Actor–Critic

Learning Framework for

Anti-Jamming in Multi-channel

Cognitive Radio Networks

3.1 Introduction

Nowadays, the demand for communication and entertainment of users is increasing,

leading to a significant increase in wireless applications and services. As a result, issues such

as spectral scarcity and increasing demand for spectrum sources pose enormous challenges

for network operators. To address existing issues, the CRN was developed [2, 22] and is

considered one of the most promising technologies for improving spectrum efficiency. The

basic idea of a CRN is to exploit spectrum holes by enabling SUs (also called unlicensed

users) to sense, select, and access free channels which are not occupied by the PUs (also

called licensed users). However, whenever a PU needs those channels, the SU has to vacate

them.

For the implementation of efficient spectrum exploitation in CRNs, selection by

users of the appropriate access channel has a great influence on the performance of the

network. Many channel selection schemes have been investigated in the previous works [23–28].

Although the proposed solutions can utilized the spectrum effectively, they are all based on

31
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the assumption that SUs exploit spectrum holes, while coordinating together to achieve their

common target. This assumption ignores the scenario in which different random attackers

could attack communication channels between SUs that could threaten network security

and interfere with CRN. Physical or media access control layers are vulnerable to attacks

that are a security threat to communication in CRN. These threats are not only harmful to

commercial networks but also threaten national defense and national security [29]. Hence,

along with the challenges in spectrum management, secure spectrum utilizing also plays

a crucial role for the development of CRN architecture. For that reason, a considerable

amount of research on security techniques has been investigated for the CRNs [30, 31].

However, the influence of jammers on spectrum sharing has been still little considered. Some

previous work proposed resource allocation and intelligent jamming to avoid security threats

from jammers [32,33]. In [34], the authors proposed an anti-jamming game in CRNs with

multiple channels by modeling the interaction between a SU and attackers. Moreover, the

anti-jamming game is redefined as the defense strategy with randomized power allocation.

Most of the researchers only consider resource allocation and intelligent jamming to counter

jammers attacks.

Recently, the Markov decision process (MDP) and the game theory approach in

CRN have been investigated [3, 35,36]. A stochastic game in [37] considered a competition

and interaction among players, which is an extension of the MDP proposed in [38]. However,

these proposed game approaches do not exploit the knowledge about the PU status on the

channel, which can be collected via spectrum sensing on a pre-selected channel. In this work,

we also solve the anti-jamming problem using the game theory approach. First, we propose

a single-game scheme by formulating the problem of channel selection as a game framework,

solving the problem for finding the best channel by using value iteration–based dynamic

programming. In this chapter, anti-jamming means that there is the absence of PU on

the channels under consideration and further the jammers are not accessing these channels.

Subsequently, jammers do not jam PU but only jam on the channels of interest. Besides,

jammers could be considered as malicious SUs that try to access channels to prevent other

normal SUs from using them. Malicious SUs can forge the spectral characteristics of the

PU to gain priority access to wireless channels, known as primary user emulation (PUE)

attacks. To match with the scenario in this work, it is assumed that the CRN can easily

detect PUE attacks based on several detection mechanisms such as channel parameters

and spectrum decision, feature detection with filter and cyclostationary and many other
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detection mechanisms are mentioned [39]. Therefore, the jamming ability of attackers on

PU is not considered in our work. Second, for the purpose of improving the performance

of the single-game scheme through gathering the knowledge about the PU status on the

channel, we can use the double-game scheme in our previous work [40]. In double-game

scheme, the first game is solved to find pre-selected channel for the SU. Then, based on

this channel, the SU performs spectrum sensing to collect PU status information on the

channel. From the sensing results, the the belief and state of the system are updated and

used for the second game to find the final best channel. Note that, our best channel selection

problem against jammer’s attacks is different from the previous work [40]. In this work, the

problem of best channel selection against jammer’s attacks is investigated in the scenario

where communication channels are not used by the PUs and are not jammed by attackers.

Meanwhile, the problem of best channel selection in [40] is based on maximize the secrecy

rate of the SU.

Furthermore, the dynamic game solutions assume that the environment’s dynamics

(e.g., the jammer’s strategies) is known in advance, which is rarely true due to the random

attack nature of jammers. Since accurate information about the dynamics of the environment

is sometimes not available, the problem of stochastic optimization is usually formulated as

the MDP framework [41]. Afterward, the problem was formulated with MDP could be solved

using RL approaches [42]. In RL, the agent makes the optimal policy through environmental

interactions and requires no prior knowledge of the dynamic of the environment [43]. Because

of the advantages of a RL approach, a series of studies have been carried out using the

combination of anti-jamming and RL techniques [44–48]. Wang et al. [44] proposed an

anti-jamming defense mechanism in CRN based on a stochastic game framework in which

SUs can decide how many channels are used for a given purpose based on observations of

the jammer’s attack strategy, channel quality, and the spectrum availability. To learn the

optimal policy, the spectrum-efficient throughput is maximized using the minimax-Q learning.

Singh and Trivedi in [45] have proposed the anti-jamming approach using the State-action-

reward-state-action (SARSA) and QV RL algorithm in which the SU can learn the jammer’s

strategy and the characteristics of the channel. The results show an improvement in the

performance of QV and SARSA algorithm when compared with the minimax–Q learning

algorithm. In these studies, the Q–learning algorithm is used for most of the anti-jamming

mechanisms due to the advantage of not knowing the model of this algorithm. However, with

high-dimensional or continuous inputs, anti-jamming problems can face challenges when
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using traditional Q–learning algorithms. Therefore, several algorithms have been proposed

to overcome this weakness such as the deep Q–network (DQN) [46] and double DQN [47,48]

which leverage a deep neural network to approximate the Q table. Specifically, Han et al. [46]

proposed a two-dimensional anti-jamming mechanism for CRNs in which the SINR of the

SU signals can be improved based on the exploitation of user mobility and spread spectrum.

Besides, the anti-jamming scheme used a DQN-based approach to find the optimal policy of

the network. The authors in [47] used the double DQN algorithm to counter the jammer in

a multi-user manner with frequency hopping strategy attacks. Xu et al. [48] modeled the

encounter between the jammer and the CRN based on a double DQN design to maximize the

users’ transmission rate. In this chapter, for a performance comparison with our proposed

schemes, we can also solve the problem of channel selection to avoid jammer’s attacks using

an RL approach, called an actor–critic (AC) algorithm. Specifically, based on the state of

the system, the long-term network performance is maximized to find the optimal channel

policy that can be used against jammer’s attacks.

In the case of RL, agents must get the information under a trial-and-error process

to find an action in each state, because in the beginning they have no prior information on

the environment [49]. Therefore, the procedure could take a considerable amount of time

for learning in the AC algorithm to reach an optimal policy. To address this problem, we

use transfer learning technique [50]. Regarding to transfer learning techniques, problems

in target task can be effectively solved through the application of information obtained

from source task [51]. Consequently, transfer learning has attracted a lot of interest from

researchers [50–55]. Additionally, several studies of anti-jamming by combining RL and

transfer learning have been investigated recently [56–58]. Chen et al. [56] proposed a RL-

based power control scheme in which the WBAN coordinator and the in-body sensors can

communicate with each other to defend against attacks. The Q-learning algorithm and the

transfer learning method are used to obtain an optimal policy and accelerate the learning

speed, respectively. Dai et al. [57] provided a safe version of deep RL for network security

in which the risk level is estimated and the transfer learning technique is used to reduce

initial random exploration. An anti-jamming scheme with the help of an unmanned aerial

vehicle (UAV) in a cellular network is proposed in [58] where the deep RL algorithm is used

to find the optimal relay policy. Furthermore, transfer learning is also used to help cellular

networks battle jammers without knowing system models as well as observed communication

states. In general, in the above-mentioned anti-jamming jobs, the RL algorithm is used
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quite commonly, however, these studies are either considered on basic wireless networks

that are not CRNs or not considered combining with transfer learning technique. Therefore,

the problem of anti-jamming by combining RL and transfer learning in CRNs is considered

in this chapter. Furthermore, the transfer learning technique used to transfer knowledge

from source task where the anti-jamming problem is solved based on game theory is also

a highlight in this chapter. By using the learned knowledge about channel selection from

historical period (the double-game period), the ongoing learning process can be accelerated

in the target task during the classic AC period, and provide additional improvements to

the channel selection problem. As a result, the problem of channel selection with the help

of transfer learning technology is proposed based on the transfer of knowledge learned

from double-game scheme into a classic AC algorithm, which is denoted as the Transfer

Game-Actor-Critic (TGACT) scheme in this work.

In summary, the main contributions of this chapter are presented as follows:

• We investigate anti-jamming approaches for CRN with a multi-channel and multiple

jammer, where an SU is transmitting data to a receiver SU while multiple jammers

independently perform jamming on transmitter SU–receiver SU (SUtx–SUrx) trans-

missions. Each jammer attacks a random channel of interest. To optimize the security

of a CRN, we propose an anti-jamming scheme by using game-theoretic concepts

through definitions of states, actions, and players’ rewards. The network scenario is

modeled as a dynamic game, namely, a single-game scheme that finds the optimal

channel for the SU in order to protect communication channels from jamming attacks.

By using the optimal channel, the SU can receive maximum long-term reward which

can reduce jammers’ impact on channels. Then, we propose a double game–based

anti-jamming scheme based on a repeat game algorithm in our previous work [40],

which has demonstrated an improvement in performance compared to the single-game

scheme. After that, the network performance with the proposed double-game scheme

can be compared with a random-attack, single-game, and no-jammer schemes.

• Besides, the best channel selection problem with anti-jamming can be reformulated as

an MDP framework. For a performance comparison with our proposed schemes, we

consider the solution to the formulated MDP by using the classic AC algorithm, an

RL approach where there is no need to know the jammers’ access strategy in advance.

• Moreover, transfer learning technology is also applied (namely, the TGACT scheme),
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which uses the transferred knowledge in the double-game period to accelerate the learn-

ing process and to provide performance improvements in channel selection, compared

with a classic AC scheme and a transfer Actor-Critic (TACT) algorithm [54].

• To evaluate the performance of the proposed schemes, we use the average reward

metric (also called the security level in this chapter) of the SU in different configu-

rations. The simulation results show that the proposed schemes are quite resistant

to jammer attacks, and achieve better performance compared to other conventional

channel selection schemes. Specifically, the double-game scheme provides better perfor-

mance in comparison with random-attack and single-game schemes. Furthermore, the

performance of the proposed TGACT scheme is also better than the dynamic game,

classic AC, and TACT schemes.

The remaining of this chapter is arranged as follows. Section 3.2 presents the

system model and local spectrum sensing. Section 3.3 describes game formulation for channel

selection with anti-jamming for single- and double-game schemes. The RL approach–based

anti-jamming schemes are described in Section 3.4, which introduce the classic AC, the

TACT [54], and the proposed TGACT schemes. In Section 3.5, we present the simulation

results and discussions. Finally, Section 3.6 provides a conclusion.

3.2 The system model and local spectrum sensing

3.2.1 System model

Consider a CRN system where a transmitter SU tries to access the licensed channel

of the PUs (K licensed channels) by using local spectrum sensing and send data to a

receiver SU while jammers (E) independently perform jamming on a random channel of

interest, as shown in Fig. 3.1. The channels are assumed to be an AWGN channel. Let

K = {1, . . . , k, . . . ,K} and E = {1, . . . , e, . . . , E} denote the set of channels and jammers,

respectively. We assume that the SUtx always has data to transmit to the SUrx. For the

convenience of tracking and formulation terminology, SU will be used instead of SUtx in

the remainder of this chapter. The operation of the system is in a time-slotted manner

with slots of equal length and non-overlap, which are represented with the letter t. In

this work, the operation of a PU on channel k is assumed to follow a two-state Markov

discrete-time process. Let SPU (k) = {A,P} denote the PU state, in which the notations
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A and P represent the absence and presence of the PU, respectively. The operation of

Markov chain states of the PU is shown in Fig. 3.2, in which PPA and PAA represent the

state transition probabilities between the two absence and presence states of the PU. Let

Sk denote the PU state on channel k, and we define PkAA = Pr
(
Sk(t+1) = A|Sk(t) = A

)
and

PkPA = Pr
(
Sk(t+1) = P |Sk(t) = A

)
as the transition probability of the PU from state A to

itself and from state P to state A, respectively.

SUtx SUrx

K channels

….

Jammer 1 Jammer E

Figure 3.1: The system model.

Figure 3.2: Markov chain for the PU states.

First, the SU perform local spectrum sensing on a particular channel by using

energy detector. Then, the SU will perform the data transmission process on this channel

when it is free. On the contrary, the SU is not allowed to occupy the channel for data

transmission, and will wait until the next time slot to repeat the whole process.

In time slot t, the SU selects a channel for its communication, x ∈ K, and a denotes

the action of the SU with a = {x |x ∈ K}. Action a will be a distribution over set K, which
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is given as:

PSU (k) = Pr {a = k} (3.1a)

s.t.:
∑
k

PSU (k) =
∑
k

Pr {a = k} = 1, k ∈ K, (3.1b)

where PSU (k) denotes the probability that the SU accesses channel k.

In the same way, the jammers select channels for jamming, Y = {y1, y2, . . . , yE} , ye ∈
K, and be denotes the action of jammer e where be = {ye |ye ∈ K}. Then, actions by all

jammers in the system are given as b = {b1, b2, . . . , bE}. Action be will be a distribution over

set K, which is given as:

Pe (k) = Pr {be = k} (3.2a)

s.t.:
∑
k

Pe (k) =
∑
k

Pr {be = k} = 1, k ∈ K; e ∈ E , (3.2b)

where Pe (k) denotes the probability that jammer e attacks channel k.

Next, it is necessary to define the payoff function that characterizes the level of

jamming. In this section, based on the exploitation of spectrum holes in CRNs, the payoff

function is determined based on the characteristics of channel access behavior (related to

user and jammers) and occupancy status of spectrum holes (related to PU), not the jamming

intensity. Therefore, the payoff function is determined according to whether a particular

channel is not under jammer’s attacks and is not occupied by PU. Specifically, when the SU

accesses channel k that is not under jammer’s attacks, and this channel is not occupied by

PU, the payoff function of the SU is given as:

R (a = k, b, SPU (k)) =

 1, if SPU (k) = A and a 6= be, ∀e,
0, otherwise.

(3.3)

3.2.2 Local spectrum sensing

In the CRN considered, we assume the network includes a transmitter/receiver SU

pair. The SU may use an energy detection method to perform local spectrum sensing. The

binary hypothesis test of the SU is given as follows [59]: P : x (t) = hu (t) + w (t),

A : x (t) = w (t),
(3.4)
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where x(t) is the received signal by SU, h is the channel gain of the communication link

between PU and SU, u(t) is the signal transmitted by PU, and w(t) is zero-mean AWGN.

The obtained energy at the SU [60]:

yE =

I∑
j=1

|x (j)|2, (3.5)

where I is the number of sensing samples during each detection interval, and x (j) is the

received PU signal at the SU in the jth sample. When I is adequately large (e.g., I > 10 in

practice), we approximate yE as a Gaussian random variable under the binary hypothesis

(P and A) with mean µP , µA and variance σ2
P , σ

2
A as [60]:

yE ∼

 P : N
(
µP = I (1 + φ) , σ2

P = 2I (1 + 2φ)
)
,

A : N
(
µA = I, σ2

A = 2I
)
,

(3.6)

where φ is the sensed channel’s SNR in decibels (dB). After that, two states of the PU can

be made a decision as follows:

D (t) =

 1, when yE (t) ≥ λ,
0, otherwise,

(3.7)

where 0 and 1, respectively, are binary bits that denote two states of the PU, absence and

presence; and λ denotes a predefined threshold of decision energy.

3.3 Game approach–based anti-jamming scheme

We model the problem of channel selection for the interaction between the SU and

the jammers as a game framework by using game-theoretic concepts through definitions of

states, actions, and players’ rewards [61, 62]. The game formulation of channel selection

problem to avoid jammer’s attacks is represented as follows.

• Players: the number of players joining the game is (1 +E) players (i.e., an SU and E

jammers).

• State: the system state is defined as:

S = {P0 (k) ,Pe (k) |k ∈ K; e ∈ E } , (3.8)
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where P0 (k) is the probability (also called the belief) that the state of channel k is A

(i.e., not used by the PU). If we consider the operation of the SU, the state will be

approximated as:

Sch = {Pch (k) |k ∈ K} , (3.9)

where Pch (k) denotes the probability that the state of channel k (Sch) is free (i.e., not

jammed and not being used by the PU), which is given as:

Pch (k) = P0 (k)

(
1−

∏
e

Pe (k)

)
. (3.10)

• Action: in each time slot t, the SU should select a channel for its communication,

and a denotes the action of the SU with a = {x |x ∈ K}.

• Reward: the reward for the SU, R (PSU (a) ,Sch), is given by:

R (PSU (a) ,Sch) = E [R (a, b, SPU (a))] = PSU (a) Pch (a)R (a,−a, A) , (3.11)

where E [R] denotes the expected value of the SU’s payoff function R.

In this chapter, the goal of choosing the best channel for SU is to maximize long-

term reward (also called the accumulated reward of the SU) of the system, aR
(
PSU (a) ,S0

ch

)
,

which is defined as follows:

aR
(
PSU (a) ,S0

ch

)
=

∞∑
t=m

γtR
(
PSU (a) ,Stch|Smch = S0

ch

)
, (3.12)

where m is the current time slot, t is the tth time slot, Smch is the system state in time slot

m, γ is a discount constant (γ ∈ (0, 1)).

Then, the problem of choosing the optimal channel for SU to protect communication

channels from jammers attacks is identified as follows:

aopt = arg
a

max
(
aR
(
PSU (a) ,S0

ch

))
. (3.13)

3.3.1 Single game–based anti-jamming scheme

The problem in (3.13) can be solved by maximizing the accumulated reward of

the SU. Through SU and jammers’ channel access strategies, we can determine the state of

the system. Therefore, the accumulated reward of the SU can be easily calculated based
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on its state action space. Besides, using a value iteration-based dynamic programming

(DP) approach can obtain closed-form solutions for the value function [63–65]. Therefore,

we consider our game model in which value iteration-based dynamic programming can

be employed to come up with optimal strategies for the SU in order to find the optimal

channel and protect communication channels from jamming attacks. The single game–based

anti-jamming scheme is represented in Algorithm 3.1.

Algorithm 3.1 Single game–based anti-jamming scheme

1: Input: K,E,P0 (k) , T,PAA,PPA, γ.

2: Output: the optimal channel for the SU, aopt.

3: Given the system state: S = {P0 (k) ,Pe (k) |k ∈ K; e ∈ E }, as expressed in (3.8)

4: Determine the local decision for the state of the PU based on Section 3.2.2, local spectrum

sensing.

5: for t = 1 to T

6: for a = 1 to K

7: Calculate:

8: The payoff function: Rt (a) ← (3.3)

9: The probability: Ptch (a) ← (3.10)

10: The reward for the SU: Rt
(
PtSU (a) ,Stch

)
← (3.11)

11: end for

12: Calculate the accumulated reward: aR (PSU (a) ,Sch) ← (3.12)

13: Find the optimal channel, atopt: a
t
opt = arg

a
max

(
aR (PSU (a) ,Sch)

)
14: end for

3.3.2 Double game–based anti-jamming scheme

In this section, we propose a double game–based anti-jamming scheme for a CRN.

The basic idea of the double-game scheme is to exploit the knowledge about the PU status

on the channel [40], which can be determined by solving the best channel selection problem

from the single-game scheme. Specifically, the double-game scheme utilizes single-game

scheme two times. One is for pre-selected channel, and the other one is for the best channel

after spectrum sensing. That is, we first choose a most preferable channel, which is called as

the pre-selected channel by using the Algorithm 3.1. After performing spectrum sensing on

the pre-selected channel, we choose the best channel using the Algorithm 3.1, again. The

double-game scheme is composed of 4 phases of the first game, spectrum sensing, the second
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game and environment updating, which are shown in Fig 3.3. Specifically, the four phases of

the proposed double-game scheme are presented as follows.

Figure 3.3: A block diagram of the proposed double-game scheme.

• The first game phase (line 5 in Algorithm 3.2): solving the problem in (3.13)

based on initial state of the system to find the pre-selected channel, apreopt .

• Spectrum sensing phase (lines 6-8): based on pre-selected channel, spectrum

sensing is carried out by SU to exploit the knowledge about the PU status on channel.

Depending on the sensing result for the state of the PU signal is A or P (i.e., the

channel is free or busy, respectively), the system belief will be updated accordingly

using Bayes’ rule [66]. Specifically, if the channel is free, the belief, P
apreopt

0 , is updated

as follows:

P
apreopt

0 =
P
apreopt

0

(
1− Pf

(
apreopt

))
P
apreopt

0

(
1− Pf

(
apreopt

))
+

(
1− P

apreopt

0

)(
1− Pd

(
apreopt

)) , (3.14)

where Pd and Pf are the probabilities of correct detection and false alarm, respectively.

Otherwise, the belief is updated as follows:

P
apreopt

0 =
P
apreopt

0 Pf
(
apreopt

)
P
apreopt

0 Pf
(
apreopt

)
+

(
1− P

apreopt

0

)
Pd
(
apreopt

) . (3.15)

The state of the system is updated based on the estimated belief from either (3.14)

or (3.15), which is denoted by Su. According to the updated state, Su, the system

update the rewards and the accumulated rewards by (3.11) and (3.12), respectively.

• The second game phase (line 9): solving the problem in (3.13) based on the

updated accumulated reward from spectrum sensing phase to find the final best

channel, a∗opt.
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• Environment updating phase (line 10): the optimal reward can be obtained by

using optimal channel of the SU, a∗opt. Based on the observation of channel status,

we need to update the system state for use in the next time slot. Specifically, if

communication with channel a∗opt is successful (i.e., the channel is not occupied by

PU), the belief P
a∗opt
0 is updated as:

P
a∗opt
0 = P

a∗opt
AA . (3.16)

Otherwise, if communication fails (i.e., the channel is occupied by the PU), the belief

is updated as:

P
a∗opt
0 = P

a∗opt
PA . (3.17)

The system state in (3.9) will be updated using the updated belief, P
a∗opt
0 , for use in

the next time slot.

In short, the double game–based anti-jamming scheme is represented in Algo-

rithm 3.2.

Algorithm 3.2 Double game–based anti-jamming scheme

1: Input: K,E,P0 (k) , T,PAA,PPA, γ.

2: Output: the optimal channel for the SU, a∗opt.

3: Given the system state: S = {P0 (k) ,Pe (k) |k ∈ K; e ∈ E }, as expressed in (3.8)

4: Determine the local decision for the state of the PU based on Section 3.2.2, local spectrum

sensing.

5: Find the optimal pre-selected action (the channel) of the game, apreopt : apreopt =

arg
a

max
(
aR (PSU (a) ,Sch)

)
, which can be solved with Algorithm 3.1.

6: Implement spectrum sensing and update the belief about the system: P
apreopt

0 ← (3.14) or (3.15)

7: According to updated belief P
apreopt

0 , update the state of the system: Su ← (3.8)

8: Update the accumulated reward, aRu, based on the updated state, Su: aRu ← (3.12)

9: Solve the problem in (3.13) with updated accumulated reward aRu to find optimal channel a∗opt

for the SU.

10: The optimal reward can be obtained by using optimal channel of the SU, a∗opt. According to the

observation of the communications link in the channel, update the system state for use in the

next time slot by using (3.16) or (3.17).
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3.4 Reinforcement learning approach–based anti-jamming

schemes

We reformulated the best channel selection problem in a multi-channel CRN system

as the framework of an MDP. Since the strategies of the jammers on communication channels

are unknown, we employ the RL approach, which finds the optimal channel selection policy

to reduce the jammer’s influence and enhances the long-run network performance. In a

model-free RL framework, RL agents can learn the optimal policy through trial-and-error

learning during their interaction with the environment.

3.4.1 Markov decision process

A basic RL model is composed of two factors, environment and agent, in which

these two elements interact over time. Furthermore, based on an environment states, the

agent does a process of trial-and-error learning, and then the agent can make a suitable

action and maximize the accumulated rewards. Regarding the MDP framework, we need

to consider objects like state space (Sch), action space (A), the state-transition probability

function (P), and the reward function (R). Therefore, the MDP framework of the channel

selection problem for anti-jamming can be defined as a tuple 〈Sch,A,P, R〉.

• States: for the operation of the SU, the state is defined as Sch = {Pch (k) |k ∈ K},
where Pch (k) as defined in (3.10).

• Actions: at the time slot t, the agent observes state Stch in state space Sch of the

environment, and then chooses action at in action space A following a probability of

taking action, π. In this work, the SU (the network agent) chooses the best channel

that it can access (i.e., the channel which is not occupied by the PU and not being

jammed). Therefore, action at is set as at = {x}x∈K, which is defined as explained in

Section 3.2.1.

• Rewards: then, the environment will return a reward to the agent, R
(
Stch, at

)
. The

reward of the network can be defined as in (3.11), and transforms to the new state

St+1
ch . The next state, St+1

ch , is updated following (3.9), which is based on the action

(channel k).
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• The state-transition probability function: once the SU selects an action, the

system changes from the current state, Stch, to the new state, Sch′, based on the

probability of state-transition as follows:

P
(
Sch′|Stch, at

)
=

 1, if Sch′ = St+1
ch ,

0, otherwise.
(3.18)

The purpose of the RL approach is to learn to select actions based on the states

of the system through learning from experience to maximize the accumulated reward (also

called the state-value function) of the system. The state-value function is expressed as

follows [43]:

V (Sch) =

∞∑
t=0

γtR
(
Stch, π

(
Stch
) ∣∣S0

ch = Sch
)

= R (Sch, π (Sch)) + γ
∑
Sch′∈S

P
(
Sch′|Sch, π (Sch)

)
V
(
Sch′

)
, (3.19)

where π (Sch) : Sch 7→ a denotes the stochastic policy which SU can take an action, a, based

on the state of the environment, Sch, and P (Sch′|Sch, π (Sch)) denotes the state-transition

probability from the current state Sch to the next state Sch′. The Bellman equation is used

to maximize the state-value function, and find the optimal policy, π∗, which is given as

follows [43]:

π∗ (Sch) = arg
a

max

R (Sch, a) + γ
∑
Sch′∈S

P
(
Sch′|Sch, a

)
V ∗
(
Sch′

) . (3.20)

Through determining the optimal policy, we can find the optimal channel for SU

which can avoid jamming from attackers in a multi-channel CRN.

3.4.2 The AC–based channel selection scheme

Traditionally, the MDP problem can be solved with a value iteration-based dynamic

programming approach. However, this approach needs to know the dynamic environment

in advance. In addition, the agent will face more challenges in the process of finding the

optimal policy when using dynamic programming approach to solve the Bellman equation

in a high-dimensional space of state and action. Therefore, for a performance comparison

with our proposed schemes, we also consider using an RL approach, called the classic AC
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algorithm which requires no prior knowledge of the environment’s dynamics. Regarding this

approach, the agent can learn the optimal policy through trial-and-error learning during

their interaction with the environment. Basically, an agent for the AC algorithm consists of

two separate components [42]: the actor, which observes the environment state and selects

an action by stochastic policy π; and the critic, which evaluate an actor’s action based on

the value function and reward, as shown in Fig. 3.4.

Figure 3.4: A block diagram of the classic actor–critic algorithm.

When an SU and jammers connect to the network, the initial state of the system

is S. In order to optimize performance and maximize the accumulated reward, the SU

chooses suitable actions in which the selected channels are not used by the PU and are not

being attacked by jammers. The learning process of the AC algorithm to find the optimal

channel selection policy is presented as follows. In the time slot t, the SU selects an action,

at, following a policy, πt
(
Stch
)
. The probability of taking action at in state Stch is given as

follows [43]:

πt
(
Stch, at

)
= Pr

(
at
∣∣Stch) =

eh
t(Stch,a

t)∑
a′
eh

t(Stch,a′)
, (3.21)

where ht
(
Stch, at

)
is the tendency to select action at in state Stch. Once the SU selects

action at, the current state, Stch, will transit to the next state, St+1
ch , according to the

state-transition probability, which is given in (3.18), and returns an immediate reward,

R
(
Stch, at

)
. Afterward, based on the calculation of the temporal difference (TD) error value,

the critic will evaluate the selected action from the actor. The TD error value is calculated
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from the value of R
(
Stch, at

)
+ γV t

(
St+1
ch

)
at the critic and the state-value function in the

previous state, V t
(
Stch
)
, which is given as follows:

δt = R
(
Stch, at

)
+ γV t

(
St+1
ch

)
− V t

(
Stch
)
. (3.22)

Thereafter, based on the TD error, the critic will update its state-value function in

the next time slot to improve the state-value function and policy. The state-value function

is updated as follows:

V t+1
(
Stch
)

= V t
(
Stch
)

+ αcδ
t, (3.23)

where αc denotes the step-size parameter of the critic. Besides, the policy at the actor is

also updated as follows:

ht+1
(
Stch, at

)
= ht

(
Stch, at

)
+ αaδ

t, (3.24)

where αa denotes the step-size parameter of the actor. Overall, the system performance can

be improved by updating functions of the state-value and policy based on the TD error with

appropriate step-size parameters by the actor and critic.

3.4.3 The TACT–based channel selection scheme

The previous section addresses the problem of finding the best anti-jamming channel

using the classic AC algorithm. In this section, we present a methodology where the controller

utilizes information on the strategies learned during the historical period to find the best

anti-jamming channel. First, state, action, reward and value function definitions are also

defined as described in Section 3.4.1. For a performance comparison with our proposed

schemes, a TACT algorithm in [54] can be applied to our channel selection problem. The

block diagram of the TACT scheme is shown in Fig. 3.5. For a TACT-based approach, the

information on the policy, h (Sch, a), from a source task (left side in Fig. 3.5) is transferred to

a target task (right side in Fig. 3.5). However, there might be some differences although the

target task and the source task have similarities. For example, the source task has a higher

reward than the target task even though these two tasks use the same state. Therefore,

action a can be taken by the controller in the target task in an aggressive direction for

channel selection. As a result, the transferred policy can have a negative effect on the

action selection process. Hence, by reducing the effects of the transferred policy, we can

mitigate these negative effects. In general, the basic idea of the TACT algorithm is to avoid
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Figure 3.5: A block diagram of the TACT scheme [54].

the negative effect of the transferred policy on the action selection process [54]. From this

idea, we can update the overall policy with transfer rate where the transfer rate should be

decreased over time to reduce the impact of transferred policy on the overall policy. As

can be seen in Fig. 3.5, the overall policy, ho, is a combination of an exotic policy (also

called transferred policy), he, and a native policy, hn. The overall policy is updated as

follows [54,55]:

ht+1
o

(
Stch, at

)
= (1− ζ)ht+1

n

(
Stch, at

)
+ ζhe

(
Stch, at

)
, (3.25)

where ζ ∈ (0, 1) denotes the transfer rate which represents the exotic policy contribution to

the overall policy. During the initial training process, the overall policy update strategy with

the dominance of the exotic policy over the native policy, so the performance of the system

can be improved. However, the goal is still learning at the target task, so we need to reduce

the impact of transferred policy on the overall policy. Therefore, the transfer rate should

be decreased over time with decay factor dζ , and thus, ζ 7→ 0 as the number of iterations

reaches infinity. Besides that, the native policy updates itself according to the classic AC

algorithm as defined in (3.24).
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3.4.4 The proposed TGACT–based channel selection scheme

Figure 3.6: A block diagram of the transfer Game–AC scheme.

Transfer learning method in the TGACT–based channel selection scheme consists

of two phases: i) transferring information from using the optimal channel, which can be

obtained from the double-game period; and ii) training the target task based on the updated

state and strategy distribution. More specifically, in the first phase of transfer learning, the

Algorithm 3.2 is exploited to get the knowledge about the PU status on the channel to find

the optimal channel. The communication link status on this channel can then be determined

to be either occupied or not occupied by the PU. As a result, the PU state, P0, should

be updated according to (3.16) and (3.17) and will be transferred to the second phase of

transfer learning. In the second phase, the learning process is implemented by using the

classic AC algorithm as described in Section 3.4.1 and Section 3.4.2 with the updated state,

P0, from the first phase. The TGACT block diagram is shown in Fig. 3.6, and the proposed

TGACT-based anti-jamming scheme is presented in the Algorithm 3.3 in which the first

phase of transfer learning is from line 3 to line 6 and the learning process of the classic AC
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algorithm is from line 7 to line 16.

Algorithm 3.3 The proposed TGACT–based anti-jamming scheme

1: Input: K,E,P0 (k) , T,PAA,PPA, γ, αc, αa, ζ, dζ .

2: Output: the optimal channel selection policy, π∗opt.

3: Determine the local decision for the state of the PU based on Section 3.2.2, local spectrum

sensing.

4: Find the optimal channel for the SU, a∗opt, which can be determined with Algorithm 3.2.

5: Based on the optimal access channel, update the state of the system as seen in (3.16) or (3.17).

6: Determine the system state in (3.8) based on the updated state.

7: Initialize the lookup table for policy π (Sch, a), tendency h (Sch, a), and state-value function

V (Sch).

8: for t = 1 to T

9: Select action at based on temporal policy πt (Stch, at)
10: Calculate immediate reward: R (Stch, at) ← (3.11)

11: Update the state of the system from Stch to St+1
ch , and calculate TD error: δt ← (3.22)

12: Update the state-value function: V (Stch) ← (3.23)

13: Update the tendency to select an action: ht+1 (Stch, at) ← (3.24)

14: Update the policy: π (Stch, at) ← (3.21)

15: end for

16: Return the optimal policy: π∗ (Sch) = arg
a∈A

max {π (Sch, a)}

3.5 Simulation results and discussion

In this section, we show simulation results to demonstrate the efficiency of the

proposed schemes for anti-jamming in multi-channel CRNs. We also compare the performance

of our proposed schemes, which include single-game, double-game, and TGACT schemes,

against the performance of other baseline schemes, such as the classic AC scheme, the TACT

scheme [54], a random-attack scheme, and a no-jammers scheme. We sometimes use terms

like learning and non-learning. The learning schemes include classic AC, TACT, TGACT,

and double-game schemes. The double-game scheme is seen as an improved method of the

single-game scheme; it exploits the action in the current time slot to update the system

belief when using in the next time slot. Therefore, we consider the double-game scheme

as one of the learning schemes. The non-learning schemes include the single-game, the
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no-jammers, and the random-attack schemes. With a single-game scheme, in the current

time slot, the player selects an action and tries to maximize the accumulated reward of the

system. When using the no-jammers scheme, there are no jammer attacks on the channels.

With the random-attack scheme, jammers randomly attack the channels, and there are no

anti-jamming efforts applied to the system.

3.5.1 Simulation settings

In this section, we compare the performance of the proposed schemes under various

configurations. First, we show the convergence property for each of the proposed schemes in

terms of the average rewards metric, ave R, which are calculated as follows:

ave R =
1

T

T∑
t=1

Re (t), (3.26)

where T is the number of time slots, Re (t) is the reward for the SU in the tth time slot

which is calculated by (3.11) without effect of the channel selection probability of SU. Then,

we validate the network performance in terms of average rewards under three conditions:

varying the number of channels, varying the number of jammers, and varying SNR value of

the sensed channel. In the first scenario, simulations are performed when the number of

jammers was fixed at E = 5 while the number of channels changed from three to 11. In the

second scenario, we consider the performance of the proposed schemes when the number of

channels is K = 5 while the number of jammers changes from one to five. The SNR of the

sensed channel is φ = −6 dB in both first and second scenarios. In the last one, the SNR of

the sensed channel changes from -18 dB to -2 dB, while the number of jammers and the

number of channels are each fixed at 5. In all cases, we assume that the initial values of the

state transition probabilities are PAA = 0.8 and PPA = 0.2. The value of discount factor,

γ = 0.99. To provide the best performance from the proposed schemes, the simulations

are performed several times to achieve the most suitable step-size parameters (αa and αc).

Then, we set αa = 0.1 and αc = 0.1. As seen in previous work [54, 55], higher transfer rates

resulted in a faster convergence rate and better performance. Therefore, the transfer rate is

set to ζ = 0.9 with a decay rate of dζ = 0.99. Simulations are performed with T = 2, 000

timeslots. All of the schemes are implemented using Matlab.
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Figure 3.7: Accumulated rewards with five channels (K = 5) and five jammers (E = 5)

when the SNR of the sensed channel is -6 dB (φ = −6 dB).

3.5.2 Convergence property

In this section, we check the convergence property in terms of the accumulated

rewards from our proposed schemes when the number of time slots, T , increases gradually

from 1 to 2,000. The number of channels and jammers are fixed at K = E = 5, while the

SNR of the sensed channel is set to φ = −6 dB. Fig. 3.7 shows the improvement of the

accumulated reward as the number of time slots increases. We observe that the accumulated

rewards from the schemes increase rapidly over the first 400 time slots, and reach optimal

value with more time slots. The convergence speed in the game schemes is faster than the

random-attack scheme with no anti-jamming. The convergence speed of the double-game

scheme is faster than the single-game scheme owing to information exploitation about the

PU status on the channel that is collected via sensing on the optimal channel obtained from

the single-game scheme. However, with the single-game scheme, the selected action is not

affect the future reward, the player only try to choose the action in the current time slot

which maximize the accumulated reward of the system. Therefore, the convergence speed

in dynamic programming schemes like the random and single-game schemes is much lower

than in RL schemes like the AC scheme and the transfer learning schemes (TACT and our

proposed TGACT). The convergence speed of transfer learning–based RL schemes is faster

than the AC scheme owing to the advantage of transfer learning, which transfers information
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from the source task to the target task. Fig. 3.7 also shows that schemes using transfer

learning (TGACT and TACT) can accelerate learning process of conventional RL algorithm,

AC scheme. Specifically, to reach the value of the accumulated rewards of 8, the TGACT

and TACT schemes need 70 and 160 time slots, respectively. Meanwhile, to get this value

of the accumulated rewards, the classic AC scheme needs about 210 time slots. From this

result, we can see transfer learning can accelerate RL process.
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Figure 3.8: Average rewards with five channels (K = 5) and five jammers (E = 5) when the

SNR of the sensed channel is -6 dB (φ = −6 dB).

Afterward, we verify the convergence property of the proposed schemes in terms of

the average reward. As seen in Fig. 3.8, the convergence rate of the schemes significantly

decreases over the first 200 time slots, then, the average reward continues to decrease but at

a slower rate. Finally, the schemes reach to an optimal reward to use for channel selection

after about 1,000 time slots. The reward for the SU that used the classic AC scheme is

lower than for SUs using the transfer learning schemes. This is because the agent of the

transfer learning schemes can learn faster by exploiting transferred knowledge from source

task. In addition, the agent in classic AC scheme needs to be trained from scratch, and

therefore, it needs more trials-and-errors to learn. The convergence rate of the TGACT

scheme outperforms in most learning schemes. The random-attack scheme provides the

lowest convergence speed, and thus, got the smallest rewards. For most of the schemes,

the performance is the best in a favorable environment with no jammer attacks on the

system. In the convergence process, if the agent uses too many time slots for training, a
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local optimal policy might be obtained. However, the training process might take a very

long time. Therefore, the total number of time slots for training should be neither too large

nor too small.

3.5.3 The performance of the system according to the number of channels,

the number of jammers, and the SNR of the sensed channel

In Fig. 3.9, we observe the performance of the proposed schemes under the influence

of the number of channels. In this case, the number of channels is set at K ∈ {3, 5, 7, 9, 11}
while the number of jammers and the SNR of the sensed channel are fixed at E = 5 and

φ = −6, respectively. As seen in Fig. 3.9, the average reward increases as the number of

channels increases. In fact, the more channels are used, the weaker the ability to attack

a particular channel, and thus obtain higher system rewards. The average reward from

the single-game scheme dominated the random-attack scheme. To explain this, with the

single-game scheme, the SU maximizes the accumulated reward based on the action selection

at the current time slot, whereas there are no anti-jamming solutions used in the system

with the random-attack scheme. The double-game scheme is better than the single-game

scheme owing to exploitation of PU status information, which can be collected via sensing

based on the optimal channel from the single-game scheme. Moreover, the average reward of

the proposed TGACT scheme outperforms the classic AC and TACT schemes. In particular,

when the number of channels is five, the average reward of the TGACT scheme provides

improvements of 10.51 % and 15.94 % over TACT and classic AC schemes, respectively.

This is because, in the proposed TGACT scheme, agent can exploit information transferred

from double-game period, and thus, learn effectively the optimal policy. Therefore, the

TGACT scheme provides the best performance in comparison with the remaining schemes,

except for the no-jammers scheme. With the no-jammers scheme, system performance is the

best compared to most other schemes. However, in this scheme, jammers are not allowed to

attack the channels. Moreover, although the number of channels changes, the local decision

for the state of the PU is specified only once for the initial parameter. Hence, the system

reward from this scheme remains unchanged. The average reward is lowest in case of the

random-attack scheme. This is because the SU does not use channel selection schemes with

anti-jamming and channels can be randomly attacked by jammers.

Fig. 3.9 also shows the Kullback-Leibler (KL) divergence [67] in which KL diver-
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Figure 3.9: The left Y-axis shows average rewards according to the number of channels when

the number of jammers is E = 5 and the SNR value of the sensed channel is φ = −6 dB.

The right Y-axis represents the Kullback-Leibler (KL) divergence in which KL divergence

1 represents the KL divergence of TGACT scheme over Double-game scheme and KL

divergence 2 represents the KL divergence of TACT scheme over classic AC scheme.

gence 1 represents the KL divergence of TGACT scheme over Double-game scheme and

KL divergence 2 represents the KL divergence of TACT scheme over classic AC scheme.

Comparing KL divergence 1 and KL divergence 2, the implementation of a transfer learning

from a double-game scheme to classic AC scheme (i.e., TGACT scheme) provides a significant

improvement in performance over performing a transfer learning from an AC scheme to AC

scheme (i.e., TACT). Furthermore, the properties of KL divergence show that the smaller

the DL divergence value, the more similar the two distributions are. Therefore, with a small

improvement in average rewards, the KL divergence 2 achieves a relatively low gain when

the TACT scheme and the classic AC scheme are compared. Likewise, KL divergence 1

with a significantly large value can be explained. As a result, the higher KL divergence

between the target task and the source task, the more efficient it is in performing transfer

learning. The simulation results also show that the average rewards improve with increasing

the number of channels, the value of KL divergence also increases.

In the same way, we evaluate the efficiency of proposed schemes under varying

numbers of jammers, E, and compare the results with the classic AC, the TACT, the

random-attack, and the no-jammers schemes, as shown in Fig. 3.10. While the number
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of jammers ranges from one to five, the number of channels and the SNR of the sensed

channel are fixed at K = 5 and φ = −6 dB, respectively. When the number of jammers is

high, the channel becomes more vulnerable to attack due to the large number of jammers.

Therefore, with an increase in the number of jammers, the average reward in the system

decreases significantly. In addition, the performance of proposed schemes is dominant than

the conventional channel selection schemes because the channel can be selected effectively

by maximizing the system reward in the current time slot, as in the game schemes, or by

learning the variations in the environment and transferring information from double-game

period, as done in the TGACT scheme. Again, the system performance is also remained

unchanged in no-jammers scheme because jammers are not allowed to attack the channels

in this scheme.
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Figure 3.10: Average rewards according to the number of jammers when the number of

channels is K = 5 and the SNR of the sensed channel is φ = −6 dB.

We further inspect the impact of the SNR of the sensed channel on the security

level of the channel selection schemes, which is shown in Fig. 3.11. To verify this, we evaluate

the results based on the following SNR values (in decibels), φ ∈ {−18,−14,−10,−6,−2},
while keeping the number of channels and jammers at K = 5 and E = 5, respectively.

As observed in Fig. 3.11, the achieved average reward increases with an increase in the

SNR of the sensed channel, which enables SU to effectively spectrum sensing and local

decision-making. Obviously, a better SNR provides better detection accuracy. The result is

that the larger SNR of the sensed channel may provide a better overall performance. Again,



Chapter 3: A Transfer Games Actor–Critic Learning Framework for Anti-Jamming in
Multi-channel Cognitive Radio Networks 57

the TGACT scheme provides the highest average reward, whereas the random-attack scheme

shows the lowest average reward. This is because the TGACT scheme is able to choose the

effective channel in each time slot by the combination of estimating the future reward and

the exploitation of the transferred information from double-game period. Meanwhile, the

random-attack scheme does not use a channel selection scheme against jammer’s attacks to

enhance the security level. Consequently, we verify that the TGACT scheme can provide

effective communication channels in terms of security level.
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Figure 3.11: Average rewards according to the SNR of the sensed channel when the number

of channels and jammers are K = 5 and E = 5, respectively.

3.6 Conclusions

In this work, we proposed anti-jamming approaches for a CRN in which the SU

works multi-channel communications, and various numbers of jammers randomly attack.

We first designed a single game–based anti-jamming scheme that solves the problem of

maximizing the accumulated reward for the SU in order to find the optimal channel. Then, a

double game–based anti-jamming scheme is considered, in which the pre-selected channel is

determined by using a single-game scheme. Afterward, through the pre-selected channel, the

SU performs spectrum sensing to collect the PU status information, then, the second game

will be solved using the updated accumulated reward. In addition, we adopted the transfer

learning technique into the double-game scheme to accelerate the learning speed and improve
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network performance by exploiting the information learned in the double-game period. The

simulation results show the efficiency of the proposed solutions in improving the long-term

performance of the network. Through the proposed schemes, the optimal channel will be

provided for SU to avoid jamming from attackers and significantly improve the security

level of the CRN. The channel selection problem with anti-jamming can be extended with

multiple SUs in the future work. Consequently, the model and learning parameters would

need to be modified. Even the state and action spaces will be larger, and thus, the problem

becomes more complicated. For this reason, combining both transfer learning technology

and a deep RL approach could be considered, in which deep neural network can be used as

an approximation function for mapping the system input (e.g., the system state) and the

output in the RL task (e.g., the optimal policy).



Chapter 4

Deep Learning-Based Approach to

Fast Power Allocation in SISO

SWIPT Systems with a

Power-Splitting Scheme

4.1 Introduction

Recently, with the development of the Internet of Things (IoT), the requirements

for high spectral efficiency (SE) and energy efficiency (EE) are higher and higher [68]. In

communication systems, different popularly used technologies are either designed for sending

information on communication channels of mobile devices (including cellular networks,

wireless LANs, and Bluetooth) or are designed for power transfer (such as Qi and WiTricity)

[69]. Moreover, RF has been regarded as a potential resource for EH in wireless systems.

Since the information and energy are contained simultaneously in RF signals, SWIPT is

presented for the first time in [70], and is regarded as a potential technology, where both

information and energy of the common transmit signal are transmitted to the receivers [5,71].

Therefore, SWIPT has engaged a lot of attention in the research community. SWIPT schemes

for SISO system have been investigated [4,70,72], where the time-switching (TS) scheme and

power-splitting (PS) scheme were considered. The study of SWIPT in interference channels

is of more practical interest than in non-interference channels. Therefore, many studies on

59
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SWIPT addressing the interference channel (IFC) have been done [73–81].

Two practical architectures at receiver in SWIPT systems are the TS receiver

and the PS receiver [71,81]. The TS scheme at the receiver switches between information

decoding (ID) and EH over time, while the PS scheme splits the received signal into two

parts, one is implemented for the ID and the other is done for EH. The SWIPT system with

a PS scheme has been investigated for solving the minimum transmit power problem [75,76].

In this chapter, we investigate a SWIPT system with multiple single-antenna transmitters

and multiple single-antenna receivers. The studied scenario is based on the PS structure.

By optimizing transmit power and PS ratios, the power optimization problem is studied

under considering of the requirements for SINR and EH. The system with the PS scheme

is similar to the SWIPT system that has been studied in [75], but is studied in a SISO

SWIPT scenario with IFC. Moreover, our purpose is to open up new research directions

with a combination of the two areas of DL and optimization problems by taking advantage

of DL to solve the optimization problems.

In wireless communication systems (WCSs), the management and allocation of

wireless resources like transmit power must be properly executed in order to obtain high

network performance. For example, UEs manage transmit power inefficiently, which can

cause a large amount of interference among UEs, and further result in a decrease in network

performance. Therefore, the proper allocation of wireless resources is becoming more

important with the increase in the popularity of UE density in WCSs. In this work, we

also study power problem in WCSs but in a SWIPT system, and we are not too focused on

optimization algorithms.

In previous researches, transmit power was obtained by solving iterative optimiza-

tion problems, which had a specified set of network condition parameters such as channel

gains and SINR requirements as their input. Those studies ran an entailed number of

iterations before achieving convergence, and produced the optimized resource allocation

strategy as their output. The iterative optimization algorithms have been efficiently solved

the associated resource allocation problems and achieved relatively high performance. How-

ever, the iterative nature of these algorithms increases the computation time, which may

lead to long latency and high computation costs in real-time operations due to the significant

changing of some network parameters, so the entire iterative procedure of the algorithms

has to be re-executed. Therefore, real-time operation of transmit power control still faces

much difficulties in practical use. The problem becomes more serious when the number of
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more iteration is essential as the number of users increases [82]. For instance, the weighted

minimum mean square error (WMMSE) algorithm needs complicated operations like the

inversion of matrix [83, 84], singular value decomposition [85, 86] in each iteration, and

semidefinite relaxation [87,88].

Recently, using DL technology has been investigated in many domains, e.g., im-

age processing, and it has proven superior performance compared to conventional schemes

[89–92]. In particular, DL has started to be dealt with wireless communication systems, e.g.,

communication signals classification [90], channel estimation and signal detection [92], indoor

localization [93], sparse optimization [94], and the optimization of constellation mapping [95].

Besides, through DNNs, DL technology can be used to efficiently solve sophisticated nonlinear

problems through back-propagation algorithms [82] with low computation time [92] without

the need to derive complex mathematical models. The authors in [82] approximated the

transmit power based on WMMSE that was studied in [83] using a dense neural network,

which can solve the main shortcoming of the WMMSE-based algorithm, for example, a long

computation time caused by a huge number of iterations. Moreover, the validity of using a

DNN in practical systems of wireless communication fields was confirmed in [96] using a

testbed.

Unlike conventional resource management schemes in which sophisticated optimiza-

tion problems have to be dealt with an iterative manner, we propose a DL-based approach

for wireless resources allocation (in particular, for transmit power management) that can be

obtained with low computation time. The basic idea is to use a set of wireless resources

that is solved by an optimization algorithm, and to attempt to learn its input and output by

using DL technologies based on DNNs or RNNs [97]. If a network efficiently approximates

to a wireless resource allocation optimization algorithm, then the input of the optimization

algorithm is passed into the trained network to get the output with higher computational

efficiency in comparison with the optimization algorithm. This is because its testing stage

does not involve iterative optimization; it only needs some layers and simple operations like

matrix-vector multiplication/addition and simple nonlinear transformations. Therefore, if

the training stage can efficiently approximate the optimization algorithm, the computation

time for resource allocation in real time can be reduced significantly. Overall, our approach

can be regarded as using a DL technology which based on DNNs and RNNs models for

approximating an iterative optimization algorithm according to given network parameters.

The main contributions of this chapter are summarized as follows.
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• We investigate a SWIPT system with multiple single-antenna at transmitters and

receivers with a PS structure. The information and energy are transmitted simul-

taneously from transmitters to receivers. The transmit power optimization problem

subjects to required SINR and EH is investigated by optimizing transmit power and

the PS ratio at the receiver.

• We propose a DL-based approach to the transmit power optimization problem in SISO

interference channels with SWIPT systems. The proposed approach opens up new

research directions with a combination of the two fields of DL and wireless resources

management (specifically, the combination of DL architectures and the transmit power

optimization problem over interference channels). In the proposed approach, we use

DL architectures including a type of DNN: the FFNN and three types of RNN: the

LRN, the NARX, and LSTM. To the best of our knowledge, this is the first attempt

to apply DL technology based on the RNN for transmit power control in the SWIPT

system.

• Through our proposed approach, the transmit power of transmitters, and the PS

ratio of the receivers can be obtained with lower complexity and less computation

time, compared to conventional iterative approaches. Simulation results show that the

DL-based approach is a great potential tool for approximating iterative optimization

algorithms.

The rest of this chapter is arranged as follows. Section 4.2 shows the system model,

and the problem formulation and solution for the SWIPT system. The DL-based proposed

approaches are described in Section 4.3. The numerical results and discussions are provided

in Section 4.4. Finally, Section 4.5 provides a conclusion.

4.2 System Model, Problem Formulation and the PS Solution

4.2.1 System Model

In this chapter, we investigate the transmit power optimization problem of SWIPT

system. Consider a SWIPT system comprising of K transmitter-receiver (Tx-Rx) pairs with

single-antenna on all transmitters and receivers where the k-th Tx-Rx pair is denoted by Txk−
Rxk (k ∈ K = {1, . . . ,K}), as shown in Fig. 4.1. It is assumed that the transmitter transmits
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an omnidirectional signal, and a receiver, Rxk, can collect the signal from transmitter Txk

and all the signals from other transmitters Txj (j ∈ K, j 6= k), which interference with the

target signal. Because the received signal could not be used for ID and EH at the same time,

every receiver is connected to a time switcher when utilizing the TS scheme, or to a power

splitter when utilizing the PS scheme. In this work, we are not too focused on the optimization

problem, but only on the solutions that can help improve the complexity and computation

time in comparison with the conventional optimization algorithm. Therefore, to reduce the

system complexity, we just investigate the PS scheme.
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Figure 4.1: The SWIPT system model with a PS scheme.

Let hkk denotes the direct channel of the Txk −Rxk pair. At the transmitter Txk,

we assume that the transmitted symbol is a Gaussian random variable with zero mean and

variance pk (which is regarded as the transmit power at Txk). Moreover, assume that the

transmitted symbols of different transmitters are independent. The transmitted signal is

xk =
√
pksk where sk is the symbol which carries information at the transmitter Txk with

E
{
|sk|2

}
= 1.

We assume that receivers under the PS scheme can concurrently implement ID and

EH from received signals as shown in Fig. 4.1b. From PS structure, receiver Rxk can divide

the received signal into an ID stream with power ratio θk ∈ (0, 1) and an EH stream with
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power ratio (1− θk). The received signal at receiver Rxk is:

rk =
K∑
j=1

√
pjhjksj + nk, ∀k = 1, . . . ,K, (4.1)

where nk ∼ CN
(
0, σ2

k

)
is AWGN from the antenna at the receiver Rxk. The SINR at Rxk

is given as:

SINRk =
θkpk|hkk|2

θk
∑

j∈K\{k}
pj |hjk|2 + θkσ

2
k + δ2

k

, ∀k, (4.2)

where vk ∼ CN
(
0, δ2

k

)
is the circuit noise at receiver on ID stream. The harvested energy at

receiver is given by:

EHk = µk (1− θk)

 K∑
j=1

pj |hjk|2 + σ2
k

 , ∀k, (4.3)

where µk ∈ (0, 1] is the energy harvesting efficiency from the EH of Rxk.

4.2.2 Problem Formulation and PS Solution

In this work, our target is to minimize the sum of the transmit power of the

transmitters by optimizing the PS ratios and the transmit power subjects to the required

SINR and harvested energy. Then, we formulate the power optimization problem as follows:

minimize
{pk},{θk}

K∑
k=1

pk (4.4a)

s.t.:
θkpk|hkk|2

θk
∑

j∈K\{k}
pj |hjk|2 + θkσ

2
k + δ2

k

≥ γk, ∀k (4.4b)

µk (1− θk)

 K∑
j=1

pj |hjk|2 + σ2
k

 ≥ ek, ∀k (4.4c)

0 < θk < 1, ∀k (4.4d)

pk > 0, ∀k. (4.4e)

In constraint (4.4b), in order to guarantee the information services of receivers, the

received SINR is greater than the minimum required SINR, γk. Constraint (4.4c) guarantees

providing the harvested energy at the receiver. The problem (4.4) is changed to (4.5):
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minimize
{pk},{θk}

K∑
k=1

pk (4.5a)

s.t.: −
(

1

γk
+ 1

)
pk|hkk|2 +

K∑
j=1

pj |hjk|2 + σ2
k +

δ2
k

θk
≤ 0, ∀k (4.5b)

ek
µk (1− θk)

−

 K∑
j=1

pj |hjk|2 + σ2
k

 ≤ 0, ∀k (4.5c)

0 < θk < 1, ∀k (4.5d)

pk > 0, ∀k. (4.5e)

4.3 The Deep Learning-Based Approaches

Although optimization algorithms can achieve relatively high performance in solving

the associated resource management problems, these algorithms entail a huge number of

iterations, which increase the computation time. So, the implementation of these algorithms

in real time is still a challenging issue. In this section, we suggest a DL-based approach

to wireless resources allocation, where wireless resources can be approximated by DL

architectures such as the DNN and RNNs. The proposed DL-based approach is shown in

Fig. 4.2. The basic idea is to use a set of wireless resources that is solved by an optimization

algorithm, and to attempt to learn its input and output through the training stage. If a

network efficiently approximates to a wireless resource allocation optimization algorithm,

then the input of the optimization algorithm is passed into the trained network to get the

output with higher computational efficiency.

4.3.1 Network Structure

This section describes the DL-based approaches used for minimum transmit power

and PS ratio prediction, and presents a kind of DNN, the FFNN, and three kinds of RNN:

the LRN, NARX, and LSTM.

An FFNN is an artificial neural network where the connections between the units

do not form a directed cycle or loops, which is different from an RNN. The information

passes through the network follow one direction, from the input layer through the hidden

layers and to the output layer [98].
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Figure 4.2: The proposed DL-based approach.

The RNN is a technology of learning in the DL, which has been attracting attention

in recent years. RNN performs a memory mechanism with a recurring structure. Through

this structure, neurons can use the information of the past in order to affect the output at

the current moment, which is suitable for the prediction of time series data. In this work,

three kinds of RNN are used: the LRN, NARX, and LSTM.

An earlier simplified version of the LRN was introduced by Elman [99]. The LRN

is a type of RNN that has a single delay and a feedback loop at each hidden layer, but not

at the last layer. The basic LRN architecture is constituted by three layers: input layer,

hidden layer, and output layer, as presented in [100].

NARX is a dynamic RNN whose feedback loop is connected from the last layer to

the input layer. The NARX model is based on the linear autoregressive exogenous model,

which is used in time-series modeling. The formulation and the basic architecture for NARX

are given in [101,102].

Unfortunately, the training process of traditional RNNs is influenced by the explod-

ing gradient, which can cause learning to diverge, or the vanishing gradient, where learning

either becomes very slow or stops working altogether [103, 104], which prevents complete

learning of the time series. One solution is to utilize LSTM networks. Therefore, we have

also investigated LSTM RNNs, which introduces a new structure called a memory cell, as

presented in [105,106].
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4.3.2 Optimization Stage

In the optimization stage, we treat the required SINR and the required harvested

energy as fixed constants, and generate a large number of channel realizations {|hij |}
following certain distributions (specified in Section 4.4). Each tuple (γk, ek, {|hij |}) ; i, j ∈ K
is then fed to optimization algorithms like problem (4.5), and obtains the corresponding

optimized power and PS ratio vectors {pk, θk}. The functions
δ2k
θk

and ek
µk(1−θk) are convex

with variable θk where θk ∈ (0, 1). So, Equations (4.5b) and (4.5c) are also convex function.

Therefore, the minimum power problem is a convex optimization problem and Matlab’s

CVX [107] can efficiently solve this problem.

4.3.3 Training Stage

After solving the minimum transmit power problem in the optimization stage,

we obtained optimal power and PS ratio vectors {pk, θk} corresponding to channel vectors

{|hij |} with i, j ∈ K and K = 1, ...,K. Then, we treat ({|hij |} / {pk, θk}) as an input/output

pair, and try to learn the input/output relation through the training process of the DL-based

approaches. Assuming that we use N samples for training data, then, we have input/output

pairs
({∣∣∣hnij∣∣∣} / {pnk , θnk}) where n = 1, . . . , N .

With the simple structure of an FFNN, we can use the input/output pairs as above,

i.e.,
({∣∣∣hnij∣∣∣} / {pnk , θnk}), for the training stage of the DNN. The training data is trained

by using back propagation, and the training stage is implemented based on optimizing the

mean squared error (MSE) by using the scaled conjugate gradient algorithm (which is both

memory and computationally efficient [108]).

In the LRN and NARX, when the data are concurrent (matrix format), we need to

change it into sequential data (a cell array format) before setting the network parameters

because the input appears in time order. The LRN and NARX have a delay in the feedback

loop. The feedback loop affects the order of the input, and the output. Therefore, we need to

add more data corresponding to the number of delays used, i.e.,
({∣∣∣hTij∣∣∣} /{pTk , θTk }), where

T is the number of delays in each feedback loop. Then, we define input and output pairs for

the training stages of the LRN and NARX as follows:
({∣∣∣hTij∣∣∣; ∣∣∣hnij∣∣∣} /{pTk , θTk ; pnk , θ

n
k

})
.

The LRN and NARX are trained by using the scaled conjugate gradient algorithm.

After training stage, the MSE can be calculated. With a NARX neural network, firstly,

the network is trained in an open loop, like the FFNN, with the scaled conjugate gradient
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algorithm. After that, the trained network with the open loop is changed to a closed loop in

which target values are replaced by feedback signals from the output. Finally, the network

is retrained in close loop form.

Although LSTM works with sequence and time series input data for data prediction,

like the LRN and NARX, this network does not have the delays in the input and each

feedback loop. Therefore, we also use
({∣∣∣hnij∣∣∣} / {pnk , θnk}) as input/output data for training.

The LSTM network is trained by using the Adam optimization algorithm to update network

weights, instead of using the classical stochastic gradient descent method.

Since the DNN and RNN architectures use backpropagation, we need activation

function that calculates its own derivative. In this work, the following activation functions

for hidden layers and output layer are used and given by (4.6) and (4.7), respectively.

tansig (n) =
2

1 + e−2n
− 1, (4.6)

purelin (n) = n. (4.7)

4.3.4 Testing Stage

In this stage, we also generate the channels
{∣∣∣hmij ∣∣∣}, where m = 1, . . . ,M with

M as the number of samples for testing. The channels follow the same distribution as the

training stage. Data preparation for the testing stage is the same process as the training

stage for the FFNN, LRN, and NARX, and for the LSTM network. Then, testing data with

channel vectors is run through the trained network.

4.4 Numerical Results and Discussions

In this section, we provide numerical results to showcase the effectiveness of the

proposed approach. We first describe the simulation setup and neural network parameter

selection, then demonstrate the capability of the proposed DL-based approaches that can

produce responses similar to those produced by the optimization algorithm in changing

the required SINR and the required harvested energy values. Neural network parameter

selection is based on evaluation of the system performance by computing the MSE and

efficiency of the computation time. In this work, in order to calculate the parameters of the

networks such as weights and biases of each layer, we use stochastic gradient descent. The
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stochastic gradient descent picks a randomly chosen subset of data by which neural network

is trained with gradient approximation. To compute gradients, we use the back-propagation

algorithm (BP). The optimal weight and bias are obtained by minimizing MSE between

the actual and desired output values [109]. Besides, in order to quantitatively compare the

model fitting error, the MSE is a typical metric for evaluating the accuracy of the DL-based

model [110–112]. The MSE is a measure of prediction accuracy which is calculated between

observed values, yi, taken from the optimization algorithm and the predicted values, ŷi, in

the testing stage taken from DL methods, MSE = 1
n

n∑
i=1

(yi − ŷi)2. The smaller the MSE

value, the higher the predicted performance. The computation time in DL-based approaches

includes two categories: training and testing times. Meanwhile, the computation time of the

optimization scheme is attained according to the number of samples of the testing stage.

4.4.1 The Simulation Setup and Neural Network Parameter Selection

In our simulation, the proposed approaches are implemented in Matlab R2018b

on a computer with 16 GB of memory and a 3.40 GHz CPU. For the parameters in the

optimization problem, we set the Gaussian antenna noise at σ2
k = −90 dBW, and the circuit

noise at δ2
k= −60 dBW. Assuming that the required harvested energy ek and the required

SINR γk for all receiver are equal. The EH efficiency at the receiver is assumed to be the

highest one such that µk = 1. A standard normal distribution is used to generate channel

coefficients; for example, we use a Gaussian distribution with zero mean and unit variance.

The SWIPT system operates with two transceiver pairs (K = 2). To gain further insight

into the impact of the DL-based approach, and to take real-time computational efficiency

into account, we use a simple FFNN and three types of RNN: the LRN, NARX, and LSTM.

We use a relatively large training data set with 10,000 samples (N = 10, 000), and used

1000 samples (M = 1000) as a testing data set. The proposed DL-based approaches include

an input layer, two hidden layers, and an output layer. In the neural network parameter

selection process, the number of considered neurons for hidden layers is 20, 40, and 60.

For the LRN and NARX, the number of delays on input is set to zero, and the number of

delays in each feedback loop is set to 1 (T = 1). The initial values for the required SINR

and harvested energy set at 6 dB and −20 dBm, respectively. The network parameter

selection process can strike a good value between the MSE and the computation time. For

the LSTM network, we set some options for training. In particular, the gradient threshold



70
Chapter 4: Deep Learning-Based Approach to Fast Power Allocation in SISO SWIPT

Systems with a Power-Splitting Scheme

is 0.01, and the maximum number of epochs is 1000. To reduce the amount of padding in

the mini-batches, we chose a mini-batch size of 20. Since the mini-batches are small with

short sequences, training is better suited to the CPU, so we specified the environment for

execution as CPU. The learning rate is set to 0.001.
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Figure 4.3: The MSE of DL-based approaches in the testing stage when the size of hidden

layer is 20, 40, and 60 neurons, respectively.

Fig. 4.3 shows the network performance in term of the MSE in the testing stage.

As we increase the hidden layers size from 20 neurons to 60 neurons, the complexity of

the network increases, and the MSE might decrease. However, the value of MSE varies

slightly. The FFNN provides a bad performance in term of MSE. This is because FFNN

often encounters issues like overfitting or underfitting, which makes predictions for new data

be inaccurate. Therefore, the FFNN does not fit the data efficiently. In the case of the

LRN approach, the MSE tends to increase, compared to NARX and LSTM networks. This

is due to the feedback loop structure in each hidden layer of the LRN network (i.e., the

more hidden layers are used, the more loops exist in the network). As a result, the MSE of

LRN network might increase. Since LSTM network can solve the gradient vanishing and

exploding problems in traditional RNNs, the LSTM network provides the lowest MSE as

shown in Fig. 4.3.

Fig. 4.4 shows the computation time of both training and testing stages where

10,000 samples are used for training in the FFNN, NARX, LRN and LSTM, and 1000 samples

are used for testing when the hidden layer size changes from 20 neurons to 60 neurons. In all
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DL-based approaches, the training and testing time are the lowest when 20 neurons are used

in each hidden layer. In Fig. 4.4a, the computation time of the LSTM approach increases

dramatically compared to other DL-based approaches. This is because LSTM has more

backpropagation neural network modules, and the more memory information is transmitted

over time, the more the cell state increases. Fig. 4.4a also shows that the computation time

increases when the hidden layer sizes increase. In Fig. 4.4b, the testing time in DL-based

approaches is very small, but the computation time of the optimization-based scheme is

significantly larger. Therefore, we present the computation time of the optimization scheme

in minutes in order to facilitate observation. Overall, the computation time of the DL-based

approaches is much lower when compared to the optimization algorithm-based approach.

This is easily explained because the testing stage does not involve iterative optimization;

it only needs some layers and simple operations like matrix-vector multiplication/addition

and simple nonlinear transformations. Therefore, if the training stage can estimate the

optimization algorithm well enough, the computation time for resource allocation in real-time

can be reduced significantly.

FFNN NARX LRN LSTM

Deep learning-based approaches

0

500

1000

1500

2000

2500

3000

T
h
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

20 neurons

40 neurons

60 neurons

 FFNN  
0

50

100

(a) Training stage

FFNN NARX LRN LSTM Optimization

Proposed approaches

0

1

2

3

4

5

6

7

8

9

10

T
h
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e

20 neurons (time unit in seconds)

40 neurons (time unit in seconds)

60 neurons (time unit in seconds)

Optimization (time unit in minutes)

 FFNN  
0

0.1

0.2

0.3

0.4

(b) Testing stage

Figure 4.4: The computation time of training stage and testing stage when the size of hidden

layer is 20, 40, and 60 neurons, respectively: (a) Computation time among FFNN, NARX,

LRN and LSTM in the training stage. (b) Computation time among FFNN, NARX, LRN,

and LSTM and optimization scheme in the testing stage.

In addition, we also tested network performance by increasing the number of hidden

layers in the selection process of neural network parameter in terms of MSE and computation
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Figure 4.5: The MSE of DL-based approaches in the testing stage when the number of

hidden layers is 2, 4, and 6, respectively.
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Figure 4.6: The computation time of training stage and testing stage when the number of

hidden layers is 2, 4, and 6 layers respectively: (a) Computation time among FFNN, NARX,

LRN and LSTM in the training stage. (b) Computation time among FFNN, NARX, LRN,

and LSTM and optimization scheme in the testing stage.

time when networks used 20 neurons in the hidden layers, as shown in Fig. 4.5 and Fig. 4.6.

Fig. 4.5 shows that the MSE value changed very slightly among different schemes when the

number of hidden layers is increased from 2 to 6. Fig. 4.6 shows the computation time of

both training and testing stages where 10,000 samples are used for training in the FFNN,
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NARX, LRN and LSTM, and 1000 samples are used for testing. In the testing stage, we

measured the computation time of the optimization scheme to get 1000 samples, for the

purpose of computation time comparison between DL approach and optimization approach.

Fig. 4.6a shows that the computation time of all DL networks increases very slightly in the

training stage as the number of hidden layers increases. Among DL networks, LSTM has

the largest computation time. Figure 4.6b also shows that the computation time of all DL

networks increases very slightly in the testing stage as the number of hidden layers increases.

However, it is noteworthy that all DL networks have very small amount of computation

time, compared to that of optimization scheme.

From the simulation results in Fig. 4.3, Fig. 4.4, Fig. 4.5, and Fig. 4.6, we have

chosen 20 neurons and two hidden layers for the next simulation results with which we can

get the best balance in the tradeoff between MSE and computation time.
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Figure 4.7: The computation time according to the number of samples when the number of

the hidden layers is 2 and the hidden layer size is 20.

In addition, when considering the performance of the system based on the com-

putation time, we also provide the computation time of the proposed schemes according

to the number of samples when the number of the hidden layers is 2 and the hidden layer

size is 20. Again, Fig. 4.7 also shows that the DL-based approaches still managed well with

low computation time despite the significant increase in the number of samples. Meanwhile,

the optimization algorithm provides an exponential computation time when the number of

samples increases from 10000 to 50000.
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The next simulation results provide more insight on the capability of the proposed

DL-based approaches that can capture responses produced by the optimization algorithm in

changing the required SINR and the required harvested energy.

4.4.2 Network Performance in Changing of Required SINR and Required

Harvested Energy Values

In this section, we provided the simulation results and discussions to verify the

capability and efficiency of the proposed DL-based approaches in scenarios for changing

the required SINR and required harvested energy. We employed two network performance

metrics in the performance evaluation (transmit power and receiver PS ratio) with various

network conditions, such as required SINR and required harvested energy. We also used two

hidden layers, and 20 neurons for each hidden layer, as discussed in Section 4.4.1. Network

condition parameters set for either changing the required SINR or the required harvested

energy. In case of changing the required SINR, we fixed the required harvested energy value

at −20 dBm and the required SINR is changed from 2 dB to 6 dB, as shown in Fig. 4.8 and

Fig. 4.9 for the sum of the transmit powers and the average PS ratios, respectively. In the

other cases, i.e, changing the required harvested energy, we fixed required SINR value at

2dB, and changed the required harvested energy from −20 dBm to −12 dBm, as shown in

Fig. 4.10 and Fig. 4.11.
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Figure 4.8: Sum of transmit powers according to the required SINR when the required

harvested energy is given by −20 dBm (ek = −20 dBm).
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Figure 4.9: Average power-splitting ratios according to the required SINR when the required

harvested energy is given by −20 dBm (ek = −20 dBm).

In Fig. 4.8 and Fig. 4.9, we show the sum of transmit powers and the average PS

ratios, respectively, when changing the required SINR in the training and testing stages.

Overall, the schemes mostly have an upward trend in both transmit power and PS ratio as

the required SINR increases. This is because when the required SINR increases, the power of

the transmitter must increase in order to guarantee the information services at the receivers.

Moreover, the PS ratio increases to guarantee that the transmission is more effective so

constraint (4.4b) can be guaranteed. When the required SINR is small, transmitters only

use a small amount of power for transmission. This makes the fluctuation of transmit power

among samples insignificant, and thus, the training and testing stages perform effectively,

especially the sum of transmit powers (from 2 dB to 5 dB for the required SINR) and the

average PS ratios (from 2 dB to 4 dB for the required SINR), as shown in Fig. 4.8 and

Fig. 4.9, respectively. The result is that the DL-based approaches can capture a response

similar to the response of the optimization algorithm in both training and testing stages.

In other words, due to a relatively large fluctuation of transmit power that exists in the

training data set at the high required SINR value (γk = 6 dB), the results of the training

stage are less effective. Then, the testing stage will inevitably be less effective, as shown

in Fig. 4.8b (at γk = 6 dB) and Fig. 4.9b (at γk = 5 dB and γk = 6 dB). Noteworthy is

Fig. 4.9 at γk = 6 dB, where the results of the training and testing stages are not good,

which make the PS ratio no longer significantly desirable (θk /∈ (0, 1)) in the FFNN and LRN
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approaches when a relatively large fluctuation of transmit power exists in the considered

data. Unfortunately, the training process of traditional RNNs is influenced by an issue in

backpropagation through time, called the exploding gradient (which can cause learning to

diverge) or by the vanishing gradient, where learning either becomes very slow or stops

working altogether (which prevents complete learning of the time series). One solution is to

utilize LSTM networks. Therefore, in the comparison of simulation results in Fig. 4.8 and

Fig. 4.9, LSTM has superior performance compared to the other DL-based approaches (in

particular, in the average PS ratio for both training and testing stages as shown in Fig. 4.9).

Moreover, we utilize relative error, which is a measure of the uncertainty of measurement to

evaluate the variations between the results provided by the DL-based approaches and the

optimization algorithm. For example, in Fig. 4.8a at required SINR is 5dB, relative errors

of FFNN, NARX, LRN, and LSTM compared to optimization algorithm are 0.2%, 0.58%,

2.1%, and 0.69%, respectively. In Figure 4.8b at required SINR is 5dB, relative errors of

FFNN, NARX, LRN, and LSTM compared to optimization algorithm are 5.6%, 5%, 6.1%,

and 0.35%, respectively. Simulation results in Fig. 4.8a,b also show that LSTM provides the

best performance in term of transmit power.
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Figure 4.10: Sum of transmit powers according to the required harvested energy when the

required SINR is given by 2dB (γk = 2 dB).

Fig. 4.10 shows the sum of transmit powers while changing the required harvested

energy in the training and testing stages. In Fig. 4.10, we can see that the change of required

harvested energy threshold of receiver will affect the minimum transmit power of transmitter.
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Figure 4.11: Average power-splitting ratios according to the required harvested energy when

the required SINR is given by 2dB (γk = 2 dB).

The higher the required harvested energy, the more power the transmitter needs to transmit,

which makes the receivers avoid to interrupt the communication due to the lack of power.

In Fig. 4.10a, the DL-based approaches can capture responses similar to the response of the

optimization algorithm in the training stage with relatively large samples. However, with a

smaller number of samples in the testing stage and the relatively large fluctuation of transmit

powers in the testing data, the DL-based approaches cannot effectively capture the response

of optimization algorithm as shown in Fig. 4.10b. We also calculate relative errors of FFNN,

NARX, LRN, and LSTM compared to optimization algorithm in Figure 4.10a at the required

harvested energy ek = −14 dBm, which are 0.05%, 0.3%, 1.83%, and 0.06%, respectively. In

this case, LSTM also provides low relative error in most of DL-based approaches. Fig. 4.11

shows the average PS ratios according to the required harvested energy in the training

and testing stages. Overall, the schemes mostly have a downward trend in the PS ratio

as the required harvested energy increases. That is, the PS ratio should be decreased to

guarantee that the energy harvested by EH is utilized more efficiently. In Fig. 4.11a, FFNN,

LRN, and NARX cannot approximate the optimization algorithm accurately. Therefore,

these DL-based approaches cannot capture a response like the response of the optimization

algorithm in testing stage, as shown in Fig. 4.11b. Although LSTM cannot capture a

response as good as the response of the optimization algorithm in Fig. 4.10b, it gives the

best performance in Fig. 4.11b, where it can capture a response similar to the response of
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the optimization algorithm.

4.5 Conclusion

In this work, we investigated the transmit power optimization problem in SISO

interference channels with SWIPT systems where a PS scheme was used at each receiver.

The transmit power optimization problems subject to the required SINR and required

harvested energy were investigated by optimizing transmit power and the PS ratio. After

that, we exploited the ability of DL to improve the computing time in comparison with the

traditional optimization algorithm. The various approaches based on DL were proposed

such as FFNN, LRN, NARX, and the LSTM network. The performance of the proposed

approaches was evaluated and compared to that of the traditional optimization algorithm.

From experimental results, LSTM network provided the best balance in the tradeoff between

solution quality (i.e., MSE) and solution efficiency (i.e., computation time) in the DL-based

approaches. Overall, the experimental results showed that DL models can forecast output

of the optimization problem effectively without prior knowledge about the system’s state.

Most of all, DL-based approach provided low computation time, compared to the traditional

optimization algorithm, which is very useful for real-time resource allocation processing.

From the simulation results, the FFNN is relatively simple to implement, so it has

the lowest computation time. However, the FFNN provides inaccurate estimation of both

transmit power and PS ratio. Due to the lack of control over the learning process, the FFNN

further may lead to overfitting or underfitting to the training set, which makes predictions

for new data be inaccurate. Traditional RNNs such as LRN and NARX have a “memory”

which captures information about what has been calculated. In some cases of simulation

results, traditional RNNs may improve network performance compared to the FFNN but

in return longer computation time is required. However, traditional RNNs are influenced

by the gradient vanishing and exploding problems, which makes the training of traditional

RNN difficult, in two ways: (1) the RNN cannot process very long sequences if Hyperbolic

tangent function is used as its activation function, (2) the RNN is very unstable if Rectified

Linear Unit (ReLU) is used as its activation function. Besides, it cannot be stacked into

very deep models. This is mostly due to the saturated activation function used in RNN

models which makes the gradient decay over layers. LSTM network resolves these issues via

Cell state (memory for LSTM) and Gates. In this chapter, simulation results also show that
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the LSTM network can provide the best balance in the tradeoff between solution quality

(i.e., MSE) and solution efficiency (i.e., computation time) compared to the other DL-based

approaches.





Chapter 5

A Secure-transmission

Maximization Scheme for SWIPT

Systems Assisted by an Intelligent

Reflecting Surface and Deep

Learning

5.1 Introduction

In recent years, wireless communication technologies have developed dramatically.

The demand for quality of service (QoS) has also increased because of the rapid increase

in the number of users, resulting in a scarcity of spectrum resources [113]. In addition,

power consumption is constantly increasing due to expanding network infrastructure such as

transmission lines, terminal equipment, and base stations (BSs). Therefore, it is becoming

increasingly important to save energy. Efficient energy management helps to overcome the

bottleneck of wireless network applications operating under battery and energy constraints.

It not only helps to reduce a device’s dependence on battery power and power consumption,

but also provides a continuous power source for the long-term operation of devices on the

network. As a result, the SWIPT transmission technique was developed to fulfill these

requirements [4,5,71,72]. In the SWIPT system, the received signal can be used for EH and

81
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ID. In addition, to simultaneously perform power transfer and information transmission in a

SWIPT system, two practical structures are used: PS and TS [4].

On the other hand, a SWIPT system also suffers negative effects, such as channel

attenuation and interference signals from wireless transmission environments. Besides that,

tall objects like trees, traffic signs, or buildings can block the communication link between the

transmitter and the receivers in WCNs. All of them reduce the quality of the communication

link and weaken the information and energy received. Fortunately, with the breakthrough

developments in meta-materials in recent years, the intelligent reflecting surface (IRS) was

developed and is considered an effective solution to overcome these negative effects [114,115].

In addition, several variants of the IRS have been developed, such as the large intelligent

surface (LIS) [116,117], the large intelligent metasurface (LIM) [118], and the reconfigurable

intelligent surface [119, 120]. An IRS includes an array of low-cost and passive reflecting

elements. Each reflecting element is able to change the frequency, phase, amplitude, or

even polarization of an incident signal [114, 115]. An IRS is introduced to generate an

additional reflected link. Along with the signals directly received via direct communication

links, an additional reflected signal can be added to suppress the channel interference of

undesired receivers and improve the received signal for desired receivers. The IRS is more

energy- and cost-efficient than a conventional relay system. This is because in a relay system,

transmitting and receiving signals are done with the active RF signal. Meanwhile, for the

IRS, the incident signal is reflected by reconfiguring the IRS’s phase shifts without RF

chains. So, the beamforming design in an IRS is classified in a nearly passive manner. The

IRS also has quite low power consumption due to its lightweight and compact size, and thus,

it is easily installed in the indoor environment (e.g., on ceilings and walls) and in outdoor

environments (e.g., on road signs, moving trains, building facades, etc.).

Currently, we are living in an era of information and data explosion where sharing

and exchanging information between devices takes place every day and hour. Personal data

and private communications easily become targets of security threats such as eavesdrop-

pers (Eave’s) [121]. Thus, a private conversation or communication in a SWIPT advanced

networking system, even in combination with an IRS, may be secretly or stealthily over-

heard. Therefore, the secure transmission problem in IRS-enabled SWIPT systems must be

considered more and more important.

From the above surveys, for the purposes of efficient energy management, secure

transmission and signal enhancement from the IRS technique, we investigate the secure
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transmission IRS-enabled SWIPT system which is one of the current research topics of

interest.

5.2 Related works

There has already been a lot of work investigating the system secrecy rate opti-

mization problem with many modern techniques applied, such as artificial noise (AN)-based

anti-jamming, and multi-antenna beamforming [121–123], or even in the SWIPT system

ifself [124, 125]. Liu et al. [124] studied the secure transmission optimization problem in

SWIPT systems with multiple energy receivers (ERs) and an information receiver (IR).

They aimed to optimize the ERs’ weighted sum energy and the IR’s secrecy rate. The

authors in [125] maximized the system sum secrecy rate by satisfying the constraints on the

ER’s minimum harvested energy and the IR’s minimum data rate. The secure transmission

problem was addressed in a SWIPT-enabled non-orthogonal multiple access (NOMA) system

that consisted of multiple IRs, multiple ERs, and a BS. Studies on optimal secrecy rates have

also been conducted in WCNs with the help of IRSs [126,127], where the authors considered

an IRS-assisted wireless transmission system in which a single-antenna eavesdropper at-

tempts to listen to communications. The secrecy rate is maximized by optimizing the IRS’s

reflect beamforming and the transmitter’s beamforming. Both systems used an alternating

optimization (AO) algorithm for solving optimization problems. Simulation results showed

a significant improvement in terms of the secrecy communication rate from the proposed

scheme compared to a scheme not using an IRS.

Furthermore, there have been many studies on the secure transmission of IRS-

assisted SWIPT systems. However, the secrecy rate optimization problem was not considered

as the main optimization problem [128–131]. More specifically, the authors in [128–130] aim

to optimize transmit beamforming while ensuring the constraints of the QoS and harvested

energy. Niu et al. [131] maximized the minimum robust information rate among the legitimate

IRs while the ERs are considered as potential Eave’s. In addition, the IRS-assisted SWIPT

system was considered in [132,133] to optimize secrecy rate. However, the PS factor was

not jointly optimized in the secure transmission of IRS-assisted SWIPT system, which is an

important factor that can prolong the uptime and improve the energy efficiency of devices.

Summary, in all of the aforementioned work, the secure transmission optimization

problem was mostly considered in following system models: the SWIPT system without IRS,
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the conventional IRS-assisted WCN system, the IRS-assisted SWIPT system with no secrecy

rate optimization, and the IRS-assisted SWIPT system with secrecy rate optimization

without considering PS scheme. Most recently, the secure transmission optimization problem

was studied in an IRS-assisted SWIPT system where separate receivers are IRs and ERs [134].

At the ERs, the harvested energy was formulated by a practical non-linear model. In addition,

the secrecy rate was maximized while constraints on EH and transmit power for the ERs and

the BS being satisfied, by optimizing the AN covariance, the BS’s transmit beamforming,

and the IRS’s reflective beamforming. The AO algorithm was also implemented to solve the

target problem. However, it is noteworthy that our work is different from [134], although

the secure transmission issue is also considered in the IRS-assisted SWIPT system. In

this work, we consider the unified UE with a PS scheme where the secrecy rate should be

maximized by additionally considering the PS factor at the UE. Furthermore, in our work,

the computational efficiency of the optimization algorithm is also studied in comparison

with the proposed DL-based approach, which the previous works did not take into account.

Table 5.1 compares existing works related to IRS and SWIPT systems.

Although the optimization algorithm-based approach is a very powerful approach

for solving most optimization problems including convex and non-convex problems, it still

faces many challenges when deployed in many applications with low computation time

requirements. This disadvantage comes from the implementation of optimization algorithms,

which are based on iterations and complex mathematical transitions from non-convex

problems to convex problems. Fortunately, the DL technique can effectively overcome these

issues. DL technology has shown high efficiency when applied in WCNs [92]. Sun et al. [112]

investigated the WMMSE discussed in [83], and the interference was approximated by using

a DNN. Results showed that the WMMSE problem can be well-approximated with low

computation time through a DNN model.

In this chapter, to take advantage of the IRS and SWIPT system, we investigate

an IRS-assisted SWIPT systems in which the IRS is deployed to improve the security of

the communication link between a single-antenna transmitter and a single-antenna UE

despite eavesdropping by a single-antenna Eave’. We not only study the secure transmission

optimization problem in the IRS-assisted SWIPT system with a PS scheme in the UE, but

we also consider a neural network for achieving computational efficiency. The optimization

problem of secure transmission is difficult to solve when it has non-convex form. Fortunately,

the optimization problems with non-convex form can be effectively solved using the feasible
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point pursuit–successive convex approximation (FPP–SCA) algorithm [135] and the AO

method [126,127,134]. The FPP–SCA algorithm executes the non-convex functions (non-

convex constraints, or even non-convex objective functions) with upper convex functions at

each iteration. Specifically, the concave terms are approximated around a feasible point by

a convex function, and the optimal solution of the convex problem in the current iteration

will be served for the next iteration as the feasible point. On the other hand, the AO

method optimizes one or more variables by fixing remaining variables in an alternating

manner. Regarding the DL-based approach, training and running stages are required. After

the optimization algorithm reaches feasible solutions, the optimal output along with the

corresponding input will be used as the training data for DNN model. If the DNN is

well-trained (i.e., the trained network can provide predictive outputs almost identical to the

feasible solutions of the optimization algorithm), then, the trained DNN can be applied to

estimate optimal output in the running stage with lower computation time.

In a nutshell, this chapter’s main contributions are as follows.

• We consider an IRS-assisted SWIPT system where a signal is transmited to the UE

while an Eave’ tries to listen to the transmitter–UE communication. By deploying

an IRS in the system, network security can be enhanced, and eavesdropping can be

reduced. Furthermore, the UE is equipped with a PS scheme that makes the UE get

both signal and harvested energy simultaneously. We formulate the secure transmission

problem of an IRS-assisted SWIPT system with a PS scheme to maximize the system

secrecy rate by finding the optimal solutions for the transmitter’s power, the UE’s PS

factor, and the IRS’s phase shifts matrix.

• We propose an AO-based scheme for solving the optimization problem where FPP,

SCA, and penalty methods are used to solve the optimization problem.

• A DL-based approach is considered to improve computational performance. Specifically,

5 types of data and DNN structures are proposed.

Notations: Matrices and vectors are denoted by boldface capital and lower-case

letters, respectively, while (·)H and (·)T represent the Hermitian and the transpose operations,

respectively. The scalar’s absolute value is denoted by |·|. The diagonal matrix is represented

by diag {·} where the elements of the input vector are diagonal. Cm×n represents a complex

matrix with an m× n space. CN
(
0, σ2

)
denotes the random variable distribution with zero
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mean and variance σ2 of a circularly symmetric complex Gaussian (CSCG), and ’∼’ implies

distributed as. The symbols E {·} and Tr(·) represent expectation and trace operations.

Defining Q � 0 means Q is a positive semi-definite (PSD) matrix. The terms Im (a) and

Re (a) represent the imaginary part and the real part of complex number a. Table 5.2 lists

other notations used in this chapter.

The subsequent sections of this chapter are organized as follows. Section 5.3

presents the formulation of the problem with the system model, the proposed AO-based

scheme and the proposed DL-based approach. Analysis and discussion of the simulation

results are in Section 5.4. Finally, Section 5.5 presents the conclusion.

Table 5.2: The notation list.

Symbol Description

M the number of reflecting elements

Φ IRS’s diagonal phase shifts matrix

φm phase shift of the m–th reflecting element

w and z horizontal coordinates and altitude, respectively

hTU , hTE ,hTI , hIU ,hIE channel gains of the communication links

αTU , αTE , αTI , αIU , αIE path loss exponents of the communication links

dTU , dTE , dTI , dIU , dIE distances of the communication links

ρl path loss at reference distance D0 = 1 m

βTI , βIU , βIE Rician factors of the communication links

λc and ∆ carrier wavelength and antenna separation, respectively

ψ cosine of the angle

P transmission power at the transmitter

θ power-splitting (PS) factor

Rsec secrecy rate

Pmax required maximum transmitter power

e required minimum harvested energy

λmax (Q) maximum eigenvalue of Q

wmax eigenvector corresponding to maximum eigenvalue λmax (Q)
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5.3 Formulation of the Problem

5.3.1 Channel model

In this work, an IRS-assisted SWIPT system is considered, consisting of a trans-

mitter, a UE, an Eave’, and an IRS (as shown in Fig. 5.1). The UE, transmitter, and the

Eave’ utilizes a single omni-directional antenna, respectively, while M reflecting elements

are used in a uniform linear array (ULA), which is the IRS indexed by M ∆
= {1, . . . ,M}.

The IRS is connected to a smart controller, which can configure the IRS phase shifts in

real-time manner for desired signal propagation [120, 136]. The UE is equipped with a

PS scheme. The IRS is placed parallel to the x-axis and is located in the x − z plane.

Let Φ = diag {φ1, φ2, . . . , φM} ∈ CM×M be the IRS’s diagonal phase shifts matrix, where

φm = βme
jϕm is the phase shift of the m–th reflecting element with ϕm ∈ [0, 2π) and

βm ∈ [0, 1] ,∀m ∈M. The phase shifts {φm} can be controlled continuously and βm is the

amplitude reflection coefficient of the m-th reflecting element. In practice, when designing

elements of the IRS, the amplitude reflection coefficient is often set to 1 to achieve maximum

signal reflection such that we have βm = 1,∀m. In addition, we assume that the center point

of the IRS is the reference point, where the horizontal coordinates and altitude are indicated

by wI = [xI , yI ]
T and zI , respectively. Therefore, the distance of the communication link

from a particular user node to the IRS can be approximately equal to the distance from the

corresponding user node to the reference point of the IRS. The horizontal coordinates of the

transmitter, the UE, and the Eave’ are denoted by wT = [xT , yT ]T ,wU = [xU , yU ]T , and

wE = [xE , yE ]T , respectively.

Because the location of Eave’ is uncertain, the knowledge of the CSI between

transmitter and Eave’ is difficult to achieve. However, many methods and assumptions have

been considered in recent studies to solve this problem. This knowledge may range from a

complete lack of CSI (the approach based on studying the compound wiretap channel [137])

to partial CSI (optimizing the AN transmit covariance [138] or relaxing the orthogonality

constraint [139]) and statistical CSI (meeting a target performance criterion in terms of SNR

or rate at the receiver based on allocating enough power [121]) or even the CSI uncertainty

(adopting a deterministic model [140–142]). In addition, there are some methods to identify

the presence of an Eave’ such as detection-theoretic methods based on its local oscillator

leakage power and mutual communication between the legitimate nodes based on realizations

of a constructed random variable [143]. Moreover, it is reasonable to assume that the CSIs
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Figure 5.1: The IRS-assisted SWIPT system with a power-splitting (PS) scheme in UE.

of links related to Eave’ can be known when the Eave’ is considered as an active user but

untrusted by the legitimate user [121]. Besides, several channel estimation techniques for

IRS-assisted systems have been proposed recently such as those mentioned in [118, 144].

Therefore, to characterize the performance limit of the secure transmission IRS-assisted

SWIPT system, the CSIs of the channels involved are assumed to be either completely

known at the BS/IRS or achievable based on existing channel estimation techniques. In

general, for the sake of simplicity in our scenario, the CSIs of the channels involved are

modeled as the Rayleigh and Rician fading channels as follows.

Let hTU ∈ C1×1 and hTE ∈ C1×1, respectively, denote the channel gain of

transmitter–UE (T–U) and transmitter–Eave’ (T–E) links. We assume the channel gain of

the T–U and T–E links model a the Rayleigh fading channel, as follows:

hTU =

√
ρld
−αTU
TU h̃TU , (5.1)

hTE =

√
ρld
−αTE
TE h̃TE , (5.2)

where h̃TU and h̃TE denote the CSCG random variable distribution, dTU and dTE denote the

distances of the corresponding communication links, calculated by dTU =
√
‖wT −wU‖2

and dTE =
√
‖wT −wE‖2, respectively, α denotes the path loss exponent, and ρl denotes
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the path loss at reference distance D0 = 1 m [145].

In fact, the IRS can be installed on the facade of the building so the links from

the transmitter to the UE, and from the IRS to the UE and to the Eave’ might not be

blocked by obstructions like trees or traffic signs. As a result, there is a line-of-sight (LoS)

component to these channels. Hence, with the addition of the LoS path, the channel gain of

the transmitter–IRS (T–I), the IRS–UE (I–U), and the IRS–Eave’ (I–E) links can model a

Rician fading channel. Let cl = {TI, IU, IE} denote the communication links of the T–I,

I–U, and I–E links. Then, the channel gain of the related communication links, hcl ∈ CM×1,

can be expressed as follows:

hcl =
√
ρld
−αcl
cl

(√
βcl

1 + βcl
hLoScl +

√
1

1 + βcl
hNLoScl

)
, (5.3)

where dcl, αcl, and βcl represent the distances, the path loss exponents, and the Rician

factors of the related communication links, cl. The distances of the related communi-

cation links, dcl = {dTI , dIU , dIE}, are calculated as follows: dTI =
√
z2
I + ‖wT −wI‖2,

dIU =
√
z2
I + ‖wU −wI‖2, and dIE =

√
z2
I + ‖wE −wI‖2. The non-LoS (NLoS) and LoS

components of a communication link are denoted by hNLoScl and hLoScl , respectively. The

NLoS component of the communication link, hNLoScl ∈ CM×1, follows a CSCG random vari-

able distribution, wheares the LoS component, hLoScl ∈ CM×1, is a ULA of M elements [146]

and is given as:

hLoScl =
[
1, e−j

2π
λc

∆ψcl , . . . , e−j
2π
λc

(M−1)∆ψcl
]
, (5.4)

where λc and ∆ represent the carrier wavelength and the antenna separation, respectively;

ψcl = {ψTI , ψIU , ψIE} denotes the cosine of the angle of the related communication links, in

which ψTI = xI−xT
dTI

denotes the cosine of the angle of arrival (AoA) for the propagation path

from the transmitter to the IRS, while ψIU = xU−xI
dIU

and ψIE = xE−xI
dIE

denote the cosine of

the angle of departure (AoD) of the propagation paths from the IRS to the UE and to the

Eave’, respectively.

5.3.2 Communication model

The transmitter sends signal xt =
√
Ps, where s denotes the information-bearing

symbol, which is a CSCG distribution. P denotes the transmitter power, and E
{
|s|2
}

= 1.

In this work, the IRS is assumed to be able to impose an additional time delay on the

incident signals, which not only helps the coherent superposition of multiple copies of the



Chapter 5: A Secure-transmission Maximization Scheme for SWIPT Systems Assisted by an
Intelligent Reflecting Surface and Deep Learning 91

desired signals but also guarantees their synchronization in time. Specifically, one of the

possible approaches is the delay adjustable elements [147] cascaded with the existing phase

adjustable elements [114]. In addition, to ensure that the incident signals are reflected

independently by all IRS elements, the reflected signal-coupling among neighboring IRS

elements is assumed that does not exist. Moreover, due to the severe path loss, we only

consider signals which are reflected by the IRS first time [145,148] by ignoring signals which

are reflected by the IRS two or more times. The received signals at the UE and the Eave’

are defined as follows:

yU = hU
√
Ps+ nU , (5.5)

yE = hE
√
Ps+ nE , (5.6)

where hU = hHIUΦhTI + hTU and hE = hHIEΦhTI + hTE , with nU ∼ CN
(
0, σ2

U

)
and

nE ∼ CN
(
0, σ2

E

)
denoting noise from the antenna at the UE and the Eave’, respectively.

By using the PS scheme, the UE is able to execute EH and ID simultaneously. Regarding

the PS structure, the received signal can be divided into ID and EH streams with PS factors

θ and (1− θ), respectively, where θ ∈ (0, 1). The ID process is only executed on the ID

stream at the UE, and thus, the signal-to-noise ratio (SNR) at the UE and the Eave’ can be

obtained. Accordingly, the achievable rates at the UE and the Eave’ are defined as follows:

RU = log2

(
1 +

θ|hU |2P
θσ2

U + δ2
U

)
, (5.7)

RE = log2

(
1 +
|hE |2P
σ2
E

)
, (5.8)

where v ∼ CN
(
0, δ2

U

)
is the noise of the circuit on the ID stream at the UE shown in Fig. 5.1.

Regarding the EH stream, the EH process is executed, and thus, the harvested energy at

the UE is determined as:

EHU = µ (1− θ)
(
|hU |2P + σ2

U

)
, (5.9)

where µ ∈ (0, 1] and denotes the efficiency of the EH process on the EH stream at the UE.

In this work, for simplicity in computation, the UE is assumed to harvest all the energy

from the received signal, and thus, µ is fixed at 1 (µ = 1) for the remainder of this chapter.
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5.3.3 Objective Problem

For secure transmission, the success of the user is maximized, whereas the success

of the Eave’ needs to be minimized. To estimate this performance metric the secrecy rate

is often used, defined as the variation between the achievable rates of the user and the

Eave’ [121]. Therefore, the secrecy rate at the UE in bits/second/Hertz (bps/Hz) is given as

follows:

Rsec (P, θ,Φ) = (RU −RE)+, (5.10)

where the function (x)+ = max (x, 0).

In this work, we aim to maximize the system secrecy rate by optimizing the received

PS factor, θ, the transmitter power, P , and the phase shifts matrix, Φ, subject to constraints

on the required harvested energy and power. Then, the secrecy rate optimization problem is

formulated as:

max
P,θ,Φ

Rsec (P, θ,Φ) (5.11a)

s.t.: (1− θ)
(
|hU |2P + σ2

U

)
≥ e, (5.11b)

P ≤ Pmax, (5.11c)

0 < θ < 1, (5.11d)

|φm| = 1, ∀m ∈M, (5.11e)

where Pmax denotes the required maximum transmitter power, and e represents the required

minimum harvested energy.

5.3.4 The proposed AO-based scheme for the secure transmission problem

In this section, we propose an AO-based algorithm for solving problem (5.11) which

provides optimal value of P, θ and Φ in an alternating manner. Since the AO method

optimizes one or more variables by fixing remaining variables in an alternating manner, in

the proposed scheme, the optimization of P, θ with a fixed Φ is found by the FPP–SCA

method, while the optimization of Φ with a given P, θ is found by FPP–SCA and a penalty

method.
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5.3.4.1 Finding P, θ with a given Φ

Since Φ is fixed, the constraint (5.11e) is satisfied. Then, we remove the logarithm

function and add two variables u, v where u, v ≥ 0. Specifically, u2 is used for the numerator

and v is used for the denominator of the problem. Then, we can get the inequality(
1 + θ|hU |2P

θσ2
U+δ2U

)/(
1 + |hE |2P

σ2
E

)
≥ u2

/
v which is always guaranteed. Therefore, problem (5.11)

can be changed to:

max
P,θ,u,v

u2

v
(5.12a)

s.t.: 1 +
|hU |2P

σ2
U +

δ2U
θ

≥ u2, (5.12b)

1 +
|hE |2P
σ2
E

≤ v, (5.12c)

(1− θ)
(
|hU |2P + σ2

U

)
≥ e, (5.12d)

P ≤ Pmax, (5.12e)

0 < θ < 1, (5.12f)

u, v, P ≥ 0. (5.12g)

Then, problem (5.12) can be changed to:

min
P,θ,u,v

− u2

v
(5.13a)

s.t.: 0 ≥ σ2
Uu

2 +
δ2
Uu

2

θ
−
δ2
U

θ
− |hU |2P − σ2

U , (5.13b)

0 ≥ 1 +
|hE |2

σ2
E

P − v, (5.13c)

0 ≥ 1

1− θ
e− |hU |2P − σ2

U , (5.13d)

0 ≥ P − Pmax, (5.13e)

0 < θ < 1, (5.13f)

u, v, P ≥ 0. (5.13g)

Due to the non-convex property of
(
−u2

v

)
and

(
−1
θ

)
in the objective function

(5.13a) and under constraint (5.13b), respectively, problem (5.13) is non-convex. Therefore,



94
Chapter 5: A Secure-transmission Maximization Scheme for SWIPT Systems Assisted by an

Intelligent Reflecting Surface and Deep Learning

we need to perform first-order Taylor approximation as follows:

u2

v
≥ u(n)2

v(n)
+
[

2u(n)

v(n)
−u(n)2

v(n)
2

] u

v

−
 u(n)

v(n)

 =
2u(n)u

v(n)
− u(n)2v

v(n)2
, (5.14)

1

θ
≥ 1

θ(n)
− 1

θ(n)2

(
θ − θ(n)

)
=

2

θ(n)
− θ

θ(n)2
. (5.15)

After that, non-convex problem (5.13) is reformulated into an approximated convex

problem with the n–th sub-problem using the FPP–SCA method. From the FPP–SCA

method [135], slack variables s1, s2, s3, s4 are also added into problem (5.13) to generate a

feasible point. By replacing (5.14) and (5.15), and adding the slack variables into problem

(5.13), non-convex problem (5.13) is converted into a convex problem as follows:

min
P,θ,u,v,
s1,s2,s3,s4

− 2u(n)u

v(n)
+
u(n)2v

v(n)2
+ λ (s1 + s2 + s3 + s4) (5.16a)

s.t.: 0 ≥ A− δ2
U

(
2

θ(n)
− θ

θ(n)2

)
− s1, (5.16b)

0 ≥ 1 +
|hE |2

σ2
E

P − v − s2, (5.16c)

0 ≥ 1

(1− θ)
e− |hU |2P − σ2

U − s3, (5.16d)

0 ≥ P − Pmax − s4, (5.16e)

0 < θ < 1, (5.16f)

u, v, P, s1, s2, s3, s4 ≥ 0, (5.16g)

where A = σ2
Uu

2 +
δ2Uu

2

θ −|hU |
2P −σ2

U and λ is a trade-off factor between the slack term and

the objective function. In this work, by using the convex Taylor underestimation of (5.14)

and (5.15) and with the FPP–SCA method, problem (5.13) is transformed into solvable

convex problem (5.16). Then, by using the interior-point method [149, 150] with a solver

tool like Matlab’s CVX [107], the convex optimization problem will be solved easily. Finally,

the proposed FPP–SCA algorithm is presented in Algorithm 5.1.

Regarding Algorithm 5.1, because problem (5.11) is converted to convex sub-

problem (5.16) in the n–th iteration , we need to determine initial feasible points
(
P (0), θ(0), u(0), v(0)

)
.

We can set P (0) = Pmax and θ(0) = 0.5 such that constraints (5.12e) and (5.12f) are satisfied,

respectively. After that, u(0) and v(0) can be calculated such that constraints (5.12b) and

(5.12c) are satisfied, respectively (step 4 in Algorithm 5.1).
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In Algorithm 5.1, in each of the iterations and using Matlab’s CVX to solve the

convex problem, we then obtain the optimal solution. We assign P (n) ← P (n−1)∗ , θ(n) ←
θ(n−1)∗ , and u(n) ← u(n−1)∗ , v(n) ← v(n−1)∗ , where

(
P (n−1)∗ , θ(n−1)∗ , u(n−1)∗ , v(n−1)∗

)
is

the optimal solution from the previous iteration. In other words, the (n+ 1)–th iteration

reuses the optimal solution at the n–th iteration which is considered a feasible point.

Therefore, the optimal solution u∗ and v∗ will be assigned for the next iterations of u and v,

u(n+1) and v(n+1), respectively. This process will be repeated until convergence. Besides,

Algorithm 5.1 converges when the initial point is feasible and converges to a stationary

point. This is because the alternative functions
(
−2u(n)u

v(n)
+ u(n)

2
v

v(n)
2

)
and

(
2
θ(n)
− θ

θ(n)
2

)
satisfy

the convergence conditions as mentioned in Section II-C [151]. Furthermore, the FPP–

SCA approach yields a non-increasing cost sequence when considering additional slack

variables which make the optimal values non-increasing after each iteration [135], and thus,

Algorithm 5.1 is guaranteed to be converged.

Algorithm 5.1 The FPP–SCA algorithm obtaining transmit power (P ) and PS factor (θ)

by fixing phase shift matrix Φ

1: Input: Channel gain of the related communication links (hTU , hTE ,hTI ,hIU ,hIE), fixed initial

phase shifts matrix Φ, convergence conditions (ε1, ε2), a feasible point with an initial point

u(0), v(0), P (0), θ(0), λ = 100, required minimum harvested energy (e), required maximum transmit

power (Pmax), and n = 0.

2: Output: The optimal value: P ∗, θ∗ ⇒ R∗sec.

3: Calculate: hU = hHIUΦhTI + hTU and hE = hHIEΦhTI + hTE

4: Calculate initial feasible point at n = 0: choose P (0) = Pmax, θ
(0) = 0.5 such that they satisfy

constraints (5.12e) and (5.12f), respectively. Then, calculate u(0) and v(0) such that u(0) and v(0)

satisfy constraints (5.12b) and (5.12c), respectively, u(0) =

√
1 + P (0)|hU |2

σ2
U+

δ2
U

θ(0)

, v(0) = 1 + P (0)|hE |2
σ2
E

5: repeat

6: Solve problem (5.16) using Matlab CVX solver and calculate: P ∗, θ∗, u∗, v∗, s∗1, s
∗
2, s
∗
3, s
∗
4

7: n = n+ 1

8: Calculate: R(n−1) = − 2u(n−1)u∗

v(n−1) + u(n−1)2v∗

v(n−1)2
+ λ (s∗1 + s∗2 + s∗3 + s∗4)

9: Update: P (n) ← P ∗, θ(n) ← θ∗, u(n) ← u∗, v(n) ← v∗

10: until R(n)−R(n−1)

R(n−1) ≤ ε1 and s1 + s2 + s3 + s4 ≤ ε2
11: return P ∗ ← P (n), θ∗ ← θ(n), calculate optimal secrecy rate R∗sec based on P ∗ and θ∗.



96
Chapter 5: A Secure-transmission Maximization Scheme for SWIPT Systems Assisted by an

Intelligent Reflecting Surface and Deep Learning

5.3.4.2 Finding Φ with a given P, θ

By removing the logarithm function, performing some computational operations,

and fixing P, θ, problem (5.11) with regard to (w.r.t.) Φ becomes:

max
Φ

1
B |hU |

2 + 1
1
C |hE |

2 + 1
(5.17a)

s.t.: (1− θ)
(
|hU |2P + σ2

U

)
≥ e, (5.17b)

|φm| = 1, ∀m ∈M, (5.17c)

where B =
σ2
U+δ2U/θ
P and C =

σ2
E
P . Let a1 = diag

(
hHIU

)
hTI , a2 = hTU , a3 = diag

(
hHIE

)
hTI ,

a4 = hTE , q =
[
ejϕ1 , . . . , ejϕM

]H
, and q̄ = [q ; 1]. Then, we get:

hU = hHIUΦhTI + hTU = qHdiag
(
hHIU

)
hTI + hTU = qHa1 + a2, (5.18)

hE = hHIEΦhTI + hTE = qHdiag
(
hHIE

)
hTI + hTE = qHa3 + a4. (5.19)

The numerator and denominator of (5.17a) are converted to:

1

B
|hU |2 + 1 = q̄HA1q̄ + h̃U + 1, (5.20)

1

C
|hE |2 + 1 = q̄HA2q̄ + h̃E + 1, (5.21)

where A1 = 1
B

 a1a
H
1 a1a

H
2

a2a
H
1 0

, A2 = 1
C

 a3a
H
3 a3a

H
4

a4a
H
3 0

, h̃U = |a2|2
B , and h̃E = |a4|2

C .

Accordingly, we rewrite problem (5.17) into a more tractable problem, as follows:

max
q̄

q̄HA1q̄ + h̃U + 1

q̄HA2q̄ + h̃E + 1
(5.22a)

s.t.: (1− θ)
[
B
(
q̄HA1q̄ + h̃U

)
P + σ2

U

]
≥ e, (5.22b)

|qm| = 1, ∀m. (5.22c)

The optimal solution to problem (5.22) is really not easy to find, since objective

function (5.22a) is not only a non-concave function w.r.t. q̄ but is also a fractional function.

In addition, constraint (5.22c) is a non-convex quadratic equality function for each m. Let
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Tr (Q) denote the trace of matrix Q , and define Q = q̄ q̄H where Q is a PSD matrix and

rank (Q) = 1. Then, problem (5.22) is transformed as follows:

max
Q

Tr (A1Q) + h̃U + 1

Tr (A2Q) + h̃E + 1
(5.23a)

s.t.: (1− θ)
[
B
(

Tr (A1Q) + h̃U

)
P + σ2

U

]
≥ e, (5.23b)

Qm,m = 1, ∀m ∈ {1, 2, . . . ,M + 1} , (5.23c)

Q � 0, (5.23d)

rank (Q) = 1. (5.23e)

By adding the two variables u, v to transform the fraction function in a way similar

to the transformation from problem (5.11) to problem (5.13) in Section 5.3.4.1, problem (5.23)

changes to:

min
Q ,u,v

− u2

v
(5.24a)

s.t.: 0 ≥ u2 − Tr (A1Q)− h̃U − 1, (5.24b)

0 ≥ Tr (A2Q) + h̃E + 1− v, (5.24c)

0 ≥ e

1− θ
− Tr (A1Q)BP − h̃UBP − σ2

U , (5.24d)

u, v ≥ 0, (5.24e)

(5.23c), (5.23d), (5.23e). (5.24f)

Since we will also apply the FPP–SCA method to solve this problem, it is essential

to find the feasible point for the final convex problem. Therefore, we can find feasible

point Q (0) from problem (5.24). Because variables u and v are only in constraints (5.24b)

and (5.24c), we do not use constraints (5.24b) and (5.24c) when finding feasible point Q (0)

of problem (5.24), as follows:

min
Q

0 (5.25a)

s.t.: 0 ≥ e

1− θ
− Tr (A1Q)BP − h̃UBP − σ2

U , (5.25b)

Qm,m = 1, ∀m ∈ {1, 2, . . . ,M + 1} , (5.25c)

Q � 0. (5.25d)

Solving problem (5.25), we can find feasible point Q (0). Next, problem (5.24) has

rank-1 constraint (5.23e). So, problem (5.24) is still non-convex. Therefore, we use the
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penalty method to solve the rank-1 problem, as mentioned in [152,153]. We know that all

eigenvalues of Q are non-negative, since Q is a PSD matrix. And thus, Tr (Q) ≥ λmax (Q)

holds where λmax (Q) is the maximum eigenvalue of Q . Moreover, Tr (Q) = λmax (Q)

if and only if rank (Q) = 1. From this insight, (Tr (Q)− λmax (Q)) should be smaller

in each of the subsequent iterations. By using the penalty method, we can add the

term η (Tr (Q)− λmax (Q)) to objective function (5.24a), where η is the penalty factor.

Problem (5.24) can be rewritten as follows:

min
Q ,u,v

− u2

v
+ η (Tr (Q)− λmax (Q)) (5.26a)

s.t.: 0 ≥ u2 − Tr (A1Q)− h̃U − 1, (5.26b)

0 ≥ Tr (A2Q) + h̃E + 1− v, (5.26c)

0 ≥ e

1− θ
− Tr (A1Q)BP − h̃UBP − σ2

U , (5.26d)

u, v ≥ 0, (5.26e)

(5.23c), (5.23d). (5.26f)

In problem (5.26), the rank-1 solution of Q can be obtained when the penalty factor

is large enough. However, problem (5.26) is still non-convex because functions
(
−u2

v

)
and

(−λmax (Q)) are non-convex. Regarding non-convex function
(
−u2

v

)
, we perform first-order

Taylor approximation for the u2

v function, as seen in (5.14), and convert the non-convex

problem into the iterative optimization problem using the FPP–SCA method as follows:

min
Q ,u,v,
s1,s2,s3

−2u(n)u
v(n)

+ u(n)
2
v

v(n)
2 + λ (s1 + s2 + s3)

+η (Tr (Q)− λmax (Q))
(5.27a)

s.t.: 0 ≥ u2 − Tr (A1Q)− h̃U − 1− s1, (5.27b)

0 ≥ Tr (A2Q) + h̃E + 1− v − s2, (5.27c)

0 ≥ e

1− θ
− Tr (A1Q)BP − h̃UBP − σ2

U − s3, (5.27d)

(5.26e), (5.23c), (5.23d). (5.27e)

Regarding non-convex function (−λmax (Q)), we observe that λmax (·) is a convex

function [153]. Therefore, we can approximate the λmax (·) function in an iterative manner.

We review again Theorem 1 regarding the maximum eigenvalue, which is mentioned in [154].

Theorem 1. It is assumed that the PSD matrices are X and Y , so λmax (X )−
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λmax (Y ) ≥ yHmax (X −Y )ymax will be achieved where λmax (·) is the maximum eigenvalue

function, and ymax is the eigenvector according to the maximum eigenvalue of Y .

From Theorem 1, we can get the inequality of PSD matrices, Q and Q (n):

λmax (Q) ≥ λmax
(
Q (n)

)
+ y (n)H

max

(
Q −Q (n)

)
y (n)
max, (5.28)

where y
(n)
max is the eigenvector according to maximum eigenvalue λmax

(
Q (n)

)
of Q (n). With

w
(n)
max as the eigenvector corresponding to maximum eigenvalue λmax

(
Q (n)

)
, we solve the

convex sub-problem in the n–th iteration as follows:

min
Q ,u,v,
s1,s2,s3

−2u(n)u
v(n)

+ u(n)
2
v

v(n)
2 + λ (s1 + s2 + s3)

+η
(

Tr (Q)−w
(n)H
max Qw

(n)
max

) (5.29a)

s.t.: (5.27b)− (5.27e). (5.29b)

Then, optimal solutions u∗, v∗, and Q∗ of the n–th convex sub-problem will be

used to serve as the (n+ 1)–th iteration (i.e., we update u∗, v∗, and Q∗ to u(n+1), v(n+1), and

Q (n+1), respectively). We obtain Q = λmax (Q)wmaxw
H
max when Tr (Q) ≈ λmax (Q). After

that, optimal solution vector q̄ =
√
λmax (Q)wmax. And then, the optimal phase shifts

vector q∗ can be calculated as q∗ = [q̄ ](1:M). From the definitions Φ = diag
{
ejϕ1 , . . . , ejϕM

}
and q =

[
ejϕ1 , . . . , ejϕM

]H
, we get the optimal phase shifts matrix Φ∗ from q∗ with

Φ∗ = diag
{
q∗H

}
.

Algorithm 5.2 presents the proposed iterative algorithm based on FPP–SCA and

the penalty method, while Algorithm 5.3 presents the proposed overall iterative algorithm

for solving main problem (5.11).

Regarding Algorithm 5.2, we need to determine initial feasible points
(
u(0), v(0),w

(0)
max

)
of convex sub-problem (5.29) where w

(0)
max is the eigenvector corresponding to maximum

eigenvalue λmax

(
Q (0)

)
which is related to the initial feasible point Q (0). Fortunately,

the initial feasible point Q (0) can be obtained by solving the problem (5.25) (step 3 in

Algorithm 5.2). After that, u(0) and v(0) can be calculated such that constraints (5.27b)

and (5.27c) are satisfied, respectively (step 4 in Algorithm 5.2). Note that, in step 4, to

calculate u(0) and v(0), the matrices A1 and A2 need to be calculated. As analyzed in

Section 5.3.4.2, the matrices A1 and A2 are involved in the calculation of the values B and

C, respectively, which are also computed based on P and θ. Because Algorithm 5.2 finds

the phase shift matrix Φ by fixing P and θ, the transmit power P and the PS factor θ are
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Algorithm 5.2 The FPP–SCA and penalty method–based algorithm for obtaining the

phase shifts matrix (Φ) by fixing the transmit power (P ) and the PS factor (θ)

1: Input: Channel gain of related communication links (hTU , hTE ,hTI ,hIU ,hIE), given wireless

resources (P , θ), convergence tolerances (τ , ε2), penalty factor η, trade-off factor λ, required

minimum harvested energy (e), required maximum transmit power (Pmax), and n = 0.

2: Output: The optimal phase shifts: q∗ and Φ∗ ⇒ R∗sec.

3: Solve problem (5.25) to find feasible point Q(0), and from Q(0), calculate w
(0)
max

4: Calculate u(0) and v(0) such that u(0) and v(0) satisfy constraints (5.27b) and (5.27c), respectively,

u(0) = Tr
(
A1Q

(0)
)

+ h̃U + 1, v(0) = Tr
(
A2Q

(0)
)

+ h̃E + 1

5: repeat

6: Use Matlab CVX solver to find the optimal solution for problem (5.29), and obtain(
Q(n)∗ , u(n)

∗
, v(n)

∗
)

7: n = n+ 1

8: Update Q(n) ← Q(n−1)∗ , u(n) ← u(n−1)
∗
, v(n) ← v(n−1)

∗
,w

(n)
max ← w

(n−1)
max

9: until (Tr (Q)− λmax (Q)) ≤ τ and s1 + s2 + s3 ≤ ε2
10: Obtain q̄∗ via the eigenvalue decomposition of Q(n)

11: return final q∗ and Φ∗, calculate optimal secrecy rate R∗sec based on the given P, θ and Φ∗.

Algorithm 5.3 The proposed AO-based algorithm for solving problem (5.11)

1: Input: Channel gain of related communication links (hTU , hTE ,hTI ,hIU ,hIE), initial phase

shifts matrix Φ, convergence tolerances (τ , ε1, ε2), penalty factor η, trade-off factor λ, required

minimum harvested energy (e), required maximum transmit power (Pmax), and n = 0.

2: Output: The optimal solutions: P ∗, θ∗,Φ∗ ⇒ R∗sec.

3: repeat

4: For the given Φ, use Algorithm 5.1 to solve problem (5.16) and obtain P ∗ and θ∗

5: For the given P ∗ and θ∗ obtained from Step 4, use Algorithm 5.2 to solve problem (5.29) and

obtain Φ∗

6: n = n+ 1

7: Update Φ(n) = Φ∗

8: until convergence

9: return the optimal solution (P ∗, θ∗,Φ∗), calculate optimal secrecy rate R∗sec based on

(P ∗, θ∗,Φ∗).
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in this case the optimal transmit power and the optimal PS factor, which can be obtained

from Algorithm 5.1, respectively.

For convergent analysis, similar to Algorithm 5.1, in Algorithm 5.2, the n–th

optimal solution (Q∗, u∗, v∗) is a feasible point to the problem (5.29) at the (n + 1)–th

iteration, and the optimal value of problem (5.29) is non-increasing over each iteration and

converges to a stationary point. Subsequently, convergence of Algorithm 5.2 is guaranteed.

5.3.4.3 The computational complexity of the proposed AO-based algorithm

In this section, we consider the computational complexity of the proposed AO-based

scheme. The computational complexity is mainly from steps 4 and 5 in Algorithm 5.3, which

includes the computation complexity of Algorithm 5.1 and Algorithm 5.2. As observed in

Algorithm 5.1, problem (5.16) is only consisted of single non-negative variables. Therefore,

the computational complexity of Algorithm 5.1 can be neglected. Besides, at step 3 of

Algorithm 5.2, problem (5.25) is performed once to find the initial feasible point Q (0),

and thus, the computational complexity of this step can also be ignored. Finally, the

computational complexity of the proposed overall algorithm is mainly from step 5 to

step 9 of Algorithm 5.2 when solving problem (5.29). It is noteworthy that the convex

sub-problem (5.29) can be solved by using the interior-point method. Therefore, the

computational complexity can be calculated based on Theorem 3.12 [150]. According to

Theorem 3.12 [150], in each iteration, when the semi-definite programming problem with

an n × n PSD matrix and m constraints is given, the computational complexity is given

by O
(√
n log (1/ξ)

(
mn3 +m2n2 +m3

))
where ξ > 0 is the solution accuracy and O (·) is

the big-O notation. For problem (5.29), since the PSD matrix Q is an (M + 1)× (M + 1)

matrix, we can set n = M + 1. In addition, as observing problems (5.23) and (5.27), we

can set m = 4 due to (5.27b), (5.27c), (5.27d), and (5.23c) constraints which are related

to the PSD matrix Q . If we denote the number of iterations of proposed algorithm for

convergence as K1, total computational complexity of the proposed algorithm is approximated

as O
(
K1 log (1/ξ) (M + 1)3.5

)
because of the small number of constraints (m = 4).

5.3.5 Learning to optimize: the deep learning–based approach

In the previous section, we proposed the AO-based scheme, which provides optimal

solution but requires high complexity and long computation time. Therefore, in this section
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we will consider a DL-based approach to predict the transmit power, PS factor, and the

phase shifts vector. Regarding the DL-based approach, a simple DNN model is used, called

a feedforward neural network (FFNN). Fig. 5.2 shows the overall flow of DL-based approach

with training and running stages, where the training data are based on the solution of the

AO-based scheme.

Figure 5.2: Overall flow of the DL-based approach.

5.3.5.1 Repairing data samples and DNN training stage

In this work, the DNN-based method uses the optimal solutions obtained by the

AO method as training data including transmit power, PS factor, and phase shifts. Choosing

a reasonable data and DNN structures for the training process will contribute to a significant

improvement in performance. Therefore, in this section, we investigate 5 types of data and

DNN structures as shown in Fig. 5.3.

First, we generate N samples of the channel power gain on the related communica-

tion links {hTU , hTE ,hTI ,hIU ,hIE}. By using the proposed scheme, we can get the optimal

solution for transmit power P ∗, PS factor θ∗, and the phase shifts vector q∗ corresponding

to the channel power gain of the related communication links.

In addition, we can use all channel gains of {hTU , hTE ,hTI ,hIU ,hIE} for train-

ing data of which case in the chapter is denoted as the deep learning all channels (DL

AC). However, in practice it is very difficult to get the channel gain associated with the

Eave’ {hTE ,hIE}. Therefore, we consider other case where we only use channel gains
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Figure 5.3: Five types of data and DNN structures.

of {hTU ,hTI ,hIU}, which is denoted as the deep learning partial channels (DL PC). In

addition, different training data structures are built for the training stage, which are denoted

as Type 1 to Type 5. For simplicity, instead of using the phase shifts vector as a complex

number (i.e., q∗ =
[
ejϕ
∗
1 , . . . , ejϕ

∗
M

]H
), we convert it into the real part and the imaginary

part of the phase shifts vector, denoted Re (q∗) and Im (q∗), respectively.

We denote the channel gain matrix as X, with Y being the output matrix of the

optimization solution, which is the optimal power allocation, the PS factor, and the real

and imaginary parts of the phase shifts vector. The size and structure of the training data

will depend on the type of structure. For construction of the data for the training stage, we

present the case under DL AC. DL PC is done similarly, but only with the channel gain for

{hTU ,hTI ,hIU}. The training data structures are described as follows.

• Type 1 (Fig. 5.3a): the optimal transmit power and PS factor are constructed

separately (and thus, will also be trained separately). The optimal phase shifts vector

is used and combined with the predictive training output for transmit power and the

PS factor in order to calculate the secrecy rate. Then, the input and output matrices
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are given as follows:

X1
1 =

[
|hTU |2; |hTE |2; |hTI |2; |hIU |2; |hIE |2

]
(1:N)

, (5.30)

Y1
1 = [P ∗](1:N) , (5.31)

Y1
2 = [θ∗](1:N) . (5.32)

The superscripts of X and Y indicate the type of training data structure from Type 1 to

Type 5 whereas the subscripts are the distinctive numbering. Because hTU , hTE ∈ C1×1

and hTI ,hIU ,hIE ∈ CM×1 where M is the number of reflecting elements. In addition,

if the number of samples for training data is N , the training input and output data

size of Type 1 will be X1
1 ∈ C(2+3M)×N and Y1

1,Y
1
2 ∈ C1×N , respectively.

• Type 2 (Fig. 5.3b): the optimal transmit power, the PS factor, and the phase shifts

vector are constructed separately. Because the real part and imaginary part of the

phase shifts vector are used, we also need to convert channel gain to the real part and

imaginary part, which ensures the channel gain and the phase shifts vector use the

same dimension of the samples for the training stage. Then, the input and output

matrices are given as follows:

X2
1 = X1

1, (5.33)

Y2
1 = Y1

1, (5.34)

Y2
2 = Y1

2, (5.35)

X2
2 = [{Re (hTU ) , Im (hTU )} ; {Re (hTE) , Im (hTE)} ; {Re (hTI) , Im (hTI)} ;

{Re (hIU ) , Im (hIU )} ; {Re (hIE) , Im (hIE)}](1:N) , (5.36)

Y2
3 = [{Re (q∗) , Im (q∗)}](1:N) . (5.37)

Similarly, the training input and output data size of Type 2 based on (5.33), (5.34),

and (5.35) are X2
1 ∈ C(2+3M)×N and Y2

1,Y
2
2 ∈ C1×N , respectively. Due to the real
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and imaginary parts of the phase shift and the size of the phase shift, q , depends on

the number of elements M , the training data size of X2
2 and Y2

3 are X2
2 ∈ C(2+3M)×2N

and Y2
3 ∈ CM×2N , respectively.

• Type 3 (Fig. 5.3c): the optimal transmit power and PS factor are constructed and

used for the training data, whereas the optimal phase shifts vector is used. The input

and output matrices are:

X3
1 = X1

1, (5.38)

Y3
1 = [P ∗; θ∗](1:N) . (5.39)

The training input and output data size of Type 3 are X3
1 ∈ C(2+3M)×N and Y3

1 ∈ C2×N ,

respectively.

• Type 4 (Fig. 5.3d): the optimal transmit power and PS factor are constructed and

used for the training data, whereas the optimal phase shifts vector is constructed

separately for the training stage. The input and output matrices are:

X4
1 = X1

1, (5.40)

Y4
1 = Y3

1, (5.41)

X4
2 = X2

2, (5.42)

Y4
2 = Y2

3. (5.43)

The training input and output data size of Type 4 are X4
1 ∈ C(2+3M)×N , X4

2 ∈
C(2+3M)×2N , Y4

1 ∈ C2×N , and Y4
2 ∈ CM×2N .

• Type 5 (Fig. 5.3e): the optimal transmit power, PS factor, and the phase shifts

vector are constructed and used for the training data for the training stage. The input

and output matrices are:

X5
1 = X2

2, (5.44)
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Y5
1 = [{P ∗, θ∗} ; {Re (q∗) , Im (q∗)}](1:N) . (5.45)

The training input data size of Type 5 is X5
1 ∈ C(2+3M)×2N . According to (5.45), the

training data output size is Y5
1 ∈ C(1+M)×2N .

Next, the training data are trained by the DNN using backpropagation. The scaled

conjugate gradient algorithm is used in the training process to optimize the MSE. To perform

backpropagation in the training stage, two activation functions are used: purelin (·) is used

for the output layer, whereas tansig (·) is used for hidden layers; they are calculated as

follows:

tansig (x) =
2

1 + e−2x
− 1, (5.46)

purelin (x) = x. (5.47)

5.3.5.2 DNN Running stage

In the running stage, we also generate channel matrices Z for the input layer

according to the type of training data structure but with K samples for channel power gain.

Channel gain is generated the same way as in the training stage. Then, for the run data, the

well-trained network is loaded for channel matrix Z. Finally, the output layer produces the

running predictive optimal value, which includes the predictive optimal transmit power P̂ ,

PS factor θ̂, real part Re (q̂) and imaginary part Im (q̂) of predictive optimal phase shifts

vector q̂ according to the type of training data structure.

Fig. 5.3 shows the 5 types of data and DNN structures where Type 1 and Type 3

structures only estimate power P̂ ∗ and PS factor θ̂∗ by using DNN while the optimal value

of the phase shift q∗ directly is calculated. Specifically, in the running stage of Type 1 and

Type 3 structures, the value of the phase shift is not available so, for the new channel gain

input, we must use to Algorithm 5.2 to get optimal q∗. That is, we can get the phase shifts

matrix by using Algorithm 5.2 while fixing the transmit power and the PS factor as the

estimated power P̂ ∗ and PS factor θ̂∗. Even we can set the estimated value of q̂∗ by DNN as

initial value for Algorithm 5.2. On the other hand, Type 2, Type 4, and Type 5 structures

estimate transmit power P̂ ∗, PS factor θ̂∗, and phase shift q̂∗ using DNN structures.
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5.4 Simulation results and discussion

First, we set the necessary parameters for the optimization algorithm and the

DNN. Then, the numerical results for the average secrecy rate (ASR) from changing the

transmitter power and the number of IRS reflecting surfaces are provided. We also consider

the effect on the ASR of circuit noise at the UE as well as factors affecting channel gain (such

as the vertical distance between the UE and the IRS, as well as the path loss exponents).

Regarding the DL-based approach, we use the DL scheme for the ASR based on changes

to the required minimum harvested energy with different structures of the training data.

With regard to the proposed optimization-based approach, the solution to the problem

can be obtained, and it converges to the optimal value through a number of iterations.

Meanwhile, the proposed DL-based approach shows the ability to approximate the response

that is produced by the optimization algorithm. In our work, benchmark schemes are used,

including a scheme without an IRS, a random phase shifts scheme, and the equal PS–factor

scheme. The scheme without an IRS only finds the optimal resource allocation (i.e., only the

optimal transmit power and PS factor). The random phase shifts scheme reuses the optimal

resource allocation from the scheme without an IRS, and combines it with the random phase

shifts vector to calculate the system secrecy rate. The equal PS–factor scheme uses the

optimization algorithm without IRS to solve the problem, and the PS factor is fixed so that

the gain of the PS factor across the ID and EH streams is equal, i.e., the PS factor is set to

0.5 (θ = 0.5).

Figure 5.4: The horizontal coordinates of the IRS, the transmitter, the UE, and the Eave’

on the x− y plane.
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5.4.1 The neural network configuration and simulation parameters

In our work, we setup the system at small scale on a three-dimensional Cartesian

coordinate system. The reference (center) point of the IRS is located at wI = [4, 0]T m

and zI = 5 m. The transmitter, the UE, and the Eave’ are located in the x− y plane, and

thus, zT = zU = zE = 0 m. The horizontal coordinates of the transmitter, the UE, and the

Eave’ on the x− y plane are denoted by wT = [8, 5]T m, wU = [0, 5]T m, and wE = [2, 8]T

m, respectively. For visualization, in addition to the altitude of the IRS (zI = 5 m), the

locations of the IRS, the transmitter, the UE, and the Eave’ on the x− y plane are shown

in Fig. 5.4.

Table 5.3: Hyper-parameters descriptions

Symbol Description Value

ρl path loss at reference distance D0 = 1 m -20 dB

∆ antenna separation λc
2

αTU , αTE , αTI ,

αIU , αIE

path loss exponents of the communication links 2.5, 3, 2,

2, 2.5

βTI , βIU , βIE Rician factors of the communication links 3 dB

σ2
U noise variance from antenna at the UE -70 dBW

δ2
U noise variance of circuit at the UE -50 dBW

σ2
E noise variance from antenna at the Eave’ -60 dBW

λ trade-off factora 100

ε1 convergence tolerance 10−4

ε2 convergence tolerance 10−3

τ convergence tolerance 10−4

η penalty factor 105

N the number of training samples 1000

K the number of testing samples 100

aThe trade-off factor, λ, is usually of great value (usually λ � 1), which can help

ensure that if the optimization problem has a feasible solution, then the problem will

still remain in the feasible region on subsequent iterations [135].

Regarding the channel model, the CSCG random variable distribution was used
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for the channel gain of the T–U link (h̃TU ), the T–E link (h̃TE), and the NLoS components

of related communication links (hNLoSTI ,hNLoSIU ,hNLoSIE ). Depending on the requirements of

the simulation, the required maximum transmit power (Pmax) and the required minimum

harvested energy (e) were specifically provided in each simulation. For the DL-based

approach, an FFNN model with four layers was used, which has not only input and output

layers but also two hidden layers. We set 20 neurons for each hidden layer. The other

simulation parameters are shown in Table 5.3.

5.4.2 The secrecy rate performance under various configurations

In this section, system performance is compared under different settings. First,

we investigate the convergence property. Then, we check the effect of the number of IRS

reflecting elements in terms of the ASR. After that, the ASR based on changing the required

maximum transmitter power is investigated. Finally, we validate the ASR under factors

affecting channel gain (such as the vertical distance between the UE and the IRS, as well as

the path loss exponent of the T–U link).
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Figure 5.5: The ASR of the proposed AO algorithm based on the number of iterations when

changing the number of reflecting elements, M .

Fig. 5.5 shows the convergence property on the ASR according to the number of

iterations under our proposed scheme with an IRS. We observed that the ASR increased

rapidly and reached an optimal solution between the first and the third iteration. Fig. 5.5
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also shows the improvement of the ASR when the IRS’s reflecting surfaces increases in

number. That is the result of using and optimizing the IRS’s phase shifts, contributing to

the enhancement of the received signal at the UE and the weakening of the received signal

at Eave’ when the number of IRS reflecting surfaces increases. To see this clearly, in Fig.

5.6 we checked the ASR from different schemes based on the number of IRS elements, M ,

when the requirements of the UE’s harvested energy and the transmitter’s power are fixed

at e = −54 dBW and Pmax = 100 W, respectively.

10 15 20 25 30

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

38.91%

18.01%

Figure 5.6: The ASR of the different schemes according to the number of reflecting elements,

M , when the required minimum harvested energy is e = −54 dBW and the required

maximum transmit power is Pmax = 100 W.

Fig. 5.6 shows that the ASR increased significantly when the number of IRS

reflecting elements increased. Specifically, the proposed IRS scheme improved the ASR

from 18.01% to 38.91% when increasing the IRS reflecting elements from 10 to 30. This is

because as the IRS reflecting elements increase in number, the signals from the IRS become

dominant at the UE and degrade for the Eave’. Fig. 5.6 also shows that the proposed

scheme outperforms the random phase shifts scheme and the scheme without an IRS, which

results from using and optimizing the IRS phase shifts. By optimizing the phase shifts, the

signals reflected by the IRS can be optimized and combined with the signals directly from

the T–U and T–E links to enhance or degrade the signals obtained at the UE and the Eave’,

respectively, thus contributing to strengthening the system secrecy rate to a higher degree,

compared to not using the IRS. The performance of the random phase shifts scheme is less
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efficient than the proposed scheme, but it is better than the optimization scheme without

an IRS, because the random phase shifts scheme reuses the optimal transmit power and PS

factor from the optimization scheme without the IRS, along with random phase shifts, to

calculate the secrecy rate. A note on random phase shift: although the ASR also tends to

increase when the number of reflecting elements increases, in random phase shifts that are

not properly optimized, the performance can not only be worse than the optimization scheme

with an IRS but can be even worse when increasing the number of reflecting elements, for

example, when M = 10 and M = 15, as shown in Fig. 5.6. The equal PS–factor scheme

provides the lowest ASR because it can only achieve the optimal secrecy rate based on the

optimal transmit power while the PS factor is fixed at θ = 0.5. Note that when the number

of reflecting elements increases, the ASR from optimization scheme without an IRS remains

unchanged, since the IRS is not used.
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Figure 5.7: The ASR of the different schemes according to the required maximum transmit

power when the number of reflecting elements is M = 30 and the required minimum harvested

energy is e = −54 dBW.

In Fig. 5.7, we consider the effect of the required maximum transmit power at the

transmitter on the ASR of the schemes. In this case, the required maximum transmit power

is based on the values Pmax ∈ {60, 70, 80, 90, 100}W, while the required minimum harvested

energy is fixed at e = −54 dBW, and the number of reflecting elements is 30. As observed

in Fig. 5.7, again, the optimization scheme with the IRS achieves the highest ASR, while

the equal PS–factor scheme achieves the lowest ASR. In addition, although the required
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maximum transmit power increases, in our scenario, due to the impact of noise and channel

gain, the achievable rate at the UE changes relatively little. Therefore, Fig. 5.7 shows that

the ASR increases very little. For the slight increase in terms of ASR according to the

required maximum transmit power, it is not necessary to use too much power. Therefore,

in operation, we can choose the appropriate transmit power to ensure performance and

not consume too many resources. Fig. 5.7 also shows that the ASR would be improved

by reducing circuit noise at the UE. Reducing processing noise at the UE is completely

achievable as science and technology develop more and more.

Let dv denote the vertical distance between the UE and the IRS, and consider UEs

at the following locations: wU
1 = [0, 1]T ,wU

2 = [0, 3]T ,wU
3 = [0, 5]T , and wU

4 = [0, 7]T m, as

shown in Fig. 5.8. This also means that the vertical distance between the UE and the IRS

is considered based on dv ∈ {1, 3, 5, 7} m.

Figure 5.8: The vertical distance between the UE and the IRS, dv, and the locations of the

UEs (star symbols) on the x− y plane.

Fig. 5.9 shows the ASR of different schemes when changing the vertical distance dv

between the UE and the IRS. As observed in Fig. 5.9, with regard to schemes that do not

use an IRS (i.e., the optimization scheme without an IRS and the equal PS–factor scheme),

the best ASR is achieved when the UE is closest to the transmitter (i.e., when dv = 5 m).

Conversely, the ASR decreases if the UE is farther away from the transmitter (i.e., when

dv = 1, 3, and 7 m). This is understandable since the channel is modeled according to the

Rayleigh model, and as a result, the greater the distance between the transmitter and the

UE, the more the channel is attenuated. Therefore, the signal received at the UE is reduced,

and the secrecy rate decreases. One thing to note is that when the distance between the
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transmitter and the UE is equal (when dv = 3 m and dv = 7 m), channel gain, hTU at dv = 3

m and dv = 7 m is the same owing to the Rayleigh fading channel model, as seen in (1),

so the ASR gives the same result at dv = 3 m and dv = 7 m. Regarding the optimization

scheme with an IRS, the best ASR is achieved at dv = 3 m. This shows that the closer the

UE is to the IRS, the more the reflected signal from the IRS is enhanced, resulting in a

stronger signal at the UE. However, as mentioned above, the signal strength at the UE also

depends on it being a direct signal from the transmitter, which shows that when the UE is

farther from the transmitter, the direct signal from the T–U link decreases. Therefore, when

the UE is close to the IRS at a certain distance (for example, at dv = 1 m from the result in

Fig. 5.9), the combination of the T–U link’s direct signal and the I–U link’s reflected signal

is no longer optimal, resulting in the ASR decreasing at dv = 1 m.
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Figure 5.9: The ASR of the different schemes according to the vertical distance between the

UE and the IRS dv when required minimum harvested energy is e = −54 dBW, required

maximum transmit power is Pmax = 100 W, and the number of reflecting elements is M = 30.

Fig. 5.10 shows the ASR of the different schemes according to the path loss

exponent of the T–U link, αTU . Usually, the path loss exponent has a range between 1.5

and 5 [155], so we considered path loss exponent values from 1.5 to 3. In general, the ASR

tends to decrease as the path loss exponent increases, and is even less than 0 when the

path loss exponent is high (αTU = 3) for a low-performance scheme like the equal PS–factor

scheme. This is caused by a decrease in the T–U channel gain as the path loss exponent

increases accordingly. As a result, the signal received at the UE also decreases, leading
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to a decrease in the secrecy rate. Fig. 5.10 also shows that with the help of the IRS, the

ASR of the optimization scheme with an IRS decreases more slowly than the other schemes.

Again, the proposed scheme with an IRS outperforms the other schemes. It is noteworthy

that, when the pathloss exponent is small (e.g., the path loss exponent is 1.5), the difference

in the channel gain value, hU , between the scheme without an IRS and scheme with an

IRS is insignificant under other conditions unchanged. Therefore, the secrecy rate between

these two schemes may be approximately, or even the secrecy rate of the proposed scheme

may be smaller than that of the scheme without an IRS. In addition, the secrecy rate of

the random phase shift scheme in our work is calculated based on the optimal transmit

power and PS factor of the scheme without an IRS and the random phase shifts vector.

Therefore, the secrecy rate of the random phase shift scheme may be greater than that of

the scheme with an IRS when the path loss exponent is small. Fortunately, the path loss

exponent is generally greater than 2 for obstructions to the propagation of the energy of an

electromagnetic wave [155]. Thus, Fig. 5.10 shows that the proposed scheme provides an

acceptable performance when an appropriate path loss exponent value is used (e.g., path

loss exponent values such as 2 and 2.5 in common transmission environments).
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Figure 5.10: The ASR of the different schemes according to the path loss exponent of the T–U

link, αTU , when required minimum harvested energy is e = −54 dBW, required maximum

transmit power is Pmax = 100 W, and the number of reflecting elements is M = 30.
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5.4.3 The DL-based approach to computation time performance

We further inspect the approximation of the DL scheme on the ASR based on

changes in the required minimum harvested energy. In addition, system performance in

terms of computation time under the different schemes is evaluated in this section.

After finding a solution via CVX is complete, the CVX tool can summarize the

result into the cvx status string variable. The CVX solver has several status levels, like

solved, unbounded, infeasible, or even failed, and many others [107]. Therefore, although

the CVX solver can effectively solve the convex optimization problem, the problem may

still reach an infeasible solution where the CVX solver cannot find the optimal solution to

the optimization problem (i.e., the cvx status is not solved). As a result, although a large

amount of channel gain in related communication links is generated, the optimal solution

may not be found for a certain channel gain. Furthermore, in this work, the CVX tool was

executed in each of the iterations in the FPP–SCA iterative approach where the solution

converges to an optimal value after a number of iterations. Hence, it is very time-consuming

to generate huge amounts of samples for training data. Therefore, in this work, to benefit

from the efficiency of the DL approach, we try to generate about 1000 samples from feasible

solutions of the optimization algorithm for training data, with about 100 samples for running

data.

-54 -52 -50 -48 -46 -44 -42 -40 -38

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Figure 5.11: The ASR of DL schemes according to the required minimum harvested energy

when the required maximum transmit power is Pmax = 100 W, and the number of reflecting

elements is M = 10.
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Fig. 5.11 shows the average secrecy rate (ASR) of the DL-based approach according

to the required minimum harvested energy when required maximum transmit power is

Pmax = 100 W and the number of reflecting elements is M = 10. Here, we observe ASR for

the different training data structures as well as for cases where all the channels (DL AC)

and partial channels (DL PC) are utilized respectively. From Fig. 5.11, we observed the

following things. First, the ASR decreases slightly as the required minimum harvested energy

increases. This is because as the required minimum harvested energy is increased, the PS

factor should be reduced to ensure more harvesting energy, as shown in the constraint (5.11b).

Subsequently, a decrease of PS factor causes the UE’s achievable rate to be decreased, which

results in a decrease in the ASR.

Second, DL AC Type 1 and DL AC Type 3 provide near optimal value of ASR,

compared to the AO method. However, DL AC Type 1 gives better performance than DL

AC Type 3 since DL AC Type 3 uses one DNN for estimating transmit power P̂ ∗ and PS

factor θ̂∗ while DL AC Type 1 uses two DNNs. It is noteworthy that optimal value of the

phase shift should be calculated in the case of DL AC Type 1 and DL AC Type 3.

Third, DL AC Type 2, DL AC Type 4, and DL AC Type 5 where transmit power

P̂ ∗ and PS factor θ̂∗, and phase shift q̂∗ are estimated by DNN, provide less performance

than DL AC Type 1 and DL AC Type 3. Among DL AC Type 2, DL AC Type 4, and

DL AC Type 5, the DL AC Type 2 provides the best performance since it utilizes three

DNNs for estimating transmit power P̂ ∗ and PS factor θ̂∗, and phase shift q̂∗, respectively.

However, the performances of all DL AC Type 2, DL AC Type 4, and DL AC Type 5 are

better than those of the optimization scheme without an IRS and random phase shifts.

Fourth, in practice, it is very difficult to obtain the channel gain associated with the

Eave’ {hTE ,hIE}. In the work, DL PC was considered as DL PC Type 1 and DL PC Type

2. From Fig. 5.11, interestingly, it is observed that DL PC achieves the similar performance

to DL AC. Subsequently, the proposed DL PC Type 1 and DL PC Type 2 have practical

applications since the channel gains from Eave’s are not required in advance for obtaining

transmit power P̂ ∗ and PS factor θ̂∗, and phase shift q̂∗.

Finally, Fig. 5.11 also shows the secrecy rate of the proposed scheme compared

to that of the existing IRS-aided secure transmission schemes. As observed, the proposed

scheme outperforms the IRS-SWIPT without PS scheme [132,133] and IRS without SWIPT

scheme [126, 127]. This is due to the influence of SWIPT as well as the PS factor. The

IRS-SWIPT without PS scheme [132,133] does not use the PS factor. Therefore, the secrecy
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rate of this scheme tends to increase slightly as the required minimum harvested energy

increases, but it is almost negligible. It should be noted that IRS without the SWIPT

scheme [126,127] does not use the SWIPT system, and therefore it is not affected by the

required minimum harvested energy. As a result, the secrecy rate of this scheme remains

unchanged.

Fig. 5.12 shows the computation time in running stage of Type 1, Type 2, and Type

3 DL AC schemes compared with optimization and benchmark schemes. The optimization

scheme with an IRS takes a long time to implement even though the number of samples of

channel gain in the related communication links is small (only 100). This is because the

AO algorithm uses an alternative method to find solutions. The equal PS–factor scheme

skips some calculations related to the PS factor because the PS factor is fixed at θ = 0.5.

Therefore, the computation time of this scheme is less than the optimization scheme without

an IRS. Along with performance close to that of the proposed AO algorithm as shown in

Fig. 5.11, Type 1 and Type 3 clearly improve computation time compared to the proposed

AO algorithm (i.e., scheme with an IRS) in Fig. 5.12. This is because when DL is applied,

the optimal phase shifts can be achieved only by using Algorithm 5.2. Type 2, Type 4, and

Type 5 provide low running times. However, as observed in Fig. 5.11, the performance

of these types is better than that of the scheme without IRS and worse than that of the

optimal scheme with an IRS.
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Figure 5.12: The computation time comparison when the required maximum transmit power

is Pmax = 100 W and the number of reflecting elements is M = 30.
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5.5 Conclusion

In our work, an IRS-assisted secure transmission maximization scheme for SWIPT

systems with a PS scheme is considered. We first aim to maximize the system secrecy

rate by finding the optimal transmitter power, UE PS factor, and IRS phase shifts while

satisfying the requirements of energy harvesting at the user and transmit power at the

transmitter. For solving the optimization problem, we invoked an AO algorithm in which an

FPP-SCA iterative algorithm and a penalty method are used to find the optimal solutions

in an alternating manner. The simulation results show that the scheme helped by the IRS

achieves a significant improvement in terms of ASR, compared to the scheme without an

IRS. Then, we proposed a DL-based approach to improve computation performance. The

comparison results showed that the DL-based approach not only provided performance

similar to that of the optimization algorithm but significantly improved computation time.

For future work, our work can be extended to a multiple-antenna transmitter and even to

multiple PS users. In addition, with the benefits of the unmanned aerial vehicles (UAV)

in significantly improving capacity, throughput and reliability, the combination of UAVs

with IRS opens promising research directions. However, this also brings many challenges

such as channel modeling, channel estimation, and especially new dimensions, like the

UAV’s location and trajectory. In addition, to meet the real-time processing requirements of

large-scale heterogeneous communication systems, deep Q networks and deep deterministic

policy-gradient algorithms in deep reinforcement learning are potential solutions to solve

our problem. Even so, further studies on these combinations are worth pursuing as one of

our future works.



Chapter 6

Summary of Contributions and

Future Works

6.1 Introduction

The research motivations, the problems of CRN and SWIPT systems, and AI-based

solution have been provided in previous chapters. Then, this chapter summarizes the main

contributions of this dissertation and discusses future research directions.

6.2 Summary of Contributions

This dissertation discusses the applications of AI on radio resource management

for advanced WCNs, CRN and SWIPT, in which optimization algorithm, RL and DL

are applied. These techniques are not only enhance the performance of the network but

significantly improve the computation performance. The main contributions of this research

are summarized as follows:

Firstly, we build a software-defined radio testbed-based spectrum sensing system

to evaluate sensing performance in a real environment. In particular, a new block of energy

detection is generated by using an out-of-tree module from GNU Radio. We also integrate

CR into the cloud computing paradigm by connecting to cloud through ThingSpeak such that

we can store, process, and share the sensing information to the cloud server. In addition, we

utilize a video transmission with spectrum-sensing system. In this case, spectrum sensing is

implemented on both transmitter and receiver. Specifically, at the transmitter, if the sensed

119
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channel is free, a video signal is transmitted on the sensed frequency. Conversely, if the

channel is busy, a video signal will be transmitted on the next frequency. At the receiver, if

the sensed channel is detected, the signal is demodulated to reproduce the transmitted video

signal. In this research, the video can be transmitted both H.264 and MP4 formats. The

testbed implementations show that ED-based spectrum sensing and video transmission is

done efficiently with appropriate parameters. In addition, by connecting to Thing Speak, the

sensed information at a local CR node can be stored, processed, and shared more efficiently

in a centralized way.

Secondly, we consider the jamming attack scenario in multi-channel CRN where

an SU is transmitting data to a receiver SU while multiple jammers independently perform

jamming on legitimate communication between transmitter and receiver. The main problem

is finding the best channel for the SUs in order to avoid jammer’s attacks on communication

channels. We first designed a single game-based anti-jamming scheme that solves the problem

of maximizing the long-term reward of the SU where communication channels are not used

by the PUs and are not jammed by attackers. Then, we upgrade to a double game-based

anti-jamming scheme in which the pre-selected channel is determined by using a single-game

scheme. Afterward, through the pre-selected channel, the SU performs spectrum sensing to

collect the PU status information, then, the second game will be solved using the updated

accumulated reward. In addition, we adopted the transfer learning technique into the

double-game scheme to accelerate the learning speed and improve network performance

by exploiting the information learned in the double-game period. The simulation results

validated that the proposed scheme can efficiently improve the long-term performance of the

network. Through the proposed schemes, the optimal channel will be provided for SU to

avoid jamming from attackers and significantly improve the security level of the CRN.

Thirdly, we investigate the transmit power optimization problem of SISO-SWIPT

system with multi-user. The main goal is to minimize the sum of the transmit power of the

transmitters by optimizing the PS ratios and the transmit power subjects to the constraints

on required SINR and harvested energy. Since, the proposed transmit power optimization

problem is a convex optimization problem, and thus, can be efficiently solved by Matlab’s

CVX. Afterward, a DL-based approach was suggested to optimal solution which obtained

by optimization algorithm. In this work, optimal solutions can be approximated by DL

architectures such as the DNN and RNNs. The simulation results showed that DL models

can forecast output of the optimization problem effectively without prior knowledge about
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the system’s state. Most of all, the DL-based approach provided low computation time,

compared to the traditional optimization algorithm and is a potential solution for real-time

resource allocation processing applications.

Finally, we consider the secure transmission optimization problem in IRS-assisted

SWIPT system where the transmitter transmit a signal to the UE while an Eave’ tries to

listen information among them. By integrating an IRS to the system, eavesdropping can be

reduced, and thus, network security can be enhanced. Moreover, the UE is equipped with a

PS scheme where PS factor is an important factor that can prolong the operation time and

improve the energy efficiency of devices. In this work, we aim to maximize the system secrecy

rate by finding the optimal solutions for the transmission power, PS factor of the UE, and the

phase shifts matrix of the IRS. We propose an AO-based scheme for solving the optimization

problem where FPP, SCA, and penalty methods are used to solve the optimization problem.

In addition, the computational efficiency of the proposed AO algorithm is also studied in

comparison with the proposed DL-based approach. Specifically, 5 types of data and DNN

structures are proposed. The simulation results verified that the system security rate of the

system improved significantly with the help of IRS compared to the scheme without an IRS.

In addition, the DL-based approach not only provided performance similar to that of the

optimization algorithm but significantly improved computation time.

6.3 Future Directions

For future research directions regarding to AI-based techniques for enhancing

wireless network performance, we consider several aspects as follows:

Regarding DL technique, although it helps to significantly improve the compu-

tational performance with a performance that approximates the optimization algorithm,

DL will be done after when the optimal solutions are obtained through the optimization

algorithm. After we get the trained network, we can get solutions in a real-time fashion,

which will be sub-optimal. Here it is noticeable that optimal data set can be obtained

offline by the optimization algorithm. In the case of RL, agents must get the information

under a trial-and-error process to find an action in each state, because in the beginning,

they have no prior information on the environment. As a result, the procedure could take

a considerable amount of time for learning to reach an optimal policy. Thus, this makes

it inefficient and inapplicable into large-scale networks where the state and action spaces
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will be larger. Recently, deep reinforcement learning (DRL) has emerged as an advanced

version of RL, which is combined of RL and DNN. Specifically, DNNs can be used as an

approximation function for mapping the system input (e.g., the system state) and the output

in the RL task (e.g., the optimal policy). Consequently, DRL can overcome the limitations

of RL, and thus provides better solutions to large-scale and sophisticated problems.

In CRN, experimental knowledge is needed to dispel the fictional part of CR.

Therefore, putting “cognition” in the CRN is paramount at this moment. Fortunately,

ML and AI will eventually become the brains of CR-supposedly any machine. Therefore,

DRL can be applied to help address several aspects of CRN. For example in spectrum and

channel management, decisions, such as which channel will be used and when it will be

used, are made based on decision algorithms from the decision making module. In addition,

the master-slave approach can be considered in CRN with GNU platform, in which the

spectrum requesting messages is required to slave nodes by the master node. After that,

the spectrum sensing results will be sent back to the master node by the slave nodes. The

master node employs ML algorithms to choose the best band.

As we all know, the quality and availability of training datasets greatly affect the

performance of some AI/ML algorithms, especially supervised learning and classification

algorithms. There is necessary to investigate the impact of accuracy and data integrity

on the performance gain of the AI/ML algorithms. In this way, we can compare the

sensitivity of different AI/ML algorithms to inaccurate/incomplete data and then adopt the

most appropriate algorithms according to the quality and availability of training datasets.

Therefore, it is critically important to standardize the test cases, datasets, parameter sets

and the corresponding interfaces and protocols to promote the deployment of AI in future

wireless networks.

Next, when applying AI to wireless communications, an important issue to consider

is the long latency caused by the slow convergence rate of AI algorithms. Therefore, latency

control of various AI/ML algorithms needs to be investigated carefully, especially for those

mission-critical applications such as remote surgery. To solve this problem, broad learning

emerged as a complementary or alternative approach to the well-known DL algorithms.

Broad learning system is designed based on the concept of random vector functional-link

neural network (RVFL-NN). Because of the simple architecture, the long process of commonly

employed deep architecture training can be eliminated. As an improvement of RVFL-NN,

the input of broad learning system includes feature nodes created from the mapped features
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and enhancement nodes created from the enhanced features.

Although there is no doubt that AI is a promising technology for deployment in

future communication networks, there are still some problems with large-scale deployment,

especially, the security and reliability issue. This comes from the fact that DNNs are

known to be vulnerable to adversaries and several recent studies have demonstrated the

vulnerability of DRLs to such attacks. There are a few examples that show some of the

malicious vulnerabilities when implementing AI in communication systems such as: what

happens when a node attacks an AI-empowered device? What if some AI algorithms don’t

converge in some unexpected situations (e.g., abnormal traffic pattern or non-stationary

channel conditions)? What is the potential risk when users share usage data with entities

or network operator that implement AI algorithms? Therefore, for full confidence when

applying AI-based methods in mission-critical real-world applications, understanding the

vulnerabilities of these methods and address them is of primary concern in the deployment

of AI-empowered systems.
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