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Abstract 

Diagnosing meaningful changes in follow-up CXRs which is one of the main tasks of 

radiologists in routine clinical practice is challenging because radiologists must distinguish 

between pathological changes and natural or benign changes and inevitably it requires a large 

amount of datasets and high quality annotation. However, it is very difficult to acquire those 

kinds of high-quality annotation, in actual clinical setting. In this paper, a multi-task Siamese 

convolutional vision transformer (MuSiC-ViT) with an anatomy matching module (AMM) is 

proposed to mimic the radiologist's cognitive process in classifying CXR pairs (baseline 

change/no change) and follow-up radiographs to overcome these issues. MuSiC-ViT uses the 

CNNs and visual transformers (CMTs) model, which combines the CNN and transformer 

architecture and consists of three main components: a Siamese architecture, an anatomy 

matching module, and multi-task learning. Since the input was a pair of CXRs, a Siamese 

network was chosen for the encoder network. The AMM is an attentional module that focuses 

on related regions in corresponding CXR pairs. To mimic the cognitive process of a radiologist, 

MuSiC-ViT was trained with multi-task learning and classified normal/abnormal, change/no 

change, and matching anatomy. A total of 406K CXRs were examined, with 88K pairs with 

changes and 115K pairs without changes recorded for the training dataset. For the internal 

validation dataset, 1,620 pairs were used. To show the robustness of MuSiC-ViT, we checked 

it with two external validation datasets. MuSiC-ViT achieved accuracy and area under the 

receiver operating characteristic curve (AUC) of 0.728 and 0.797 for the internal validation 

dataset, 0.614 and 0.784 for the first external validation dataset, and 0.745 and 0.858 for the 

second external validation dataset, respectively. In summary, we proposed a MuSiC-ViT that 

may discriminate between change and no-change CXR pairs by comparing baseline and 

follow-up CXR. By adding AMM, we proved through an ablation study that AMM helps AUC 

gain. Furthermore, disease loss to distinguish normal and normal of each baseline and follow-

up CXR could help the model classify abnormal and normal CXRs in the case of disease. This 

architecture could be used to develop further CXR follow-up studies and lead to actual 

applications in clinical settings.  
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Introduction 

Deep learning, a subset of machine learning algorithms based on artificial neural networks, 

has achieved impressive results on a variety of computer vision tasks. Convolutional neural 

networks (CNNs), a type of deep learning algorithm, gained widespread attention after 

winning the ImageNet Large-Scale Visual Recognition Challenge in 2012 by significantly 

reducing the error rate in image classification. In addition to image classification, CNNs have 

been successful in tasks such as object recognition, semantic segmentation, image 

reconstruction, depth estimation, and visual question answering. 

There is a similar change detection task in medicine, specifically in the interpretation of 

chest radiographs (CXRs) during follow-up exams. In clinical practice 1, CXR follow-up 

exams are used to determine whether patients have experienced significant changes over time. 

However, change detection in medicine is more complex than in remote sensing, where 

satellite and aerial images can be analyzed using a change map if the field of view of the two 

images is well-matched. In contrast, changes in follow-up CXRs compared to baseline CXRs 

may reflect meaningful disease progression and other factors such as differences in patient 

posture, respiratory rate, and aging, which are not relevant to the initial changes. In addition, 

there may be other clinical findings present on the follow-up CXR besides the disease 

diagnosed on the initial image that need to be recognized. As a result, diagnosing changes in 

CXR follow-up images is extremely challenging. 

CXRs are widely used for screening in the medical field. However, interpreting radiographs 

requires specialized expertise and can be a time-consuming task, leading to the potential for 

mistakes  4. In clinical practice, radiologists often compare follow-up CXRs to baseline CXRs 

to detect changes that may indicate the presence or progression of disease 2,3. Deep learning 

methods have been used to assist radiologists in interpreting radiographs 5,6 and have 

contributed significantly to tasks such as abnormality classification 7-9, detection 10-13, and 

segmentation 14-17. These methods can help reduce the workload of radiologists and improve 

the accuracy of CXR interpretation. 

 When interpreting follow-up CXRs, radiologists consider several key components. First, 

they determine whether the CXRs are normal or abnormal at both the baseline and follow-up 

stages. Next, they match the radiographs by comparing the suspected pathological and 
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anatomic regions of the baseline and follow-up images. Finally, they diagnose a change or no 

change between the baseline and follow-up CXRs. These steps involve careful analysis of the 

features present on the CXRs and require specialized expertise and experience. 

To address the challenging task of detecting changes in follow-up chest radiographs (CXRs), 

we developed a multi-task Siamese convolutional vision transformer (MuSiC-ViT) with an 

anatomy matching module (AMM). A Siamese network is a type of architecture that can decide 

based on two images. We chose a Siamese 18 network because CXR images from the baseline 

and follow-up exams must be compared to diagnose changes. The MuSiC-ViT model 

combines CNNs and visual transformers (CMTs) and is trained with multi-task learning to 

mimic the cognitive process of a radiologist in classifying CXR pairs and follow-up 

radiographs. The AMM is an attentional module that focuses on related regions in 

corresponding CXR pairs. The MuSiC-ViT model has the potential to improve the accuracy 

and efficiency of CXR change detection in clinical practice. 

To mimic the cognitive process of radiologists when interpreting follow-up chest 

radiographs (CXRs), MuSiC-ViT was trained with three tasks simultaneously. The first task 

classifies a CXR as normal or abnormal based on the baseline and follow-up images. The 

second task trains the anatomy matching module (AMM) to focus on the same region in each 

CXR image. The third task is to determine if there are any changes in the follow-up CXR 

images. The main contributions of our study are: 

l MuSiC-ViT mimics the clinical screening process of a radiologist. 

l The AMM incorporated into MuSiC-ViT ensures that the model searches for similar 

regions in the CXR pairs of baseline and follow-up exams.  

l MuSiC-ViT was trained on a large, high-resolution CXR dataset (88,000 changed and 

115,000 no-change pairs of 512 × 512 pixels) and validated with one internal and two 

external datasets. 

l MuSiC-ViT can perform classification of lung diseases according to change and no-

change. 
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Materials and Methods 

Dataset 

This study was approved by the institutional review board (IRB number: 2019-0321), and 

written informed consent was waived due to the retrospective nature of the study. The CXRs 

were collected between 2011 and 2018 at the Department of Radiology, Asan Medical Center, 

with the exception of those without a follow-up CXR. Some examples of CXR pairs from the 

baseline and follow-up exams are shown in Figure 1.  

 

Figure. 1. Examples of CXR pairs at the beginning and end of the study. (a), (c) No difference 

between pairs except for posture, diaphragm height, and breath-hold level, (b) Observable 

consolidation in the left lung area in the baseline radiograph and significant change in 

consolidation in the follow-up radiograph. (d) A small nodule in the left lung near the apex of 

the heart on the follow-up radiograph compared with the baseline chest radiograph. 
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Figure. 2. Flowchart of data collection and labeling criteria in our study. 
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Each chest radiograph was automatically labeled based on in-house guidelines, using 

predefined keywords such as “normal,” “abnormal,” “change,” and “no change,” after being 

reviewed multiple times by an experienced thoracic radiologist with over 20 years of 

experience. The “normal” or “abnormal” label for an image pair was determined based on the 

baseline CXR report, while the “change” or “no change” label for an image pair was 

determined based on the follow-up CXR examination. CXRs with descriptions similar to the 

keywords “no active lung lesion” were labeled as "normal," and CXRs that resembled 

keywords such as “increase*”, “decrease*”, “new*”, “improvement*”, “aggravation*”, 

“progress*”, “resolution*”, “disappearance*”, “cure*”, and “enlargement*” in the radiology 

report were labeled as “change.” CXRs with keywords such as “no interval,” “not significant,” 

and “not remarkable” were labeled as “no change”. Finally, each pair of baseline and follow-

up CXRs was classified into one of four categories: “normal, no change,” “normal change,” 

“abnormal, no change,” and “abnormal change.” “Normal, no change” refers to a pair of CXRs 

in which the reading in the baseline CXR was normal, and the follow-up image showed no 

change or was normal. “Normal change” refers to a pair of CXRs in which the baseline CXR 

was normal and the follow-up CXR was abnormal. “Abnormal, no change” refers to a pair of 

CXRs in which the baseline CXR was abnormal and the follow-up CXR showed no change. 

“Abnormal change” refers to a pair of CXRs in which the baseline CXR was abnormal and the 

follow-up CXR was normal, or in which the predefined keywords used to determine the change 

were included in the follow-up CXR result. A schematic of the data collection algorithm is 

shown in Figure 2. 

Tyops in the radiology report were checked using the “language-check” package in Python. 

A total of 406K CXRs were included in the training dataset, which included 161K normal, 

245K abnormal, 88K change, and 115K no-change pairs. Visual validation by an experienced 

thoracic radiologist with over 20 years of experience on a randomly selected subset of the 

dataset showed that the overall accuracy of the change and no-change labeling from the 

training dataset obtained from the radiology reports was approximately 80%. 

For the internal validation dataset, 810 pairs of change and no-change CXRs were randomly 

selected. In addition, two external validation datasets were used. One was randomly selected 

from the CheXpert dataset 19, which contained 215 pairs of change and no-change CXRs that 
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were fully labeled by an experienced thoracic radiologist with over 15 years of experience. 

The other dataset, containing 267 change pairs and 266 no-change pairs, was collected from 

the same center as the training dataset but at different time periods. To evaluate the 

performance of the model, a thoracic radiology expert confirmed the labels of the internal and 

external validation datasets. 

 

Multi-task Siamese convolutional vision transformer 

MuSiC-ViT has three main parts, as shown in Figure 3. First, a pair of CXR images is provided 

as input to the Siamese network. Second, local and global structure information is embedded 

using CMT blocks to extract various features from the CXR images. Third, anatomy matching 

between the two CXR images is performed during the embedding process using the AMM, 

which helps the model classify the change/no-change class based on similar regions of a pair 

of baseline and follow-up CXR images. Finally, the model learns the change/no change 

classification of the CXR pair and the normal/abnormal classification for each CXR image in 

parallel. 
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Figure. 3. The overall workflow of the proposed method includes an anatomy matching 

module (AMM) and a Siamese network based on convolutional neural networks meets 

vision transformers (CMTs) as a backbone model. The AMM is based on an attentional 

mechanism. This AMM is combined with the overall process to attend to similar regions in 

CXR pairs. 
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Siamese network architecture 

The encoder network uses a pair of baseline and follow-up chest radiographs (CXRs) as input. 

The Siamese network architecture was chosen because it allows weight sharing and has a 

efficient computational cost. The encoder network produces two encoded vectors, one for the 

baseline CXR and one for the follow-up CXR. These two vectors are then concatenated 

together. 

 

CNNs meet vision transformers 

In contrast to a CNN-based model, a vision transformer (ViT) 20-22 based on the “attention” 

mechanism uses a large receptive field and can be robustly trained on global image features 

using the attentional mechanism. However, spatial localization may not be considered because 

the transformer architecture is trained using a sequence of small image patches, and the fixed 

patch size may make it difficult to extract low-resolution multiscale features, which are 

important for chest radiograph (CXR) screening 23. Modern CNN architectures, on the other 

hand, are effective at generating multiscale features 24. Therefore, a convolutional multi-

headed transformer (CMT) architecture, which combines CNN and ViT, was chosen. CMT 

can efficiently capture local and global structural information using depth-wise convolution 

and multi-head self-attention. 

 

Anatomy matching module 

An anatomy matching module (AMM) was used as an attentional mechanism to connect two 

feature maps because the attention method has been successful in natural language 

processing  25-27 and computer vision 20,28,29. The AMM is shown in Figure. 4.
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Figure. 4. Architecture of anatomy matching module. 

 
 

AMM consists of a feature extraction part (FEP) and a channel re-calibration part (CRP). The 

CRP generates 𝑃(⋅), which represents the channel re-calibrating features. The FEP generates 

𝐾 ∈ 	ℝ!×#×# and 𝑄 ∈ 	ℝ!×#×#, which represents softmax-normalized features of the baseline 

and follow-up CXRs, respectively; C denotes the number of channels. 

The CRP is the weighted average channel attention. When using FEP and CRP, AMM ensures 

that 𝐾 and 𝑄 focus on similar feature maps of the two CXRs. 

Attend and compare module (ACM) 30 is a method that induces the model to focus on different 

regions by difference modeling of 𝐾 and 𝑄 produced by FEP in a “single CXR image.” After 

generating two feature maps, 𝐾$ and 𝑄$, the difference of the maps is added to 𝑥. Therefore, 

ACM 30 can be represented as: 

𝑥 = 𝑃(𝑥)⊗ -𝑥 + (𝐾$ − 𝑄$)0,   (1) 

where 𝑖 ∈ {1,2,3,4},  𝑖  means 𝑖 -th block index of CMT 24, and ⊗  denotes element-wise 

multiplication. 

Moreover, ACM uses orthogonal loss to train two feature maps 𝐾 and 𝑄 to obtain different 

information. 

𝐿%&'(%)%*+, =	
#
*
∑ (𝐾$ ∙ 𝑄$)/	𝐶*
$-#    (2) 
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where 𝑛 = 4 and C is the number of channels. 

However, our AMM causes the MuSiC-ViT to focus on similar regions by modeling the 

similarity of 𝐾 and 𝑄 generated by FEP in "two CXR images" The cosine similarity was also 

used as a loss function to maximize anatomy matching. The process can be represented as 

follows: 

𝑐𝑜𝑠	𝑠𝑖𝑚(𝐾$ , 𝑄$) = (𝐾$ ∙ 𝑄$) ‖𝐾$‖‖𝑄$‖⁄ 	  (3) 

𝐿.+'/($*) = 2 − 2 ∙ #
*
∑ 𝑐𝑜𝑠	𝑠𝑖𝑚(*
$-# 𝐾$ , 𝑄$)     (4) 

where 𝑛 = 4.  

Finally, using the matching loss above, similar anatomy matching was performed between the 

baseline and follow-up CXRs. 

 

Multi-task learning and loss functions 

To mimic the cognitive process of a radiologist, we trained MuSiC-ViT on several tasks, 

including classifying a pair of baseline and follow-up chest radiograph (CXR) images into 

change/no change, normal/abnormal, and similar anatomical regions. Two cross-entropy 

losses were calculated to distinguish the disease and normal (i.e., label) classes from the 

baseline and follow-up CXR images. One of the cross-entropy loss functions used to determine 

the change/no change class of a CXR pair is calculated as follows: 

𝑆(𝑥$) = 	
0!"

∑ 0!#$
#%&

	 , 𝑓𝑜𝑟	𝑖 = 1,… , 𝐾    (5) 

𝐶𝐸(𝑦, 𝑓(𝑥)) = 	−∑ 𝑦$$ log 𝑓(𝑥$)     (6) 

𝐿2$30+30 = 𝐶𝐸(	𝑦4	, 𝑆(	𝑊# ∙ 𝑓(𝑥4)) +	𝐶𝐸-	𝑦56	, 𝑆(𝑊7 ∙ 𝑓-𝑥560)0   (7) 

𝐿/(+*)0 = 𝐶𝐸-𝑦/(+*)0 	, 𝑆(𝑊8 ∙ 𝑓(𝑥4) ⊕ 𝑓-𝑥560)0     (8) 

 

where 𝑆(⋅)  is softmax function, 𝐶𝐸(⋅)  is cross-entropy, 𝑦4  and 𝑦56  represent the 

normal/abnormal disease label of baseline and follow-up CXRs, respectively, 𝑦/(+*)0 is the 

change/no-change class label of the CXR pair, and ⊕ denotes vector-wise concatenation. Each 
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𝑊#, 𝑊7, and 𝑊8 denotes a multi-layer perceptron.  

Finally, MuSiC-ViT could adequately learn to classify change/no-change class of a patient by 

utilizing the three loss functions (i.e., 𝐿.+'/($*), 𝐿2$30+30, and 𝐿/(+*)0) regardless of aging 

and breath-hold level variations, which were not the differences of interest.  

Our overall loss function is a weighted sum of the three loss functions. The final loss function 

is described as: 

𝐿'%'+, =	𝜆#𝐿/(+*)0 +	𝜆7𝐿2$30+30 +	𝜆8𝐿.+'/($*)        (9) 

 

We achieved the best performance when 𝜆#, 𝜆7 , and 𝜆8  were set to 1, 0.1, and 0.01, 

respectively, based on the lambda ablation study in Section Ⅲ. 

 

Pre-training model using self-supervised learning in CXR 

In general, expert radiologists have prior knowledge of various medical domains (e.g., X-rays). 

From the perspective of deep learning, obtaining such prior knowledge can be seen as learning 

a well-pretrained model. In natural images, the ImageNet model is often used as a pretrained 

model. However, there are fundamental differences between medical images and natural 

images. Medical images, unlike natural images, are acquired according to standardized 

protocols and are therefore standardized to some extent (e.g., anterior-posterior, posterior-

anterior, or lateral). As a result, common deep learning tasks such as classification, 

recognition, and segmentation of medical images may depend on extremely small differences 

compared to natural images. These small differences also limit the resolutions and 

magnifications of medical images, making them more challenging. Resizing medical images 

to low resolution can degrade image quality and even remove the disease region. Strong 

augmentation methods, such as rotating, flipping, and cropping, are also limited due to the 

nature of medical images, as the augmented images may appear inappropriate in a medical 

context. In addition, medical image assessment and annotation is extremely difficult and 

costly, as it can only be performed by experts. Self-supervised learning (SSL) can be a solution 

to these problems. SSL is a pretraining strategy that uses unlabeled data to learn a pretext task, 

combining supervised and unsupervised learning. Using this SSL method, we trained the 
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model using the properties of the longitudinal dataset we have. We trained MoCo-v2 31, a 

pretrained model that is suitable for CXRs, rather than the ImageNet pretrained model that is 

commonly used for natural images. Finally, using the pretrained model we trained, the 

supervised learning results for change/no-change classification are presented in Section III. 

Figure 5 shows the SSL method.  

Figure. 5. Self-supervised learning method using CXR dataset. 

 

 

Training details 

Various data augmentation techniques were used during the training phase, including shifting, 

scaling, rotating, sharpening, adding motion blur, median blur, optical distortion, Gaussian 

noise, and contrast-limited adaptive histogram equalization.  The resolution of the input image 

was set to 512 × 512. For training, 1 GPU (NVIDIA Titan RTX) and a batch size of 14 were 

used. All models were implemented in Pytorch (version 1.7.1). The AdamW 32 with a multi-

step learning rate decay was used during training. The learning rate was set as 0.00001. 

 

Statistical analyses 

DeLong’s test 33 for two receiver operating characteristic curves (ROC for change/no-change 

classification was used to compare the performance of each model. R statistical version 4.2.0 

(R Foundation for Statistical Computing, Vienna, Austria) was used for statistical analyzes. 

Statistical results were analyzed with two-sided P values, with statistical significance set at 

0.05 alpha. 
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Results 

Various model architecture comparison study 

The commonly used models in medical image were comparatively studied. Table 1 presents 

the performances of CMT-Ti, a CNN-based model, a vision transformer, and MuSiC-ViT for 

the internal and external validation datasets. Inception-v3 34, ResNet-50 35, DenseNet-121 36, 

EfficientNet-b3 37, EfficientNet-v2 38, and ConvNeXt 39 were chosen for the CNN-based 

models, which are commonly used encoder networks. Next, ViT-B 20, Swin v2 40, CoaT 41, 

MLP-Mixer 42, and ResMLP 43 were chosen as the widely used vision transformer models.  

All architectures were changed to Siamese to achieve change/no-change classification. As a 

result, all validation results showed better performance with MuSiC-ViT than the other 

architectures. Vision transformer (PVT 44 and CaiT 45 achieved AUCs of 0.500 and 0.506, 

respectively) models without convolution could not be trained well using high-resolution 

images (512 × 512), except for the original vision transformer model. Furthermore, CMT-Ti 

had the best performance among the other architectures apart from MuSiC-ViT.  In addition, 

for better representation learning, ResNet-50, which is commonly used in medical imaging, 

and ResNet-50 trained with MoCo-v2 using CXR dataset, and MuSiC-ViT were comparatively 

studied. Table 2 presents the performances of ResNet-50, SSL ResNet-50 and MuSiC-ViT 

model. All validation results showed worse results than MuSiC-ViT. 
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Table 1. Performance comparison based on various model architectures using the three 

validation datasets 

Model architecture 
Para
m 

(M) 

Traini
ng (h) 
Testin
g (s) 

Internal validation 
dataset 

External validation 
dataset 1 

External validation 
dataset 2 

SPE SE
N 

AC
C AUC SPE SE

N 
AC
C AUC SPE SE

N 
AC
C AUC 

CNN 

Inception-
v3 

22.84
M 

31h/3
6s 

0.79
0 

0.56
8 

0.67
9 

0.732
*** 

0.88
4 

0.26
5 

0.57
4 

0.665
*** 

0.86
6 

0.44
9 

0.65
9 

0.723
*** 

ResNet-
50 

24.55
M 

36h/2
4s 

0.80
6 

0.56
4 

0.68
5 

0.749
*** 

0.90
2 

0.27
9 

0.59
1 

0.639
*** 

0.82
8 

0.45
3 

0.64
2 

0.721
*** 

DenseNet
-121 

7.48
M 

32h/4
6s 

0.75
2 

0.59
5 

0.67
4 

0.722
*** 

0.82
8 

0.36
3 

0.59
5 

0.662
*** 

0.86
9 

0.53
2 

0.70
2 

0.758
*** 

Efficient
Net-b3 

11.49
M 

29h/4
4s 

0.79
0 

0.55
7 

0.67
4 

0.741
*** 

0.88
8 

0.27
0 

0.57
9 

0.655
*** 

0.88
4 

0.50
6 

0.69
6 

0.655
*** 

Efficient
Net-v2 

21.23
M 

49h/4
8s 

0.73
6 

0.59
4 

0.66
5 

0.712
*** 

0.72
6 

0.43
7 

0.58
1 

0.649
*** 

0.86
6 

0.54
3 

0.70
5 

0.760
*** 

ConvNeX
t 

28.59
M 

67h/2
9s 

0.75
1 

0.54
4 

0.64
8 

0.699
*** 

0.83
3 0.4 0.61

6 
0.689
** 

0.91
4 

0.41
5 

0.66
6 

0.736
*** 

DNN MLP-
Mixer 

32.18
M 

52h/2
4s 

0.70
6 

0.65
6 

0.68
1 

0.727
*** 

0.75
4 

0.51
6 

0.63
5 

0.660
*** 

0.78
7 

0.52
1 

0.65
5 

0.705
*** 

Transfor
mer 

Swin v2 28.35
M 

54h/3
7s 

0.66
5 

0.61
1 

0.63
8 

0.692
*** 

0.84
2 

0.34
9 

0.59
5 

0.637
*** 

0.89
2 

0.43
3 

0.66
4 

0.742
*** 

ViT-B 88.28
M 

33h/1
7s 

0.81
6 

0.44
8 

0.63
2 

0.677
*** 

0.90
2 

0.20
0 

0.55
1 

0.618
*** 

0.97
8 

0.10
2 

0.54
2 

0.633
*** 

ResMLP 20.21
M 

56h/1
6s 

0.70
4 

0.64
9 

0.67
7 

0.724
*** 

0.70
7 

0.41
4 

0.56
1 

0.609
*** 

0.75
8 

0.41
1 

0.58
5 

0.617
*** 

CoaT 11.01
M 

42h/3
8s 

0.70
9 

0.65
1 

0.68
0 

0.734
*** 

0.79
5 

0.33
5 

0.56
5 

0.609
*** 

0.72
4 

0.55
5 

0.64
0 

0.698
*** 

CMT-Ti 31.62
M 

29h/5
9s 

0.72
1 

0.68
2 

0.70
1 

0.762
** 

0.79
5 

0.48
8 

0.64
2 

0.674
*** 

0.77
2 

0.62
6 

0.70
0 

0.757
*** 

MuSiC-
ViT (ours) 

31.81
M 

39h/7
0s 

0.81
7 

0.63
8 

0.72
8 0.797 0.93

0 
0.29

8 
0.61

4 0.784 0.89
9 

0.58
9 

0.74
5 0.858 

Note: number of model parameters (Param); specificity (SPE); sensitivity (SEN); accuracy 

(ACC); area under receiver operating characteristics curve (AUC); million (M); hours (h); 

seconds (s); P-value < 0.05 (*); P-value < 0.01 (**); P-value < 0.001(***). DeLong’s test was 

conducted to compare the model performance between MuSiC-ViT and the other models. 

  



15 

 

Table 2. Performance comparison based on self-supervised learning method using the three 

validation datasets 

Model 
architecture 

Param 
(M) 

Traini
ng (h) 
Testin
g (s) 

Internal validation 
dataset 

External validation 
dataset 1 

External validation 
dataset 2 

SPE SE
N 

AC
C AUC SPE SE

N 
AC
C AUC SPE SE

N 
AC
C AUC 

Self-
supervis
ed 
learning 

SSL 
ResNe
t-50 

24.55
M 

36h/24
s 

0.75
9 

0.54
7 

0.65
2 

0.701*

** 
0.75

8 
0.43

7 
0.59

8 
0.611*

** 
0.76

9 
0.50

6 
0.63

8 
0.660*

** 

Supervis
ed 
learning 

ResNe
t-50 

24.55
M 

36h/24
s 

0.80
6 

0.56
4 

0.68
5 

0.749*

** 
0.90

2 
0.27

9 
0.59

1 
0.639*

** 
0.82

8 
0.45

3 
0.64

2 
0.721*

** 

MuSi
C-ViT 
(ours) 

31.81
M 

39h/70
s 

0.81
7 

0.63
8 

0.72
8 0.797 0.93

0 
0.29

8 
0.61

4 0.784 0.89
9 

0.58
9 

0.74
5 0.858 

Note: number of model parameters (Param); specificity (SPE); sensitivity (SEN); accuracy 

(ACC); area under receiver operating characteristics curve (AUC); million (M); hours (h); 

seconds (s); self-supervised learning (SSL); P-value < 0.05 (*); P-value < 0.01 (**); P-value 

< 0.001(***). DeLong’s test was conducted to compare the model performance between 

MuSiC-ViT and the other models. 

 

Ablation studies 

To evaluate the performance of the MuSiC-ViT model for change detection in CXR follow-up 

images, several metrics were used: the area under the receiver operating characteristic curve 

(AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC). Ablation studies were also 

conducted to assess the contribution of each component to the performance of MuSiC-ViT. 

The results of the ablation studies are shown in Table 3. When the anatomy matching module 

(AMM) was added to the model, the performance improved significantly in both the internal 

and external validation datasets. The best model achieved SPE, SEN, ACC, and AUC values 

of 0.817, 0.638, 0.728, and 0.797 for the internal validation dataset, 0.930, 0.298, 0.614, and 

0.784 for the first external validation dataset, and 0.899, 0.589, 0.745, and 0.858 for the second 

external validation dataset, respectively. Figure. 6 shows saliency maps of the change pair 

made with Grad-CAM 46. We generated the intersection saliency maps of Grad-CAM data 

between the baseline and follow-up CXRs to illustrate the heatmap for both pictures. The 
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"change" lesion between the baseline and follow-up CXRs was then seen by overlaying the 

heatmap over the baseline CXR.  

 

Figure 6. Saliency maps with baseline CXR, follow-up CXR, and Grad-CAM data are shown 

as examples of "change" prediction pair (from left to right). The radiologist judged that certain 

diseased region on the baseline and follow-up CXR images represented a change. (a) Reduced 

right pleural effusion and atelectasis lesions are shown on a pair of baseline and follow-up 

CXR pictures. (b) Images demonstrating pleural effusion lesions and a pneumothorax that have 

grown larger. 
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Table 3. Three-validation dataset comparison of ablation studies 

Network module 
Internal validation External validation 1 External validation 2 

SPE SEN ACC AUC SPE SEN ACC AUC SPE SEN ACC AUC 

Siamese CMT 0.721 0.682 0.701 0.762** 0.795 0.488 0.642 0.674 0.772 0.626 0.700 0.757*** 

Siamese CMT + 
D 0.773 0.586 0.680 0.736*** 0.777 0.386 0.581 0.641** 0.806 0.551 0.679 0.722*** 

Siamese CMT+ 
AMM 0.779 0.637 0.708 0.779 0.865 0.461 0.663 0.754 0.896 0.604 0.751 0.836 

Siamese CMT + 
AMM + D 
(MuSiC-ViT) 

0.817 0.638 0.728 0.797 0.930 0.298 0.614 0.784 0.899 0.588 0.745 0.858 

Note: area under receiver operating characteristics curve (AUC); P-value 0.05 (*); P-value 

0.01 (**); and P-value 0.001 (***); anatomy matching module (AMM); normal/abnormal 

disease label (D); specificity (SPE); sensitivity; and accuracy. To compare the model 

performance of MuSiC-ViT and the other models, DeLong's test was performed. The best 

performance is denoted by red, and the second-best performance is denoted by blue. 
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The CMT's baseline model performance, which was employed as the encoder in MuSiC-ViT, 

is displayed in Table 4. The model's hyperparameter was set for CMT architectural variations 

in accordance with the recommendation made by Guo J et al. 24. Since CMT-Ti had the best 

AUC for the internal validation dataset, it was chosen as the backbone model. 

 

Table 4. Model parameters of the ablation studies on the internal validation dataset 
Backbone  

size Model parameter SPE SEN ACC AUC 

CMT-XTi 16.38M 0.730 0.660 0.695 0.754 
CMT-Ti  31.62M 0.721 0.682 0.701 0.762 
CMT-XS  45.81M 0.772 0.484 0.628 0.693*** 
CMT-S  59.99M 0.747 0.475 0.611 0.662*** 
CMT-B  88.70M 0.756 0.526 0.641 0.693*** 

Note: extra-tiny (XTi); tiny (Ti); extra-small (XS); small (S); big (B); specificity (SPE); 

sensitivity (SEN); accuracy (ACC); area under receiver operating characteristics curve (AUC); 

P-value < 0.05 (*); P-value < 0.01 (**); P-value < 0.001 (***). DeLong’s test was performed 

to compare the model performance between CMT-Ti and the other models. 

 

Results from the lambda ablation study for MuSiC-ViT, which uses multiple losses to 

simultaneously solve multi-task problems, are shown in Table 5. The coefficients  𝜆#, 𝜆7, and 

𝜆8 were used for change, disease, and matching losses. Due to the limited time and GPU 

resources, 𝜆# and 𝜆8 were set to 1 when seeking the best lambda for 𝜆7, and  𝜆# and 𝜆7 were 

set to 1 when seeking the best lambda for 𝜆8. Finally, we achieved the best AUC of 0.797 with 

the final lambda values when 𝜆#, 𝜆7, and 𝜆8 were set to 1, 0.1 and, 0.01, respectively. 

 

Table 5. Lambda ablation study with the loss function using the internal validation dataset 

Lambda ratio SPE SEN ACC AUC 
𝜆!:	𝜆":	𝜆#=1:1:1 0.806 0.614 0.710 0.784 
𝜆!:	𝜆":	𝜆#=1:1:0.1 0.774 0.651 0.712 0.781 
𝜆!:	𝜆":	𝜆#=1:1:0.01 0.809 0.631 0.720 0.791 
𝜆!:	𝜆":	𝜆#=1:1:0.001 0.768 0.668 0.718 0.783 
𝜆!:	𝜆":	𝜆#=1:0.5:1 0.765 0.675 0.720 0.778 
𝜆!:	𝜆":	𝜆#=1:0.1:1 0.732 0.701 0.717 0.787 
𝜆!:	𝜆":	𝜆#=1:0.01:1 0.749 0.688 0.719 0.783 
𝜆!:	𝜆":	𝜆#=1:0.1:0.01 0.817 0.638 0.728 0.797 

Note: specificity (SPE); sensitivity (SEN); accuracy (ACC); area under receiver operating 

characteristics curve (AUC); lambda for change/no-change (𝜆#); lambda for disease loss (𝜆7); 
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lambda for matching loss (𝜆8); P-value < 0.05 (*); P-value < 0.01 (**); P-value < 0.001(***). 

DeLong’s test was conducted to compare the model performance between the best-performing 

model and the other models.

 

Discussion 

The radiologic reading of follow-up CXRs is one of the most crucial jobs 47-49 due to the 

importance of follow-up CXRs in patient monitoring and abnormality detection. However, in 

actual clinical situations, they may result in an enormous task for radiologists, preventing 

quick reporting and delaying diagnosis. Therefore, by reducing the number of CXR pairs to 

read, the model-based triage or automatic screening system could be utilized to improve the 

radiologic workflow and patients' safety if it may accurately detect no-change or clinically 

significant alterations in CXR pairs. When a big change takes place, it would give the clinician 

more time and focus. 

Overall, the MuSiC-ViT model demonstrated good performance in detecting changes in 

CXR follow-up images, with AUC values of 0.797 for the internal validation dataset, 0.784 

for the first external validation dataset, and 0.858 for the second external validation dataset. 

The model also showed high sensitivity and specificity, with values ranging from 0.638 to 

0.930 for sensitivity and 0.614 to 0.899 for specificity. In addition, the model achieved good 

accuracy, with values ranging from 0.614 to 0.745. The results of the ablation studies indicated 

that the anatomy matching module (AMM) contributed significantly to the performance of the 

model. Overall, the MuSiC-ViT model appears to be a promising tool for assisting radiologists 

in the detection of changes in CXR follow-up images. 

Multi-task learning of change/no-change classification as well as normal/abnormal 

classification, and matching similar anatomic regions were carried out for a follow-up CXR 

classification. The performance improved as the lambda of anatomy matching loss decreased 

because MuSiC-ViT tended to focus more readily on matching anatomically comparable parts 

than on change/no-change classification across multiple tasks. The AMM significantly 

impacted the change/no-change classification performance in the ablation study of the 

matching module and extra information. The performance increased when the lambda of 
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disease loss decreased because normal/abnormal classification was simpler than change/no-

change classification. After an ablation investigation of the lambda of the loss function, the 

coefficients for the change, disease, and matching losses were set to 1, 0.1, and 0.01, 

respectively. 

In addition, based on internal and external validations, our technique outperformed and 

generalized better than CNN-based and ViT-based models. Both employing CMT-Ti to get 

over the low-resolution issue brought on by ViT’s patch embedding and CNN’s inadequate 

generalizability, performance was improved. Based on the quality of the training dataset, the 

enhanced performance gains of AMM and extra illness labels were also contrasted with the 

base CMT-Ti model.  

As last, the SSL ResNet-50 model trained in experiments to have for better representation 

learning did not perform better than MuSiC-ViT. In this experiment, it was shown that an 

appropriate self-supervised learning pretext task suitable for the medical image was required, 

not just hard augmentation learning.  

Our study has several advantages. First, to the best of our knowledge, this is the first study 

to simulate the cognitive process of follow-up CXR classification used by radiologists without 

focusing on a single lesion. A previous study 50 have focused on a single lesion or a constrained 

setting. In contrast, our MuSiC-ViT performed well in classifying specific disorders with 

changes or no changes. Second, our MuSiC-ViT used multi-task learning to address the 

challenging clinical situations involved in follow-up CXR classification using an AMM, 

following the same procedure as a radiologist. 

However, this study does have some limitations. First, according to the radiologist's visual 

scoring findings collected through random sampling, the change/no change labeling accuracy 

of our training dataset was around 80%. This was due to the challenges of handling large 

amounts of real clinical data. Instead of using a complex radiologist screening method, the 

labels for the training dataset were created using rules for natural language processing. 

Therefore, in order to do further research, we will need to collect and examine training data 

using a stress test. Second, the accuracies of the internal and external validations may not 

appear to be very high compared to the results of the binary classification task. However, since 

even radiologists may mistakenly classify a change in a CXR due to its difficulty, our findings 
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may still be considered reasonable in some cases. Third, the CheXpert dataset was subjected 

to thorough histogram equalization pre-processing. However, because this image processing 

technique is not commonly used on real-world data, there may be differences in domain 

characteristics between the datasets used for training and external validation. Fourth, there has 

been no previous research on follow-up CXR classification, so it may be difficult to strictly 

evaluate our approach. 

Singh et al. 49  conducted a deep learning-based follow-up classification, but their study was 

only focused on certain findings (e.g., lines and tubes, pneumothorax, fibrosis, pulmonary 

nodules, and masses). Additionally, the change detection data used in the field of remote 

sensing (such as roads, structures, and croplands) are mainly stationary or barely altered. 

Therefore, it is difficult to compare our method to the change detection methods used in the 

study by Singh et al., which used the change map as the ground truth. Finally, more ablation 

studies, stress tests, and parameter searches are needed to evaluate the model's sensitivity and 

robustness. 

 

Conclusion 

In conclusion, we propose MuSiC-ViT, a model that is able to perform one of the primary 

responsibilities of radiologists, which is comparing baseline and follow-up CXRs to 

distinguish between pairs of CXRs with change and no change. MuSiC-ViT can compare 

similar regions of interest in each CXR by incorporating an AMM (Automatic Matching 

Module). The AMM allows the model to focus more on lesions while ignoring the patient's 

natural fluctuations, such as breath-hold level, aging, and posture. Disease loss can help the 

model differentiate between abnormal and normal CXRs in the case of disease. This 

architecture may serve as a catalyst for future CXR experiments and result in practical clinical 

applications. In further research, our MuSiC-ViT model may be expanded to consider 

radiology reports simultaneously, to generate linguistic explanations based on follow-up CXR, 

which may be more useful for radiologists in actual clinical applications 51-53 
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국문요약 

일상적인 임상 환경에서 방사선 전문의의 주요 책임 중 하나는 환자 상태 변화를 식별

하기 위해 follow-up 흉부 방사선 사진(CXR)을 진단하는 것이다. 방사선 전문의는 질병 

변화를 자연적 또는 양성 변화와 구별해야 하기 때문에 follow-up CXR의 의미 있는 변

화를 진단하는 것은 많이 어렵다. 본 논문은 baseline 와 follow-up CXR 쌍에 대하여 변

화 여부를 분류하기 위한 방사선 전문의의 인지 프로세스를 모방하기 위해 해부학적 일

치 모듈(AMM)이 있는 다중 작업 샴 컨볼루션 비전 변환기 (MuSiC-ViT)를 제안한다. 

MuSiC-ViT는 CNN과 Vision transformer를 결합한 CMT (CNNs meet Vision transformers) 

모델을 사용하며 Siamese아키텍처, AMM(Anatomy-Matching Module) 및 다중 작업 학

습의 세 가지 주요 구성 요소가 있다. 입력이 baseline과 follow-up 영상 한 쌍의 CXR이

기 때문에 인코더 네트워크에는 Siamese 네트워크가 선택되었다. AMM은 해당 CXR 쌍

의 관련 영역에 초점을 맞춘 attention 모듈이다. 방사선 전문의의 인지 과정을 모방하기 

위해 MuSiC-ViT는 다중 작업 학습, 정상/비정상, 변화/무변화, 해부학적 일치 모듈로 훈

련되었다. 총 406,000 개의 CXR 이 연구에 사용되었으며 훈련 데이터 세트에 대해 

88,000개의 change 및 115,000개의 no-change 쌍이 획득되었다. 내부 검증 데이터 세트

의 경우 1,620쌍이 사용되었고, MuSiC-ViT의 강인한 성능을 보여주기 위해 두 개의 외

부 검증 데이터 세트로 검증하였다. MuSiC-ViT는 내부 검증 데이터 세트의 경우 0.728 

및 0.797, 첫 번째 외부 검증 데이터 세트의 경우 0.614 및 0.784, 두 번째 외부 검증 데이

터 세트의 경우 각각 0.745 및 0.858의 수신기 작동 특성 곡선 아래의 정확도와 면적을 

달성하였다. 결론적으로 방사선과 전문의의 주요 업무 중 하나인 기준선과 후속 CXR
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을 비교하여 변화된 CXR 쌍과 변화 없는 CXR 쌍을 구분할 수 있는 MuSiC-ViT를 제안

한다. AMM을 추가함으로써 MuSiC-ViT는 각 CXR에서 유사한 관심 영역을 비교할 수 

있다. 정상/비정상 손실 함수는 모델이 비정상 및 정상 CXR을 분류하는 데 도움이 될 

수 있지만 AMM을 사용하면 모델이 호흡 변화 수준, 노화 및 자세와 같은 환자의 자연

스러운 변화를 무시하면서 병변에 더 집중할 수 있다. 이 아키텍처는 follow-up CXR 연

구에 영감을 주고 임상 환경에서 실제 적용으로 이어질 수 있다. 향후 연구에서 우리의 

MuSiC-ViT 모델은 후속 CXR을 기반으로 하는 언어적 설명을 생성할 가능성을 위해 방

사선 보고서를 동시에 고려하도록 확장될 수 있으며, 이는 실제 임상 적용에서 방사선 

전문의에게 더 유용할 수 있다.  
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