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Abstract

The treatment of acute ischemic stroke, which has a strong correlation between the 

time clock and tissue progression, heavily relies on the onset time. However,

determining the exact timing of onset can be challenging due to factors such as 

stroke occurrence during sleep or unclear onset. To address this issue, previous 

studies have utilized the signal mismatch between DWI and FLAIR images to 

estimate the elapsed time after stroke onset.

In this study, our goal is to develop a technique for determining the time elapsed after 

stroke using deep learning with multi-task learning (MTL) approach based on MRI 

image biomarkers. We aim to evaluate the performance of this technique using 

external validation datasets.

The proposed model takes a combination of ADC, FLAIR, and DWI-b1000 volumes 

as input, and performs simultaneous prediction of stroke onset time and infarct 

segmentation for time windows of 3 hours, 4.5 hours, and 6 hours using MTL. The 

backbone of the model is the 3D patch based SwinUNETR model, with the addition 

of auxiliary classifiers in the bottleneck layer. A voting ensemble of patch-level 

classifiers is performed at the patient level for classification. The auxiliary classifiers 

count and vote for onset identification based on the presence of infarction in patches 

using the predicted mask. 

For the classification task, we compared the performance of our model with 3D 

DenseNet and 3D patched DenseNet using internal validation, using AUC, accuracy, 

specificity, and sensitivity as evaluation metrics. We also compared the performance 

of onset classification for 4.5 hours using two external validations. For the 

segmentation task, we compared the performance of DiNTS, UNETR, nnUNET, and 

our proposed model using IOU and Dice coefficient as evaluation metrics. Overall, 

our proposed model showed superior performance in classification compared to the 
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compared models, and it also demonstrated similar or improved segmentation results 

compared to nnUNET. Additionally, when predicting onset time, the model showed 

attention to the lesion by extracting Grad-CAM from the encoder, indicating its focus 

on the infarction during training. We provided both quantitative and qualitative 

evaluations across multiple segmentation and classification tasks. This MTL-based 

model showed better performance in identifying stroke onset time in internal and two 

external validations, demonstrating its potential for potential clinical use. The 

proposed model has the potential to assist in performing thrombolysis therapy at the 

appropriate time for stroke patients with unclear onset time by predicting the onset 

time accurately.
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Abbreviations

AIS (acute ischemic stroke) 

IV-tPA (intravenous recombinant tissue plasminogen activator)

DWI (diffuse-weighted imaging)

ADC (apparent diffusion coefficient)

FLAIR (fluid- attenuated inversion recovery)

MTL (multi-task learning)

RPN (region proposal network)

TSS (stroke symptom onset)

Swin UNETR (Swin U-Net Transformer)

SPM (Statistical Parametric Mapping)

PPV (positive predictive value)

NPV (negative predictive value)

ROC (receiver operating characteristic)

AUCs (areas under the ROC curves)

DSC (dice similarity coefficient)

IOU (intersection over union)

Grad-CAM (gradient-weighted class activation map)
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Introduction

Stroke is the second leading cause of death and disability worldwide, with more than 13 

million cases reported each year [1]. One in four people experience stroke throughout their 

lifetime and ischemic strokes comprise 62% of all strokes, which often result in 

irrecoverable neurological sequelae, morbidity, and mortality [2]. For acute ischemic stroke 

(AIS) patients, vascular recanalization is the most important factor in deciding the patients’ 

prognosis, [3] and although the role of mechanical thrombectomy has expanded, proper 

administration of intravenous recombinant tissue plasminogen activator (IV-tPA) 

thrombolysis within 4.5 hours after symptom onset is critical for improving patients’ 

functional outcomes [4-7]. To choose right candidates for intravenous thrombolysis, 

identifying the exact time of symptom onset is a very important issue, but about 25% of AIS 

event are known to occur during sleep, as we call it wake-up stroke, and thus it is difficult to 

determine the exact symptom onset time [8-11]. To address this problem, many studies have 

confirmed that the symptom onset time can be predicted using the inconsistency between 

diffuse-weighted imaging (DWI) and fluid- attenuated inversion recovery (FLAIR) imaging 

(visible acute lesion on DWI and lack of prominent hyperintensity on FLAIR in the 

corresponding region) [12-15]. For instance, the water diffusion change due to brain tissue 

ischemia can be detected within minutes from the symptom onset through reduction of 

apparent diffusion coefficient (ADC) values [16-18], while the increase in water diffusion 

can be visualized in T2 images as high intensity after 1-4 hours from the onset [18, 19].

Accordingly, mismatch of multiparametric MR imaging has been used to estimate the 

elapsed time of 4.5 hours after the onset of the disease in ischemic stroke patients and to 

determine the stroke age in AIS patients whose onset time is unknown [20-22]. In practice, 

the 2019 update on the ASA/AHA guideline for the early management of patients with acute 

stroke newly recommended that DWI-FLAIR mismatch can be used for choosing patients 

who may benefit from IV alteplase in the setting of unclear time of symptom onset based on 
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the WAKE-UP trial [6]. However, human readings of mismatch DWI-FLAIR signals 

generally tend to have low-to-moderate intra- and inter-rater variability, which brings large 

differences in specificity and sensitivity for predicting whether the symptom onset time is 

within 4.5 hours or not [20, 21, 23-25].

Single task learning with identifying AIS

There have been numerous studies using machine learning and deep learning methods to 

identify stroke onset. In terms of machine learning, one approach involved extracting 89 

vector features from each image sequence and using them to develop three models: logistic 

regression, support vector machine, and random forest [26]. Another study utilized a two-

modal MR image (DWI, FLAIR) along with a machine learning classifier trained on lesion 

segmentation from DWI to determine time since stroke [27]. These models shared the 

commonality of extracting features based on lesion information and lacking external 

validation, which may raise concerns regarding their robustness and reproducibility. Several 

deep learning methods have also been proposed. In this particular paper, the focus was on 

developing machine learning models to classify stroke patients with unknown time since 

stroke, and a deep learning model was introduced to extract hidden representations from 

perfusion-weighted MRI images, resulting in improved classification. However, overall 

performance in previous studies has been suboptimal, and similar to the machine learning 

approaches, external validation was lacking [28]. Another study presented a deep learning 

model for automatically determining time since stroke, but it exhibited discrepancies in 

performance compared to external validation [29].

Multi-task learning

Multitask learning (MTL) is a learning paradigm that aims to improve the generalization 

performance of multiple related tasks by leveraging their relational information [30]. While 
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MTL has not been used for predicting the onset of AIS so far, it has been applied to other 

medical images. In the case of 2D ultrasound images, a modified U-Net-based multi-feature 

guided CNN architecture was proposed. They added a classification branch to the bottom of 

the U-Net for simultaneous segmentation and classification of bone surfaces in 2D 

ultrasound data [31]. Additionally, a joint training network combining a region proposal 

network (RPN) backbone with three sub-networks for detection, classification, and 

segmentation of skin lesions was proposed [32]. However, when processing CT, MRI, and 

other medical images, using 2D CNNs with single CT slices as input fails to leverage the

temporal context from adjacent slices. On the other hand, 3D convolution kernels can utilize 

the inter-slice context from volumetric inputs. 3D CNNs can leverage both spatial and 

temporal features compared to 2D CNNs, resulting in improved performance. Therefore, our 

model proposes a 3D patch-based transformer model using multi-task learning.

Transformer with vision tasks

Previous studies on AIS onset time prediction have focused on extracting infarct features, 

which often involves a complex and cumbersome process. To overcome this challenge, deep 

learning models can be employed to automatically segment infarcts and extract relevant 

features. Ensemble models based on simple U-Net architectures have demonstrated 

promising results in brain infarct segmentation. For example, Kamnitsas et al. [33] proposed 

a robust segmentation model by combining outputs from various CNN-based models, such 

as 3D U-Net, 3D FCN, and Deep Medic. Zhou et al. [34] introduced an ensemble of CNN-

based networks that leveraged multi-scale contextual information through an attention block. 

Isensee et al. [35] developed the nnU-Net model, showcasing competitive performance in 

this field.

Transformer-based models, which have gained attention in natural language 

processing and computer vision, have also made an impact in medical image analysis [36-
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38]. Vision Transformers (ViTs) [38] have particularly excelled in computer vision 

benchmarks, thanks to their self-attention module that captures long-range dependencies 

between token embeddings and enables effective contextual representations [39]. UNETR 

[40] stands out as the first methodology to utilize a ViT as an encoder without relying on a 

CNN-based feature extractor. Although UNETR has demonstrated excellent accuracy and 

efficiency in various medical image segmentation tasks, transformer-based models 

employing Swin Transformers have been introduced [41, 42]. Swin Transformers are 

hierarchical vision transformers that compute self-attention using a shifted window 

partitioning scheme, making them suitable for tasks that require multi-scale feature 

extraction. Therefore, we propose a model that incorporates an auxiliary classifier into the 

Swin UNet Transformer (Swin UNETR) [43]. This model performs infarct segmentation and 

simultaneously predicts AIS onset time based on the segmented infarcts.

Objectives

1. Automatic end-to-end algorithm without human effort using segmentation and 

classification method with multi-task learning.

2. Demonstrate that our method outperforms human reading method, the previous 

radiomics-based ML, and DL method.

3. We visually demonstrated the explainability of our method by using activation maps, 

focusing on the infarction of the DWI-FLAIR mismatch.

4. Our model was validated for robustness and reproducibility through two external 

validations.
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Onset Time Prediction with DWI-FLAIR Mismatch using Multi-Task Learning

1. Dataset

1.1.  MRI protocols

The study used three 1.5T clinical systemic MRI scanners from different vendors (Avanto by 

Siemens, Signa by GE Medical Systems, and Archieva by Philips Medical Systems), each 

equipped with standard head coils. The acute stroke MRI protocol for each patient involved 

obtaining DWI and FLAIR sequences, with the ADC values being automatically generated 

from the DWI scans using the scanners' built-in software.

Figure 1. Data flowchart of training and validation dataset
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1.2. Data description

This study retrospectively evaluated consecutive patients with acute ischemic stroke who 

visited Asan Medical Center (Seoul, South Korea), between January 2013 and February 2016. 

The patients were included if their symptom onset time was clearly recorded, and if they 

underwent an MRI scan that included both DWI and FLAIR sequences within 24 hours of 

symptom detection. The study aimed to target a sample size of 355 patients based on 

previous research using deep learning techniques in acute stroke imaging. Out of 1830 

patients in the stroke registry, 575 met the criteria for analysis as shown in Figure 1. Among 

the 575 patients identified for the study, 43 were excluded for various reasons, such as low-

quality MRI images, acute lesions within areas of extensive leukoaraiosis, non-segmented 

lesions, or lesions smaller than 1cc. However, the presence of leukoaraiosis on FLAIR was 

not a reason for exclusion. Also, the study excluded 53 patients who had lesions that were 

too small to be segmented, as well as 125 patients with lesions smaller than 1 cc (=103 mm3). 

This was because image texture features based on statistical measurements cannot be 

accurately defined in small regions of interest, and noise can affect the precision of the

measured textures [44]. However, patients with multiple ischemic lesions were included in 

the analysis, and the signals from each stroke lesion larger than 1 cc were treated as if they 

were signals from a single lesion.

Finally, a total of 355 patients were included for the deep learning analysis. The included 

patients were split into training and validation sets at an 8:2 ratio. To ensure that the 

distributions of each set were balanced, patients were categorized into eight different time 

bins ranging from symptom onset times of 0 to 90 minutes up to 1081 to 1440 minutes. 

Within each time bin, 85% of patients were randomly assigned to the training set, and 15% 

were assigned to the test set. The study protocol was approved by the institutional review 

board of the center, which waived the need for written informed consent due to the 

retrospective nature of the study. 
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Table 1. Distribution of clinical demographics for the datasets: internal and external 

validation datasets

Table 1 presents a comprehensive overview of the clinical information for the datasets used 

in this study, including the internal training, internal validation, external validation 1, and 

external validation 2 datasets. The average age distribution is comparable across all datasets, 

indicating a comparable representation of age groups. Among the datasets, external 

validation 1 exhibited a higher percentage of females, accounting for 47% of the population, 

while the other datasets showed a relatively balanced distribution of females ranging from 

24% to 36%. The onset to MRI time was consistent across most datasets, except for external 

validation 1, which demonstrated a higher average time of 111 minutes and an interquartile 

range spanning from 40 to 642 minutes. In contrast, the other datasets demonstrate average 

times in the 200s range. The range of onset to MRI time varied, with internal training and 

external validation 2 displaying a broader range from the 100s to 700s, while the internal test 

set had a narrower range of 142 to 448 minutes. Notably, the internal training dataset 

demonstrated a well-balanced representation of cases within the 4.5-hour treatment window, 

accounting for approximately 50% of the cases. Similarly, the other validation datasets also 

demonstrate a comparable distribution of cases within this critical treatment window, 

Internal dataset External validation 1 External validation 2

Training set
(n = 298)

Test set
(n = 56)

Test set
(n = 104)

Test set
(n = 346)

Age (years) 63 (55–73) 67 (55–71) 71 (61-80) 69 (61-81)

Female 86 (28%) 20 (36%) 49 (47%) 88 (52%)

Onset to MRI 
(minutes)

270 (152–715) 240 (142–448) 111 (40-642) 224 (107-781)

Admission 
NIHSS

4 (2–10) 5 (2–12) 9 (5-16) 7 (3-17)

Within 4.5-hour 
window (%)

153 (51%) 24 (43%) 64 (61%) 199 (53%)
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highlighting the balanced nature of the datasets utilized in this study.

1.3. Human visual assessment of DWI-FLAIR mismatch

Two stroke neurologists, Eun-Jae Lee and HanBin Lee, independently visually assessed 

DWI-FLAIR mismatches for each patient in the test set. Disagreements were resolved 

through consensus. The assessment was performed using identical high-resolution screens on 

two workstations in our center's picture archiving and communicating system (PetaVision; 

Asan Medical Center, Seoul, South Korea). The observers had the flexibility to adjust 

window and level settings to optimize contrast for lesion identification. The presence of 

acute ischemic lesions on FLAIR images was determined by investigators who had 

knowledge of the lesion presence on DWI. A lesion was considered visible on FLAIR 

imaging (FLAIR positive) when traceable parenchymal hyperintensity corresponding to the 

acute ischemic lesion on DWI was present. A DWI-FLAIR mismatch was defined as the 

presence of a visible acute ischemic lesion on DWI but the absence of traceable parenchymal 

hyperintensity in the corresponding region on FLAIR imaging (FLAIR negative).

1.4. Infarct segmentation

In the study, we analyzed anonymized FLAIR images and ADC maps derived from DWI 

images. The ADC maps were used to automatically segment infarct regions through 

normalized absolute thresholding. For each subject's ADC map, a quantile curve of ADC 

intensities within the brain mask was created. By identifying the intersection point between 

two tangent lines with maximum and minimum differential coefficients on the quantile-

intensity curve, we were able to normalize the ADC maps. This normalization process led to 

the convergence of intensities in normal white matter tissues to one. Following normalization, 

each ADC map was thresholded at the optimal absolute value of 0.845.
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1.5. Two datasets of external validation

To validate the reproducibility and robustness of our model, we used two datasets. The first 

external validation set consists of data collected from Asan Medical Center from 2017 to 

2021, comprising 104 patients. The second external dataset was the UCLA dataset, which 

was published by [29]. This dataset consisted of 346 patients who were treated between 2011 

and 2019. The selection of individuals for the cohorts was based on three specific inclusion 

criteria. Firstly, they had to have a confirmed diagnosis of AIS. Secondly, they must have 

undergone a pretreatment MRI scan that included DWI, FLAIR, and ADC series, which were 

obtained without any motion degradation. Lastly, they needed to have a known time of 

stroke symptom onset (TSS) within 24 hours of the MRI scan.

Figure 2. Class distributions of clinical defined cut-off time points (3 hours, 4.5 hours, 6

hours) with training and validation dataset
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The distribution of the clinical defined cut-off time points is indicated in Figure 2. These 

time points, which are clinically meaningful, were defined as labels based on the training and 

validation sets, with the specific values of 3 hours, 4.5 hours, and 6 hours. Since the initial 

study design used 4.5 hours as the cutoff for training and test sets, the proportion of symptom 

onset within 3 hours and 6 hours is imbalanced.

Figure 3. Distributions of patients in relation to time from symptom onset with training, 

internal and external validation sets
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Figure 3 illustrates the distributions of time from symptom onset to MRI in hours across 

different datasets: the training dataset, internal validation dataset, external validation dataset 

1, and external validation dataset 2. The y-axis represents the number of patients, while the 

x-axis represents the time between symptom onset and MRI in hours. The training dataset 

exhibits cases in all hour ranges, with the highest number of patients observed in the 1-2- and 

2-3 hour ranges, providing comprehensive coverage of patients with varying onset times. 

Similarly, the internal validation dataset shows a similar pattern, with a greater number of 

cases in the 1-2 hour range and some hour ranges lacking cases. In contrast, the external 

validation dataset 1 displays a distinct distribution, concentrating cases primarily in the 0-1 

hour range, while the remaining hour ranges have sparser distributions. Finally, the external 

validation dataset 2 demonstrates a distribution pattern akin to the training and internal 

validation datasets, with the highest number of cases found in the 1-2 hour range. 

These findings provide valuable insights into the temporal distribution of patients' time from 

symptom onset to MRI across different datasets, contributing to our understanding of the 

data used in training the mode and its overall performance.

2. Model Architecture

We propose a model that simultaneously predicts the onset time of stroke and performs 

lesion segmentation using MTL for the clinically defined cutoff time points of 3, 4.5, and 6 

hours from symptom onset. In the proposed model, a auxiliary classifier is added to the 

bottleneck layer of the 3D patch based Swin UNETR. Furthermore, a voting ensemble of 

patch-level classifiers is employed for patient-level classification.
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Figure 4. Overview of the proposed multi-task learning network with classification and 

segmentation task

2.1. Data Preprocessing

As a first preprocessing step, FLAIR images were coregistered to the ADC maps using 

Statistical Parametric Mapping 12 software (SPM 12; Wellcome Trust Centre for 

Neuroimaging, University College of London, United Kingdom) [45]. To remove the skull, 

HD-BET was applied to the FLAIR images for brain extraction [46]. Taking into 

consideration that the images had different voxel spacing for each patient, all the images 

were resampled to a voxel size of 1mm x 1mm x 3mm from the original ROIs.
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2.2. Proposed model

To perform infarct lesion segmentation and AIS onset identification, we utilized the 3D patch 

based Swin UNETR. We added an auxiliary classifier to the bottleneck layer of the model, 

and the proposed model is illustrated in Figure 1. Swin UNETR has a U-shaped network [47]

design in which the extracted feature representations of the encoder are used in the decoder 

via skip connections at each resolution. To perform patient-level classification, a voting 

ensemble on the patch level classifiers was performed. A voting ensemble of patch-level 

classifiers is performed at the patient level for classification. The auxiliary classifiers count 

and vote for onset identification based on the presence of infarction in patches using the 

predicted mask.

2.3. Multi-task Loss function

For the classification task, class imbalance is a common challenge in medical image 

classification. For example, the number of 3- and 6-hour windows of our dataset is roughly 

twice. To account for this, we use a modified weighted focal loss [48] as the classification 

loss function:

(1)

where pcls and ycls are the predicted volume classification probability from the proposed 

network and the ground truth class of this volume (ycls = 0 for ≥ cut-off time window and 

ycls = 1 for ≤ onset time window). The focusing parameter γ is set as 2. wm and wn are 

weights for imbalance classes defined as:

(2)
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where Nn and Nm are the numbers that indicate whether they are included in the cut-off time

window or not, respectively.

For the segmentation task, a segmentation loss based on the Dice coefficient. 

(3)

where Lseg is the segmentation loss, Pseg and Yseg denote the predicted segmentation map 

from the proposed network and the infarct lesion of AIS.

In our method, classification loss and segmentation loss are linear combined as a multi-task 

loss by a hyperparameter λ. The multi-task loss is defined as:

(4)

3. Experiments

3.1. Data augmentation

Data augmentation techniques included random per-channel intensity shifts within the range 

of (-0.1, 0.1), and random intensity scaling within the range of (0.9, 1.1) for input image 

channels.  A random axis mirror flip was applied with a probability of 0.5 for all three axes. 

Input images were normalized to have zero mean and unit standard deviation based on non-

zero voxels.
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3.2. Implementation details

Our model is implemented using PyTorch and MONAI and trained with 8 NVIDIA V100 

GPUs. An overview of the shifted windowing mechanism was implemented with the same 

parameters as described in the Swin UNETR [49]. During training, random patches of size 

128 × 128 × 128 were cropped from the 3D image volumes. We chose AdamW [50] as an 

optimizer with a learning rate of 1e-4. Each GPU had a batch size of 1. The models were 

trained for 300 epochs with a linear warmup and a cosine annealing learning rate scheduler. 

During inference, a sliding window approach was used with a 0.7 overlap between 

neighboring voxels.

3.3. Statistical analysis

To compare the performance of stroke onset classification, various metrics of deep learning 

methods were analyzed, including sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and accuracy in predicting the recommended time for 

thrombolysis (within 3 hours, 4.5 hours, and 6 hours). And we employed receiver operating 

characteristic (ROC) analysis, including determinations of areas under the ROC curves 

(AUCs) for the quantitative evaluation of stroke onset classification. Also, to evaluate the 

performance of the infarct segmentation results of the model, the dice similarity coefficient 

(DSC) and intersection over union (IOU) metrics were used. Furthermore, gradient-weighted 

class activation map (Grad-CAM) [51] was employed during training to assess whether the 

model paid attention to the infarct lesion.
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4. Results

4.1. Classification results with several models

Table 2. Model performance comparison with several models (3D DenseNet, 3D patched 

DenseNet, ours) for classification task

Table 2 is a comparison table of the performance of several models in terms of classification 

results. The performance of our model in predicting the onset time of stroke was evaluated 

by comparing it with two other 3D deep learning models, namely 3D DenseNet [52] and 3D 

patched DenseNet. The models were trained to predict the onset time of stroke events at 3 

hours, 4.5 hours, and 6 hours, respectively. The performance of the models was assessed 

using several performance metrics, including AUC, accuracy, sensitivity, specificity, PPV, 

and NPV.

Model
Onset

window
Sensitivity Specificity PPV NPV Accuracy AUC

3D DenseNet

3 hours

0.667 0.478 0.647 0.500 0.589 0.617

3D patched 
DenseNet

0.435 0.758 0.556 0.658 0.625 0.638

Ours 0.696 0.576 0.533 0.731 0.625 0.690

3D DenseNet

4.5 hours

0.667 0.565 0.688 0.542 0.625 0.632

3D patched 
DenseNet

0.424 0.913 0.875 0.525 0.625 0.769

Ours 0.879 0.783 0.853 0.818 0.839 0.895

3D DenseNet

6 hours

0.436 0.882 0.895 0.405 0.571 0.691

3D patched 
DenseNet

0.667 0.882 0.929 0.536 0.732 0.799

Ours 0.897 0.647 0.854 0.733 0.821 0.848
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Our model achieved superior performance compared to the other models, with AUC values 

of 0.690, 0.895, and 0.848 and corresponding accuracy values of 0.625, 0.839, and 0.821 for 

the onset times of 3 hours, 4.5 hours, and 6 hours, respectively. Furthermore, our model 

demonstrated the highest sensitivity with values of 0.576, 0.783, and 0.647, respectively. 

While the specificity values were relatively lower, our model showed respectable 

performance in terms of PPV and outstanding performance in terms of NPV. Overall, our 

model exhibited robust and superior performance in predicting the onset time of stroke 

events.

4.2. Classification results with external validations

Figure 5.  A result of the ROC curve with AUROC score for internal and two external 

validations

Receiver operating characteristic (ROC) curve
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The performance of our model in classifying the stroke onset window was comprehensively 

evaluated using internal and two external validation datasets. Figure 5 illustrates the ROC 

curve for internal validation, external validation 1, and external validation 2. The AUC 

values calculated for internal validation, external validation 1, and external validation 2 were 

found to be 0.892, 0.803, and 0.709, respectively. Notably, the model exhibited superior 

discriminatory performance in internal and external validation 1 compared to external 

validation 2.

Table 3. Model performance of classification task within 4.5-hour window for internal and 

external validation sets

The model also exhibited consistent and respectable accuracy across the different datasets, 

with accuracy values of 0.839, 0.731, and 0.668 for internal validation, external validation 1, 

and external validation 2, respectively. These results emphasize the reliability and 

reproducibility of our model's accuracy in predicting the stroke onset window. Furthermore, 

our model achieved a balanced performance in both sensitivity and specificity, important 

indicators of diagnostic performance, in both the internal and external validation datasets. 

For internal validation, the model achieved a sensitivity value of 0.879 and a specificity 

value of 0.783. Similarly, in external validation 1, the sensitivity value was 0.750, and the 

specificity value was 0.700. In external validation 2, the model demonstrated a sensitivity 

value of 0.744 and a specificity value of 0.58. These findings underscore the robustness of 

Model
Onset 

window
Sensitivity Specificity PPV NPV Accuracy AUC

Internal validation

4.5 hours

0.879 0.783 0.853 0.818 0.839 0.895

External validation 1 0.750 0.700 0.80 0.636 0.731 0.803

External validation 2 0.744 0.58 0.676 0.658 0.668 0.709
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our model in predicting and accurately identifying whether the stroke onset time falls within 

the 4.5-hour treating window across multiple validation datasets, highlighting its potential 

for assisting in timely decision-making in clinical settings.

4.3. Segmentation results with several models

Figure 6 shows the visualization of the results of ground truth infarct lesion and predictions 

made by various models based on internal validation. The compared models include DiNTS 

[53], UNETR [40], nnUNet [35], and our model, all of which have shown relatively good 

performance in segmentation tasks. Using these models, the prediction results of randomly 

selected case 7 were compared. Overall, it can be observed that both the DiNTS and UNETR 

models have made predictions that are excessively different from the ground truth in most of 

the images. In particular, in images such as case 2, 4, 5, and 6, it can be observed that 

UNETR has poor prediction performance compared to other models. On the other hand, 

nnUNet and our model demonstrated superior prediction performance compared to the 

ground truth in most of the images.

Figure 6.  Model performance with several models (DiNTs, UNETR, nnUNet, ours) with 

ground truth for segmentation task
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Figure 6.  Model performance with several models (DiNTs, UNETR, nnUNet, ours) with 

ground truth for segmentation task
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4.4. Evaluation of segmentation results with internal validation

Table 4. Evaluation of segmentation results with several models (DINTS, UNETR, nnUNET, 

ours) for internal validation

In Table 4, the evaluation results of segmentation using internal validation are presented. 

Since the external validation sets did not have an infarct mask, the metrics for the models 

were compared only for internal validation. The evaluation metrics used were IOU and DSC. 

The performance of four models (DINTS, UNETR, nnUNET, ours), which have shown good 

performance in recent studies, was compared. The IOU results for DINTS, UNETR, 

nnUNET, and ours were 0.669, 0.652, 0.656, and 0.658, respectively, with ours 

demonstrating the highest performance. Similarly, for DSC, the results were 0.684, 0.690, 

0.720, and 0.722, with ours again achieving the best performance.

DINTS UNETR nnUNet Ours

IOU 0.669 0.652 0.656 0.658

DSC 0.684 0.690 0.720 0.722
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4.5. Evaluation of segmentation results with internal validation set

Figure 7. Bland-Altman plot and correlation with segmentation results of internal validation

set

We employed the Bland-Altman plot, a widely recognized method as a means to assess the 

agreement between our proposed model's predicted AIS onset time and the corresponding 

ground truth values. The Bland-Altman plot, as shown in Figure 7(a), presents a graphical 

representation of the difference between the predicted and ground truth values on the y-axis, 

while the x-axis represents the average of the two values. The plot allows us to assess the 

presence of any systematic bias or proportional differences between the predicted and ground 

truth values. The results demonstrated a general alignment between the predicted and ground 

truth values, indicating a favorable level of agreement. The two exceptional cases exhibited 

larger differences between the predicted and ground truth values, suggesting the presence of 

potential outliers or areas where further investigation may be warranted.

Figure 7(b) showcases a graphical representation of the correlation between the segmentation 

results obtained from the internal validation set. In this representation, the y-axis illustrates

the infarct size as predicted by our model, while the x-axis corresponds to the infarct size as 

determined by the ground truth. The results demonstrated a strong linear relationship 

between the predicted infarct sizes and the corresponding ground truth values. This 

alignment of the correlation plot provides additional evidence supporting the reliability and 

accuracy of our model. 
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4.6. Grad-CAM with internal validation set

Figure 8. Grad-CAM results of prediction with our model and original infarction 

mask

The results for examining the explainability of our model's attention to infarction during 

training are described in Figure 7. The images were randomly selected from 8 different cases, 

each with infarctions of varying sizes. For each case, the left image represents the result of 

Grad-CAM, while the right image shows the original infarction image. The results indicate 

that the model focused on infarctions in the images while performing onset time prediction 

with Grad-CAM from its encoder.
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Figure 9. Grad-CAM results of prediction using our model with a few bad false 

positive and false negative cases

Figure 9 displays the Grad-CAM results of false positive and false negative cases, 

representing instances where our model exhibited suboptimal performance. The training 

process utilizes 3D patches with random cropping based on their center, and we hypothesize 

that there may have contributed to an imbalance between patches with infarct and those 

without infarct. This imbalance could have potentially affected the model’s ability to 

generalize and accurately classify instances in which infarct is present. The presence of both 

false positives and false negatives highlights the need for further investigation and potential 

adjustments in the future. 

Discussion

This study demonstrated the usefulness of an automated system developed MTL with deep 

learning methods in identifying the tissue age of patients with acute stroke within 4.5 hours 

of symptom onset. The AIS onset prediction and infarction segmentation results using DWI 

and FLAIR mismatch were evaluated both quantitatively and qualitatively. 
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External validation results with classification task

The results were verified not only through internal validation but also across diverse datasets. 

Two external validation sets were further utilized for inference in order to evaluate the 

robustness and generalizability of our proposed model. The classification result for onset 

time of 4.5 hours revealed an AUC of 0.803 in external validation set 1 and 0.709 in external 

validation set 2. External validation set 1 presented a respectable performance despite the 

differences in demographic characteristics, such as a higher proportion of female patients 

and delayed onset to MRI [54]. In contrast, the significant drop in AUC for external 

validation set 2 can be attributed to various factors, including differences in demographic 

characteristics such as ethnicity and sex, as well as unclear criteria for onset time calculation 

[55, 56]. Moreover, the use of different MRI protocols and variability in image quality in 

external validation set 2 may have largely affected the performance of our model.

In addition, we need to consider the potential limitations in our study regarding the 

prediction of the onset of AIS. Our model has inherent limitations in its architecture. For 

instance, the brain in the MR images were isolated using foreground cropping, and the 

patches fed into the model were randomly cropped based on a voxel size of 128 x 128 x 128

from the foregrounded MR images. We hypothesize that, since the size of the brain and the 

infarct size and location varies for each patient, images without infarction may have been

included in the training process. Given that the classification task of onset prediction is based 

on infarction, this can potentially lead to false negatives (FN) and false positives (FP).
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Internal validation results with segmentation task

Since there was no external validation available for validating the segmentation predictions, 

we examined the results using the internal validation set. Among several models, the DiNTS 

and UNETR models exhibited the least favorable performance, as they tended to over-

segment the lesions compared to the actual infarct. On the other hand, the nnUNet and our 

proposed model demonstrated satisfactory performance, accurately predicting segmentations 

for infarcts of various sizes. We also validated the performance of these four models using 

metrics such as IOU (Intersection over Union) and Dice score. The metrics results aligned 

with the visualization of the segmentation outcomes, generally indicating that nnUNet and 

our proposed model performed well.

Additionally, for the Bland-Altman plot evaluating the agreement between the segmentation 

results and the ground truth values, most of the results showed general agreement, excluding 

rare cases where there were significant differences between the actual values and the 

predicted values. It was observed that the cases with large differences corresponded to 

situations where the actual infarct size was exceptionally large.

Grad-CAM results with our model

To further validate the interpretability of our model, we visualized the activation map of the 

last layer of the encoder. The visualization demonstrated that our model predicts infarction 

with attention on significant features in almost all images, providing further evidence of its 

high accuracy.

Despite the excellent performance of our proposed model, it still has its limitations. First, 

only acute ischemic stroke was considered as inclusion criteria, and further studies are 

required to evaluate different types of strokes. Second, the external validation datasets only 
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contained onset labels, and no infarction masks were available for segmentation evaluation, 

and consequently, further studies with the use of datasets with segmentation masks are 

required to evaluate our model’s segmentation accuracy. Finally, external validation set 2 

was a blind dataset, and the analysis of the exact cause of the drop in AUC was difficult to 

determine.

Conclusion

In conclusion, our proposed model utilizes multi-task learning to perform infarction 

segmentation and classification of onset time. Our model demonstrated its robustness and 

enhanced performance through internal and external datasets. While limitations and the need 

for further study must be acknowledged, we anticipate that our model will have a positive 

impact in clinical setting in the near future. To facilitate the translation of our model into 

real-world clinical practice, further research should address its limitations and extend its 

application to a broader range of stroke types and patient populations.
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Abstract (with Korean)

Time clock 과 tissue progression 사이의 강한 연관성이 있는 급성 허혈성 뇌졸중의

치료는 onset 시간에 매우 의존적입니다. 그러나 수면 중 뇌졸중의 발생이나 unclear 한

onset 등으로 인해 onset 의 발생 시기를 정확하게 판단하기 어렵기 때문에, 이를

해결하기 위해 DWI 와 FLAIR 영상의 신호 불일치를 이용하여 뇌졸중 후 경과 시간을

추측할 수 있는 관련된 연구들이 진행되어 왔습니다. 본 연구에서는 MRI 의 이미지

바이오 마커를 통해 deep learning의 multi-task learning (MTL) 방식을 이용하여 뇌졸중

이후의 시간을 결정하는 기술을 개발하고 외부 검증 데이터셋을 통해 성능을

평가하는 것이 목표입니다.

제안된 모델의 입력 이미지는 ADC, FLAIR 및 DWI-b1000 volume 의 조합으로

구성되며, 이들의 3, 4.5 및 6 시간 발병 시간에 대해서 MTL 을 사용하여 stroke의 onset 

시간 예측 및 병변 분할을 동시에 진행하였습니다. 모델의 backbone은 3D patch-based 

SwinUNETR 모델로, 이 모델의 bottleneck layer 에 보조 분류기를 추가하였으며 환자

수준 분류를수행하기위해 패치수준 분류기의 voting 앙상블을 수행하였습니다. 보조

분류기는 predicted mask를 기준으로 한 patch에서 infarction 존재하는 경우에 대해서

카운팅 및 voting 방식을 통해서 onset identifying 을 도출하였습니다. Classification 

task에서, 내부 검증을 통해 각각 3 시간, 4.5 시간, 6 시간을 기준으로 우리의 모델과

3D DenseNet 및 3D patched DenseNet 의 성능을 비교하였습니다. 평가 지표로 AUC, 

accuracy, specificity 및 sensitivity 를 사용하였습니다. 또한, 2 개의 외부 검증을

이용하여 4.5 시간에 대한 onset classification 성능을 비교하였습니다. Segmentation 

task 에서, DiNTS, UNETR, nnUNET 그리고 제안된 모델의 성능을 비교하였습니다.

평가 지표로는 IOU 및 Dice coefficient 가 사용되었습니다. 전반적으로 classification 

결과는 비교된 모델에 비해 제안된 모델의 성능이 우수하였고 specificity 와

sensitivity 가 유사한 성능을 보였습니다. Infarct segmentation 의 정성적인 결과는

DiNTs, UNETR, nnUNet, our model 중 nnUNet 모델과 우리의 모델이 좋은 성능을

보였습니다. IOU, Dice score를 통한 정량적 평가 또한 정성적인 결과와 일치된 결과를

보였습니다. 모델을 학습할 때 우리의 모델의 explainability를 확인하기 위해, 모델의

encoder 로부터 추출한 feature 들을 이용하여 Grad-CAM 을 확인한 결과, 학습 시

모델이 병변에 집중하며 수행한다는 것을 보였습니다. 이를 통해 여러 segmentation 및

classification task에서 정량적, 정성적인 평가를 모두 보였습니다. MTL 을 적용한 이
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모델은 내부 및 두 개의 외부 검증에서 뇌졸중 발병 시간을 식별하는 데 더 나은

성능을 보여 실제 임상 환경에서의 잠재적인 사용 가능성을 나타냅니다. 제안된

모델은 onset 시간을 예측하여 발병 시간이 불명확한 뇌졸중 환자의 적절한 시간에

혈전 용해요법치료수행에도움을줄수 있는잠재력이 있습니다.
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