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Abstract

Generative models can be very useful in the field of medical imaging. These models can be 

used to address data imbalance issues or to transform to different modalities. Additionally, 3D 

generation can be applied to clinical research, distribution analysis and more. However, 

medical images are more complex than natural images, making generation difficult. This 

means that a lot of effort is needed to create plausible generation and that it is challenging for 

generative models to excel in the medical image field. Nonetheless, recent advances in 

diffusion models have made it possible to generate high-quality images, and the use of latent 

diffusion models has also solved the issue of generation speed. Therefore, this paper proposes 

experiments on generation using diffusion models, data augmentation through generation, 

image-to-image transformation, 3D generation, and predicted generation. The results of this 

study can significantly impact the field of medical imaging by providing more accurate and 

comprehensive diagnostic tools for medical professionals. The use of diffusion models can 

also reduce the time and effort required for medical image generation and improve the overall 

quality of medical images, leading to better treatment outcomes for patients. This paper 

provides a comprehensive overview of the technical implementation and clinical applications 

of score-based diffusion models in medical imaging and highlights their potential to 

revolutionize the field of medical imaging diagnosis.
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1. Introduction

Generative models are highly valued for their potential applications in medical imaging.

They are highly effective in analyzing and understanding unlabeled information, which is

why they are preferred. In addition to generating images, generative models can be used to

synthesize missing disease groups for data augmentation to address data imbalances, or to

easily obtain images in different modalities through image-to-image translation. They can

also generate 3D images with clinical integrity for research purposes or create normal images

that are most like abnormal ones for anomaly detection. Therefore, generative models are

widely used and receiving a lot of attention in many research studies.

Generative models are widely used in deep learning. They can be used to create

high-fidelity data, improve text-to-image performance or semi-supervised performance, or

detect anomalies. There are three main approaches to generative models: likelihood-based

models (variational auto-encoder (VAEs) [1-3], autoregressive models [4-6], normalizing

flows [7-9]), generative adversarial networks [10-17] (GANs), and diffusion-based models

(score-based generative models [18-23] and diffusion models [24-33]. Each of these models

has its own advantages and disadvantages. Likelihood-based models estimate the distribution

and calculate likelihood to sample, but they may produce low-quality samples. Adversarial

models can produce high-quality samples, but training can be unstable due to adversarial

learning. Diffusion-based models can also produce high-quality samples, but the sampling

process is slow due to the stochastic process. Therefore, it is important to choose the

appropriate generative model based on the desired generation purpose.

Medical images are different from natural images because they often contain

structures such as diseases or anatomical structures [34, 35]. For example, mammography

images can contain irregular patterns of fatty tissue and lobules, while retinal images can

contain patterns of the optic disk and blood vessels. These complex structures can be

challenging to generate using deep generative model. In addition, conditions such as tumors
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or hemorrhages can also have varied patterns that make generation difficult.

The recently introduced score-based diffusion model, which encompasses both

score-based generative models and diffusion models, has shown promising performance and

potential. It uses Langevin dynamics based on gradients of the perturbation distribution

caused by perturbation data for sampling or reverses the noise-added Markov chain called

the diffusion process to generate data. In addition, through a paper that interprets these two

different sampling methods as a stochastic differential equation, the model has demonstrated

performance that can rival that of GANs. As a result, it has not only enabled the generation

of high-quality images, but also audio and video, and has shown remarkable performance in

multi-modal generation tasks such as text-to-image generation.

Therefore, in this paper, we propose the use of diffusion models for generating

medical images and their potential applications. First, we compare the generation ability of

diffusion models with that of another generative model, GANs, through the generation of

images in multiple modalities. Next, we demonstrate the use of diffusion models for data

augmentation. To overcome a problems with limited data sets, we show how data

augmentation using generative models can improve the performance of classifiers on

imbalanced datasets and present the results when clinical bias is introduced through data

augmentation. Third, we propose the use of image-to-image translation using diffusion

models for stain normalization. Fourth, we propose a method for generating CT images with

3D integrity and continuity using the generation of adjacent slices. Finally, we propose

predicting and generating post-operation lateral cephalogram images by using the diffusion

model.

Score-based diffusion models (SDM) [19, 21, 33] have demonstrated significant 

potential in diverse fields, including image generation and super resolution, and their 

generative abilities are comparable to those of GANs and VAEs. SDMs have also shown 
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promising results in colorization and inpainting. Therefore, researchers have explored the 

application of SDMs in stain normalization.

Deep generative models can generate realistic imaging data that can be used as data input 

for deep learning algorithms, thereby overcoming problems with limited data sets [36]. Data 

augmentation using generated images can improve the accuracy of deep learning model 

classifications for rare tumor types and unbalanced classes [37, 38]. Although synthetic image 

generation is of particular interest for clinical applications in brain tumor imaging because of 

the inherently small sample sizes in imaging-based genomic and molecular prediction, few 

studies have evaluated the performance of diagnostic models using generated images [39].
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2. Background

GAN [11] is a deep learning model that consists of a generator and a discriminator. The

generator generates samples that mimic real data, and the discriminator tries to distinguish

between real and fake samples. These two models compete, and as a result, the generator learns

to create more realistic samples, while the discriminator learns to become more accurate in its

classification. GANs have been successfully used in various fields, including image generation,

video generation, and text generation.

VAE [2] is a generative model that consists of an encoder and a decoder. The encoder maps

the input data into a latent space, and the decoder generates samples from this latent space.

The VAE is trained to maximize the probability of the input data given the latent space, while

minimizing the divergence between the latent space distribution and a prior distribution. The

VAE can be used for various tasks, including image generation, data compression, and feature

extraction.

Diffusion-based models [19, 21, 22, 24, 27, 31-33, 40] are a class of generative models that

learn a diffusion process that can transform a simple noise distribution into a complex data

distribution. Diffusion models are based on the idea of simulating a random walk through the

data distribution by iteratively adding noise to the data. The diffusion process is modeled using

a series of steps, where each step consists of a noise injection and a step of a trainable neural

network. Diffusion models have been shown to be highly effective in generating high-quality

images, and they have several advantages over other generative models, including improved

generation speed, better stability during training, and the ability to model complex

distributions with high-dimensional data. Figure 1 provides an overview of the three models.
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Figure 1. Overview of three types of generative models.

2.1. GAN

2.1.1. Generative Adversarial Networks

GANs [11] are one of the most important models in the field of generative models. GANs are 

trained using an adversarial training method of the discriminator, where the discriminator 

trains to distinguish between real and fake data, while the generator trains to generate data that 

is real by the discriminator. The adversarial training method is an iterative competition 

between the discriminator and the generator, with the goal of generating synthetic data that is 

indistinguishable from real data by the discriminator.

To learn the data distribution p(x) of a target dataset, GANs set up a min-max game 

between two neural networks: a generator and a discriminator. With a random noise vector z 

sampled from a straightforward prior distribution p(z), such as a standard normal or uniform 

distribution, as input, the generator G attempts to generate samples G(z) that show up realistic 

and resemble the data. A real data sample x sampled from p(x) or a fake sample G(z) generated 

by G are sent to the discriminator D, which attempts to properly identify which is real or fake. 

The objective function of GAN is given by:

���
�
���
�

 V(G,D) = ��~�(�)������(�)�� + ��~�(�) �1 − ��� ����(�)���

And there are various models with different objective functions, including LSGAN [41] that 

replaces binary cross entropy with mean square error, EBGAN [42] that uses margin loss, 

WGAN [43] that replaces the loss function with Wasserstein distance, and WGAN-GP [44] 

that adds a gradient penalty term. There are also techniques that can help GAN training. For 
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example, progressive growing of image resolution [45], spectral normalization [46] to stabilize 

the model by fixing its Lipschitz constant, and StyleGAN [15] which adds adaptive instance 

normalization (AdaIN) [47] with the addition of a style latent.

2.1.2. Conditional GAN

By providing labels to the generator and discriminator, it is possible to train the model for 

conditional generation. The objective function for a given condition y can be expressed as 

follows:

ℒ����(G,D) = ��~�(�)������(�, �)�� + ��~�(�)�1 − �����(�(�, �), �)��

where x is the input, z is the random noise, G is the generator, and D is the discriminator. 

For example, it is possible to generate by providing a label for a class together with noise [48]

or perform image-to-image translation using a well-aligned label image [49, 50]. However, in 

such cases, it is necessary to have well-aligned pairs of condition-image. To overcome this, 

unpaired image-to-image translation from domain A is proposed. This is achieved by 

transforming from one domain A to another domain B and then back to domain A, with the 

addition of mean absolute error (MAE) loss during the reconstruction process. This approach 

involves training two generators and two discriminators, which is called CycleGAN [51].

The loss function of CycleGAN is as follows:

ℒ�����(�� , �� , �� , ��) = ℒ���(�� , �� , �, �) + ℒ���(�� , �� , �, �) + λℒ�����(�� , ��), 

where �� and �� are generators that perform transformations from X to Y and from Y to X, 

respectively, while �� and �� are discriminators that distinguish between real and fake 

images in X and Y, respectively. λ is a weighting factor that controls the cycle-consistency 

loss. And ℒ���(�� , �� , �, �) is an objective function of GAN and ℒ�����(�� , ��) is cycle-

consistency loss. Moreover, there are methods to provide conditions by not only simply 

concatenating them but also normalizing them spatially, which is called spatially adaptive 

(de)-normalization (SPADE) [52].
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2.2. Variational Auto-Encoder

VAE [2] is a generative model that learns the underlying distribution of a dataset and generates 

new samples from it. VAE is a probabilistic approach to autoencoding, which maps an input 

into a latent space and then reconstructs it. In VAE, the encoder and decoder are modeled as 

probabilistic neural networks that allow us to model complex distributions. VAE learns a latent 

representation of the input data by maximizing the evidence lower bound (ELBO) objective. 

ELBO is a lower bound on the log-likelihood of the data, which is decomposed into two terms: 

reconstruction loss and KL divergence between the learned latent distribution and a prior 

distribution. 

���� = ���(�∣� )[log �� (�|�)] − ���(��( � ∣ � )|| �(�))

Here, ��( � ∣ � )  is the encoder that approximates the true posterior distribution �( � ∣ � ) , 

��( � ∣ � ) is the decoder that models the likelihood of generating the data � given the latent 

variable �  and ���(��(� |�) ||�(�))  is the Kullback-Leibler (KL) divergence between the 

approximate posterior ��(�|�) and the prior distribution �(�). The first term encourages the 

reconstruction accuracy, while the second term encourages the learned distribution of �  to 

match the prior distribution. The ELBO serves as a lower bound to the log-likelihood of the 

data, which is intractable to compute directly.

VAE has been shown to be effective in generating realistic images and has been widely 

used in various fields such as image generation, image inpainting, and data compression. 

However, VAE suffers from the posterior collapse problem, which occurs when the learned 

latent distribution becomes uninformative about the input data. This problem can be mitigated 

by using various regularization techniques such as hierarchical architecture [3], vector 

quantized [1, 53], and beta-VAE [54].

2.3. Score-based generative model and diffusion model

Score-based generative model [19, 21, 22, 33] and diffusion model [24, 27, 31, 32, 40] were
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shown remarkable performance in the generative task, such as image generation, super-

resolution [55], video generation, inpainting [56], and text-to-image [25, 26, 57]. Two

models succeeded to generate high-fidelity data without another auxiliary network, such as a

discriminator in a GANs or a gaussian encoder in a variational auto-encoder VAEs. Two

models have the forward-backward process; the forward process perturbs data into noise in

each step, whereas the backward process generates noise into data using a stochastic process.

And the score-based generative model, such as noise conditional score networks (NCSNs)

[33], and the diffusion model, such as denoising diffusion probabilistic models (DDPMs)

[31], were inspired by Langevin dynamics and thermodynamics, respectively, and a

generalized model was proposed using stochastic differential equations (SDEs) in [19].

2.3.1. Noise Conditional Score Networks (NCSNs)

NCSN is based on the (stein) score [23] of the logarithmic data density, which is the gradient

of log density at data ∇� ��� � (�). The model estimates the gradient of log density at data

∇� ��� � (�) and the objective function of score matching was defined as following:

��~�(�)[‖��(�) − ∇� �������� (�)‖�] ≈ ��~�(�) ����∇���(�)� +
1

2
‖��(�)‖�

�� + �

where ��(�) is score network. However, the score function of data density ∇� �������� (�)

is generally challenging to calculate and the resource of calculating ���∇���(�)�, which is

the Jacobian of ��(�), is high. To avoid intractable obejctive, denoising score matching [18]

and sliced score matching [20] was proposed; the denoising score matching employed the

score function of perturbed data density, not data density ∇�� ��� �� (��|�) = −
����

��
, where

��(��|�) = �(��; �, σ��) is a perturbation kernel, and sliced score matching used random

projections to approximate ���∇���(�)� by using ��∇���(�)�, where �~�(�) is a random

vector of simple distribution, e.g., the multivariate standard normal distribution. However,

there are several issues to generate a data due to problems related to manifold hyphosis. For
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example, the inconsistent approximation of score function ��(�) in low-density region was

caused by low-dimensional manifolds embedded in a high-dimensional space. The authors

solved the problem by perturbing the data with several scales of Gaussian noise.

The {σ�}���
� is a positive geometric sequence that satifies γ =

��

����
> 1, for all �. Then, the

objective function of denoising score matching can be written as:

1

�
��

�

���

(σ�)��(�)���~���������
���(��) − ∇��������(��|�)��

�

where �(��) is a coefficient function depand on �. After training score network, the

generation process was performed by Langevin dynamic, which can generate samples from a

density using only score function. Finally, an initial value ��~π(�) with π being prior

distribution, the Langevin dynamic compute the following as:

�� = ���� +
ϵ

2
∇���� ���� (����) + √ϵ��

where �� is Gaussian noise. When ϵ → 0 and � → ∞, the distribution of �� converges the

data distribution. As well as the authors proposed annealed Langevin dynamic, which starts

with prior distribution, e.g., uniform distribution, and applies Langevin dynamic for a fixed

number of iterations.

2.3.2. Denoising Diffusion Probabilistic Models (DDPMs)

Forward process The data distribution �(��) is gradually converted into a well-behaved

distribution π(�) by repeated application of a Markov diffusion kenrel ��(�|�; β) for π(�).

Then,

�(��|����) = ��(��|����; β�) = ����;�1 − β�����, β���

And the forward trajectory, starting at the data distribution and performing � steps of

diffusion process, is following as:

�(��:�) = �(��)��(��|����)

�

���
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where �� , ��, … �� are latents of the same dimension as the data ��. The forward process is

that is that is admits sampling �� at an arbitary timestep � in closed form: using the notation

α� = 1− β� and α�� = ∑ α�
�
��� , then, we obtain the analytical form of �(��|��):

�(��|��) = ����;�α����, (1 − α��)��

And we can easily obtain a sample in imedietate distribution of difussion process,  

�� = �α���� +�1 − α�� ϵ

Backward process Diffusion models are latent vaiable models of the parameterized

distribution ��(��) = ∫ ��(��:�)���:�. The reverse trajectory, starting at the prior

distribution, is following as:

��(��:�) = �(��)���(����|��)

�

���

where �(��) = π(��) and ��(����|��) = ������; μ�(�� , �), Σ�(�� , �)�. ��(�� , �) and

Σ�(�� , �) are training targets defining the mean and covariance of the reverse Markov

transitions for a Gaussian distribution, respectively. To approximate between the

parameterized distribution ��(��) and data distribution �(��), training is performed by

optimizing the variational lower-bound on negative log likelihood:

��~�(�)[− ��� �� (�)] ≤ ��~�(�) �− ���� (��) −�
��(����|��)

�(��|����)
���

� = ℒ���

For efficient training, further improvement came by rewriting ℒ���:

ℒ��� = ��~�(�)[���(�(�� |��)|��(��)� + ���(�(����|�� , ��)|���(����|��)�

− �����(��|��)]

And, above equation used KL divergence to directly compare ��(����|��) against forward

process posteriors. The posterior distributions are tractable when conditioned on ��:

�(��|����) = �(����|�� , ��)
�(��|��)

�(����|��)
= ������; μ��(�� , ��), β����

where μ��(�� , ��) =
��������

�����
�� +

���(�������)

�����
�� and β�� =

�����

�������
β�.
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Like NCSN, the loss function can write:

������� = ��[‖ϵ − ϵ�(�� , �)‖
�]

After training, sample can be generated by starting from ��~�(0, �) and following the

parameterized reverse Markov chain as:

���� =
1

�α�
��� −

1− α�

�1− α��
ϵ�(�� , �)� + σ��

The generative process is still defined by ��(����|��), but the network predicts the noise from

the perturbed image, not the mean and the covariance directly.

2.3.3. Score SDE

Score-based generative model and DDPMs can generate a high-fidelity image by using 

perturbing data with diffusion process of multiple noise scales. Therefore, the diffusion 

process can be generalized an infinite number of noises sclaes, and the perturbed data 

distributions of diffusion process construct according to a stochastic differential equation 

(SDEs). The diffusion process  can be indexed by a continuous time variable , such that  and  

are data and prior distribution. The forward diffusion process evolves according to the Ito 

stochastic differential equation:

�� = �(�, �)�� + �(�)��

where dw is the standard Wiener process (a.k.a, Brownian motion) and �(�, �), �(�) are a 

drift coefficient and diffusion coefficient of . It is known that any diffusion process can 

define reverse-time diffusion process by B. The reverse-time SDE is given as:

�� = [�(�, �) − �(�)�∇� ��� �� (�)]�� + �(�)���

where dt and ��� are an infinitesimal negative time step and standard Wienere process when 

time flows backwards. NCSNs and DDPMs correspond to variance-exploding SDE 

(VESDE) and variance-preserving SDE (VPSDE), respectively. VESDE is given as:
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�� = �
�[σ(�)�]

��
��

And VPSDE is given as:

�� = −
1

2
β(�)��� + �β(�)��

Finally, training is performed so that the score network estimates the score function by 

generealizing the score matching objective, the following objective:

��~�[�,�],��~�(��),��~��������
�λ(�)���(�� , �) − ∇�� ������ (��|��)�

�
�

To solve the SDE, a numerical solver was used with a score-based Markov chain Monte Carl

o (MCMC) approach, specifically a Langevin MCMC. The Predictor-Corrector (PC) sampler

alternates between using a predictor, such as a reverse diffusion SDE solver [19], which com

putes the reverse-time SDE with a fixed discretization strategy, and a corrector, such as anne

aled Langevin dynamics, which can adjust the direction of gradient ascent. This allows us to 

accurately estimate the probability of the data being generated, which is essential for the MC

MC approach.

2.3.4. Consistency generation

The three models referred to as NCSN, DDPM, and ScoreSDE are stochastic models that lack 

consistency and don’t have a paired between noise and data. While it offers significant 

advantages from a generative perspective, it is questionable whether this is advantageous in 

terms of reproducibility or latent representations. Therefore, consistency sampling is possible 

through the probability flow ordinary differential equation (PF ODE) used in the SDE-based 

framework [19] and denoising diffusion implicit model (DDIM) [24] sampling used in the 

diffusion-based model. The probability flow sampling method uses a score model, and the 

equation is as follows:

�� = ��(�, �) −
1

2
�(�)�∇� ����� (�)� ��
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Unlike SDE sampling, there is no diffusion term, and it is also called a deterministic process. 

Sampling is possible using numerical methods such as Euler-Maruyama [58] or stochastic 

Runge-Kutta methods [59] that approximate SDE using the score function.

Next, the DDIM sampling method also allows for consistency generation by setting the term 

corresponding to the diffusion term to zero in the DDPM sampling method. If we separate 

the "predicted ��" term and the "direction pointing to ��" term in the DDPM sampling 

method, the equation becomes:

���� =
�α����

�α��
��� −

�1− α��1 − α�

�1− α��
ϵ�(�� , �)� + �(1 − α��� − σ�

�)ϵ�(�� , �) + σ��

Setting �� = 0  here enables consistency sampling, and this sampling method is called 

denoising diffusion implicit model (DDIM).

2.3.5. Controllable generation

Algorithm 1 Controllable generation (inpainting) in VESDE

Require: ��∗ (score model), N (step of process), M (binary matrix), y (real data)

��~�(0, σ���
� �)

for � = � − �to 0 do

    �� ← Predictor(��∗ , ����, �)

    �~�(0, �)

    �� ← �� ⊙ (1 − Ω) + (� + σ��)⊙ Ω

    �� ← Corrector(��∗ , ����, �, �)

    �~�(0, �)

    �� ← �� ⊙ (1 − Ω) + (� + σ��)⊙ Ω

end for

return ��

Controllable generation, such as inpainting, colorization, and super-resolution, is also 

possible with the sampling method. First, the inpainting method sets a binary mask to 

indicate the area that needs to be inpainted in an image. During sampling, the condition is 

added by using this mask when generating the image. Specifically, the (t+1)-th state is 
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generated using a sampling method from the t-th state. Then, the original data is perturbed 

according to the t-th state, and inpainting is performed using the generated t-th state, the 

perturbed data, and the mask. Algorithm 1 shows the inpainting algorithm.

Next, Image dimensions can be decoupled to map the grayscale image into a separate 

channel of a different space by an orthogonal linear transformation. In addition, imputation 

can be performed to complete the other channels before transforming everything back to the 

original image space. 

First, an orthogonal matrix M was defined to decouple the color channel. The orthogonal 

matrix M is given by

� = �
0.577 −0.816 0
0.577 0.408 0.707
0.577 0.408 −0.707

�

And colorization can be conducted by applying coupling and decoupling after the predictor 

and corrector. 

������(�,�) = ������(���ℎ�, ���� → ���ℎ�, �,�
��)

��������(�,�) = ������(���ℎ�, ���� → ���ℎ�, �,�)

Finally, Algorithm 2 shows the colorization algorithm.

Algorithm 2 Controllable generation (colorization) in VESDE

Require: ��∗ (score model), N (step of process), M (orthogonal matrix), Ω (colorization 

mask), � (grayscale image)

��~�(0, σ���
� �)

for � = � − �to 0 do

    �� ← Predictor(��∗ , ����, �)

    �~�(0, �)

    �� ← ������(��������(�� , �)⊙ (1 − Ω) + (��������(�,�) + σ��)⊙ Ω,M)

    �� ← Corrector(��∗ , ����, �, �)

    �~�(0, �)

    �� ← ������(��������(�� , �)⊙ (1 − Ω) + (��������(�,�) + σ��)⊙ Ω,M)

end for

return ��
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In addition, controllable generation can be performed using independent diffusion models and 

classification models such as classifier-guidance [32], or label-based generation can be 

performed in classifier-free diffusion model [60]. Our objective is to sample from the 

conditional distribution ��,�(��|���� , �)  given the condition where label y is provided. 

Therefore, the conditional distribution can be expressed as:

��,�(��|����, �) = Zp�(x�|x���)p�(y|x�),

where Z is a normalizing constant (proof in [32]). Next, the score function in condition 

distribution can be obtained. 

∇�� ��� ��,�(��|���� , �) = ∇����� ��(��|����) + ∇�� ��� �� (�|��)

= −
1

�1 − ���
�(��) + ∇�� ����� (�|��)

Applying this, we can estimate a new epsilon that corresponds to the conditional distribution.

ϵ�(��) = ϵ(��) − ��1 − α��∇�� �����(�|��),

where w is scale of the classifier guidance. By modifying from ϵ  to ϵ�  in DDPM or DDIM 

sampling methods, we can perform conditional sampling, which is called as classifier-

gudiance diffusion model or ablated diffusion model (ADM) [32]. 

However, ADM has the burden of training two models and the inconvenience of computing 

gradients. To address this, instead of training a classifier, we additionally train a conditional 

diffusion model ϵ(�� , �) and an unconditional diffusion model ϵ(��) = ϵ(�� , ∅), where ∅ is a 

null token for the uncondition distribution. Then, the score function of �(�|��) is following:

∇�� ����(�|��) = −
1

σ�
[ϵ(�� , �) − ϵ(��)]

Then, we defined a modified epsilon ϵ�(�� , �) = ϵ(�� , �) + �[�(�� , �) − �(��)]. The modified 

epsilon can also be used to replace epsilon in the DDPM or DDIM sampling method, and we 

call this method classifier-free diffusion model [60].
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2.3.6. Latent Diffusion Models (LDMs)

The diffusion model is known for its high generative ability, as it can approximate data 

distribution very well [18, 61, 62]. However, it costs significant computational resources 

during the generation process. To address this issue, latent diffusion models (LDMs) consist 

of two training phases [26]. In the first stage, an autoencoder comprising an encoder ℰ and a 

decoder � are trained. The encoder learns the encoding of data into a latent space, while the 

decoder maps from the latent space to the data distribution. In the second stage, a diffusion 

model is trained to generate the encoded latent space from the prior distribution. The latent 

space is expanded using KL- [2, 3] or VQ- [1] regularization and adversarial training methods 

[11] to enhance generative ability. Finally, the following objective is given as:

� = �ℰ(�),�∼�(�,�)[‖ϵ − ϵ�(�� , �)‖
�]

Due to the advancements in LDM, image generation can be performed quickly, and conditional

generation tasks can be carried out using various prompts, such as CLIP [63] or BERT [64].
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3. High-bit depth generation in computed tomography

Computed tomography (CT) is the most used imaging modality for the initial diagnosis of 

acute stroke and is adopted worldwide [65]. In emergency situations such as trauma or acute 

severe headache, CT is more important than other clinical imaging modalities. In addition, as 

the brain is an elaborate and complex-functioning organ, the three-dimensional (3D) integrity 

of brain imaging is important for the diagnosis and treatment of brain injuries.

The 12-bit or 16-bit format is preferred for medical images such as X-ray images, CT 

scans and magnetic resonance imaging (MRI), as it provides more information than the 8-bit 

format. CT uses a specific quantitative measurement called the Hounsfield unit (HU), which 

ranges from -1024 HU to 3071 HU in 12-bit format. In deep-learning research, CT images are 

generally clipped within a dynamic range to emphasize the region of interest (ROI). Such 

clipping of CT images, called windowing, can increase the signal-to-noise ratio (SNR) in the 

ROI. Therefore, most research on CT images performs windowing as a pre-processing method 

[66, 67].

However, generating satisfactory high-resolution images [10] in the 12-bit format of real 

clinical settings is difficult. Therefore, we want to experiment with how well a generative 

model can create 12-bit format images, as opposed to natural imaging. We first attempted 

generation on 12-bit format using GANs (StyleGAN2 [14, 17] and StyleGAN3 [16]) and a 

diffusion model (ScoreSDE). Additionally, we will evaluate quantitatively whether 12-bit 

generation works well not only in the whole range but also in the windowing range.

3.1. Dataset and model architecture

A total of 34,085 non-contrast brain CT scans and paired radiology reports were 

retrospectively collected from patients who visited an urban, tertiary, academic hospital 

between January 1, 2000, and August 31, 2018. Among the scans, we only selected CT scans, 

which consist of 32 slices, each of 5-mm thick. The study protocol was approved by 
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institutional review board of Asan Medical Center and Gangneung Asan Hospital. Finally, we 

split 1,500 brain CT scans at random to evaluate metrics.

3.2. Results of GAN

It discusses 12-bit whole range generation with GANs in this Section. 12-bit format generation 

by two GAN models, StyleGAN2 and StyleGAN3, was evaluated in experiments. The models 

were good performance in the natural image, both models obtained good results over the whole 

range of HUs but also generated different artifacts in the windowing range like Figure 2. The 

anatomical structures, such as white matter and grey matter, collapsed in the 12-bit generation 

in two GAN models. On the other hand, bones and air were properly generated and keep their 

shape. The region that is not notably distinct from the surrounding area is not well generated, 

whereas other areas are well generated. 

Hounsfield unit of bone (1000HU~) is larger and more deviated in comparison to other tissues 

(20HU ~ 30HU). The Hounsfield unit of air, on the other hand, is smaller and more deviated 

when compared to other tissues. As a result, these two tissues produce a high signal region in 

comparison to other tissues. Because the signal is strong due to a large deviation, most studies 
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use windowing as a preprocessing to attenuate signal except ROIs. [68, 69] 

Figure 2. Result of StyleGAN2 and StyleGAN3. Both GAN models generate images well in 

the whole range, but different artifacts are observed when clipping in the windowing range.

The convolution operation was described as a high-pass filter [70], that amplifies the high-

frequency components and is susceptible to high-frequency noises. Therefore, the GAN was 

not used for generating the 12-bit format because the convolution operation may not train the 

features from low-frequency signals. Also, GAN is trained by the feature of image through 

discriminator. As shown in Figure 3, the features from the low signal regions seem somewhat 

neglected. Therefore, generating with GAN is difficult because it uses adversarial loss from 

discriminator features. 
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Figure 3. This is the feature map extracted from the discriminator using the CT images in the 

whole range. Low-signal regions, such as parenchyma, are not generated properly.

3.3. Results of score-based diffusion model

The score-based diffusion model trains the score, which defines the gradient of the log-density 

[23], rather than the image features. Therefore, the score-based diffusion model does not 

depend on image signals, despite being implemented as a convolution operation. In the noise 

schedule of [19, 56], ����  was fixed at 0.01. This previous research performed noise 

scheduling on 8-bit natural images, not in 12-bit format. The models sufficiently generate the 

8-bit format because the diffusion coefficient of the perturbation process cannot offset the low-

frequency signals in an 8-bit format image. However, in 12-bit format, the diffusion coefficient 

can offset the low-frequency signals so the models cannot generate 12-bit formatted images.

To experimentally demonstrate this, we experimented two ����  and ���� ; 1) 0.01 and 

1,348, 2) 0.001 and 1,348, 3) 0.01 and 68, and 4) 0.001 and 68, respectively. Setting ���� to 

0.01 generated a noisy image as shown in the first and third columns of Figure 4. Particularly, 

perturbed noise makes it impossible to distinguish between white matter and gray matter. 

Otherwise, when ���� was reduced to 0.001, the generated image was well clarified in Figure 

4. We also evaluated the coefficient of variation (CV) in the inner brain of the generated images 

(omitting the bones and air from the windowing) at both noise levels [71]. As shown in Figure 

4, when the CV was low, anatomical structures are generated so that they may be distinguished. 

It was interpreted that reducing ���� improved the quality of the generated image. 
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Figure 4. Results according to ���� and ����. CV: coefficient of variation.

To quantitatively demonstrate the settings, we randomly generated 1,000 slices by each 

parameter and measured the CV. As shown Figure 5, the variance of CV was lowest when 

���� and ���� were 0.001 and 68, respectively. Compared to other parameters, the cleaner 

the images were generated the lower the noise variations were measured. Furthermore, a 

board-certified radiologist also qualitatively assessed that the images generated with a lower 

���� showed a cleaner image. Also, setting ���� to 68 is theoretically plausible according to 

previous study [21] because we preprocessed CT slices in the range of -1 to 1. 
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Figure 5. Results of coefficient of variation according to ���� and ����.

Unlike GAN, the score-based diffusion model can generate 12-bits format images. The clarity 

of the image is determined by the diffusion coefficient in the final stage, which generates the 

fine-grained regions. If the diffusion coefficient is approximately 0.01, there is noise smaller 

than 2 values if this value is in the 8-bit range (0 to 255). However, there will be noise within 

10 values if the value is in the 12-bit range (-1024, 3071HU). Therefore, since ���� has the 

greatest impact on the diffusion coefficient, it was crucial to lower its value.
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4. Data augmentation with isocitrate dehydrogenase type in glioma

The World Health Organization (WHO) recently advanced the role of molecular diagnosis in 

central nervous system tumor classification, and molecular results have now been added as 

biomarkers for tumor grading [72]. For example, isocitrate dehydrogenase (IDH) mutant 

astrocytomas are graded as WHO grade 2, 3, or 4, whereas all IDH-wild types are grade 4 [73]. 

The grade is therefore no longer restricted to being a histological grade, and the importance of 

molecular biomarkers such as IDH mutation is emphasized. Therefore, imaging phenotypes 

representative of IDH mutation need to be separately learned from grading phenotypes such 

as the degree of contrast-enhancement or tumor size; high-grade glioma tends to show larger 

tumor size and more contrast enhancement than lower-grade glioma [74, 75].

The natural prevalence of IDH mutation differs between grades, with all IDH-wild 

types being glioblastomas (WHO grade 4), whereas most IDH-mutant types are lower-grade 

gliomas (WHO grade 2 or 3). Several previous studies developed deep learning-based 

classification algorithms to predict IDH mutation status using the natural prevalence reflected 

in the study population [76, 77]. However, only a limited number of patients with IDH-mutant 

high-grade glioma were included in these studies, which raises a concern that deep learning 

algorithms may learn imaging phenotypes to distinguish lower- and higher-grade gliomas, 

rather than molecular subtypes. Since most neural networks use black-box type analytic 

engines that generate unexplainable feature vectors with limited insight into the underlying 

mechanism for image classification, these potential risks are worthy of further consideration

[78].

Image synthesis and augmentation with a generative model is a potential solution for 

medical deep learning models dealing with small or imbalanced clinical samples [79]. 

However, whether generated images can simulate various imaging phenotypes to improve 

classification performance remains unclear. Moreover, the optimal proportion of generated 

images to add to a classification model and the effects of adding specific imaging phenotypes 
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have not been studied. We therefore developed an imaging phenotype-based generative model 

augmentation (GMA) method and tested whether it could improve the classification of IDH 

type in glioma.

4.1. Materials and Methods

4.1.1. Dataset

This study is reported in accordance with the Standards for Reporting of Diagnostic Accuracy 

Studies (STARD) 2015 guidelines [80]. The study protocol was approved by the institutional 

review board of our institution, a tertiary referral hospital, which waived the requirement for 

informed consent as patient images were collected retrospectively and identification 

information was removed to achieve compliance with Health Insurance Portability and 

Accountability Act (HIPAA). The inclusion process for the study patients is shown in Figure 

6. A total of 839 patients (703 from dataset 1 and 136 from the Cancer Genome Atlas [TCGA] 

and Cancer Imaging Archive [TCIA]) who underwent preoperative MRI for newly diagnosed 

glioma (grades 2, 3, and 4) between August 2008 and September 2020 were considered for 

inclusion. The inclusion criteria were as follows: (i) pathologically confirmed glioma, (ii)

known IDH mutation status according to WHO 2016 and WHO 2021 criteria [73, 81], (iii) 

preoperative MRI including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-

weighted fluid-attenuated inversion recovery (FLAIR) imaging, and (iv) age ≥18 years. The 

exclusion criteria were as follows: (i) previous history of biopsy or surgery for brain tumor (n 

= 14), (ii) absence of CE-T1WI or T2 FLAIR images (n = 15), (iii) inadequate image quality 

(n = 12), and/or (vi) unknown IDH status (n = 28). Finally, 664 patients from dataset 1 and 

106 patients from TCGA were enrolled. These patients were allocated into development with 

stratified random sampling (n = 651, both dataset 1 and TCGA patients) and internal test sets 

(n = 119, dataset 1 patients). The development set was subsequently divided into training (n = 

565) and tuning (n = 86) sets. The patients in the development set were taken from two 
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different datasets to account for diverse imaging sequences from multiple centers. For an 

external test set, 108 patients imaged between July 2017 and October 2018 at the dataset 2 

were enrolled, in accordance with the previously stated inclusion and exclusion criteria. 

Table 1. Patient characteristics and molecular subtypes

Training set Internal P External P*

Number of patients 565 119 108

Dataset AMC + 

TCGA
AMC Severance

Age (years) 53.5 ± 14.6 56.4 ± 13.9 .06 56.9 ± 15.6 .05

Sex .95 .70

Male 320 

(56.6%)
67 (56.3%) 59 (54.6%)

  Female 245 

(43.4%)
52 (43.7%) 49 (45.4%)

IDH status .38 .29

  Wild type 346 

(61.2%)
78 (65.5%) 72 (66.7%)

  Mutant type 219 

(38.8%)
41 (34.5%) 36 (33.3%)

WHO grade .02 .18

2 98 (17.3%) 31 (26%) 11 (10.2%)

  IDH wild type 26 9 2

  IDH mutant + 1p/19q non-codeletion 72 20 9

IDH mutant + 1p/19q codeletion 0 2 0

3 97 (17.2%) 12 (10.1%) 20 (18.5%)

  IDH wild 48 6 10

  IDH mutant + 1p/19q non-codeletion 30 4 2

IDH mutant + 1p/19q codeletion 19 2 8

IV 370 

(65.5%)
76 (63.9%) 77 (71.3%)

  IDH wild 307 63 60

  IDH mutant + 1p/19q non-codeletion 8 1 0

IDH mutant + 1p/19q codeletion 2 1 0

IDH mutant + 1p/19q status not 

specified
53 11 17

Note: P indicates statistical significance between training and internal validation sets. P* 

indicates statistical significance between training and external validation sets. Data are 

expressed as mean ± standard deviation. Abbreviation: IDH = isocitrate dehydrogenase.
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4.1.2. IDH mutation status and image preprocessing

IDH mutation status was analyzed by members of the pathology division of our hospital, who 

were blinded to the radiologic results. Before 2017, the reference standard consisted of 

immunohistochemical determination of IDH1 (R132H) protein expression [82]. Mutations in 

IDH1 and IDH2 genes were determined by DNA pyrosequencing at diagnosis. From 2017, 

next generation sequencing was performed as routine practice, and IDH gene mutation status 

was diagnosed. 

All enrolled patients from our institution underwent MRI on a 3.0 Tesla scanner

(Achieva or Ingenia, Philips Medical Systems) using a 16 channel or 32 channel head coils. 

The MRI protocols included T2-weighted imaging (T2WI), FLAIR imaging, T1-weighted 

imaging (T1WI) , and CE-T1WI. The CE-T1WI images were obtained as a high-resolution 

three-dimensional (3D) volume, using a gradient-echo T1WI with the following parameters: 

repetition time (TR)/echo time (TE), 9.8/4.6 ms; flip angle, 10°; field of view (FOV), 256 x 

256 mm; matrix, 512 × 512; and slice thickness, 1 mm with no gap. The parameters for FLAIR 

imaging included TR/TE, 9000/135 ms; flip angle, 90°; FOV, 240 x 240mm; matrix, 512 × 

512; and slice thickness, 4 mm with no gap. To prepare the training data, the preprocessing 

methods were used co-registration between the 3D contrast-enhanced T1-weighted and FLAIR 

images using rigid transformations with six degrees of freedom in SPM12 [83], skull stripping 

using HD-BET algorithms [84] to remove non-brain tissues, intensity clipping to convert the 

original 16-bit MR images to 8-bit by clipping the lower 1% of intensities, slice selection by 

including only slices with tumors larger than 100 pixels, data cleansing by identifying and 

excluding incorrect and inconsistent data types, and anonymization by removing all 

identifying information from the images and using de-identified data for analysis.
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Figure 6. Flow diagram of the training, model development, and internal and external 

testing. AMC = Asan Medical Center; TCGA = The Cancer Genome Atlas.

For the quantitative evaluation of generative model, Fréchet inception distance (FID) scores 

of IDH-mutant and IDH-wild type were 10.54 and 8.33, respectively.

4.1.3. Imaging phenotype

The primary endpoints of our study were as follows: (1) optimization of the number of training 

images using a deep generative model for IDH mutation prediction with GMA, and (2) 

exploration of imaging phenotype-based GMA and determination of the optimum imaging 

phenotype-based GMA to improve IDH mutation prediction via a deep generative model. 
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The imaging phenotype-based GMA was developed using the Visually AcceSAble 

Rembrandt Images (VASARI) lexicon, which is a rule-based lexicon to improve the 

reproducibility of interpretation of gliomas and attempts to standardize visual interpretation of 

malignant gliomas [85]. Among the qualitative features, we chose the semiquantitative 

contrast-enhancement pattern for imaging phenotype-based GMA: the proportion of contrast-

enhancement was measured, and more than 30% was defined as predominant enhancement, 

whereas less than 5% was defined as no enhancement. The segmentation output included 

enhancing tumor, nonenhancing tumor, and internal necrosis (if present). The proportion of 

contrast enhancement (CE) was calculated as follows: (enhancing tumor/ [enhancing tumor + 

any necrosis + nonenhancing tumor] × 100). This parameter was used as the imaging 

phenotype of CE. 

Next, the tumor size was defined as large or small according to whether it was above 

the 75th percentile or below the 25th percentile of the real data. The median and range of the 

whole tumor area (enhancing tumor + necrosis + nonenhancing tumor) were 4059 voxels 

(40.59 mm2). On the basis of the real data, we defined regions containing more than 5655 

voxels (56.55 mm2) as large (>75th percentile) and those with less than 2589 (25.89 mm2) as 

small (<25th percentile) in Figure 7. 
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Figure 7. Histogram of tumor size in the real data. A large tumor size was defined as that 

above the 75th percentile of tumor size and a small tumor as below the 25th percentile.

4.2. Results

4.2.1. Evaluation by human readers

To assess the authenticity of generated images, 200 pairs of CE-T1WI and FLAIR images 

were randomly selected from both the generated and real datasets for evaluation. Two 

neuroradiologists with different levels of experience in neuro-oncologic imaging were asked 

to independently determine whether each pair of images was real or fake through a visual 

Turing test. The accuracy of their classifications was then calculated as the percentage of 

correct identifications between real and fake images.

To validate the accuracy of the imaging-based phenotypes, 200 pairs of contrast-enhanced 

T1WI and FLAIR images were randomly selected from both the IDH wild-type and IDH-

mutant generation networks. However, 13 pairs from the IDH wild-type network and 36 pairs 

from the IDH-mutant network were excluded because they did not show the maximum tumor 
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portion. As a result, a total of 151 paired images were evaluated based on their imaging-based 

phenotype.

Two neuroradiologists, H.H.M and J.E.P, who respectively had 2 and 8 years of experience in 

neuro-oncologic imaging, evaluated the generated images without knowledge of their 

corresponding generative network. They assessed the images using VASARI features such as 

tumor location, proportion of enhancement, multifocal or multicentric features, and cortical 

involvement, as well as other reproducible qualitative features like the presence of necrosis 

and the margin of non-enhancing lesions [86]. The tumor location was specified according to 

the tumor epicenter. 

In generated images, the tumor location, proportion of enhancement, presence of cortical 

involvement, and presence of necrosis were significantly different between IDH-wild and 

IDH-mutant types according to chi-square tests. The IDH wild-type group had higher rates of 

nonlobar location (4.5% [4/87] in IDH-wild type and 0% [0/64] in mutant-type, P=.027) and 

necrosis (70.1% [60/87] in IDH-wild type and 25% [16/64] in mutant-type, P < .001), and had 

a higher proportion of enhancement than the IDH-mutant type group (P = .025). Of 87 cases 

in the IDH wild-type group, 18 (20.7%) were classified as 68–100% enhancement, 36 (41.4%) 

as 34–67%, 12 (13.8%) as 6–33%, and 21 (24.1%) as <5%. Of the 64 cases in the IDH-mutant 

type group, 3 (4.7%) were classified as 68–100% enhancement, 17 (26.6%) as 34–67%, 5 

(7.8%) as 6–33%, and 39 (60.9%) as <5%. The IDH-mutant type group had more cases with 

a frontal location (40.2% [35/87] in IDH-wild type and 59.4% [38/64] in mutant-type, P = .027) 

and cortical involvement (60.9% [53/87] in IDH-wild type and 78.1% [50/64] in mutant-type, 

P = .025). However, a multifocal or multicentric distribution and the margin of nonenhancing 

lesion showed no significant difference between the two subtypes (P = .871 and .093, 

respectively).

In real images, the tumor location, proportion of enhancement, presence of cortical 
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involvement, and presence of necrosis, and margin of nonenhancing lesion were significantly 

different between IDH-wild and IDH-mutant types. The IDH wild-type group had higher rates 

of nonlobar location (% [8/82] in IDH-wild type and % [2/89] in mutant-type, P < .001) and 

necrosis (56.1% [46/82] in IDH-wild type and 23.6% [21/89] in mutant-type, P < .001), and 

had a higher proportion of enhancement than the IDH-mutant type group (P < .001). The IDH-

mutant type group had more cases with a frontal location (29.3% [24/82] in IDH-wild type 

and 66.3% [59/89] in mutant-type, P < .001) and cortical involvement (59.8% [49/82] in IDH-

wild type and 88.8% [79/89] in mutant-type, P < .001). However, a multifocal or multicentric 

showed no significant difference between the two subtypes (P = .425).

4.2.2. Deep learning-based prediction of IDH type using the real data and nonselective GMA

The study evaluated the diagnostic performance of the model for classifying IDH mutation 

status in an internal test set. In Table 2, the performance was assessed based on different levels 

of data augmentation. The null model without augmentation had an accuracy of 81.5% and an 

AUC of 0.900. The best performance was achieved with 110,000 generated images added to 

the original images, resulting in an AUC of 0.938 and an accuracy of 85.7%. The model was 

also evaluated on an external test set, where it achieved an AUC of 0.833 and an accuracy of 

75.0% with the optimal level of data augmentation. Sensitivity, specificity, PPV, and F1 score 

were also reported for each case.

Table 2. Diagnostic performance for the classification of IDH-mutation status with addition 

of generated images without imaging feature selection in internal test set (per patient)

AUC

(95% CI)
Accuracy Sensitivity Specificity PPV F1 score

0 0.900

(0.833-0.966)

81.5% 

(97/119)

56.1% 

(23/41)

94.9% 

(74/78)

0.852 

(23/27)

0.677

1U 0.922 

(0.862-0.981)

78.2% 

(93/119)

90.2% 

(37/41)

71.8% 

(56/78)

0.627 

(37/59)

0.740
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2U 0.895 

(0.826-0.963)

82.4% 

(98/119)

53.7% 

(22/41)

97.4% 

(76/78)

0.917 

(22/24)

0.677

3U 0.913 

(0.850-0.975)

82.4% 

(098/119)

56.1% 

(23/41)

96.2% 

(75/78)

0.885 

(23/26)

0.687

4U 0.906

(0.842-0.971)

84.9% 

(101/119)

80.5%

(33/41)

87.2% 

(68/78)

0.767

(33/43)

0.786

5U 0.907 

(0.842-0.971)

80.7% 

(96/119)

87.8% 

(36/41)

76.9% 

(60/78)

0.667 

(36/54)

0.758

6U 0.929 

(0.873-0.986)

86.6% 

(103/119)

73.2%

(30/41)

93.6% 

(73/78)

0.857 

(30/35)

0.790

7U 0.928

(0.871-0.985)

84.9% 

(101/119)

73.2% 

(30/41)

91.0% 

(71/78)

0.811 

(30/37)

0.769

8U 0.881 

(0.809-0.953)

66.4% 

(79/119)

92.7%

(38/41)

52.6% 

(41/78)

0.507 

(38/75)

0.655

9U 0.900 

(0.834-0.967)

82.4% 

(98/119)

58.5% 

(24/41)

94.9% 

(74/78)

0.857 

(24/28)

0.696

10U 0.914

(0.852-0.976)

83.2% 

(99/119)

63.4% 

(26/41)

93.6% 

(73/78)

0.839 

(26/31)

0.722

11U

(*)

0.938 

(0.885-0.991)

85.7% 

(102/119)

75.6% 

(31/41)

91.0% 

(71/78)

0.816 

(31/38)

0.785

12U 0.882

(0.811-0.954)

83.2% 

(99/119)

68.3% 

(28/41)

85.9% 

(67/78)

0.800 

(28/35)

0.737

13U 0.942 

(0.890-0.993)

84.0% 

(100/119)

75.6% 

(31/41)

94.9%

(74/78)

0.775 

(31/40)

0.765

14U 0.918 

(0.857-0.979)

82.4% 

(98/119)

87.8% 

(36/41)

84.6% 

(66/78)

0.692 

(36/52)

0.774

15U 0.905 

(0.839-0.970)

84.0% 

(100/119)

75.6% 

(31/41)

100% 

(78/78)

0.775 

(31/40)

0.765

Note: 1U (unit) refers to a set of 10,000 synthetic images, consisting of 5,000 images of IDH 

mutant and 5,000 images of IDH wild types. AUC: area under the receiver operating 

characteristics curve; PPV: positive predictive value. (*): optimal augmentation.

4.2.3. Deep learning-based prediction of IDH type using imaging phenotype-based GMA 

according to tumor size

The effects of tumor size-based GMA on the internal and external test sets are summarized 

according to tumor size in Table 3. Compared with GMA, imaging phenotype-based GMA 

with a large tumor size showed similar results in both internal and external test sets (internal 

test set: AUC 0.956, 95% CI: 0.911–1, accuracy 86.6% [103/119]; external test set: AUC 0.810, 
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95% CI: 0.716–0.903, accuracy: 77.8% [84/108]). Adding a large tumor size improved 

classification model accuracy and specificity in both internal and external test sets (internal 

test set: accuracy 86.6% [103/119], specificity 100% [78/78]; external test set: accuracy 77.8% 

[84/108], specificity 87.5% [63/72]), but it did not reach statistical significance. The specificity 

of the classification model represented the ability to predict the IDH-wild subtype in true IDH 

wild-type patients.

Compared with optimal GMA, imaging phenotype-based GMA with a small tumor size 

reduced accuracy and sensitivity of the classification model in both internal and external test 

sets (internal test set: accuracy 70.6% [84/119], sensitivity 14.6% [6/41], P = <.00, both; 

external test set: accuracy 69.4% [75/108], sensitivity 13.9% [5/36], P = <.00, both) while 

increasing specificity (internal test set: 94.9% [74/78]; external test set: 97.2% [70/72], P = .02 

and <.00, respectively) with statistical significance. The specificity of the classification model 

represented the ability to predict the IDH-wild subtype in true IDH wild-type patients.

Table 3. Effect of image features in the generated images according to size on the classification 

of IDH-mutation status

Parameter Internal

Size Optimal Small Large P P*

F1 score 0.785 0.255 0.784

AUC
0.938 

(0.885-0.991)

0.896 

(0.828-0.967)

0.956 

(0.911-1.000)
.09 .22

Accuracy
85.7% 

(102/119)

70.6% 

(84/119)

86.6% 

(103/119)
<.001 .23

Sensitivity 75.6% (31/41) 14.6% (6/41) 70.7% (29/41) <.001 .69

Specificity 91.0% (71/78) 94.9% (74/78) 100% (78/78) .02 .38

Parameter External

Size Optimal Small Large P P*
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F1 score 0.64 0.233 0.636

AUC
0.833 

(0.744-0.922)

0.847 

(0.761-0.933)

0.810 

(0.716-0.903)
.68 .53

Accuracy
75.0 % 

(81/108)

69.4% 

(75/108)

77.8% 

(84/108)
<.001 .08

Sensitivity 66.7% (24/36) 13.9% (5/36) 58.3% (21/36) <.001 .51

Specificity 79.2% (57/72) 97.2% (70/72) 87.5% (63/72) <.001 .15

Note: P indicates statistical significance between optimal augmentation and small 

augmentation using DeLong’s test and McNemar’s test. P* indicates statistical significance 

between optimal augmentation and large size using DeLong’s test and McNemar’s test.

4.2.4. Deep learning-based prediction of IDH type using imaging phenotype-based GMA 

according to CE

The effect of imaging phenotype-based GMA performed according to CE in the internal and 

external test sets is summarized in Table 4. Compared with optimal GMA, CE-based GMA 

showed similar results in internal test set with the addition of either predominant CE (AUC 

0.922, 95% CI: 0.863–0.982, accuracy: 83.2% [99/119]) or no CE (AUC 0.903, 95% CI: 

0.838–0.969, accuracy: 81.5% [97/119]). Imaging phenotype-based GMA with no CE reduced 

AUC, accuracy, and specificity of the classification model in external test sets (AUC 0.765, 

95% CI: 0.664–0.867, accuracy: 68.5% [74/108], specificity: 65.3% [47/72], P = .04, <.00, 

and .02, respectively) while increasing sensitivity (75.0% [27/36], P = .02) with statistical 

significance. The sensitivity of the classification represented the prediction of IDH mutation 

type in the true IDH mutation patients.

Representative cases of fully automated IDH mutation classification with CAM are shown in 

Figure 8. The main activation area was the enhancing tumor areas if the tumor had 

predominant contrast enhancement, whereas the main activation area involved the entire tumor 

and peritumoral edema if the tumor had no enhancement.

Table 4. Effect of image features in the generated images according to CE on the classification 
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of IDH-mutation status

Parameter Internal

Contrast 

enhancement
Optimal No CE

Predominant 

CE
P P*

F1 score 0.785 0.732 0.767

AUC
0.938 

(0.885-0.991)

0.903 

(0.838-0.969)

0.922 

(0.863-0.982)
.36 .19

Accuracy
85.7% 

(102/119)

81.5% 

(97/119)

83.2% 

(99/119)
.12 .66

Sensitivity 75.6% (31/41) 73.2% (30/41) 80.5% (33/41) .73 1

Specificity 91.0% (71/78) 85.9% (67/78) 84.6% (66/78) .13 .39

Parameter External

Contrast 

enhancement
Optimal No CE

Predominant 

CE
P P*

F1 score 0.64 0.614 0.587

AUC
0.833 

(0.744-0.922)

0.765 

(0.664-0.867)

0.749 

(0.646-0.853)
.04 .09

Accuracy
75.0% 

(81/108)

68.5% 

(74/108)

58.3% 

(63/108)
<.001 .01

Sensitivity 66.7% (24/36) 75.0% (27/36) 88.9% (32/36) .02 .45

Specificity 79.2% (57/72) 65.3% (47/72) 43.1% (31/72) <.001 .02

Note: P indicates statistical significance between optimal augmentation and no contrast 

enhancement (CE) augmentation using DeLong’s test and McNemar’s test. P* indicates 

statistical significance between optimal augmentation and predominant CE augmentation

using DeLong’s test and McNemar’s test. 

Representative cases of fully automated IDH mutation classification with CAM are shown in 

Figure 8. The main activation area was the enhancing tumor areas if the tumor had 

predominant contrast enhancement, whereas the main activation area involved the entire tumor 

and peritumoral edema if the tumor had no enhancement.
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Figure 8. Representative cases of fully automated IDH-mutation classification with class 

activation maps (CAM) for paired contrast-enhanced T1-weighted images and FLAIR images. 

IDH-wild type glioma is shown on the left, and IDH-mutant type glioma is shown on the right. 

IDH-wild type glioma presented as a predominantly enhancing mass with central necrosis [87]. 

The main activation area of the CAM involved enhancing tumor. IDH-mutant type glioma 

presented as a nonenhancing tumor with FLAIR hyperintensity. The main activation area of 

the CAM involved the entire tumor and peritumoral edema.
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5. Image-to-image translation with H&E staining normalization of whole slide imaging

Digital pathology has made whole slide imaging (WSI) useful in different areas such as 

surgical pathology, diagnostic pathology, and education [88-91]. This technology has also 

enabled the development of deep learning (DL) models for pathology, leading to the creation 

of various DL models for tasks like pathology image segmentation and brain tumor type 

classification [92, 93].

Hematoxylin and eosin (H&E) staining is the standard in medical pathology, but the dosage 

ratio is not standardized, and the stain fades at different rates, causing variations in images. 

Stain normalization is crucial in DL of digital pathology to address these issues. Various 

methods, such as conventional techniques, autoencoders [94], and GANs [95], have been 

developed to normalize histopathologic images. However, conventional methods like 

Macenko [96] and Vahadane [97] can lead to tissue structure and texture loss during stain 

normalization based on reference images.

To address the challenges in stain normalization of WSIs, patch-wise DL-based normalization 

approaches were developed due to the large image size. However, these methods can result in 

grid artifacts at the patch boundary caused by the 3x3 kernel size of the convolution operation, 

which performs a weight summation among local pixels [98]. While using a 1x1 kernel or 

weighted summation of neighborhood output's pixel can mitigate the issue, there are still 

potential risks like overfitting and contrast differences between adjacent patches.

As mentioned in Section 2.3.5, the application of diffusion models in inpainting and 

colorization has also shown significant results. Therefore, we attempted to apply this method 

to stain normalization. Paradoxically, the high generative ability of diffusion models can lead 

to color mistransfer in stain normalization. To prevent this issue, researchers have proposed a 

stain separation technique that decomposes the H&E stain into hematoxylin and eosin 

components. This approach aims to limit the capabilities of diffusion models and ensure 

accurate stain normalization results.
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To prevent grid artifacts in the normalized WSIs, researchers used an overlapped moving 

window patches approach for inpainting. Additionally, they developed a patch-wise stain 

normalization technique using a diffusion models with stain separation and overlapped moving 

window patch strategies. This approach aimed to improve the accuracy of stain normalization 

in digital pathology images.

5.1. Dataset

This study used histopathologic WSIs of the colon stained with H&E from Asan Medical Ce

nter in 2009, 2012, 2015, and 2019. The WSIs from 2019 were used to train the SDM model,

and 100,000 patches of 256×256 size were extracted from each WSI [99]. The CAMELYON

16 [100] and PAIP2019 [101] datasets, which consist of WSIs of hepatic lymph nodes and he

patocellular carcinoma stained with H&E, were used for external validations.   

5.2. Stain normalization without stain separation

The researchers began by converting patch images from different years into grayscale 

images by taking the average of their RGB channels. Then, they applied Algorithm 2 of 

Section 2.4 to normalize the grayscale images. As shown as Figure 9, although the resulting 

images showed consistent normalization, there was a critical issue in which red blood cells 

and eosinophils appeared purple in some regions of the images, instead of the expected red 

color. This could lead to misdiagnosis of important pathologies, such as inflammation, as 

normal. The researchers suspected that this problem arose from the loss of information that 
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occurred during the averaging process of RGB channels into grayscale images. 

Figure 9. The results of stain normalization w/o stain separation in 09, 12 and 15 years. Images 

of left column is original, and right is normalized image. Red boxes show the regions where it 

should be red, such as red blood cells or eosinophils, turned into purple.

5.3. Stain normalization with stain separation

To address the challenge of high diversity in histological images, the study utilized stain 

separation to separate hematoxylin and eosin stains from the H&E-stained images. For this 

purpose, sparse non-negative matrix factorization (SNMF) [102] was employed, which uses 

color deconvolution in the Vahadane [97] method to provide stain information for the model. 

This approach was developed to overcome the limitations of non-negative matrix 

factorization [103], which is not suitable for large histological image datasets with 

considerable color variation [97]. 

To perform stain normalization, two separate SDM models were trained on the hematoxylin 

and eosin stain spaces. Prior to training, SNMF method was used to perform color 

deconvolution and separate the stains. After training, the SDM models were applied to the 

separated stain images from the source image. The normalization was performed using PC 
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sampling Algorithm 2 and the resulting normalized images were obtained. The overall 

process is illustrated in Figure 10.

Figure 10. Flow chart of the method using hematoxylin and eosin processes. Using sparse 

non-negative matrix factorization (SNMF), histological images separate to hematoxylin and 

eosin representation.

To normalize whole slide images (WSI), a moving window approach is being used. Initially, 

the first patch of the hematoxylin and eosin WSI is normalized using Algorithm 1. Then, the 

window is shifted by the overlapped ratio of the previously normalized patch to prepare the 

patch for subsequent normalization. By alternating colorization and inpainting, the non-

overlapping regions are also normalized. This method has been shown to produce realistic and 

consistent results in previous studies [104]. In contrast to other patch-wise stain normalization 

methods, grid artifacts have not been observed in the results of this approach.

5.4. Performance evaluation criterion
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The Pearson correlation coefficient (PCC) is used in this experiment to evaluate color 

consistency and compare intensity statistics over the whole slide image. where S and P are 

the source whole slide image and processed whole slide image, respectively. And μS and μP 

are the mean of original and processed images, respectively. Also, the image quality is 

evaluated as multiple quan- titative measurements, including universal quality image index 

(UQI) [105], erreur relative global adimensionnelle de synth`ese (ERGAS) [106], multiscale 

structural similarity index (MS-SSIM) [107], peak signal-to-noise ratio (PSNR), root mean 

square error (RMSE).

���(�, �) =
∑ (S� − μ�)(P� − μ�)�

�∑ (S� − μ�)
�

� �∑ (�� − μ�)
�

�

5.5. Result

5.5.1. Quantitative and Qualitative Results

Stain normalization was performed on WSI with a patch-wise SDM model trained using 

stain separation. We tested the SDM model with an overlapping ratio of γratio = 0.05. The 

Pix2PixHD model was also trained in a self-supervised manner with the grey2color method 

[108]. Two Pix2PixHD models, like ours, were trained to translate from grey to hematoxylin 

and eosin stains, respectively. In addition, we tested the Macenko [96] and Vahadane [97]

method using a conventional method. The result of Pix2PixHD has observed the grid artifact, 

which is performed by patch-wise stain normalization. However, the SDM model has not 

observed the grid artifact even though performed by patch-wise stain normalization. The 

result is shown in Figure 11.
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Figure 11. Results of stain normalization with whole slide image of 09, 12 and 15 years, and 

two external datasets, Camelyon and PAIP.  

Table 5 shows a quantitative metrics with two-conventional stain normalization methods 

[96, 97], GAN-based method [108] and ours. Our method outperformed Vahadane and 

Macenko in most metrics. We interpreted that the conventional methods were successful 

since we normalized to a histopathological image stained by the same institute. However, as 

shown in Figure 11, when normalizing histopathological images from different protocols, 

the color of the cell does not normalize compared to tissue in the conventional methods. On 

the other hand, our method’s obvious normalization between cell and tissue was performed. 

Also, all quantitative results from external validation are inferior when using conventional 
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methods. Therefore, because the conventional method overfits the histopathological image of 

the same institution, the metric was showed to be high. Furthermore, forcing the reference 

image in conventional methods has some limitations. 

Table 5. The quantitative comparisions with whole slide image from 09, 12, and 15 years. As 

well, the PAIP19 and CAMELYON16 datasets were evaluated the metrics: UQI (uni- versal 

quality index), ERGAS (erreur relative globale adimensionnelle de synth`ese), MS- SSIM 

(multi-scale structural similarity index), PSNR (Peak signal-to-noise ratio), RMSE (Root 

mean square error) and PCC (Pearson correlation-coefficient).

UQI ERGAS MS-SSIM PSNR RMSE PCC

09 Years

Ours 0.9905 3356 0.9756 24.31 15.52 0.9901

Pix2PixHD 0.9775 4759 0.9263 21.90 20.76 0.9639

Macenko 0.9928 2744 0.9730 25.96 13.80 0.9706

Vahadane 0.9863 4101 0.7740 21.75 21.56 0.8419

12 Years

Ours 0.9809 4351 0.9516 21.61 21.18 0.9900

Pix2PixHD 0.9739 5599 0.8967 20.38 24.68 0.9555

Macenko 0.9970 1836 0.9861 29.02 9.33 0.9758

Vahadane 0.9927 3120 0.8905 24.05 16.09 0.9380

15 Years

Ours 0.9921 2399 0.9795 26.42 12.18 0.9928

Pix2PixHD 0.9833 4966 0.7070 19.97 25.57 0.9786

Macenko 0.9937 2481 0.9792 26.11 13.02 0.9779

Vahadane 0.9907 3178 0.8424 23.30 17.66 0.8964

PAIP19

Ours 0.9794 4791 0.9697 23.85 16.20 0.9485

Pix2PixHD 0.9661 6363 0.9567 20.22 28.46 0.9324

Macenko 0.9327 8661 0.9099 17.06 40.47 0.9476

Vahadane 0.9280 9237 0.7930 16.00 44.13 0.8733

CAMELYON16

Ours 0.9297 8513 0.9578 19.79 28.66 0.9568

Pix2PixHD 0.9063 9759 0.9592 17.52 37.62 0.9344

Macenko 0.8182 13729 0.8372 12.45 63.54 0.9016

Vahadane 0.8191 13395 0.6862 12.77 63.41 0.8130
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5.5.2. Result of overlapping

To confirm grid artifacts can be overcome by overlapping and to inves- tigate the optimal 

coefficient of overlapping ratio, we normalized ratio γratio = 0 (non-overlapping), 0.05, 0.25, 

0.50, and 0.75. Without overlapping, each patch can be normalized in various colors, as 

shown in Figure 12(b), due to the powerful generative performance of the SDM model. 

However, the grid artifact was not observed when overlapping was used regardless of 

overlapping ratio γratio. 

Table 6 shows a comparison of relative time cost and MS-SSIM, for γratio = 0.00 (non-

overlapping), 0.05, 0.25, 0.50, and 0.75. The relative time cost can be saved quadratically as 

the overlapping ratio decreases while the performance improvement can be preserved. 

Table 6. The relative time cost, MS-SSIM (multi-scale structural similarity index mea- sure), 

PCC(Pearson correlation coefficient) and PSNR(peak signal-to-noise ratio) of patch, which is 

a 512 × 512 patch of 2015 year WSI. γratio refers to the overlapping ratio.

γratio .75 .50 .25 .05 Non-overlapping

Relative time cost 100% 30.9% 19.8% 11.1% 10.1%

PCC 0.9917 0.9920 0.9893 0.9883 0.9878

MS-SSIM 0.9237 0.9167 0.9097 0.9113 0.9029

PSNR 27.69 28.90 28.15 27.80 22.96
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Figure 12. The results of various overlapping ratio. γratio refers to the overlapping ratio.

6. 3D generation in brain CT

Recent advancements in computational resources have enabled the development of 3D deep 

learning models such as 3D classification and 3D segmentation. 3D models have attracted 

much attention in the medical domain because they can utilize the 3D anatomy and pathology. 

However, access to 3D medical imaging datasets is severely limited by patient privacy laws. 

This inaccessibility can be largely circumvented by generating very realistic fake data. As is 

well known, data insufficiency or data imbalance can be overcome with a well-trained 

generative model [12, 13]. However, generating images with intact integrity and distribution 

in the 3D volume is very difficult because resources are limited. Generating satisfactory high-

resolution images [10] in the 12-bit format of real clinical settings is also difficult. The present 

study proposes a 2D-based 3D-volume generation method that uses the previous slice to 
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generate an adjacent axial slice. We call this method adjacent slice-based conditional iterative 

inpainting, ASCII. 

ASCII is combined with a score-based diffusion model to generate images in 12-bit format. 

Experiments demonstrated that ASCII could generate 3D volumes with intact 3D integrity and 

distribution. However, in 12-bit format, the intensity windowing of cerebral parenchymal 

tissues was improperly calibrated in some slices. To resolve this problem, we proposed an 

additional novel intensity-calibration network (IC-Net), which is trained in a self-supervised 

manner to match the intensities of the previous and next-generated slices.

Finally, we will discuss 12-bit whole range generation. The anatomical structures, which are 

low signal regions like the parenchyma, collapse at the windowing view when GANs or VAEs 

generates in 12-bit Hounsfield unit whole range. We address the limitations of GAN and VAE 

for 12-bit whole range generation as well as the possibilities of the diffusion model.

6.1. Material and Methods

6.1.1. Adjacent Slice-based Conditional Iterative Inpainting, ASCII

Figure 13. The progress of score-based diffusion model for continuous K slices. We selected 
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contiuous K slices among total Ns slices. To generate a continuous K slices, the score-based 

diffusion model is trained.

Our goal is to generate a 3D volumetric image in a slice-wise manner using a binary mask, 

which is moved along the channel axis and K = 2 or 3 in the VESDE. A slice �� =

{−������}� filled with intensity of air was padded before the first slice  �� of CT. Then, 

the input of the model was given by ���: �������, where � ∈ [�,�� − �+ �] and ��  is the 

total slice number of CT. In addition, we omit augmentation because the model itself might 

generate augmented images. As shown in Figure 13, it presents a training schema.

After training the score network, we can solve unconditional stochastic process ��
� , where 

��
� ∼ �(��

�|�� , �(�)�) for generation. With the previous slice given as seed, to generate the 

next slice by inpainting is the key to our method. First, we defined a channel mask, which is a

diagonal matrix Λ ∈ 0,1� ×� ���ℎ ��(Λ) = � − 1  and Λ�,� = 0.  Next, let ��  be the initial 

seed slice of inpainting step, then ��  was generated by conditional stochastic process 

{���
�|��}�∈[�,�] , where ���

� = (� − Λ)⊗ ��
� + Λ⊗ ��

�  , where ⊗  is channel-wise product as 

��ℎ�, ��’ → ��’ℎ� in Einstein notation and it was set to be the seed of generating next slice 

��. After setting the slice generated from the previous step as the seed of next step, the model 

iteratively generates a next adjacent slice. Finally, when the whole process is performed 

iteratively, the volumetric CT was sequentially generated by solving conditional stochastic 

processes {���
�|����}�∈[�,�],�∈[�,��} , where ���

� = (� − Λ)⊗ ��
� + Λ⊗ ��

��� .  We call this 

method adjacent slice-based conditional iterative inpainting, ASCII. We performed two 

experiments with CT volumetric image generation using ASCII. The first experiment 

performed in the windowing range generation, and the second performed in the whole range 

generation.
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6.1.2. Result of ASCII

We experimented ����, ���� and K to 0.01, 1,348 and 2 with VESDE, respectively. Also, 

total timesteps of stochastic process T set 1,000. And, the CT slices were clipped by [-10HU, 

70HU] and normalized from [-10HU, 70HU] to [-1, 1]. Figure 14 shows the generated results, 

there is no discernible difference between reals and fakes. Both white matter and grey matter 

can be clearly distinguished, as well as the continuity between adjacent slices is kept properly. 

The result of sequential synthesis with previous slices is presented in Figure 2.

Figure 14. (Up) Results of ASCII trained in windowing range with sagittal and coronal views. 

(Down) Results of ASCII trained in windowing range with axial view.

6.1.3. Result of ASCII in 12-bit whole range

We experimented ����, ���� and K to 0.001, 68 and 2 with VESDE, respectively. And, the 

CT slices were normalized from [-1024HU, 3071HU] to [-1, 1]. The result of sequential 

synthesis with previous slices is presented in Figure 5, the model is well generated in each 

axial view image. The anatomical structure was consistent and well-generated even in the 

windowing view. However, the contrast of each image is not calibrated and therefore, the stripe 

artifacts are created in sagittal and coronal image as shown in Figure 15. Theoretically, ����

and schedule are expected to be solved by creating smaller and longer, but this cannot be 

performed because the computational cost grows. 
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Figure 15. (Left) Results of ASCII with axial view in whole and windowing range. (Right) 

Results of ASCII with sagittal and coronal view in whole and windowing range.

6.1.4. Intensity Calibration Network

It was noted that this problem only occurs in 12-bit generation. To normalize the intensity 

of the parenchyma area, we used a conventional non-trainable post-processing, such as 

histogram matching. The intensities of each slice of 3D CT can be calibrated by histogram 

matching, however, anatomical region is collapsed accordingly. Because each slice has 

different anatomical structure, the histogram of each slice image was fitted to their subtle 

anatomical variation. Finally, we proposed a solution for this intensity mismatching through 

trainable intensity calibration network: IC-Net.

In a recent study [109], additional network was trained to generate elaborate images. Our 

objective is to calibrate intensity, we proposed a training method of self-supervised manner. 

First, adjacent two slices from real CT images, �� , ���� were clipped using the window of 

which every brain anatomy HU value can be contained. Second, the intensity of ���� in ROI 
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is randomly changed and the result is ���
���,

���
��� = ����� − ����������� ∗ μ + ����������

where  ���������� and � are the mean of ���� and shifting coefficient, respectively.

Finally, intensity calibration network, IC-Net was trained to calibrate the intensity of ���� to 

the intensity of �� . The objective of IC-Net was to preserve the subtle texture and the shape of 

a generated slice and only calibrate the intensity of �� . The current slice is normalized by the 

IC-Net using the prior slice. The loss function of IC-Net is given by,

ℒ�� = ����~�[��.�,�.�]����-�������
���, ��� − ������

As shown in Figure 16, some important anatomical structures, such as midbrain, pons, 

medulla oblongata, and cerebellar areas, are blurred and collapsed when histogram matching 

was used. This is a risky method as the outcomes vary depending on the matching seed. On 

the other hand, In the anatomical structure, the IC-Net did not collapse. Also, there is no 

requirement to specify the seed because normalization is carried out using the produced 

adjacent slice. 
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Figure 16. Result of post-processing. First row is generated by ASCII and second and third 

row are post-processing of first row using IC-Net and histogram matching, respectively.

Finally, the overview of ASCII with IC-Net is shown in Figure 17.
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Figure 17. The overview of ASCII(2) with IC-Net. We set seed x0 to fill with intensity of air 

(-1024 HU) and channel mask Λ. x1 was generated by using seed x0. The brain CT volume 

data was generated by iterative processing this procedure with changed seeds. The model 

architecture of IC-Net is presented.

6.1.5. Dataset and model architecture

A total of 34,085 non-contrast brain CT scans and paired radiology reports were 

retrospectively collected from patients who visited an urban, tertiary, academic hospital 

between January 1, 2000, and August 31, 2018. Among the scans, we only selected CT scans, 

which consist of 32 slices, each of 5-mm thick. The study protocol was approved by 

institutional review board of Asan Medical Center and Gangneung Asan Hospital. Finally, we 

split 1,500 brain CT scans at random to evaluate metrics. Figure 18 summarizes the data 

collection and curation process.
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Figure 18. Data flow of diagram and process of curation.

We defined a score network as ncsnpp1  suggested. The IC-Net has a U-Net [93] based 

architecture and instance normalization [110-112], and the decoder is defined by SPADE [52] 

residual block for embedding the previous slice.

6.2. Experiments

6.2.1. Results of intensity calibration network

To demonstrate the performance of IC-Net, we conducted experiments with the 7, 14, 21 and 

28th slices, which are complex enough to show the calibration performances. The previous 

slice was used as an input to the IC-Net along with the target slice whose pixel values were 

to be shifted. And the absolute errors were measured between GT and predicted slice using 

IC-Net. 

                                                  

1 https://github.com/yang-song/score_sde_pytorch
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Figure 19. The difference of between GT and prediction by each slice number. All slices were 

normalized from [-150HU, 150HU] to [-1, 1] and the mean average error was shown as 

normalized range on vertical axis.

As shown in Figure 19, it worked well for most shifting coefficients. The mean absolute 

error was measured from 1HU to 2HU when the shifting coefficient was set from 0.7 to 1.1. 

However, the errors were exploded when shifting coefficient was set to 1.2 or 1.3. It was 

because the images were collapsed when shifting coefficient increases than 1.2 since the 

intensity deviates from the ROI range [-150HU, 150HU]. Nevertheless, qualitatively, IC-Net 

can calibrate intensity to some extent even in the collapsed images as shown Figure 20.
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Figure 20. Result of IC-Net with slices shifted by fixed values. We used a fixed value from 

0.7 to 1.3. Using a seed and shifted slice for intensity calibration, the difference map with GT 

was illustrated.

6.2.2. Results of ASCII with IC-Net in whole range

We experimented on continuous K slices of K=2 and 3 called ASCII(2) and ASCII(3), 

respectively. We experimented ASCII on continuous K slices of K=2 and 3 and called them 

ASCII(2) and ASCII(3), respectively. We generated a head & neck CT images via ASCII(2) 

and ASCII(3) with and without IC-Net, and slice-to-3D VAE [113]. Figure 21 demonstrate the 

example qualitative images. The 3D generated images were shown both in whole range and 

brain windowing range. The results showed that the both ASCII(2) and ASCII(3) were well 
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calibrated using IC-Net. Also, anatomical continuity and the 3D integrity is preserved while 

the images were diverse enough. However, there was no significant visual difference between 

ASCII(2) and ASCII(3). Although the results in whole range appear to be correctly generated 

all models, the results in brain windowing range showed the differences. The same drawback 

of convolution operation addressed in the 12-bit generation of GAN based models, which was 

shown in Figure 2 of 3.2, was also shown in Slice-to-3D VAE.

Figure 21. Result of ASCII(2) and ASCII(3) with and without IC-Net, and. And last column 

is result of bone rendering using 3D Slicer [114].

6.2.3. Quantitative Evaluation

We generated a head & neck CT images via ASCII(2) and ASCII(3) with and without IC-Net, 

and slice-to-3D VAE [113]. The volumes were generated in a whole dynamic range of 

Hounsfield unit. Therefore, the performance of 3D generation can be evaluated in both the 

whole range and the windowing range. The axial middle slice, sagittal middle slice, and 
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coronal middle slice of the generated volumes were evaluated using the Fréchet Inception 

Distance (FID) score, which we designated as FID-Ax, FID-Sag, and FID-Cor, respectively. 

And multi-scales structural similarity index measure (MS-SSIM) and batch-wise squared 

Maximum Mean DiscFrepancy (bMMD2) were evaluated to quantitative metrics. The MS-

SSIM and bMMD2 are known to be able to properly measure the diversity of generated images 

and the distance between two distributions of finite samples of mini-batch, estimated with 

kernel functions in the reproducing Hilbert space.

The quantitative results in whole range are shown in Table 7. In general, ASCII(2) performs 

better than ASCII(3). Additionally, IC-Net significantly improved generation performance, 

especially in the windowing range. The FID-Ax of ASCIIs was improved by IC-Net from 

15.250 to 14.993 and 18.127 to 16.599 in the whole range, respectively. Also, the performance 

of FID-Cor and FID-Sag had significantly improved when IC-Net was used. The MS-SSIM 

showed that ASCIIs can generated it diverse enough.

Table 7. Quantitative result of generated image by ASCII(2), ASCII(3) and Slice-to-3D VAE 

in whole range and windowing range.

ASCII(2) 

w/ IC-Net

ASCII(2)

w/o IC-Net

ASCII(3) 

w/ IC-Net

ASCII(3)

w/o IC-Net

Slice-to-3D

VAE

Whole Range

FID-Ax 14.993 15.250 16.599 18.127 29.137

FID-Cor 19.188 19.158 20.930 21.224 28.263

FID-Sag 19.698 19.631 21.991 22.311 29.024

MS-SSIM 0.6271 0.6275 0.6407 0.6406 0.9058

bMMD2 425704 429120 428045 432665 311080

Windowing Range

FID-Ax 14.656 15.770 15.232 20.145 28.682

FID-Cor 18.920 19.830 19.996 24.230 28.828

FID-Sag 18.569 19.675 19.840 24.511 29.912

MS-SSIM 0.5287 0.5384 0.5480 0.5447 0.8609

bMMD2 1975336 1854921 2044218 1858850 1894911
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Note: IC-Net, Intensity Calibration Network; FID, Fréchet Inception Distance; Ax, Axial; Cor, 

Coronal; Sag, Sagittal; MS-SSIM, Multi-Scale Structural Similarity Index Measure; bMMD2, 

batch-wise squared Maximum Mean Discrepancy. And whole range and windowing range are 

[-1024HU, 3071HU] and [-10HU, 70HU], respectively.

The FID-Ax, FID-Cor, and FID-Sag scores of ASCIIs with IC-Net were improved in 

windowing range. The FID-Ax of ASCIIs was improved by IC-Net from 15.770 to 14.656 and 

20.145 to 15.232 in the windowing range, respectively. On the other hand, ASCIIs without IC-

Net had poor performance in the windowing range and this means that even when IC-Net is 

used, structures do not collapse.

6.2.4. Qualitative Evaluation

Slice-based methods typically have issues with weak connectivity and three-dimensional (3D) 

integrity among generated slices. To evaluate the 3D integrity of the generated 3D images, the 

images were evaluated by an expert radiologist with more than 15 years of experience. Seeded 

with the 13th slices of real CT scans, in which the ventricle appears, ASCII(2) with IC-Net 

generated a total of 15 slices. Fifty real and fifty fake CT scans were blindly evaluated by 

visual scoring on three scales focusing on the continuity of eight anatomical structures: skull 

(bone morphology and suture line), skull base (foramina and fissure), facial bone, ventricles, 

brain sulci and fissures, the basilar artery, the cerebral venous sinus, and the ascending and 

descending nerve fiber tracts through the internal capsule. Scales of 1, 2, and 3 represent 

'discontinuity', 'strained continuity', and 'well preserved continuity', respectively. The visual 

scoring results are shown in Table 2. Most of the fake images were scored similarly to the real 

CT scans, but the continuity of the basilar arteries was evaluated as broken in the fake images 

(Table 8). The basilar artery is a small region, especially in the axial view, and was frequently 

not generated. As the model was trained on 5-mm thickness non-contrasted enhanced head & 
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neck CT scans, preserving the continuity of the basilar artery is excessively demanding. 

Table 8. Result of the integrity evaluation.

Real Fake

Skull (bone morphology, suture line) 3.00 2.98

Skull base (foramina and fissure) 3.00 2.84

Facial bone 3.00 2.98

Ventricles 3.00 2.92

Brain sulci and fissure 3.00 2.98

Basilar artery 2.92 1.38

Cerebra venous sinus 3.00 3.00

Ascending and descending nerve fiver tract 

through internal capsule
3.00 3.00

Note: Scale 1: discontinuity, Scale 2: strained continuity, and Scale 3: well preserved 

continuity.

7. Post-surgery imaging generation in cephalogram

Orthognathic surgery (OGS) has been widely performed to correct severe dentofacial 

deformities. The objective of surgery is to obtain balance among esthetics, function, and 

stability and ensuring patient satisfaction. Orthognathic surgery is a surgical procedure aimed 

at correcting severe disharmony in the facial skeletal structure to restore jaw and facial 

function and enhance facial aesthetics. Among them, patients place greater emphasis on the 

improvement of facial aesthetics [115, 116]. Therefore, predicting the changes in facial 

appearance after surgery becomes an important factor in the patient's decision-making process. 

Our method consists of three main steps. Firstly, we measure the landmark points for a total 

of 45 points on the pre-operation images. Then, using the images and landmark points, we will 

employ a model called Surgical Movement Prediction (SMP) to predict the displacement of 

the landmark points after surgery. Subsequently, we will perform post-surgical image 

generation using the predicted movement, landmark points, and the patient's profile line as 
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prompts through the Pre2Post model. Our predicted results can assist dentists in surgical 

planning.

7.1. Material and Methods

7.1.1. Datasets

As the nine university hospitals had different types of cephalography machines and radiation 

exposure protocols, these conditions could produce different lateral cephalogram qualities 

(Table 2). A total of 800 pairs of lateral cephalograms, taken at pre- (T0) and post- (T1) surgery, 

were deidentified and stored in a Digital Imaging and Communications in Medicine file format 

as 12-bit deep grayscale images.

Among them, 599 pairs of T0 and T1 lateral cephalogram image data from university hospitals 

Seoul National University Dental Hospital (SNUDH), Kyung Hee University Dental Hospital 

(KHUDH), and Kyungpook National University Dental Hospital (KNUDH) were used as 

internal datasets. As most patients at hospitals SNUDH and KHUDH had undergone two-jaw 

surgery (n=345/369 and n=153/193, respectively), data imbalance may occur. To solve this 

problem, we added data from hospital KNUDH, where most patients had undergone one-jaw 

surgery (n=30/37). Among 599 pairs of lateral cephalogram images, 399 pairs were used as 

the training set, 100 pairs as the validation set, and 100 pairs as the internal test set. 

Consequently, 201 pairs of T0 and T1 lateral cephalogram image data from university hospitals 

Wonkwang University Dental Hospital, Korea University Dental Hospital, Ehwa University 

Medical Center, Chonnam National University Dental Hospital, Ajou University Dental 

Hospital, and Asan Medical Center were used as external test sets.

Before training, all lateral cephalogram images were resized to unify the pixel interval to 0.1 

and trimmed with the landmark coordinates to learn the area required for surgical planning 

from original lateral cephalogram images. Because of the original image’s ratio, the cropped 

images were adjusted to be smaller than 1024 × 1024 pixels.
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When cropping the image from the landmark coordinates, the modified landmark coordinates 

were obtained by subtracting the coordinates of the upper left corner. Subsequently, the 

cropped image was divided by the maximum pixel value of the image. Pixel normalization 

was performed such that the pixel value was within 0~1. Before input to the AI model, the x-

and y-axis distances were divided by the width and height of the cropped picture, and 

normalization was performed such that the feature value was within the range of 0 ~ 1. T0 and 

T1 lateral cephalogram images were superimposed by the sella-nasion (SN) line.

7.1.2. Model Architecture

We proposed using DentalNet to generate T1 lateral cephalogram images. DentalNet consists 

of two models: the surgical movement prediction (SMP) model, which predicts the movement 

of landmarks by the surgery, and the Pre2Post model, which generates T1 lateral cephalogram 

images.

SMP model predicts the movement of landmarks from orthognathic surgery. To predict this, 

we used an image embedding module (IEM) based on the high-resolution network (HRNet) 

[117], which is suggested as a method for maintaining high-resolution representations by 

connecting other resolution convolution streams in parallel and exchanging information across 

resolutions, architecture to embed high-resolution cephalometric representations. And we used 

a graph convolution network (GCN)-based [118] landmark topology structure embedding 

module (LTEM) that training the topological structures of 27 hard tissue landmarks, including 

the spatial relationships between landmarks. Furthermore, the T1 coordinates of the 24 

landmarks were predicted using a multi-layer perceptron (MLP) module, by concatenating the 

outputs of the IEM and LTEM modules and passing them through the MLP moudle.

To generate post-cephalogram images, we used various prompts, including the movement of 

landmarks obtained through SMP. The purpose is to ensure more realistic and detailed 

generation quality using various prompts to provide information for surgery planning. To 
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guarantee a minimum generation ability, we trained an autoencoder using not only a labeled 

dataset of T0 and T1 but also an unlabeled cephalogram dataset. We trained a latent diffusion 

model for image generation in the encoding space with various prompts as conditioning factors 

through the Pre2Post module. Specifically, T0, T0's landmark, line segmentation, and 

movement prediction value were used as prompts. Each time we added more prompts, we 

observed an improvement in the quality and fidelity of generated images. The combined two 

modules are referred to as DentalNet, and an overview of DentalNet is shown in Figure 22.

Figure 22. The overview of DentalNet. (Top) We utilize a surgical movement prediction (SMP) 

model composed of an image embedding module and a graph-based module to predict the 

displacement of landmark points after surgery. (Bottom) Afterwards, using the measured 
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displacement and various prompts, we generate post operation images using the diffusion 

model (Pre2Post).

7.2. Surgical Movement Prediction

We evaluated the performance of the smp model in predicting the movement amount of hard 

and soft tissues using internal and external data. Only landmarks that were displaced by the 

surgery, including 19 hard tissue and 14 soft tissue landmarks, were used in the experiments. 

The results from the experiments using internal data showed that the hard and soft tissues 

had errors of 1.34 and 1.18, respectively, while the errors were 1.58 and 1.28, respectively, 

in the experiments using external data. Statistical analysis of the experimental results 

revealed no significant difference between the internal and external data. These findings 

suggest that the proposed smp model has robust performance not only with internal data but 

also with external data, making it a valuable tool for predicting hard and soft tissue 

displacement in post-surgery x-ray generation using dental imaging.

7.3. Post-surgery imaging generation

To ensure minimal generation capability, we trained an autoencoder using both pre-surgery 

images and post-surgery images, as well as unlabeled data. Additionally, we incorporated 

vectorize quantization (vq-f16) and adversarial learning to enhance training stability and 

achieve high fidelity. Subsequently, using the SMP module, we generated post-surgery

imaging utilizing not only the predicted movement values but also the pre-surgery images, 

pre-surgery landmarks, and profile line as prompts. We trained a latent diffusion model by 

alternating between pre and post with appropriate probabilities. During the training of pre-

surgery, we used null prompts for all prompts except the pre-surgery image, whereas during 

the training of post, we utilized all prompts. The objective function is as follows.
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ℒ��� = �
�������� , �, ∅� − ��

�

��������� , �, �� − ��
�

where ���� , ����� , ∅ and � are the encoded pre-operation image, encoded post-operation image, 

null prompt, and prompts, respectively. 

During inference, we employed DDIM sampling for consistency. Additionally, we conducted 

experiments using four different prompt combinations: (1) pre-surgery image, (2) pre-

surgery image and movement value, (3) pre-surgery image, movement value, and landmark, 

and (4) pre-surgery image, landmark, profile line and movement value. The result for each 

prompt is shown in Figure 23.

Figure 23. Results of the predicted post-surgery images. A and B represent the pre-surgery

image and post-surgery image, respectively. Additionally, the prompts written at the top of 
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each image indicate the results of the trained model using the respective prompts.

In orthognathic surgery, there should be minimal changes in the upper facial bone. Therefore, 

the fact that our predicted post-surgery images show minimal differences compared to the 

pre-surgery photographs in terms of the upper facial bone is medically plausible. 

Additionally, unless undergoing surgical intervention, the menton should remain unchanged. 

We can also observe that it undergoes minimal changes, especially when the line profile is 

added, resulting in a highly similar appearance of the menton in the generated post surgery

images.

Table 9. The generated images in terms of the 30 changing landmarks due to surgery are 

compared with the ground truth (GT) using an error metric. These landmarks were measured

by DDS with more than 10 years of experience. After measurement, like the preprocessing 

steps, alignment was performed based on the SN line for accurate measurements.

Internal External Internal External

A-Point 1.29 ± 0.97 1.47 ± 0.71 Mandible 6 

distal

1.58 ± 1.05 1.78 ± 1.31

PM 1.51 ± 0.90 1.62 ± 1.10 Mandible 6 

root

1.7 ± 1.12 1.93 ± 1.38

Pogonion 1.46 ± 0.85 1.62 ± 0.95 Point on Upper 

profile

1.50 ± 0.96 2.01 ± 2.40

B-point 1.51 ± 0.98 1.71 ± 1.16 Pronasale 0.96 ± 0.78 1.11 ± 0.93

Posterior Nasal 

Spine

1.70 ± 1.35 1.82 ± 0.92 Columella 0.85 ± 0.64 1.06 ± 0.92

Anterior Nasal 

Spine

1.38 ± 0.87 1.83 ± 1.15 Subnasale 0.99 ± 0.61 1.04 ± 0.67

R1 1.52 ± 0.82 1.90 ± 0.99 Soft tissue A 1.05 ± 0.73 1.07 ± 0.84

Ramus down 2.55 ± 1.67 3.10 ± 1.64 Labrale 

superius

1.07 ± 0.67 1.12 ± 0.85

Corpus left 2.72 ± 1.86 2.76 ± 1.53 Upper Lip 0.98 ± 0.53 1.21 ± 0.98

Menton 1.33 ± 0.86 1.68 ± 1.03 Stms 1.10 ± 0.56 1.19 ± 0.86
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Maxilla 1 

crown

1.28 ± 0.68 1.36 ± 0.82 Lower 

Embrasure

1.39 ± 0.85 1.52 ± 1.04

Maxilla 1 root 1.25 ± 0.69 1.43 ± 0.88 Stmi 1.23 ± 0.74 1.44 ± 0.74

Mandible 1 

crown

1.30 ± 0.76 1.39 ± 0.80 Lower Lip 1.18 ± 0.80 1.72 ± 1.00

Mandible 1 

root

1.53 ± 0.92 1.55 ± 0.88 Soft tissue B 1.95 ± 1.22 2.37 ± 2.01

Occlusal plane 

point

1.17 ± 0.63 1.60 ± 1.00 Soft tissue 

Pogonion

1.56 ± 0.84 2.10 ± 1.94

Maxilla 6 distal 1.54 ± 0.09 1.68 ± 1.11 Soft tissue 

Mention

1.34 ± 0.89 1.64 ± 1.01

Maxilla 6 root 1.59 ± 0.92 1.65 ± 1.21

Note: Unit:mm, The landmarks for hard tissue range from A-point to Mandible 6 root, while 

the landmarks for soft tissue range from Point on Upper profile to soft tissue Mention. 

Table 9 represents the differences between the generated images and the real post surgery

images. The landmarks of the generated images were measured by a DDS with over 10 years 

of experience. A total of 50 images were measured for both the Internal and External datasets. 

The distance error for the 33 landmarks in the Internal dataset was measured to be 1.41, while 

for the External dataset, it was 1.65. Furthermore, in the Internal dataset, the distance error for 

landmarks in the hard tissue was measured to be 1.57, and for landmarks in the soft tissue, it 

was 1.25. In the External dataset, the distance error for landmarks in the hard tissue was 1.78, 

and for landmarks in the soft tissue, it was 1.47.

Almost all landmarks were measured within a medically significant range of 2mm or less, 

indicating plausible results. Furthermore, for the external aspect, although there are no 

significant differences observed in the hard tissue, there is an average error of approximately 

0.2mm measured for each soft tissue landmark. This can be considered a reasonably acceptable 

error range, as it can vary significantly depending on the imaging equipment and surgical 

techniques employed by different institutions.
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8. Discussion

Diffusion model is introducing a new paradigm in generative models and has shown 

remarkable progress by utilizing synthesis data in various applications. While its application 

in natural images has been extensively explored, its application in the medical domain is still 

emerging but anticipated. Therefore, we provide guidelines for the application of diffusion 

model in the medical imaging by performing data augmentation, image-to-image translation, 

and slice-based 3D generation. Additionally, we demonstrate its value in the medical domain 

through experiments applicable in medical settings, such as post-surgery image generation.

Diffusion model estimates the likelihood (score) based on Parzen-windowing kernel density 

estimation, specifically approximating Gaussian distribution, which allows for precise 

modeling of data distribution. As a result, diffusion model can be capable of generating high-

depth images, not only in high signal-to-noise regions but also in low signal-to-noise regions. 

This is particularly advantageous in medical image generation, where complex structures like 

blood vessels and tissues in fundus  photo images or mammography can be adequately 

generated, even challenging for other generative models. Furthermore, diffusion model 

demonstrates its capability in medical imaging by achieving indistinguishable or similar scores 

to real images in visual turing test on MRI and anatomical continuity tests on CT in axial axis 

(shown in Table 8). It can generate medically plausible images that maintain the structural 

integrity of pathological structures.

Due to the explicit density approximation employed in training and sampling, diffusion model 

is higher capacity conditional sampling compared to other models. It has a high potential in 

those other conditions, such as label, image, and text, can be created through prompts or 

condition sampling through classifier-gudiance or classifier-free. Moreover, we showcase the 

pioneering experiment of utilizing the topological structure of graphs as prompts for 

generating post-operation images, incorporating a graph-based module prompt.

However, it is not always the case that the diffusion model outperforms GANs. Since the 
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diffusion model is trained based on the distribution of the data, it requires a large amount of 

data for diversity and may struggle to generate unseen data. Additionally, we observed that the 

single-model colorization of the diffusion model can pose challenges in clinical applications 

due to its outperfomred generative capability. Therefore, it is crucial to carefully select the 

appropriate generative model according to the task or objective at hand.

9. Conclusion

We conducted research to enhance deep learning models and aid surgical planning through the 

application of the diffusion model in medical imaging. Additionally, we demonstrated the 

clinical utility of the diffusion model through various medical images, providing guidelines 

for its utilization.
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국문 요약

생성 모델은 의료 영상 분야에서 매우 유용하게 사용될 수 있습니다. 이러한 모

델은 데이터 불균형 문제를 해결하거나 다른 모달리티로 변환하는데 사용될 수

있습니다. 또한, 3D 생성은 임상 연구, 분포 분석, 이상 감지 등에 적용할 수

있습니다. 그러나 의료 영상은 자연 이미지보다 복잡하기 때문에 생성이 어렵습

니다. 따라서 의료적으로 타당한 이미지를 생성하기 위해서는 많은 노력이 필요

하며, 생성 모델이 의료 영상 분야에서 뛰어날 수 있는 것은 어렵습니다. 그러

나 최근 확산 모델의 발전으로 고품질 이미지를 생성하는 것이 가능해졌고, 잠

재적 확산 모델의 사용으로 생성 속도 문제도 해결되었습니다. 따라서 본 논문

은 확산 모델을 사용한 생성, 생성을 통한 데이터 보강, 이미지 간 변환, 3D 생

성 및 예측 생성에 대한 실험을 제안합니다. 이 연구의 결과는 의료 전문가를

위한 더 정확하고 종합적인 진단 도구를 제공하여 의료 영상 분야에 큰 영향을

미칠 수 있습니다. 확산 모델의 사용은 의료 영상 생성에 필요한 시간과 노력을

줄이고 의료 이미지의 전반적인 품질을 향상시켜 환자의 치료 결과를 개선할

수 있습니다. 본 논문은 의료 영상 진단 분야에 확률 기반 확산 모델의 기술적

구현과 임상 응용에 대한 포괄적인 개요를 제공하며, 의료 영상 진단 분야를 혁

신할 잠재력을 강조합니다.
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