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Abstract

Many patients undergo drug therapy for disease treatment. However, due to the unique characteristics of each
individual, even when receiving the same drug, the drug response can vary among patients. Consequently,
personalized drug therapy that takes into account individual characteristics is necessary, with different drug
regimens for each patient. Personalized drug therapy offers the advantage of minimizing drug side effects while
maximizing treatment effectiveness. Therefore, both currently used drugs and under-development drugs should
be used as personalized medications. In this paper, two studies were conducted to help personalized drug therapy
by utilizing electronic medical record (EMR) data from tertiary hospitals.

In the first study, we developed and validated a machine learning model for early prediction of the discharge
dosage of the anticoagulant drug warfarin. We developed four machine learning models suitable for predicting
drug dosage, and through internal validation, we confirmed that the model predictions were more accurate than
those of clinical experts. Additionally, we utilized the SHAP (SHapley Additive exPlanations) technique to
analyze the key variables that influence the model predictions and explain the model prediction. Finally, we
observed significant variability in dosage determination depend on physician’s individual medical experiences,
when presented with the same dataset. In contrast, the model's predictive accuracy demonstrated a clinical utility
that was twice as high as those of physicians.

In the second study, we constructed a novel clinical field-based database by integrating electronic medical records
(EMR) and pharmaceutical databases. FDA-approved anticancer agents and associated target gene information
was extracted from the Open Targets Platform. We standardized the drug components in both the EMR and Open
Targets Platform, and established a linkage between the two databases based on the drugs. As a result, the novel
database was included associations between 57 anticancer agents, 60 types of cancer, and 91 genetic mutations.
Besides, the database was included additional diagnostic information and genetic test results of patients prescribed
with anticancer agents. This integration of data sources allowed for the utilization of both clinical and genetic
characteristics of patients in real-world clinical settings, utilizing for personalized cancer treatment.

In this study, we have developed two tools that utilize electronic medical record (EMR) data to facilitate
personalized drug treatment. First, the machine learning models that predicts the optimal dosage of warfarin can
be used as a clinical decision support system to reduce unnecessary treatment duration and contribute to the
prevention of drug side effects. Second, the heterogencous database that integrated both of EMR data and
pharmaceutical information databases can be utilized in artificial intelligence-driven drug development.
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Chapter 1.

Machine learning models to predict the warfarin discharge dosage using clinical information of East Asian
inpatients

Abstract

Background: As warfarin has a narrow therapeutic window and obvious response variability among individuals,
it is difficult to rapidly determine personalized warfarin dosage. Adverse drug events resulting from warfarin
overdose can be critical. Our study aimed to develop a machine learning (ML) model that predicts the appropriate
discharge dosage of warfarin using electronic medical records from a large hospital. Additionally, we externally
validated the model to ensure its accuracy.

Objective: This study aimed to develop a machine learning model that predicts individual warfarin dosage based
on clinical data within 2 days of hospitalization.

Methods: During this retrospective study, adult patients who were prescribed warfarin at a large hospital between
January 1, 2018, and October 31, 2020, were recruited as a model development cohort (n=3,168). We externally
validated the models using the Medical Information Mart for Intensive Care III (n=891). Variables for the warfarin
dosage prediction were selected according to the clinical practice experience of cardiovascular physicians. The
study outcome was the warfarin discharge dosage. Four ML models that predicted the proper warfarin discharge
dosage were developed. We evaluated the model performance using the mean absolute error (MAE) and prediction
accuracy. Finally, we compared the accuracy of the predictions of our models and the predictions of physicians to
determine their clinical relevance.

Results: The MAEs obtained using the internal validation set were as follows: XGBoost, 0.9; artificial neural
network, 1.0; random forest, 1.0; linear regression, 1.0; and physicians, 1.3. These values showed that our models
had better prediction accuracy than the physicians, who have difficulty determining the warfarin discharge dosage
using clinical information obtained within 2 days of hospitalization.

Conclusions: Our ML model could help physicians rapidly predict and decide the proper warfarin discharge
dosage during hospitalization. Further work is required to determine model generalizability.

Keywords: warfarin; EMR; electronic medical record; EHR; electronic health record; machine learning; deep
learning; dosing algorithm;



1. Introduction

Warfarin is an oral anticoagulant; it has been used for the treatment and prevention of thromboembolic disorders
for more than 60 years [1]. Despite its well-studied clinical pharmacology, high efficacy, and cost-effectiveness,
it is clinically challenging to 1 determine the appropriate dosage of warfarin for each individual because of its
narrow therapeutic window and variable patient responses [2]. Conventionally, the international normalized ratio
(INR) blood coagulation test is performed to achieve optimal efficacy and minimize side effects of warfarin, and
physicians adjust the warfarin dosage individually based on their medical experience and INR values [3]. However,
if the dosage is insufficient, the risk of thrombosis increases; conversely, if the dosage is excessive, then the risk
of bleeding increases [4]. Warfarin is one of the ten main anticoagulants that cause adverse drug events [4]. Recent
studies have attempted to predict ideal warfarin dosage using machine learning algorithms, which mostly develop
models using genetic data obtained through genetic testing [5—12]. Genetic variations in CYP2C9, VKORC1, and
CYP4F2 have been shown to have significant correlations with warfarin. However, genetic testing is not
performed in actual clinical settings because it is time-consuming [13]. In almost of tertiary hospitals from South
Korea, the genetic test takes about 2 weeks until getting the results, because there are many patients performed
the genetic test and waiting the results. Consequently, genetic test is not appropriate for some patients who need
a prescription of drugs immediately. Therefore, more clinically relevant studies that predict the warfarin dosage
using only clinical features are required. One study aimed to predict the adjustment dose of warfarin using only
clinical data [14]. However, warfarin adjustment doses are prescribed to outpatients and can interact with some
foods or alcohol, thus affecting their lifestyle. In such cases, it is questionable whether using lifelog data reflecting
the lifestyle and environment of patients is more appropriate than using clinical data in the electronic medical
records. Accordingly, we concluded that a tool that can provide reliable predictions using only clinical data
obtained from inpatients instead of complex genetic testing data is necessary. In this study, we developed machine
learning models that predict the appropriate warfarin discharge dosage using only clinical data generated in
hospitals within 2 days of hospitalization. Our artificial intelligence approach has the potential to improve clinical
utility by rapidly presenting appropriate warfarin dosing information so that the appropriate decisions can be made
for critically ill patients in clinical practice. Additionally, these machine learning models could be beneficial to
both hospitals and patients by decreasing unnecessary treatment durations, thereby securing space for other
patients in hospital wards and reducing the financial burden of hospitalization costs for patients.

2. Methods
Ethical approval

This study obtained approval and waived the written informed consent from the Institutional Review Boards of
Asan Medical Center (No. 2021-0321). All experiments were performed in accordance with relevant guidelines
and regulations

2.1 Study Design

We designed four machine learning models to predict the warfarin dosage prescribed at discharge using only
clinical data measured on the first and second days of hospitalization (Fig. 1). We extracted clinical variables in
electronic medical records (EMRs) of the Asan Medical Center (AMC) and Medical Information Mart for
Intensive Care III (MIMIC-III) database [ 15] with same criteria for model development and validation. Then, data
pre-processing was performed and the models were trained using training set. Next, the actual warfarin dosage
prescribed by the physicians was setted as baseline and compared with the predictions of the models to examine
that our models’ predictions were more accurate and rapid than the physicians. Model performance was evaluated
using both of the mean absolute error (MAE) [16], which has well-known performance metric in regression
models and predictive accuracy. In addition, we externally validated the models to external validation set from the
MIMIC-III. Data pre-processing, model development, training and validation were conducted in Python 3.8.10.
Finally, we analyzed the predictions of five physicians by calculating intraclass correlation coefficient (ICC) [17]



value and compared the predictions of the models and those of the physicians using 40 data points to explore the
clinical utility of the models.
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Figure 1. Overview of the workflow. Our machine learning (ML) models complied with the workflow in the
following order: (1) through discussions with clinical experts, we collected 46 features from the electronic medical
record (EMR) database up to the second day of hospitalization; (2) we conducted data pre-processing, such as
missing value imputation, outlier filtering, and normalization, and created the final dataset; (3) the models
predicted the warfarin discharge dosage using the dataset; and (4) we compared the initial warfarin dosage with
model predictions to confirm that our models could rapidly predict more accurate discharge dosage than the
physicians.

2.2 Data collection

The model development cohort consisted of patients admitted to the cardiovascular or thoracic and cardiovascular
surgery departments of AMC between January 1, 2018, and October 31, 2020. All the selected participants were
at least 19 years old; exclusions were based on the following criteria: none of warfarin prescription at discharge;
<3 warfarin prescriptions; and no weight measurements within 2 days of hospitalization (Fig. 2). The external
validation set derived from the MIMIC-III followed the same workflow except for medical department codes; this
is because the medical department codes of the intensive care unit (ICU) could not be found. Finally, the
development cohort derived from AMC EMRs comprised 3,168 patients and the external validation cohort derived
from the MIMIC-III comprised 891 patients.

Asan Medical Center MIMIC-11I
A
— ~ A -
Training & validation External validation
4,079 records in AMC with EHR data who 35,123 records in MIMIC-III with EHR data
age of 19 years old who age of 19 years old

34,232 excluded

- not prescribed warfarin (n=21,796)

- warfarin prescription less than three
(n=12,011)

- not observed weight when hospitalized day
1 or 2 (n=425)

911 excluded

- not prescribed warfarin (n=337)

- warfarin prescription less than three (n=334)
- not observed weight when hospitalized day
1 or 2 (n=230)

3,168 patients in AMC with EHR data 891 patients in MIMIC-IIl with EHR data

Figure 1. Cohort diagram. AMC, Asan Medical Center; EHR, electronic health record; MIMIC-III, Medical
3



Information Mart for Intensive Care III.
2.3 Data Preparation
2.3.1 Feature Selection

The process of feature selection used for model development and validation was conducted only when had already
been proofed correlations with warfarin based on clinical rationales [18—32]. The 46 clinical variables regarded
as key factors of warfarin dosage adjustments and associated with thrombus or bleeding were selected in 4 tables
of demographic, diagnosis, medication, vital sign can be found in Appendix Table 1. First of all, 4 demographic
variables of age, sex, height, weight were used. Second, comorbidity variables of 15 diseases associated with
thrombus or bleeding were selected in the diagnosis table and used as diagnosis variables were shown in Table 1.
Third, 18 medicines, affecting functions of warfarin and increasing a risk of bleeding and causing warfarin dosage
adjustments when combined with warfarin, were selected in the medication table and were shown as Table 2.
Additionally, the effect of warfarin inhibiting the coagulation of the blood can be estimated through monitoring
vital signs. If coagulation of the blood was caused, the symptoms including difficulty breathing and low blood
oxygen saturation, rapid breathing, and a rapid heart rate, also fever are observed. Thus, the vital sign measurement
values can be utilized for warfarin dosage adjustments and 6 variables were selected as follow: heart rate, oxygen
respiration, systolic blood pressure, diastolic blood pressure, body temperature, respiration rate.

Diseases

Associated with thrombus angina, arrhythmia, atrial fibrillation, chronic ischemic heart disease,
chronic lung disease, dyslipidemia, heart failure, myocardial infarction,
peripheral arterial disease, pulmonary embolism, stroke, valvular heart
disease

Associated with bleeding cancer, chronic ischemic heart disease, diabetes mellitus, hypertension,
intracranial bleeding, liver disease, renal disease

Table 1. A list of diseases associated with functions or side effects of warfarin

ACE inhibitor ADP receptor inhibitor aldosterone antagonists

allopurinol amiodarone ARB

aspirin beta-blocker calcium channel blocker,
dihydropyridine

calcium channel blocker, diuretic, loop diuretic, thiazide

non-dihydropyridine
insulin lipid lowering metformin

nitrate statin sulfonylurea

Table 2. A list of medicines affecting a dosage of warfarin when combined with warfarin



2.3.2 Categorization

We conducted categorization of variables in comorbidity and concurrent medication twice to reduce redundancy
and consider more comprehensive information. It allowed us to group variables with clinical associations together
and capture their collective impact on the prediction. This approach made the machine learning models more
robust exploring broader patterns and relationships in the dataset. At first, the International Classification of
Diseases, Tenth Revision (ICD-10) codes, which are the diagnostic codes used in the AMC EMRs, have a
hierarchical structure; therefore, they can be grouped using the first disease category code. For example, code 148
includes all diseases related to atrial fibrillation and flutter. Finally, 96 diagnostic codes based on the first three
characters were included for 18 diagnosis groups. All ICD-10 codes included as diagnosis variables are can be
found as Supplementary Appendix Table 2. Then, the medication information was also categorized into each
group based on the associated ingredients of the prescribed drugs. For example, rosuvastatin, simvastatin, and
atorvastatin were grouped as statins, whereas cilazapril, ramipril, fosinopril, and others were classified as
angiotensin-converting enzyme inhibitors. Consequently, a total of 290 medicinal components were assigned into
18 groups with similar drug effects.

2.3.3 Data Transformation

The categorical variables need to convert into numerical values because it can’t use in machine learning models.
Consequently, we performed one-hot encoding at three times to variables in comorbidity, concurrent medication,
sex. First, the sex code underwent one-hot encoding, with 1 representing male sex and 2 representing female sex.
Next, comorbidity and drug variables underwent one-hot encoding as 1 if a specific diagnostic code was assigned
or a specific drug was administered within 2 days of hospitalization and as 0 if otherwise. Finally, the entire of
categorical variables were transformed as numerical vectors can be used in machine learning model.

2.3.4 Imputation & Normalization

We performed data cleaning each other models, because there is difference of suitable methods with model types
that planned to develop in this study. The XGBoost and Random Forest models are a decision-tree-based ensemble
machine learning algorithm, but artificial neural network and linear regression models are not. Then, we
performed two imputation methods to preprocess missing values in continuous variables, by considering whether
the model was a decision-tree-based model. Because the tree-based models can automatically handle missing
values and are not sensitive to missing values or outliers [33], any missing data was replaced with minus 1 in
XGBoost and Random Forest models. Mean imputation would be appropriate to deal with the missing data for
artificial neural network and linear regression models, because the continuous variables used in this study have
not a wide range of values. Accordingly, we performed mean imputation that convert missing values as mean
values in the specific variable in artificial neural network and linear regression models. Finally, we conducted
normalization in artificial neural network and linear regression models and all variables were normalized using
the minimum-maximum scaling method [34], resulting in a range from 0 to 1.

2.3.5 Data Split

The AMC dataset (n=3,168) was separated as 80% for the training set (n=2,534) and 20% for the internal
validation set (n=634) using random split method. Additionally, we performed external validation to evaluate the
generalizability of the model to the external validation set (n=891) from the MIMIC-III.

2.4 Model Development and Validation

The following models were developed: artificial neural network (ANN) [35], linear regression [36], extreme
gradient boosting (XGBoost) [37], and random forest [38] models. These models were trained in training set
including 46 clinical features and predicted a warfarin discharge dosage. We conducted Grid Search [39] with
random shuffles of 5-fold cross-validation [40] to identify the optimal hyperparameters for each model. The entire
of final hyperparameters of four models was shown in Appendix Table 3. Finally, the XGBoost and random forest
models utilized the raw dataset as the input, Whereas the ANN and linear regression models used the minimum-
maximum scaled dataset as the input to help a rapid optimization of each models.
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2.5 Performance Metrics

We used both of MAE and predictive accuracy as performance metrics to evaluate the model prediction ability.
Baseline was set to the initial dosage of warfarin prescribed by a physician upon hospitalization. The performance
of the models was compared with the baseline to examine that our models’ predictions were more accurate and
rapid than the physicians. Subsequently, we calculated the accuracy of the model prediction using three thresholds:
0.5 mg, 1.0 mg, and 1.5 mg. This approach was consulted a logistic regression that conducts a binary classification
whether the prediction was greater than a specific cut-off value [41]. The prediction was classified as accurate if
the MAE of the sample was smaller than the corresponding threshold; otherwise, it was classified as inaccurate.
For example, when the threshold was 0.5 mg, if the MAE of a particular sample was 0.3 mg, the prediction was
classified as accurate. We calculated the proportion of samples with accurate predictions determined by each
model and evaluated the accuracy of predictions based on each threshold.

2.6 Model Interpretations

We used the Shapley additive explanations (SHAP) method to obtain insights of the predictions of our models and
understand how each variable contributes to predictions [42]. The SHAP method is an explainable artificial
intelligence method that decomposes the output of the model into the contributions of each feature, allowing for
an analysis of the influence of each feature on the model [43]. It considers dependencies between features and can
calculate positive and negative impacts, unlike traditional variable importance measures. Higher SHAP values
indicate that the patient needs higher warfarin dose. The SHAP values calculated using the internal validation set
were applied to visualize dependence, waterfall, and beeswarm plots.

2.7 Comparison of Models’ and Physicians’ Predictions

We selected 20 data points with accurate model predictions, high physician prediction errors and 20 data points
with high model prediction errors and accurate physician predictions. The XGBoost model was used.
Subsequently, we constructed a dataset with 50% model accuracy and 50% baseline accuracy. Next, we distributed
these datasets to five physicians and asked them to predict the appropriate warfarin discharge dosage. We analyzed
intraclass correlation coefficient (ICC) of the physicians’ predictions to test the interrater agreement using 2-way
random effects model in R. Finally, we compared the predictions of the machine learning models and those of the
physicians.



3. Results
3.1 Patient Characteristics

The baseline characteristics of the two datasets used for model development and validation are listed in Table 3.

AMC dataset (n=3,168) MIMIC-III dataset (n=891)
Demographics
Age, mean (SD), years 62.3 (12.5) 65.3 (14.3)
Male 1,674 (52.8%) 510 (57.2%)
Female 1,494 (47.2%) 381 (42.8%)
Height, mean (SD) 162.2 (9.5) 171.0 (10.7)
Weight, mean (SD) 63.5 (13.0) 87.6 (46.1)
Vital Signs
Heart rate, mean (SD) 70.9 (23.7) 84.5 (14.8)
O, saturation, mean (SD) 97.8 (2.3) 100.0 (0.7)
Systolic blood pressure, mean (SD) 115.9 (20.3) 115.0 (22..3)
Diastolic blood pressure, mean (SD) 67.4(12.2) 58.6(1.4)
Body temperature, mean (SD) 36.6 (0.6) 36.7 (0.7)
Respiration rate, mean (SD) 17.7.(3.0) 18.6 (3.8)
Comorbidity (n, %)
Angina 114 (3.6%) 31 (3.5%)
Arrhythmia 172 (5.4%) 156 (17.5%)
Atrial fibrillation 1,335 (42.1%) 541 (59.6%)
Cancer 172 (5.4%) 55 (6.2%)
Chronic ischemic heart disease 368 (11.6%) 323 (36.3%)
Chronic lung disease 54 (1.7%) 210 (23.6%)
Diabetes mellitus 501 (15.8%) 295 (33.1%)
Dyslipidemia 70 (2.2%) 362 (40.6%)
Heart failure 488 (15.4%) 404 (45.3%)
Hypertension 958 (30.2%) 567 (63.6%)
Intracranial bleeding 9 (0.3%) 4 (0.4%)
Liver disease 60 (1.9%) 45 (5.1%)
Myocardial infarction 50 (1.6%) 79 (8.9%)
Peripheral arterial disease 42 (1.3%) 104 (11.7%)
Pulmonary embolism 139 (4.4%) 189 (21.2%)
Renal disease 303 (9.6%) 292 (32.8%)
Stroke/TIA 95 (3.0%) 106 (11.9%)
Valvular heart disease 2340 (73.9%) 339 (38.0%)
Other medication use (n, %)
ACE inhibitor 154 (4.9%) 243 (27.3%)
ADP receptor inhibitor 140 (4.4%) 99 (11.1%)
ARB 715 (22.6%) 68 (7.6%)
Aldosterone antagonist 712 (22.5%) 40 (4.5%)
Allopurinol 65 (2.1%) 45 (5.1%)
Amiodarone 237 (7.5%) 174 (19.5%)
Aspirin 323 (10.2%) 632 (70.9%)
Beta-blocker 667 (21.1%) 655 (73.5%)
Calcium channel blocker, dihydropyridine 781 (24.7%) 86 (9.7%)
Calcium channel blocker, non-dihydropyridine 224 (7.1%) 20 (2.2%)
Diuretic, loop 1,625 (51.3%) 545 (61.2%)
Diuretic, thiazide 121 (3.8%) 34 (3..8%)
Insulin 61 (1.9%) 111 (12.5%)
Metformin 96 (3.0%) 19 (2.1%)
Nitrate 948 (29.9%) 68 (7.6%)
Other lipid-lowering medication 186 (5.9%) 34 (3.8%)
Statin 1,207 (38.1%) 453 (50.8%)
Sulfonylurea 178 (5.6%) 21 (2.4%)

Table 3. Characteristics of participants. The categorical variables, such as sex, comorbidities, and other
medication use variables, are presented as numbers and percentages of patients with a specific sex, diagnosis, and
medication, respectively. The remaining continuous variables are presented as the mean and standard deviation.
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ADP, adenosine diphosphate; ARB, angiotensin receptor blocker; SD, standard deviation; TIA, transient ischemic
attack.

3.2 Model Performance

The MAE and accuracy at the threshold for both datasets are listed in Table 4. The following MAEs were
calculated for the internal validation set: XGBoost, 0.9; random forest, 1.0; Artificial neural nets (ANN), 1.0; and
linear regression, 1.0. All models had better prediction performance than baseline (MAE of 1.3). Using the
external validation dataset, the following MAEs were achieved: baseline, 1.8; random forest, 1.8; linear regression,
1.8; ANN, 2.0; and XGBoost, 1.9. Consequently, internal validation of the internal validation set from the AMC
EMRs confirmed that all predictions of the artificial intelligence models had lower errors and higher accuracy
than those made by physicians regarding MAEs and accuracy. However, the baseline showed similar or superior
performance when compared with all machine learning models in terms of the MAE, in external validation derived
from the MIMIC-III. The MAE box plots of the internal validation set and external validation set are shown in
Figure 3.

Internal validation set (n=634) External validation set (n=891)
MAE Accuracy Accuracy Accuracy MAE Accuracy Accuracy Accuracy
(e=0.5 mg) (e=1.0 mg) (e=1.5 mg) (e=0.5 mg) (e=1.0 mg) (e=1.5 mg)
XGBoost 0.9 51.3 72.2 83.8 1.9 334 48.3 57.7
Random 1.0 495 68.9 815 18 356 446 56.8
forest
Linear 1.0 487 70.0 84.9 2.0 319 453 58.1
regression
Neural net 1.0 46.5 69.2 85.0 1.8 29.7 453 60.0
Physicians 1.3 322 57.3 69.4 1.8 37.1 48.3 53.5

Table 4. Model performance according to the MAE and accuracy. We conducted model performance
evaluations of the internal validation set and external validation using the MAE and calculated the model
prediction accuracy using three thresholds (0.5 mg, 1.0 mg, 1.5 mg). MAE, mean absolute error.

MAE Box Plot in internal validation set (n=634) MAE Box Plot in external validation set
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Figure 3. Box plot using the MAE. Performance abilities of the models based on the MAE were visualized using
the internal validation (n=634) and external validation (n=891) sets. The top line represents the maximum value.
The middle line represents the third quartile. The orange line represents the median. The bottom line represents
the first quartile. The green dotted line represents the mean value. MAE, mean absolute error.

3.3 Model Interpretations

We examined the SHAP values of the 20 features with the most impact on model predictions using the beeswarm
plot (Fig. 4). Additionally, we confirmed interactions between each feature using weight, height, and sex, because
they are primary factors used to determine the warfarin dosage (Fig 5). We also investigated the impact of features
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on individual predictions. We randomly selected 4 data points from the internal validation set with no missing
values, and our models accurately predicted all of them. Subsequently, we calculated the SHAP values using a
waterfall plot to explain individual predictions. The waterfall plot explains the influence of each feature on
individual predictions (Fig. 6). The patient of Fig. 6a was a 64-year-old male diagnosed with atrial fibrillation
who received angiotensin receptor blockers, amiodarone, beta-blockers, diuretics (loop), and statins. His height
was 171.8 cm. His weight was 89.5 kg. His heart rate, oxygen saturation, and respiration rate were 132
beats/minute, 99%, and 16 breaths/minute, respectively. The patients of Fig. 6b was a 52-years-old female
diagnosed with valvular heart disease. Her height was 154cm and weight was 54.5kg. Her systolic blood pressure
and diastolic blood pressure were 118 mmHg, 78 mmHg, respectively. The patient of Fig. 6¢ was a 72-years-old
female diagnosed with atrial fibrillation, hypertension, pulmonary embolism. She was prescribed the various of
medications, including statin, ARB, calcium channel blocker and nitrate, diuretic (loop), calcium channel blocker.
Her height was 157.8 cm and weight was 65.9 kg. The patient of Fig. 6d was a 73-year-old male diagnosed with
heart failure and renal disease who received aldosterone antagonists and diuretics (loop). His height was 166 cm.
His weight was 76 kg. His oxygen saturation, systolic blood pressure, and diastolic blood pressure were 100%,
134 mmHg, and 57 mmHg, respectively.
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Figure 4. SHAP beeswarm plot of the 20 main features affecting the predictions of the XGBoost model.
Features are ranked in descending order based on the absolute value of their influence on the XGBoost model.

The x-axis indicates SHAP values. Each dot denotes a data point. Colors represent high values (red) or low
values (blue) of specific data points. SHAP, Shapley additive explanations.



01

0o

Weight

SHAP value for

50 100
Weight

120

T
140

03 20
175 :
02 h* <
170 £ -
o1 -.I‘:
-
2
|- 165 2 —
= Lz 00 5
& =2 15 2
= =
] D_%‘ v
Fiso = = 01 O
T
[Vl
02
155
03
150
04 T 1 1 T T 10
40 60 o0 100 120 140
Weight

Figure 5. SHAP dependence plot. Each dot represents a data point. The x-axis indicates each feature. The
y-axis indicates the SHAP value of each feature. Colors indicate whether a feature interacting with another feature
had a high value (red) or low value (blue). SHAP, Shapley additive explanations.

{medilAmicdarone
Wesght

Gender

Height

(medi)Statin
Respiration Rate
(diag)Renal disease
Body Temperature
idiag)Diabetes mallitus

37 other features

) .

Age

Height

Weight

Gandar

(medi}statin
(diagharnal fibnllation
(diagiienal disease
Diastolic Blocd Pressure
(diag)Heart failure

37 other leatlures

20

Age

wieight

[deaglatnal hibnllaton

(diagifenal diseasa

Heart Rate

(medi)Statin

Oxygen Respiration

(diagiChronic ischemic hoart idsease
Dvastohc Blood Pressure

37 other features.

22 24 26 28 20 22 24 76 28 EX]
Elfx)] ffxt
(a) (b)
fixl
flxh
s [ on
' .06
. imedi)Aldosterone antagonist n
Respiration Rate - +0.08
(medi)Statin . +0.07
' e (chagiAtrial librllabion 0.0 .
0.0 ‘ Heart Rate . +0.05
. +0,04 37 other features . +0.04
z T4 i6 78 B0 20 22 2.4 26 28 30
FIRX EIRXN
() (d)

Figure 6. SHAP waterfall plot. The x-axis represents the individual warfarin dosage prediction of the
models. The y-axis represents the input features of the models. E[f(x)] (2.571) represents the baseline value, which
is the model output of the entire dataset, and f(x) represents the individual model output for each patient. Each
arrow indicates whether a specific feature increased (red) or decreased (blue) the warfarin dosage. SHAP, Shapley

additive explanations.

10



3.4 Comparison of Models’ and Physicians’ Predictions

Finally, we collected the predictions of the model and those of the five physicians for 40 data points (Fig. 7). First,
intraclass correlation coefficient (ICC) of the physicians’ predictions was calculated to measure the interrater
agreement (Table 5). ICC is a value between 0 and 1, where values below 0.5 indicate poor reliability, between
0.5 and 0.75 moderate reliability, between 0.75 and 0.9 good reliability, and any value above 0.9 indicates excellent
reliability [17]. As a result, ICC value of 0.16 was obtained and the consistency about warfarin dosage decision
of the physicians was poor. Consequently, physicians tend to focus on a specific warfarin dosage range based on
their clinical experience, thus leading to significant variability in the distribution of dosage predicted by physicians.
Next, prediction accuracy of the models and the five physicians was compared. Physicians accurately predicted
approximately 10 of 40 samples, achieving 25% accuracy; however, the models demonstrated 50% accuracy. This
indicated that it can be difficult for physicians to determine the appropriate warfarin discharge dosage based on
the 46 clinical features obtained within 2 days of hospitalization.

Intraclass correlation coefficient (95% CI) p-value
Five physicians’ prediction 0.16 (0.02-0.35) 2.3e-17
Table 5. ICC of the predictions by the physicians for 40 data points.
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Figure 7. Distribution of warfarin dosage predicted by the physicians and models. We identified the
predictions of five physicians and that of our model using 40 data points. The actual warfarin dosage at discharge
(blue) was distributed evenly within 1-6mg. The average prediction dosage of our model (yellow) was 2-6 mg,
and the maximum prediction dosage of our model was 3 mg; furthermore, it had 50% accuracy when predicting
dosage of 2-3 mg. The predictions of the five physicians were diverse, and their accuracy was approximately 25%.
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4. Discussion

It is important to determine the appropriate warfarin dosage for each individual to maximize its efficacy and safety
[44]. However, the time required to determine the warfarin dosage varies for each person because of the influence
of individual genetic and clinical factors [45]. In particular, VKORC1, CYP2C9, and CYP4F2 polymorphisms
account for approximately 40% of the variability in warfarin responses, and new genetic variants that have not
yet been identified are assumed to account for approximately 50% of the variability; however, clinical factors that
can be considered in clinical practice affect the response to warfarin by only approximately 10% [46]. Nonetheless,
genetic testing is costly and time-consuming; it is not routinely performed to determine the warfarin dosage [47].
Additionally, ICC value we analyzed in this study showed that there is inconsistency about warfarin dosage
decided by each physician. Indeed, physicians rely on INR measurements and their medical experience to
determine the appropriate warfarin dosage; they do not consider the genetic characteristics of patients rigorously
[48]. Consequently, this study is significant because the warfarin discharge dosage was rapidly determined using
only clinical information obtained within two days of hospitalization, unlike previous pharmacogenetic models.
Additionally, our models showed similar or superior performance when compared to other warfarin dosage models
(Appendix Table 4, Data 1). It demonstrated that the models can make appropriate warfarin dosing decisions
without the same level of effort as physicians who would consider various factors such as the INR value. These
results are likely attributable to the successful selection of important variables able to interact with warfarin from
our initial clinical data obtained through discussions with experienced clinical experts and effective utilization of
refined variables.

However, we were not able to successfully perform external validation in the MIMIC-III. The random forest and
linear regression models had equal model performance with baseline (1.8) and the XGBoost and artificial neural
network showed poor performance than baseline. Although we anticipated these issues, we had to conduct external
validation using the MIMIC-III because it is the only public database available in clinical settings. Because the
two datasets were created in different countries, there may have been differences in clinical information, such as
various races. Our models trained using data of an East Asian population could not consider differences in races
and physical characteristics in the MIMIC-III. Furthermore, there may have been differences in drug information
because we categorized drug ingredients according to Korean standards, which may not reflect all drugs with the
same efficacy used in the United States. Finally, because the MIMIC-III is an ICU database, warfarin dosage at
discharge for general ward patients and those for ICU patients are not the same. Physicians who work in the
MIMIC-III might already know the INR values of patients measured in general ward. The differences in the
datasets make it difficult to directly compare the predictions made by physicians using the two datasets.
Consequently, the models’ weights that trained in training set were not applicable for external validation set. We
need to conduct further study that train the models after standardizing a multi-center data to improve models’
generalizability. In further work, we have to obtain a multi-center cohort and standardize a common cardiovascular
registry to conduct an external validation successfully.

In conclusion, we developed 3 machine learning models and 1 deep learning model using data of a model
development cohort from a tertiary hospital in Korea to predict warfarin discharge dosage. Although successful
external validation was not performed during this study because our models could not consider differences in both
of the clinical settings, our models showed outstanding predictive ability and outperformed physicians regarding
accuracy using the internal validation set of the same institution as the training set. In internal validation set with
MAE, XGBoost models achieved 0.9, and random forest and linear regression, artificial neural network models
achieved 1.0, whereas physicians achieved 1.3. As a result, all of our models outperformed physicians. Therefore,
our models could alleviate the difficulties encountered by physicians when determining the warfarin discharge
dosage of patients admitted to the hospital for the first time. Especially, it might be effective tools that help
physicians choose more accurate and personalized warfarin doses for an East Asian population while reducing
unnecessary treatment durations and preventing warfarin overdose and adverse drug events.
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Chapter 2.

Database integrated between EMR (Electronics Medical Record) and Open Targets Platform for
pharmacogenomic study

Abstract

Background: To reduce the cost and time involved in the traditional drug development process, drug development
research that uses artificial intelligence (AI) is actively being conducted. Besides open-source databases,
electronic medical records (EMRs, which serve as a warehouse for medical data generated in clinical settings) can
provide real-world evidence and can be used in the process of drug discovery. In this study, we constructed a new
platform by linking information from the Open Targets Platform, a well-known open-source medicine database,
with EMRs at Asan Medical Center, Seoul, Republic of Korea.

Objective: The study objective was to contribute to personalized drug development, enabling future research on
drug—protein interactions; therefore, we established a clinical database that could be used as an Al drug
development platform.

Methods: The ‘Target-Disease evidence’ cancer dataset was selected from the Open Targets Platform. Then,
clinical data for patients who had been prescribed at least one of the 110 drugs in the Open Targets Platform were
extracted from the ABLE system at the Asan Medical Center. Finally, the two datasets were integrated, based on
drug information.

Results: The study population comprised 1,380 participants, and the database contained 53 drugs associated with
91 targets and 60 cancer types. The database also contained 10 types of genetic variation: loss-of-function
mutation, missense mutation, amplification, frameshift deletion, frameshift insertion, nonsense mutation, splice-
site mutation, in-frame deletion, in-frame insertion, and nonstop mutation.

Conclusions: Data obtained from the open-source database were consistent with data obtained from the clinical
setting; however, there were some cases where information was found only in the clinical setting and not in the
open-source database. Therefore, a database with the integration of open-source and clinical information can
provide new evidence that can be used in future Al drug research.

Keywords: EMR; electronic medical record; heterogeneous database; Open Targets Platform;
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1. Introduction

Drug development is an interdisciplinary field that requires the integration and coordination of biology, chemistry,
and pharmacology [49]. Typically, drug development involves selecting disease targets (eg, target discovery),
target validation, lead compound identification, lead compound optimization, preclinical development, clinical
trials, and registration [40]. Target discovery explains the process of discovering compounds that show efficacy
against clinically-validated targets [51]. Through lead compound optimization, approximately five out of 1,000
compound candidates proceed to preclinical stages [52]. Absorption, distribution, metabolism, excretion, and
toxicity studies are conducted through laboratory and animal experiments as a preclinical process [53]. Clinical
trials, including Phase 1, 2, and 3 trials, are conducted in humans. Registration refers to Food and Drug
Administration (FDA) review and approval [53]. Thus, the overall drug development process takes an average of
10—15 years, requires millions to billions of dollars in investment, and has a success rate of only 1 in 5,000 to 1
in 10,000 [54].

To expedite and improve the efficiency of drug development, artificial intelligence (AI) drug discovery, which
uses clinical data and suitable Al algorithms to develop drugs, is now being applied [55, 56]. Al drug discovery is
a very useful method that can produce results quickly, and with high accuracy and low cost, compared to traditional
drug-discovery methods [57]. Al can search for an almost infinite number of substances at the candidate substance
search stage, which can significantly reduce costs and time [58]. Additionally, Al can help identify patterns and
interrelationships inherent in data, thereby opening up new possibilities for detecting disease targets and for drug
redesign that would be difficult to uncover using conventional methods [59]. Because of these advantages, Al
drug development is attracting attention as a promising method for faster and more efficient drug development
[60].

Al requires big data for learning, such that data reliability is crucial [61]. Therefore, it is important to refine a
large amount of prior knowledge-based data for the intended purpose [62]. By using refined big data in Al, a rapid
drug-development method can be proposed, and the drug-development period can be significantly shortened [63].
Among medical big data, electronic health records (EHRs) provide vast amounts of patient data, such as
prescription results, diagnostic codes, prescriptions, and physician opinions [64]. As EHR databases become more
standardized and integrated across multiple hospital systems, they are gaining attention as data sources to be
analyzed when evaluating patient treatment and building early disease-prediction models [65]. Therefore, we built
a new database, optimized for Al drug development and based on clinical practice, by linking existing public
databases related to pharmaceutical information and EMRs from Asan Medical Center (AMC), Seoul, Republic
of Korea; our database has the potential to be used in future Al drug development research (Fig. 1).

—_—
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Figure 1. Study overview. In this study, we integrated Open Targets Platform and EMR derived from Asan
Medical Center. In Open Targets Platform, cancer-biomarker dataset included 110 FDA approved anticancer drugs
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was used. The database was mapped based on drugs, because drug ingredients from EMR and ‘Drug From Source’

from Open Targets Platform were equivalent. ChREMBL drug Id, Ensembl gene Id, Experimental Factor Ontology
disease Id were used key identifier of drug, target, disease, respectively in Open Targets Platform. Finally, a

heterogeneous database was generated and could be added information of clinical association using key identifiers.
This heterogeneous database could be useful in future Al research for drug development, such as identification of
drug-target interaction or drug-drug interaction, drug repurposing. EMR, electronic medical record; Al, artificial
intelligence;

2. Methods
2.1. Data source: Open Targets Platform

Open Targets Platform is a large public database of pharmacologic knowledge that includes a variety of drug,
target, and disease-related information, and details about biologic pathways, and gene ontology [66]. Due to its
vast collection of data, the Open Targets Platform can be used as a tool to discover new drug targets and indications
and can be integrated with other databases. The ‘Target-Disease evidence’ cancer dataset of the Open Targets
Platform contains 110 drugs approved by the FDA for the treatment of various cancers and comprises a two-
dimensional dataset using a many-to-many approach, with each drug having one or more targets. In summary,
drug—target disease association data in the platform include 110 drugs, 182 targets, and 76 disease-information
presents. ChHEMBL identification (ID), Ensembl gene ID, and Experimental Factor Ontology disease ID were used
for drug ID, target ID, and disease ID, respectively, in the Open Targets Platform. Consequently, this dataset was
selected as the main dataset of the Open Targets Platform for our research because we could use both drug ID and
target ID as the primary identifier and could merge drug information based on the identifier.

2.2 Cohort extraction: AMC EMRs

We extracted clinical and genetic data from EMRs at AMC. The AMC dataset comprised patients aged >19 years
and admitted to the cardiovascular or thoracic and cardiovascular surgery departments of AMC between January
1, 2018 and October 31, 2020. In clinical practice, many drugs are used for purposes other than their originally
approved indications [67]. Therefore, we excluded drugs in the EMRs that were not listed in the Open Targets
Platform, and we decided to use only EMR data, including cancer biomarkers, for the 110 FDA-approved drugs
in the ‘Target Disease evidence’ cancer dataset. Ultimately, we collected a final study population of 1,380
individuals by including only patients with genetic testing records and diagnosed with a specific cancer. We
constructed a single dataset for these patients that included: diagnostic and medication information, and genetic
testing results. This study obtained approval from the ARC institutional review board (approval no. 2021-0321).
All experiments were performed in accordance with relevant guidelines and regulations.

2.3 Integration between EMR and open targets platform

Because drug ingredient name in the EMR matched the ‘drugFromSource’ variable in the Open Targets Platform,
the two datasets were integrated based on drug type. Drugs in the EMR that had no information in the ‘Target-
Disease evidence’ cancer dataset were excluded, so that only FDA-approved drugs with an association between
drug and target were included. Thus, linked 73 drug information in the AMC dataset among 110 drugs. Despite
the availability of EMRs, patients without a genetic-test result or specific cancer diagnosis were excluded. Finally,
the integrated database of information from EMRs and the Open Targets Platform comprised 53 drugs associated
with 91 targets and 60 cancer types. The final dataset comprised 1,262,425 rows and 20 columns.

3. Results

A new drug information database was created that could be used for Al-based drug development research, and
that was constructed by integrating the AMC EMR database with the Open Targets Platform, which contains
information on 110 drugs that can treat cancer. We linked this data with the genetic-test results for 1,380 patients
who received 57 of these 110 drugs at AMC. As each drug could have one or more target genes or target cancers,
the information included: 91 genes previously identified as targets for the drugs, and 60 types of cancer that the
drugs could treat. The mapping ratios for integration of the Open Targets Platform with the EMR database are
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shown in Table 1.

Variables Total codes (N) Mapped code (N) Mapping ratio (%)
Medication 110 57 52
Diagnosis 80 60 75
Target 182 91 50

Table 1. Mapping ratios for the Open Targets Platform. Information on FDA-approved drugs available in both the Open
Targets Platform and AMC EMRs was used. Among the 110 drugs in the Open Targets Platform: over 80 were FDA-approved for cancer
treatment and 182 biomarker targets were clearly identified; drug information for 73 drugs could be used for mapping with AMC EMR data,
but patients without genetic-testing data were excluded, resulting in the final extraction of drug information for 53 drugs. The total number of
targets identified to interact with the selected 53 drugs was 91, and there were 60 types of target cancer. AMC, Asan Medical Center; EMR,
electronic medical record; FDA, Food and Drug Administration.

There were 533 gene mutations (not necessarily associated with drugs or cancer) and 39 cancer types obtained
from the EMR database. Table 2 lists the six most frequently prescribed drugs, and the six most frequently
diagnosed cancer types, in the clinical setting.

Drug Count (%) Diagnosis Count (%)
Cisplatin 361 (26.2) Non-small cell lung cancer 323 (23.4)
Paclitaxel 326 (23.6) Gastric cancer 213 (15.4)
Octreotide 192 (13.9) Ovarian cancer 194 (14.1)

Gemcitabine 160 (11.6) Pancreatic cancer 137.(9.9)
Bevacizumab 155 (11.2) Malignant brain tumor 95 (6.9)
Capecitabine 134 (9.7) Other 68 (4.9)

Table 2. Frequency of drug and diagnosis derived from EMR database (N=1,380). it showed that the count and
percentage of the top 6 drugs and cancer types that were most frequently prescribed and diagnosed, respectively, among 1380 participants in
the EMR database. EMR, electronic medical record;

To examine the characteristics of patients who received each drug, the six most frequently used drugs were
selected, and the most frequently diagnosed cancer types within these six drug categories were identified (Fig. 2).

Cisplatin (n=361) Paclitaxel (n=326) Octreotide (n=192)
Ovarian Cancer
15.0% Gastric Cancer Pancreatic Cancer
Gastric Cancer 15.0% sl Pancreatic Adenocarcinoma
i Ovarian Cancer 16.0%
SLO% T iners
20% N
16.0% Ovarian/Peritoneal Epithelial 16.0% Gastric Cancer
Non-Small Cell Lung Cancer
COthers Cthers
Gemcitabine (n=160) Bevacizumab (n=155) Capecitabine (n=134)

Billiary Cancer

Pancreatic Cancer
Malignant Brain Tumor
18.0% 120%
5.0% Ovarian Cancer
Ovarian Cancer 28.0% Malignant Brain Tumor
Non-Small Cell Lung Cancer 39.0% 15.0%
Cthers 12.0% Colorectal Cancer 17.0%

Cthers Colorectal Cancer

Figure 2. Cancer types, shown as the percentage of patients receiving each of the six most frequently
prescribed drugs. n represents the number of patients receiving each drug.
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Data for 10 types of genetic variation were extracted from the EMRs: loss-of-function mutation, missense
mutation, amplification, frameshift deletion, frameshift insertion, nonsense mutation, splice-site mutation, in-
frame deletion, in-frame insertion, and nonstop mutation. The top 10 types of genetic variation, and the top 10
specific gene mutations, are listed in Table 3.

Variant type Count (%) Gene variant Count (%)
Missense mutation 1,369 (99.2) TP53 906 (65.7)
Amplification 855 (62.0) CDKN2A 316 (22.9)
Loss-of-function mutation 614 (44.5) KRAS 306 (22.2)
Nonsense mutation 514 (37.2) EGFR 286 (20.7)
Frameshift deletion 491 (35.6) LRPIB 252 (18.3)
Splice-site mutation 330 (23.9) BRCA2 232 (16.8)
In-frame deletion 281 (20.4) NOTCH3 228 (16.5)
Frameshift insertion 230 (16.7) CDKN2B 227 (16.4)
In-frame insertion 74 (5.4) MYC 224 (16.2)
Nonstop mutation 4(0.3)

PIK3CA 222 (16.1)

Table 3. The 10 most frequently observed types of genetic variation and specific gene mutations (N=1,380).
The most common structural genetic variations were single-nucleotide variant missense mutations, and the most common gene mutation was
TP53 mutation. Loss, loss-of-function mutations;

In addition, we examined the frequency of gene mutations in patients treated with the top six prescribed drugs
(Fig. 3). Almost all the 1,380 participants had missense mutations, and more than half of the participants had
amplification and TP53 mutations.
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Figure 3. Frequency of specific gene mutations in patients receiving each of the top six prescribed drugs.
Data derived from the electronic medical record database; n represents the number of patients receiving each drug.
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4. Discussion

If EMR or open-source data alone were used in Al drug development, important information might be lost.
However, the heterogeneous database constructed in this study has significant potential to improve the quality of
big data and use additional information in future Al drug development research. If EMR data alone were available,
paclitaxel would be used as a drug targeting TUBB3 to treat bladder cancer, but since TUBB3 mutation testing is
not conducted at AMC, EMR data alone could miss information about the known interaction between drug and
target [68]. Conversely, if using only the Open Targets Platform, clinically important information on CDKN2A
that could affect the prescribing of anticancer drugs would be unavailable and might result in missing information
on drug targets [69]. We decreased information loss by integrating the ACR EMR and Open Targets Platform
databases and found agreement between the two databases. Consequently, the novel, heterogeneous database
could potentially be used to provide real-world evidence.

In our overall data population, 65% of people had a TP53 mutation. TP53, a tumor suppressor gene, is the most
mutated gene in cancer and can progress specific types of cancer when a mutation occurs, thus making cancer
treatment more difficult [70]. Therefore, TP53 has been studied as a target for various anticancer agents and, in
this study, the correlation between TP53 and cancer was clinically confirmed once again.

Cisplatin has therapeutic effects on various cancers, such as bladder, breast, lung, and ovarian, and targets genes
such as ERCC2, FANCC, BRCA1, ERCC4, MDM2, ATM, BRCA2, RB1, and TP53 [71-72]. Same as this, in
clinical practice, some individuals who received cisplatin were found to have the corresponding cancer and gene
variant. Paclitaxel is renowned as an effective medication for bladder carcinoma [73], but in clinical practice in
this study, it was used to treat various cancers, such as ovarian, gastric, lung, and kidney. Octreotide is renowned
as a medication that can treat meningioma by targeting the NF2 gene [74-75]. However, in the clinical setting in
this study, patients diagnosed with ovarian or pancreatic cancer and with an NF2 mutation received octreotide (ie,
without a diagnosis of meningioma). Gemcitabine targets KRAS, TP53, and SLC29A1 and has therapeutic effects
against pancreatic and bladder carcinoma [76-77]. Same as this, in the clinical field, patients diagnosed with
pancreatic cancer were prescribed this medication. Bevacizumab is approved to treat malignant peripheral nerve
sheath tumor, glioma, and schwannoma in patients with VHL, NF 1, and NF2 mutations [78-81], but in the clinical
setting in our study, bevacizumab was used in patients with renal carcinoma and VHL, NF1, and NF2 mutations.
Capecitabine targets DPYD [82], and our study confirmed that capecitabine was prescribed to individuals with
DPYD mutations in the clinical field. Thus, not only can actual research results be confirmed by clinical data, but
it is also expected that new clinical evidence can be discovered by using additional genetic and disease information
from the study participants.

Importantly, using our database in Al research for new drug development is expected to enable personalized drug
treatment for patients based on their disease and genetic information. Also, our database may facilitate the
discovery of new indications for currently used drugs, and the prediction of new drug—target interactions (DT]Is)
or drug—drug interactions. Indeed, in a future study, we will use our database to predict new DTIs through the
development of Al models.

Conclusion

EMR has a significant potential to contribute to personalized drug treatment due to include extensive medical big
data, such as diagnosis code, medication information, genotype data, physician’s opinion. Additionally, Al can
understand complicated big data and find inherent patterns and correlations in big data. Finally, we decided that
collaborate AI with EMR to contribute to personalized drug treatment.

This study aimed to realize personalized drug treatment using electronic medical record (EMR) data and
developed two tools for that purpose. The first study focused on the early prediction of discharge dosage for the
anticoagulant warfarin using machine learning models. Four machine learning models suitable for dosage
prediction were developed, and through internal validation, it was confirmed that the model predictions were more
accurate than those of actual clinical experts. Additionally, the SHAP (SHapley Additive exPlanations) technique
was employed to analyze the key variables influencing the model predictions, providing insights into the decision-
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making process similar to that of healthcare professionals. Besides, when the same data was presented to
individual physicians, significant variations in dosage decisions based on their individual medical experiences
were observed. Furthermore, model showed that its prediction accuracy was twice as high as that of physicians,
when used internal validation set. Therefore, the clinical utility of the models was demonstrated in East Asian
population. Additionally, we have to conduct a further study that make our models consider not only East Asian,
but also other races.

The second study focused on the integration of EMR and pharmaceutical information databases to construct a
novel clinical field-based heterogeneous database. FDA-approved anticancer agents and associated target gene
information from the Open Targets Platform database was used. We standardized drug elements between the EMR
and Open Targets Platform, the two databases were linked based on drug information. Finally, we extracted the
correlations between 57 anticancer agents, 60 cancer types, and 91 genetic mutations. Moreover, we contained
additional information, such as diagnostic information and genetic test results of actual patients receiving
anticancer drugs. In conclusion, a platform was built that could utilize both clinical and genetic characteristics of
patients in real-world clinical settings for Al drug development. In further work, we will perform Al drug
development, such as drug repurposing or drug-target interaction identification using the novel database.

We have concluded that this study can improve patient outcomes, minimize adverse drug reactions, and optimize
drug therapies, ultimately leading to better overall healthcare delivery and patient care.
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Appendix

Table 1. Features used for model training and validation

Sex

Age

(diag)Angina
(diag)Arrhythmia
(diag)Atrial fibrillation
(diag)Cancer

(diag)Chronic ischemic heart disease
(diag)Chronic lung disease
(diag)Diabetes mellitus
(diag)Dyslipidemia
(diag)Heart failure
(diag)Hypertension
(diag)Intracranial bleeding
(diag)Liver disease
(diag)Myocardial infarction
(diag)Peripheral arterial disease
(diag)Pulmonary embolism
(diag)Renal disease
(diag)Stroke / TTA
(diag)Valvular heart disease
(medi)ACE inhibitor
(medi)ADP receptor inhibitor
(medi)ARB
(medi)Aldosterone antagonist
(medi)Allopurinol
(medi)Amiodarone
(medi)Aspirin
(medi)Beta-blocker
(medi)Calcium channel blocker, dihydropyridine
(medi)Calcium channel blocker, non-dihydropyridine
(medi)Diuretic, loop
(medi)Diuretic, thiazide
(medi)Insulin
(medi)Metformin
(medi)Nitrate

(medi)Other lipid lowering
(medi)Statin
(medi)Sulfonylurea

Height

Weight

Heart Rate

Oxygen Respiration

Systolic Blood Pressure
Diastolic Blood Pressure
Body Temperature
Respiration Rate
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Table 2. ICD-10 diagnostic codes used to categorize diseases.

Diagnosis

ICD-10 code

Myocardial infarction

121,122,123

Hypertension

110,111,112,113,115

Diabetes mellitus

E10, E11, E12, E13, E14

Dyslipidemia E78
Chronic ischemic heart disease 125
Angina 120
Heart failure 142,143,150

Valvular heart disease

105, 106, 107, 108, 109, 134, 135, 136, 137, 138, 139

Peripheral arterial disease

170,173,174,177,179

Stroke / TTA

163,164,165, 166, 167,168, G45, G46, H34

Intracranial bleeding

160, 161, 162

Atrial fibrillation

148

Arrhythmia

144,145,147, 149

Liver disease

K70, K71, K72, K73, K74, K75, K76, K77

Renal disease

NO03, N04, N05,N10,N11,N12,N13,N14, N15,N16,N17,
N18,N19, 7249, 7940, 7992

Chronic lung disease

J40,J41, J42, J43, J44, J45, J46, J47,160, J61, 162, J63, J64, J65,
166,167,184

Cancer

C

Pulmonary embolism

126, 127

Table 1. Information of the four models hyperparameter.

Model Hyper-parameter

Learning rate: 0.4

Max depth: 3

Objective function: regression with squared log loss
XGBoost Minimum sum of instance weight needed in a child: 10

L1 regularization term on weights: 0.6
Minimum loss reduction required to make a further partition on a
leaf node of the tree: 0.6

Random Forest

Number of estimators: 250

Max depth: 7

Max leaf nodes: 9

Minimum of leaf: 7

Number of samples to draw from dataset to train each base
estimator: 0.6

Minimum of impurity decrease to split the nodes: 0.0005
Number of minimum samples to split nodes: 4

Minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node: 0.4

Artificial neural network

Activation function: identity function
Hidden layer: (300, 300, 300, 200, 200)
Learning rate: 0.01

Solver: Minibatch gradient descent
Batch size: 32

Max iteration: 200

Linear Regression

Intercept: used
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Appendix Table 4. Comparison with prior works. Our models were compared with previous models that
developed using both of genetic and clinical data or only clinical data. Performance metric was used MAE. The
information of study population' race was included. The number of data participants included the number of model
development and validation cohort. * represents the best performance model. ANN: artificial neural network;

Nm.nber of data Features Study population algorithm MAE
instances
Choi et al* 3,168 Clinical South Korean XGBoost 0.9
Choi et al 3,168 Clinical South Korean ANN 1.0
Choi et al 3,168 Clinical South Korean Random Forest 1.0
Choi et al 3,168 Clinical South Korean Linear Regression 1.0
. - - .
Gage et al [5] 1,307 Clinical + Caucasian, Affican Regression 1.0
pharmacogenetic American
Gage et al [5] 1,307 Clinical Caucasian, Aftican Regression 1.5
American
inical + .
Pavanil [6] 240 Clinical Indian ANN 1.97
pharmacogenetic
. -
Roche-Lima et al [7] 190 Clinical Caribbean Random forest 47
pharmacogenetic Hispanics
e - —
Tong et al [8] 635 Clinical . Spanish Multiple l‘mear 35
pharmacogenetic regression
Tong et al [8] 635 Clinical Spanish Multiple l‘mear 50
regression
. Clinical + .
Greossi et al [9] 377 . Caucasian ANN 5.72
pharmacogenetic
Clinical +
Saleh et al [10] 4271 pharmacogenetic Multi-ethnic ANN 9.0
Clinical + Multivari
Hernandez et al [11] 349 pharmacogenetic | African-American ultivariate 10.9
regression
linical + . . . .
Alzubiedi et al [12] 163 Clinica . African-American Linear regression 10.8
pharmacogenetic
o
Alzubiedi et al [12] 163 Clinical African-American ANN 10.9
pharmacogenetic

Appendix Data 1. Comparison with prior works

We identified previous regression models that predict warfarin dosage as numerical target and use MAE as a
performance metrics, to compare accurately between our models and other models. Gage et al developed a
multiple regression model that predict warfarin dosage in derivation cohort (N=1,015), included Caucasian and
African American, Hispanic, and validated the models in validation cohort (N=292). Both of pharmacogenetic
and clinical model were developed and reached a MAE of 1.0, 1.5, respectively. Pavani et al developed an artificial
neural network using ten genetic variables as inputs and therapeutic warfarin dosage as the output in Indian
population (N=240). Roche-Lima et al collected cardiovascular patients of 190 Caribbean Hispanic were >21
years old and developed seven machine learning algorithms that predict warfarin dosing in Caribbean Hispanics
using pharmacogenetic data. Among them, random forest regressor (RFR) significantly outperformed all other
models with a MAE of 4.74. Tong et al recruited 685 patients who diseased atrial fibrillation or thromboembolic
venous disease in a Spanish population using the data last 3 consecutive months and used multiple linear
regression. Both of pharmacogenetic and clinical model were developed and internally validated with a MAE of
3.5, 5.0, respectively in a validation cohort (N=129). Grossi et al collected 377 patients who were over 18 years
old and treated with warfarin in Caucasian population and developed an artificial neural network to predict a
optimal warfarin maintenance dose. The final model reached a MAE of 5.72. Saleh recruited 4,271 multi-races
patients who received warfarin and developed an artificial neural network using both of genotyping and clinical
data. The artificial neural network model reached a MAE of 9.0. Hernandez et al generated pharmacogenomic
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warfarin dosing model using clinical and genotyping retrospective data from a derivation cohort of 349 African
Americans patients were >= 18 years and the model reached with a MAE of 10.9mg/week. Alzubiedi et al
collected demographic, clinical, and genetic data from 163 African-American patients with a stable warfarin dose.
They developed both of a multiple linear regression model and artificial neural network model with MAE of 10.8,
10.9 respectively. Whereas, our XGBoost model achieved 0.9 with MAE and outperformed aforementioned
algorithms. Additionally, our models provided more appropriate warfarin dosage than those initially prescribed
by physicians using clinical data within 2 days of hospitalization.
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