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Abstract

Many patients undergo drug therapy for disease treatment. However, due to the unique characteristics of each 
individual, even when receiving the same drug, the drug response can vary among patients. Consequently, 
personalized drug therapy that takes into account individual characteristics is necessary, with different drug 
regimens for each patient. Personalized drug therapy offers the advantage of minimizing drug side effects while 
maximizing treatment effectiveness. Therefore, both currently used drugs and under-development drugs should 
be used as personalized medications. In this paper, two studies were conducted to help personalized drug therapy 

by utilizing electronic medical record (EMR) data from tertiary hospitals.

In the first study, we developed and validated a machine learning model for early prediction of the discharge 
dosage of the anticoagulant drug warfarin. We developed four machine learning models suitable for predicting 
drug dosage, and through internal validation, we confirmed that the model predictions were more accurate than 
those of clinical experts. Additionally, we utilized the SHAP (SHapley Additive exPlanations) technique to 
analyze the key variables that influence the model predictions and explain the model prediction. Finally, we 
observed significant variability in dosage determination depend on physician’s individual medical experiences, 
when presented with the same dataset. In contrast, the model's predictive accuracy demonstrated a clinical utility 

that was twice as high as those of physicians.

In the second study, we constructed a novel clinical field-based database by integrating electronic medical records 
(EMR) and pharmaceutical databases. FDA-approved anticancer agents and associated target gene information 
was extracted from the Open Targets Platform. We standardized the drug components in both the EMR and Open 
Targets Platform, and established a linkage between the two databases based on the drugs. As a result, the novel 
database was included associations between 57 anticancer agents, 60 types of cancer, and 91 genetic mutations. 
Besides, the database was included additional diagnostic information and genetic test results of patients prescribed 
with anticancer agents. This integration of data sources allowed for the utilization of both clinical and genetic 

characteristics of patients in real-world clinical settings, utilizing for personalized cancer treatment.

In this study, we have developed two tools that utilize electronic medical record (EMR) data to facilitate 
personalized drug treatment. First, the machine learning models that predicts the optimal dosage of warfarin can 
be used as a clinical decision support system to reduce unnecessary treatment duration and contribute to the 
prevention of drug side effects. Second, the heterogeneous database that integrated both of EMR data and 

pharmaceutical information databases can be utilized in artificial intelligence-driven drug development.
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Chapter 1.

Machine learning models to predict the warfarin discharge dosage using clinical information of East Asian 

inpatients

Abstract

Background: As warfarin has a narrow therapeutic window and obvious response variability among individuals, 
it is difficult to rapidly determine personalized warfarin dosage. Adverse drug events resulting from warfarin 
overdose can be critical.  Our study aimed to develop a machine learning (ML) model that predicts the appropriate 
discharge dosage of warfarin using electronic medical records from a large hospital. Additionally, we externally 

validated the model to ensure its accuracy.

Objective: This study aimed to develop a machine learning model that predicts individual warfarin dosage based 
on clinical data within 2 days of hospitalization.

Methods: During this retrospective study, adult patients who were prescribed warfarin at a large hospital between 
January 1, 2018, and October 31, 2020, were recruited as a model development cohort (n=3,168). We externally 
validated the models using the Medical Information Mart for Intensive Care III (n=891). Variables for the warfarin 
dosage prediction were selected according to the clinical practice experience of cardiovascular physicians. The 
study outcome was the warfarin discharge dosage. Four ML models that predicted the proper warfarin discharge 
dosage were developed. We evaluated the model performance using the mean absolute error (MAE) and prediction 
accuracy. Finally, we compared the accuracy of the predictions of our models and the predictions of physicians to 
determine their clinical relevance.

Results: The MAEs obtained using the internal validation set were as follows: XGBoost, 0.9; artificial neural 
network, 1.0; random forest, 1.0; linear regression, 1.0; and physicians, 1.3. These values showed that our models 
had better prediction accuracy than the physicians, who have difficulty determining the warfarin discharge dosage 
using clinical information obtained within 2 days of hospitalization.

Conclusions: Our ML model could help physicians rapidly predict and decide the proper warfarin discharge 

dosage during hospitalization. Further work is required to determine model generalizability.

Keywords: warfarin; EMR; electronic medical record; EHR; electronic health record; machine learning; deep 

learning; dosing algorithm;
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1. Introduction

Warfarin is an oral anticoagulant; it has been used for the treatment and prevention of thromboembolic disorders 
for more than 60 years [1]. Despite its well-studied clinical pharmacology, high efficacy, and cost-effectiveness, 
it is clinically challenging to 1 determine the appropriate dosage of warfarin for each individual because of its 
narrow therapeutic window and variable patient responses [2]. Conventionally, the international normalized ratio 
(INR) blood coagulation test is performed to achieve optimal efficacy and minimize side effects of warfarin, and 
physicians adjust the warfarin dosage individually based on their medical experience and INR values [3]. However, 
if the dosage is insufficient, the risk of thrombosis increases; conversely, if the dosage is excessive, then the risk 
of bleeding increases [4]. Warfarin is one of the ten main anticoagulants that cause adverse drug events [4]. Recent 
studies have attempted to predict ideal warfarin dosage using machine learning algorithms, which mostly develop 
models using genetic data obtained through genetic testing [5–12]. Genetic variations in CYP2C9, VKORC1, and 
CYP4F2 have been shown to have significant correlations with warfarin. However, genetic testing is not 
performed in actual clinical settings because it is time-consuming [13]. In almost of tertiary hospitals from South 
Korea, the genetic test takes about 2 weeks until getting the results, because there are many patients performed 
the genetic test and waiting the results. Consequently, genetic test is not appropriate for some patients who need 
a prescription of drugs immediately. Therefore, more clinically relevant studies that predict the warfarin dosage 
using only clinical features are required. One study aimed to predict the adjustment dose of warfarin using only 
clinical data [14]. However, warfarin adjustment doses are prescribed to outpatients and can interact with some 
foods or alcohol, thus affecting their lifestyle. In such cases, it is questionable whether using lifelog data reflecting 
the lifestyle and environment of patients is more appropriate than using clinical data in the electronic medical 
records. Accordingly, we concluded that a tool that can provide reliable predictions using only clinical data 
obtained from inpatients instead of complex genetic testing data is necessary. In this study, we developed machine 
learning models that predict the appropriate warfarin discharge dosage using only clinical data generated in 
hospitals within 2 days of hospitalization. Our artificial intelligence approach has the potential to improve clinical 
utility by rapidly presenting appropriate warfarin dosing information so that the appropriate decisions can be made 
for critically ill patients in clinical practice. Additionally, these machine learning models could be beneficial to 
both hospitals and patients by decreasing unnecessary treatment durations, thereby securing space for other 

patients in hospital wards and reducing the financial burden of hospitalization costs for patients.

2. Methods

Ethical approval

This study obtained approval and waived the written informed consent from the Institutional Review Boards of 
Asan Medical Center (No. 2021-0321). All experiments were performed in accordance with relevant guidelines 
and regulations

2.1 Study Design

We designed four machine learning models to predict the warfarin dosage prescribed at discharge using only 
clinical data measured on the first and second days of hospitalization (Fig. 1). We extracted clinical variables in 
electronic medical records (EMRs) of the Asan Medical Center (AMC) and Medical Information Mart for 
Intensive Care III (MIMIC-III) database [15] with same criteria for model development and validation. Then, data 
pre-processing was performed and the models were trained using training set. Next, the actual warfarin dosage 
prescribed by the physicians was setted as baseline and compared with the predictions of the models to examine 
that our models’ predictions were more accurate and rapid than the physicians. Model performance was evaluated 
using both of the mean absolute error (MAE) [16], which has well-known performance metric in regression 
models and predictive accuracy. In addition, we externally validated the models to external validation set from the 
MIMIC-III. Data pre-processing, model development, training and validation were conducted in Python 3.8.10. 
Finally, we analyzed the predictions of five physicians by calculating intraclass correlation coefficient (ICC) [17]
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value and compared the predictions of the models and those of the physicians using 40 data points to explore the 

clinical utility of the models.

Figure 1. Overview of the workflow. Our machine learning (ML) models complied with the workflow in the 
following order: (1) through discussions with clinical experts, we collected 46 features from the electronic medical 
record (EMR) database up to the second day of hospitalization; (2) we conducted data pre-processing, such as 
missing value imputation, outlier filtering, and normalization, and created the final dataset; (3) the models 
predicted the warfarin discharge dosage using the dataset; and (4) we compared the initial warfarin dosage with 
model predictions to confirm that our models could rapidly predict more accurate discharge dosage than the 

physicians.

2.2 Data collection

The model development cohort consisted of patients admitted to the cardiovascular or thoracic and cardiovascular 
surgery departments of AMC between January 1, 2018, and October 31, 2020. All the selected participants were 
at least 19 years old; exclusions were based on the following criteria: none of warfarin prescription at discharge; 
<3 warfarin prescriptions; and no weight measurements within 2 days of hospitalization (Fig. 2). The external 
validation set derived from the MIMIC-III followed the same workflow except for medical department codes; this 
is because the medical department codes of the intensive care unit (ICU) could not be found. Finally, the 
development cohort derived from AMC EMRs comprised 3,168 patients and the external validation cohort derived 

from the MIMIC-III comprised 891 patients.

Figure 1. Cohort diagram. AMC, Asan Medical Center; EHR, electronic health record; MIMIC-III, Medical 
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Information Mart for Intensive Care III.

2.3 Data Preparation

2.3.1 Feature Selection

The process of feature selection used for model development and validation was conducted only when had already 
been proofed correlations with warfarin based on clinical rationales [18–32]. The 46 clinical variables regarded 
as key factors of warfarin dosage adjustments and associated with thrombus or bleeding were selected in 4 tables 
of demographic, diagnosis, medication, vital sign can be found in Appendix Table 1. First of all, 4 demographic 
variables of age, sex, height, weight were used. Second, comorbidity variables of 15 diseases associated with 
thrombus or bleeding were selected in the diagnosis table and used as diagnosis variables were shown in Table 1. 
Third, 18 medicines, affecting functions of warfarin and increasing a risk of bleeding and causing warfarin dosage 
adjustments when combined with warfarin, were selected in the medication table and were shown as Table 2. 
Additionally, the effect of warfarin inhibiting the coagulation of the blood can be estimated through monitoring 
vital signs. If coagulation of the blood was caused, the symptoms including difficulty breathing and low blood 
oxygen saturation, rapid breathing, and a rapid heart rate, also fever are observed. Thus, the vital sign measurement 
values can be utilized for warfarin dosage adjustments and 6 variables were selected as follow: heart rate, oxygen 

respiration, systolic blood pressure, diastolic blood pressure, body temperature, respiration rate.

Diseases

Associated with thrombus angina, arrhythmia, atrial fibrillation, chronic ischemic heart disease,
chronic lung disease, dyslipidemia, heart failure, myocardial infarction, 
peripheral arterial disease, pulmonary embolism, stroke, valvular heart 

disease

Associated with bleeding cancer, chronic ischemic heart disease, diabetes mellitus, hypertension, 

intracranial bleeding, liver disease, renal disease 

Table 1. A list of diseases associated with functions or side effects of warfarin

ACE inhibitor ADP receptor inhibitor aldosterone antagonists

allopurinol amiodarone ARB

aspirin beta-blocker calcium channel blocker, 

dihydropyridine

calcium channel blocker, 

non-dihydropyridine
diuretic, loop diuretic, thiazide

insulin lipid lowering metformin 

nitrate statin sulfonylurea

Table 2. A list of medicines affecting a dosage of warfarin when combined with warfarin
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2.3.2 Categorization 

We conducted categorization of variables in comorbidity and concurrent medication twice to reduce redundancy 
and consider more comprehensive information. It allowed us to group variables with clinical associations together 
and capture their collective impact on the prediction. This approach made the machine learning models more 
robust exploring broader patterns and relationships in the dataset. At first, the International Classification of 
Diseases, Tenth Revision (ICD-10) codes, which are the diagnostic codes used in the AMC EMRs, have a 
hierarchical structure; therefore, they can be grouped using the first disease category code. For example, code I48 
includes all diseases related to atrial fibrillation and flutter. Finally, 96 diagnostic codes based on the first three 
characters were included for 18 diagnosis groups. All ICD-10 codes included as diagnosis variables are can be 
found as Supplementary Appendix Table 2. Then, the medication information was also categorized into each 
group based on the associated ingredients of the prescribed drugs. For example, rosuvastatin, simvastatin, and 
atorvastatin were grouped as statins, whereas cilazapril, ramipril, fosinopril, and others were classified as 
angiotensin-converting enzyme inhibitors. Consequently, a total of 290 medicinal components were assigned into 

18 groups with similar drug effects.

2.3.3 Data Transformation

The categorical variables need to convert into numerical values because it can’t use in machine learning models. 
Consequently, we performed one-hot encoding at three times to variables in comorbidity, concurrent medication, 
sex. First, the sex code underwent one-hot encoding, with 1 representing male sex and 2 representing female sex. 
Next, comorbidity and drug variables underwent one-hot encoding as 1 if a specific diagnostic code was assigned 
or a specific drug was administered within 2 days of hospitalization and as 0 if otherwise. Finally, the entire of 

categorical variables were transformed as numerical vectors can be used in machine learning model.

2.3.4 Imputation & Normalization

We performed data cleaning each other models, because there is difference of suitable methods with model types 
that planned to develop in this study. The XGBoost and Random Forest models are a decision-tree-based ensemble 
machine learning algorithm, but artificial neural network and linear regression models are not. Then, we 
performed two imputation methods to preprocess missing values in continuous variables, by considering whether 
the model was a decision-tree-based model. Because the tree-based models can automatically handle missing 
values and are not sensitive to missing values or outliers [33], any missing data was replaced with minus 1 in 
XGBoost and Random Forest models. Mean imputation would be appropriate to deal with the missing data for 
artificial neural network and linear regression models, because the continuous variables used in this study have 
not a wide range of values. Accordingly, we performed mean imputation that convert missing values as mean 
values in the specific variable in artificial neural network and linear regression models. Finally, we conducted 
normalization in artificial neural network and linear regression models and all variables were normalized using 
the minimum-maximum scaling method [34], resulting in a range from 0 to 1.

2.3.5 Data Split

The AMC dataset (n=3,168) was separated as 80% for the training set (n=2,534) and 20% for the internal 
validation set (n=634) using random split method. Additionally, we performed external validation to evaluate the 

generalizability of the model to the external validation set (n=891) from the MIMIC-III.

2.4 Model Development and Validation

The following models were developed: artificial neural network (ANN) [35], linear regression [36], extreme 
gradient boosting (XGBoost) [37], and random forest [38] models. These models were trained in training set 
including 46 clinical features and predicted a warfarin discharge dosage. We conducted Grid Search [39] with 
random shuffles of 5-fold cross-validation [40] to identify the optimal hyperparameters for each model. The entire 
of final hyperparameters of four models was shown in Appendix Table 3. Finally, the XGBoost and random forest 
models utilized the raw dataset as the input, Whereas the ANN and linear regression models used the minimum-
maximum scaled dataset as the input to help a rapid optimization of each models.
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2.5 Performance Metrics

We used both of MAE and predictive accuracy as performance metrics to evaluate the model prediction ability. 
Baseline was set to the initial dosage of warfarin prescribed by a physician upon hospitalization. The performance 
of the models was compared with the baseline to examine that our models’ predictions were more accurate and 
rapid than the physicians. Subsequently, we calculated the accuracy of the model prediction using three thresholds: 
0.5 mg, 1.0 mg, and 1.5 mg. This approach was consulted a logistic regression that conducts a binary classification 
whether the prediction was greater than a specific cut-off value [41]. The prediction was classified as accurate if 
the MAE of the sample was smaller than the corresponding threshold; otherwise, it was classified as inaccurate. 
For example, when the threshold was 0.5 mg, if the MAE of a particular sample was 0.3 mg, the prediction was 
classified as accurate. We calculated the proportion of samples with accurate predictions determined by each 

model and evaluated the accuracy of predictions based on each threshold.

2.6 Model Interpretations

We used the Shapley additive explanations (SHAP) method to obtain insights of the predictions of our models and 
understand how each variable contributes to predictions [42]. The SHAP method is an explainable artificial 
intelligence method that decomposes the output of the model into the contributions of each feature, allowing for 
an analysis of the influence of each feature on the model [43]. It considers dependencies between features and can 
calculate positive and negative impacts, unlike traditional variable importance measures. Higher SHAP values 
indicate that the patient needs higher warfarin dose. The SHAP values calculated using the internal validation set 

were applied to visualize dependence, waterfall, and beeswarm plots.

2.7 Comparison of Models’ and Physicians’ Predictions

We selected 20 data points with accurate model predictions, high physician prediction errors and 20 data points 
with high model prediction errors and accurate physician predictions. The XGBoost model was used. 
Subsequently, we constructed a dataset with 50% model accuracy and 50% baseline accuracy. Next, we distributed 
these datasets to five physicians and asked them to predict the appropriate warfarin discharge dosage. We analyzed 
intraclass correlation coefficient (ICC) of the physicians’ predictions to test the interrater agreement using 2-way 
random effects model in R. Finally, we compared the predictions of the machine learning models and those of the 

physicians.
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3. Results

3.1 Patient Characteristics

The baseline characteristics of the two datasets used for model development and validation are listed in Table 3. 

AMC dataset (n=3,168) MIMIC-III dataset (n=891)
Demographics
Age, mean (SD), years 62.3 (12.5) 65.3 (14.3)
Male 1,674 (52.8%) 510 (57.2%)
Female 1,494 (47.2%) 381 (42.8%)
Height, mean (SD) 162.2 (9.5) 171.0 (10.7)
Weight, mean (SD) 63.5 (13.0) 87.6 (46.1)

Vital Signs
Heart rate, mean (SD) 70.9 (23.7) 84.5 (14.8)
O2 saturation, mean (SD) 97.8 (2.3) 100.0 (0.7)
Systolic blood pressure, mean (SD) 115.9 (20.3) 115.0 (22..3)
Diastolic blood pressure, mean (SD) 67.4 (12.2) 58.6 (1..4)
Body temperature, mean (SD) 36.6 (0.6) 36.7 (0.7)
Respiration rate, mean (SD) 17.7 (3.0) 18.6 (3.8)

Comorbidity (n, %)
Angina 114 (3.6%) 31 (3.5%)
Arrhythmia 172 (5.4%) 156 (17.5%)
Atrial fibrillation 1,335 (42.1%) 541 (59.6%)
Cancer 172 (5.4%) 55 (6.2%)
Chronic ischemic heart disease 368 (11.6%) 323 (36.3%)
Chronic lung disease 54 (1.7%) 210 (23.6%)
Diabetes mellitus 501 (15.8%) 295 (33.1%)
Dyslipidemia 70 (2.2%) 362 (40.6%)
Heart failure 488 (15.4%) 404 (45.3%)
Hypertension 958 (30.2%) 567 (63.6%)
Intracranial bleeding 9 (0.3%) 4 (0.4%)
Liver disease 60 (1.9%) 45 (5.1%)
Myocardial infarction 50 (1.6%) 79 (8.9%)
Peripheral arterial disease 42 (1.3%) 104 (11.7%)
Pulmonary embolism 139 (4.4%) 189 (21.2%)
Renal disease 303 (9.6%) 292 (32.8%)
Stroke/TIA 95 (3.0%) 106 (11.9%)
Valvular heart disease 2340 (73.9%) 339 (38.0%)

Other medication use (n, %)
ACE inhibitor 154 (4.9%) 243 (27.3%)
ADP receptor inhibitor 140 (4.4%) 99 (11.1%)
ARB 715 (22.6%) 68 (7.6%)
Aldosterone antagonist 712 (22.5%) 40 (4.5%)
Allopurinol 65 (2.1%) 45 (5.1%)
Amiodarone 237 (7.5%) 174 (19.5%)
Aspirin 323 (10.2%) 632 (70.9%)
Beta-blocker 667 (21.1%) 655 (73.5%)
Calcium channel blocker, dihydropyridine 781 (24.7%) 86 (9.7%)
Calcium channel blocker, non-dihydropyridine 224 (7.1%) 20 (2.2%)
Diuretic, loop 1,625 (51.3%) 545 (61.2%)
Diuretic, thiazide 121 (3.8%) 34 (3..8%)
Insulin 61 (1.9%) 111 (12.5%)
Metformin 96 (3.0%) 19 (2.1%)
Nitrate 948 (29.9%) 68 (7.6%)
Other lipid-lowering medication 186 (5.9%) 34 (3.8%)
Statin 1,207 (38.1%) 453 (50.8%)
Sulfonylurea 178 (5.6%) 21 (2.4%)

Table 3. Characteristics of participants. The categorical variables, such as sex, comorbidities, and other 
medication use variables, are presented as numbers and percentages of patients with a specific sex, diagnosis, and 
medication, respectively. The remaining continuous variables are presented as the mean and standard deviation. 
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ADP, adenosine diphosphate; ARB, angiotensin receptor blocker; SD, standard deviation; TIA, transient ischemic 

attack.

3.2 Model Performance

The MAE and accuracy at the threshold for both datasets are listed in Table 4. The following MAEs were 
calculated for the internal validation set: XGBoost, 0.9; random forest, 1.0; Artificial neural nets (ANN), 1.0; and 
linear regression, 1.0. All models had better prediction performance than baseline (MAE of 1.3). Using the 
external validation dataset, the following MAEs were achieved: baseline, 1.8; random forest, 1.8; linear regression, 
1.8; ANN, 2.0; and XGBoost, 1.9. Consequently, internal validation of the internal validation set from the AMC 
EMRs confirmed that all predictions of the artificial intelligence models had lower errors and higher accuracy 
than those made by physicians regarding MAEs and accuracy. However, the baseline showed similar or superior 
performance when compared with all machine learning models in terms of the MAE, in external validation derived 
from the MIMIC-III. The MAE box plots of the internal validation set and external validation set are shown in 

Figure 3.

Internal validation set (n=634) External validation set (n=891)

MAE
Accuracy
(e=0.5 mg)

Accuracy
(e=1.0 mg)

Accuracy
(e=1.5 mg)

MAE
Accuracy
(e=0.5 mg)

Accuracy
(e=1.0 mg)

Accuracy
(e=1.5 mg)

XGBoost 0.9 51.3 72.2 83.8 1.9 33.4 48.3 57.7

Random 
forest

1.0 49.5 68.9 81.5 1.8 35.6 44.6 56.8

Linear 
regression

1.0 48.7 70.0 84.9 2.0 31.9 45.3 58.1

Neural net 1.0 46.5 69.2 85.0 1.8 29.7 45.3 60.0
Physicians 1.3 32.2 57.3 69.4 1.8 37.1 48.3 53.5

Table 4. Model performance according to the MAE and accuracy. We conducted model performance 
evaluations of the internal validation set and external validation using the MAE and calculated the model 

prediction accuracy using three thresholds (0.5 mg, 1.0 mg, 1.5 mg). MAE, mean absolute error.

Figure 3. Box plot using the MAE. Performance abilities of the models based on the MAE were visualized using 
the internal validation (n=634) and external validation (n=891) sets. The top line represents the maximum value. 
The middle line represents the third quartile. The orange line represents the median. The bottom line represents 

the first quartile. The green dotted line represents the mean value. MAE, mean absolute error.

3.3 Model Interpretations

We examined the SHAP values of the 20 features with the most impact on model predictions using the beeswarm 
plot (Fig. 4). Additionally, we confirmed interactions between each feature using weight, height, and sex, because 
they are primary factors used to determine the warfarin dosage (Fig 5). We also investigated the impact of features 
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on individual predictions. We randomly selected 4 data points from the internal validation set with no missing 
values, and our models accurately predicted all of them. Subsequently, we calculated the SHAP values using a 
waterfall plot to explain individual predictions. The waterfall plot explains the influence of each feature on 
individual predictions (Fig. 6). The patient of Fig. 6a was a 64-year-old male diagnosed with atrial fibrillation 
who received angiotensin receptor blockers, amiodarone, beta-blockers, diuretics (loop), and statins. His height 
was 171.8 cm. His weight was 89.5 kg. His heart rate, oxygen saturation, and respiration rate were 132 
beats/minute, 99%, and 16 breaths/minute, respectively. The patients of Fig. 6b was a 52-years-old female 
diagnosed with valvular heart disease. Her height was 154cm and weight was 54.5kg. Her systolic blood pressure 
and diastolic blood pressure were 118 mmHg, 78 mmHg, respectively. The patient of Fig. 6c was a 72-years-old 
female diagnosed with atrial fibrillation, hypertension, pulmonary embolism. She was prescribed the various of 
medications, including statin, ARB, calcium channel blocker and nitrate, diuretic (loop), calcium channel blocker. 
Her height was 157.8 cm and weight was 65.9 kg. The patient of Fig. 6d was a 73-year-old male diagnosed with 
heart failure and renal disease who received aldosterone antagonists and diuretics (loop). His height was 166 cm. 
His weight was 76 kg. His oxygen saturation, systolic blood pressure, and diastolic blood pressure were 100%, 
134 mmHg, and 57 mmHg, respectively.

Figure 4. SHAP beeswarm plot of the 20 main features affecting the predictions of the XGBoost model. 
Features are ranked in descending order based on the absolute value of their influence on the XGBoost model. 
The x-axis indicates SHAP values. Each dot denotes a data point. Colors represent high values (red) or low 
values (blue) of specific data points. SHAP, Shapley additive explanations.
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Figure 5. SHAP dependence plot. Each dot represents a data point. The x-axis indicates each feature. The 
y-axis indicates the SHAP value of each feature. Colors indicate whether a feature interacting with another feature 
had a high value (red) or low value (blue). SHAP, Shapley additive explanations.

Figure 6. SHAP waterfall plot. The x-axis represents the individual warfarin dosage prediction of the 
models. The y-axis represents the input features of the models. E[f(x)] (2.571) represents the baseline value, which 
is the model output of the entire dataset, and f(x) represents the individual model output for each patient. Each 
arrow indicates whether a specific feature increased (red) or decreased (blue) the warfarin dosage. SHAP, Shapley

additive explanations.
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3.4 Comparison of Models’ and Physicians’ Predictions

Finally, we collected the predictions of the model and those of the five physicians for 40 data points (Fig. 7). First, 
intraclass correlation coefficient (ICC) of the physicians’ predictions was calculated to measure the interrater 
agreement (Table 5). ICC is a value between 0 and 1, where values below 0.5 indicate poor reliability, between 
0.5 and 0.75 moderate reliability, between 0.75 and 0.9 good reliability, and any value above 0.9 indicates excellent 
reliability [17]. As a result, ICC value of 0.16 was obtained and the consistency about warfarin dosage decision 
of the physicians was poor. Consequently, physicians tend to focus on a specific warfarin dosage range based on 
their clinical experience, thus leading to significant variability in the distribution of dosage predicted by physicians. 
Next, prediction accuracy of the models and the five physicians was compared. Physicians accurately predicted 
approximately 10 of 40 samples, achieving 25% accuracy; however, the models demonstrated 50% accuracy. This 
indicated that it can be difficult for physicians to determine the appropriate warfarin discharge dosage based on 

the 46 clinical features obtained within 2 days of hospitalization.

Intraclass correlation coefficient (95% CI) p-value
Five physicians’ prediction 0.16 (0.02-0.35) 2.3e-17

Table 5. ICC of the predictions by the physicians for 40 data points.

Figure 7. Distribution of warfarin dosage predicted by the physicians and models. We identified the 
predictions of five physicians and that of our model using 40 data points. The actual warfarin dosage at discharge 
(blue) was distributed evenly within 1-6mg. The average prediction dosage of our model (yellow) was 2·6 mg, 
and the maximum prediction dosage of our model was 3 mg; furthermore, it had 50% accuracy when predicting 

dosage of 2-3 mg. The predictions of the five physicians were diverse, and their accuracy was approximately 25%.



１２

4. Discussion

It is important to determine the appropriate warfarin dosage for each individual to maximize its efficacy and safety
[44]. However, the time required to determine the warfarin dosage varies for each person because of the influence 
of individual genetic and clinical factors [45]. In particular, VKORC1, CYP2C9, and CYP4F2 polymorphisms 
account for approximately 40% of the variability in warfarin responses, and new genetic variants that have not 
yet been identified are assumed to account for approximately 50% of the variability; however, clinical factors that 
can be considered in clinical practice affect the response to warfarin by only approximately 10% [46]. Nonetheless, 
genetic testing is costly and time-consuming; it is not routinely performed to determine the warfarin dosage [47]. 
Additionally, ICC value we analyzed in this study showed that there is inconsistency about warfarin dosage 
decided by each physician. Indeed, physicians rely on INR measurements and their medical experience to 
determine the appropriate warfarin dosage; they do not consider the genetic characteristics of patients rigorously
[48]. Consequently, this study is significant because the warfarin discharge dosage was rapidly determined using 
only clinical information obtained within two days of hospitalization, unlike previous pharmacogenetic models. 
Additionally, our models showed similar or superior performance when compared to other warfarin dosage models 
(Appendix Table 4, Data 1). It demonstrated that the models can make appropriate warfarin dosing decisions 
without the same level of effort as physicians who would consider various factors such as the INR value. These 
results are likely attributable to the successful selection of important variables able to interact with warfarin from 
our initial clinical data obtained through discussions with experienced clinical experts and effective utilization of 

refined variables. 

However, we were not able to successfully perform external validation in the MIMIC-III. The random forest and 
linear regression models had equal model performance with baseline (1.8) and the XGBoost and artificial neural 
network showed poor performance than baseline. Although we anticipated these issues, we had to conduct external 
validation using the MIMIC-III because it is the only public database available in clinical settings. Because the 
two datasets were created in different countries, there may have been differences in clinical information, such as 
various races. Our models trained using data of an East Asian population could not consider differences in races 
and physical characteristics in the MIMIC-III. Furthermore, there may have been differences in drug information 
because we categorized drug ingredients according to Korean standards, which may not reflect all drugs with the 
same efficacy used in the United States. Finally, because the MIMIC-III is an ICU database, warfarin dosage at 
discharge for general ward patients and those for ICU patients are not the same. Physicians who work in the 
MIMIC-III might already know the INR values of patients measured in general ward. The differences in the 
datasets make it difficult to directly compare the predictions made by physicians using the two datasets. 
Consequently, the models’ weights that trained in training set were not applicable for external validation set. We 
need to conduct further study that train the models after standardizing a multi-center data to improve models’ 
generalizability. In further work, we have to obtain a multi-center cohort and standardize a common cardiovascular 

registry to conduct an external validation successfully. 

In conclusion, we developed 3 machine learning models and 1 deep learning model using data of a model 
development cohort from a tertiary hospital in Korea to predict warfarin discharge dosage. Although successful 
external validation was not performed during this study because our models could not consider differences in both 
of the clinical settings, our models showed outstanding predictive ability and outperformed physicians regarding 
accuracy using the internal validation set of the same institution as the training set. In internal validation set with 
MAE, XGBoost models achieved 0.9, and random forest and linear regression, artificial neural network models 
achieved 1.0, whereas physicians achieved 1.3. As a result, all of our models outperformed physicians. Therefore, 
our models could alleviate the difficulties encountered by physicians when determining the warfarin discharge 
dosage of patients admitted to the hospital for the first time. Especially, it might be effective tools that help 
physicians choose more accurate and personalized warfarin doses for an East Asian population while reducing 
unnecessary treatment durations and preventing warfarin overdose and adverse drug events.
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Chapter 2.

Database integrated between EMR (Electronics Medical Record) and Open Targets Platform for 

pharmacogenomic study

Abstract

Background: To reduce the cost and time involved in the traditional drug development process, drug development 
research that uses artificial intelligence (AI) is actively being conducted. Besides open-source databases, 
electronic medical records (EMRs, which serve as a warehouse for medical data generated in clinical settings) can 
provide real-world evidence and can be used in the process of drug discovery. In this study, we constructed a new 
platform by linking information from the Open Targets Platform, a well-known open-source medicine database, 

with EMRs at Asan Medical Center, Seoul, Republic of Korea. 

Objective: The study objective was to contribute to personalized drug development, enabling future research on 
drug–protein interactions; therefore, we established a clinical database that could be used as an AI drug 

development platform.

Methods: The ‘Target-Disease evidence’ cancer dataset was selected from the Open Targets Platform. Then, 
clinical data for patients who had been prescribed at least one of the 110 drugs in the Open Targets Platform were 
extracted from the ABLE system at the Asan Medical Center. Finally, the two datasets were integrated, based on 

drug information.

Results: The study population comprised 1,380 participants, and the database contained 53 drugs associated with 
91 targets and 60 cancer types. The database also contained 10 types of genetic variation: loss-of-function 
mutation, missense mutation, amplification, frameshift deletion, frameshift insertion, nonsense mutation, splice-
site mutation, in-frame deletion, in-frame insertion, and nonstop mutation.

Conclusions: Data obtained from the open-source database were consistent with data obtained from the clinical 
setting; however, there were some cases where information was found only in the clinical setting and not in the 
open-source database. Therefore, a database with the integration of open-source and clinical information can 
provide new evidence that can be used in future AI drug research.

Keywords: EMR; electronic medical record; heterogeneous database; Open Targets Platform;
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1. Introduction

Drug development is an interdisciplinary field that requires the integration and coordination of biology, chemistry, 
and pharmacology [49]. Typically, drug development involves selecting disease targets (eg, target discovery), 
target validation, lead compound identification, lead compound optimization, preclinical development, clinical 
trials, and registration [40]. Target discovery explains the process of discovering compounds that show efficacy 
against clinically-validated targets [51]. Through lead compound optimization, approximately five out of 1,000 
compound candidates proceed to preclinical stages [52]. Absorption, distribution, metabolism, excretion, and 
toxicity studies are conducted through laboratory and animal experiments as a preclinical process [53]. Clinical 
trials, including Phase 1, 2, and 3 trials, are conducted in humans. Registration refers to Food and Drug 
Administration (FDA) review and approval [53]. Thus, the overall drug development process takes an average of 
10–15 years, requires millions to billions of dollars in investment, and has a success rate of only 1 in 5,000 to 1 

in 10,000 [54].

To expedite and improve the efficiency of drug development, artificial intelligence (AI) drug discovery, which 
uses clinical data and suitable AI algorithms to develop drugs, is now being applied [55, 56]. AI drug discovery is 
a very useful method that can produce results quickly, and with high accuracy and low cost, compared to traditional 
drug-discovery methods [57]. AI can search for an almost infinite number of substances at the candidate substance 
search stage, which can significantly reduce costs and time [58]. Additionally, AI can help identify patterns and 
interrelationships inherent in data, thereby opening up new possibilities for detecting disease targets and for drug 
redesign that would be difficult to uncover using conventional methods [59]. Because of these advantages, AI 
drug development is attracting attention as a promising method for faster and more efficient drug development 
[60].

AI requires big data for learning, such that data reliability is crucial [61]. Therefore, it is important to refine a 
large amount of prior knowledge-based data for the intended purpose [62]. By using refined big data in AI, a rapid 
drug-development method can be proposed, and the drug-development period can be significantly shortened [63]. 
Among medical big data, electronic health records (EHRs) provide vast amounts of patient data, such as 
prescription results, diagnostic codes, prescriptions, and physician opinions [64]. As EHR databases become more 
standardized and integrated across multiple hospital systems, they are gaining attention as data sources to be 
analyzed when evaluating patient treatment and building early disease-prediction models [65]. Therefore, we built 
a new database, optimized for AI drug development and based on clinical practice, by linking existing public 
databases related to pharmaceutical information and EMRs from Asan Medical Center (AMC), Seoul, Republic 

of Korea; our database has the potential to be used in future AI drug development research (Fig. 1).

Figure 1. Study overview. In this study, we integrated Open Targets Platform and EMR derived from Asan 
Medical Center. In Open Targets Platform, cancer-biomarker dataset included 110 FDA approved anticancer drugs 
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was used. The database was mapped based on drugs, because drug ingredients from EMR and ‘Drug From Source’
from Open Targets Platform were equivalent. ChEMBL drug Id, Ensembl gene Id, Experimental Factor Ontology 
disease Id were used key identifier of drug, target, disease, respectively in Open Targets Platform. Finally, a 
heterogeneous database was generated and could be added information of clinical association using key identifiers. 
This heterogeneous database could be useful in future AI research for drug development, such as identification of
drug-target interaction or drug-drug interaction, drug repurposing. EMR, electronic medical record; AI, artificial 

intelligence;

2. Methods

2.1. Data source: Open Targets Platform

Open Targets Platform is a large public database of pharmacologic knowledge that includes a variety of drug, 
target, and disease-related information, and details about biologic pathways, and gene ontology [66]. Due to its 
vast collection of data, the Open Targets Platform can be used as a tool to discover new drug targets and indications 
and can be integrated with other databases. The ‘Target-Disease evidence’ cancer dataset of the Open Targets 
Platform contains 110 drugs approved by the FDA for the treatment of various cancers and comprises a two-
dimensional dataset using a many-to-many approach, with each drug having one or more targets. In summary, 
drug–target disease association data in the platform include 110 drugs, 182 targets, and 76 disease-information 
presents. ChEMBL identification (ID), Ensembl gene ID, and Experimental Factor Ontology disease ID were used 
for drug ID, target ID, and disease ID, respectively, in the Open Targets Platform. Consequently, this dataset was 
selected as the main dataset of the Open Targets Platform for our research because we could use both drug ID and 

target ID as the primary identifier and could merge drug information based on the identifier.

2.2 Cohort extraction: AMC EMRs

We extracted clinical and genetic data from EMRs at AMC. The AMC dataset comprised patients aged >19 years 
and admitted to the cardiovascular or thoracic and cardiovascular surgery departments of AMC between January 
1, 2018 and October 31, 2020. In clinical practice, many drugs are used for purposes other than their originally 
approved indications [67]. Therefore, we excluded drugs in the EMRs that were not listed in the Open Targets 
Platform, and we decided to use only EMR data, including cancer biomarkers, for the 110 FDA-approved drugs 
in the ‘Target Disease evidence’ cancer dataset. Ultimately, we collected a final study population of 1,380 
individuals by including only patients with genetic testing records and diagnosed with a specific cancer. We 
constructed a single dataset for these patients that included: diagnostic and medication information, and genetic 
testing results. This study obtained approval from the ARC institutional review board (approval no. 2021-0321). 
All experiments were performed in accordance with relevant guidelines and regulations.

2.3 Integration between EMR and open targets platform

Because drug ingredient name in the EMR matched the ‘drugFromSource’ variable in the Open Targets Platform, 
the two datasets were integrated based on drug type. Drugs in the EMR that had no information in the ‘Target-
Disease evidence’ cancer dataset were excluded, so that only FDA-approved drugs with an association between 
drug and target were included. Thus, linked 73 drug information in the AMC dataset among 110 drugs. Despite 
the availability of EMRs, patients without a genetic-test result or specific cancer diagnosis were excluded. Finally, 
the integrated database of information from EMRs and the Open Targets Platform comprised 53 drugs associated 

with 91 targets and 60 cancer types. The final dataset comprised 1,262,425 rows and 20 columns.

3. Results

A new drug information database was created that could be used for AI-based drug development research, and 
that was constructed by integrating the AMC EMR database with the Open Targets Platform, which contains 
information on 110 drugs that can treat cancer. We linked this data with the genetic-test results for 1,380 patients 
who received 57 of these 110 drugs at AMC. As each drug could have one or more target genes or target cancers, 
the information included: 91 genes previously identified as targets for the drugs, and 60 types of cancer that the 
drugs could treat. The mapping ratios for integration of the Open Targets Platform with the EMR database are 
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shown in Table 1.

Variables Total codes (N) Mapped code (N) Mapping ratio (%)
Medication 110 57 52
Diagnosis 80 60 75

Target 182 91 50

Table 1. Mapping ratios for the Open Targets Platform. Information on FDA-approved drugs available in both the Open 

Targets Platform and AMC EMRs was used. Among the 110 drugs in the Open Targets Platform: over 80 were FDA-approved for cancer 
treatment and 182 biomarker targets were clearly identified; drug information for 73 drugs could be used for mapping with AMC EMR data, 

but patients without genetic-testing data were excluded, resulting in the final extraction of drug information for 53 drugs. The total number of 
targets identified to interact with the selected 53 drugs was 91, and there were 60 types of target cancer. AMC, Asan Medical Center; EMR, 
electronic medical record; FDA, Food and Drug Administration.

There were 533 gene mutations (not necessarily associated with drugs or cancer) and 39 cancer types obtained 
from the EMR database. Table 2 lists the six most frequently prescribed drugs, and the six most frequently 

diagnosed cancer types, in the clinical setting.

Drug Count (%) Diagnosis Count (%)

Cisplatin 361 (26.2) Non-small cell lung cancer 323 (23.4)

Paclitaxel 326 (23.6) Gastric cancer 213 (15.4)

Octreotide 192 (13.9) Ovarian cancer 194 (14.1)

Gemcitabine 160 (11.6) Pancreatic cancer 137 (9.9)

Bevacizumab 155 (11.2) Malignant brain tumor 95 (6.9)

Capecitabine 134 (9.7) Other 68 (4.9)

Table 2. Frequency of drug and diagnosis derived from EMR database (N=1,380). It showed that the count and 

percentage of the top 6 drugs and cancer types that were most frequently prescribed and diagnosed, respectively, among 1380 participants in 
the EMR database. EMR, electronic medical record;

To examine the characteristics of patients who received each drug, the six most frequently used drugs were 
selected, and the most frequently diagnosed cancer types within these six drug categories were identified (Fig. 2).

Figure 2. Cancer types, shown as the percentage of patients receiving each of the six most frequently 

prescribed drugs. n represents the number of patients receiving each drug.
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Data for 10 types of genetic variation were extracted from the EMRs: loss-of-function mutation, missense 
mutation, amplification, frameshift deletion, frameshift insertion, nonsense mutation, splice-site mutation, in-
frame deletion, in-frame insertion, and nonstop mutation. The top 10 types of genetic variation, and the top 10 

specific gene mutations, are listed in Table 3.

Variant type Count (%) Gene variant Count (%)

Missense mutation 1,369 (99.2) TP53 906 (65.7)

Amplification 855 (62.0) CDKN2A 316 (22.9)

Loss-of-function mutation 614 (44.5) KRAS 306 (22.2)

Nonsense mutation 514 (37.2) EGFR 286 (20.7)

Frameshift deletion 491 (35.6) LRP1B 252 (18.3)

Splice-site mutation 330 (23.9) BRCA2 232 (16.8)

In-frame deletion 281 (20.4) NOTCH3 228 (16.5)

Frameshift insertion 230 (16.7) CDKN2B 227 (16.4)

In-frame insertion 74 (5.4) MYC 224 (16.2)
Nonstop mutation 4 (0.3)

PIK3CA 222 (16.1)

Table 3. The 10 most frequently observed types of genetic variation and specific gene mutations (N=1,380).
The most common structural genetic variations were single-nucleotide variant missense mutations, and the most common gene mutation was 

TP53 mutation. Loss, loss-of-function mutations;

In addition, we examined the frequency of gene mutations in patients treated with the top six prescribed drugs 
(Fig. 3). Almost all the 1,380 participants had missense mutations, and more than half of the participants had 

amplification and TP53 mutations.
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Figure 3. Frequency of specific gene mutations in patients receiving each of the top six prescribed drugs. 
Data derived from the electronic medical record database; n represents the number of patients receiving each drug.
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4. Discussion

If EMR or open-source data alone were used in AI drug development, important information might be lost. 
However, the heterogeneous database constructed in this study has significant potential to improve the quality of 
big data and use additional information in future AI drug development research. If EMR data alone were available, 
paclitaxel would be used as a drug targeting TUBB3 to treat bladder cancer, but since TUBB3 mutation testing is 
not conducted at AMC, EMR data alone could miss information about the known interaction between drug and 
target [68]. Conversely, if using only the Open Targets Platform, clinically important information on CDKN2A 
that could affect the prescribing of anticancer drugs would be unavailable and might result in missing information 
on drug targets [69]. We decreased information loss by integrating the ACR EMR and Open Targets Platform 
databases and found agreement between the two databases. Consequently, the novel, heterogeneous database 

could potentially be used to provide real-world evidence.

In our overall data population, 65% of people had a TP53 mutation. TP53, a tumor suppressor gene, is the most 
mutated gene in cancer and can progress specific types of cancer when a mutation occurs, thus making cancer 
treatment more difficult [70]. Therefore, TP53 has been studied as a target for various anticancer agents and, in 

this study, the correlation between TP53 and cancer was clinically confirmed once again.

Cisplatin has therapeutic effects on various cancers, such as bladder, breast, lung, and ovarian, and targets genes 
such as ERCC2, FANCC, BRCA1, ERCC4, MDM2, ATM, BRCA2, RB1, and TP53 [71-72]. Same as this, in 
clinical practice, some individuals who received cisplatin were found to have the corresponding cancer and gene 
variant. Paclitaxel is renowned as an effective medication for bladder carcinoma [73], but in clinical practice in 
this study, it was used to treat various cancers, such as ovarian, gastric, lung, and kidney. Octreotide is renowned 
as a medication that can treat meningioma by targeting the NF2 gene [74-75]. However, in the clinical setting in 
this study, patients diagnosed with ovarian or pancreatic cancer and with an NF2 mutation received octreotide (ie, 
without a diagnosis of meningioma). Gemcitabine targets KRAS, TP53, and SLC29A1 and has therapeutic effects 
against pancreatic and bladder carcinoma [76-77]. Same as this, in the clinical field, patients diagnosed with 
pancreatic cancer were prescribed this medication. Bevacizumab is approved to treat malignant peripheral nerve 
sheath tumor, glioma, and schwannoma in patients with VHL, NF1, and NF2 mutations [78-81], but in the clinical 
setting in our study, bevacizumab was used in patients with renal carcinoma and VHL, NF1, and NF2 mutations. 
Capecitabine targets DPYD [82], and our study confirmed that capecitabine was prescribed to individuals with 
DPYD mutations in the clinical field. Thus, not only can actual research results be confirmed by clinical data, but 
it is also expected that new clinical evidence can be discovered by using additional genetic and disease information 

from the study participants.

Importantly, using our database in AI research for new drug development is expected to enable personalized drug 
treatment for patients based on their disease and genetic information. Also, our database may facilitate the 
discovery of new indications for currently used drugs, and the prediction of new drug–target interactions (DTIs) 
or drug–drug interactions. Indeed, in a future study, we will use our database to predict new DTIs through the 

development of AI models.

Conclusion

EMR has a significant potential to contribute to personalized drug treatment due to include extensive medical big 
data, such as diagnosis code, medication information, genotype data, physician’s opinion. Additionally, AI can 
understand complicated big data and find inherent patterns and correlations in big data. Finally, we decided that 

collaborate AI with EMR to contribute to personalized drug treatment.

This study aimed to realize personalized drug treatment using electronic medical record (EMR) data and 
developed two tools for that purpose. The first study focused on the early prediction of discharge dosage for the 
anticoagulant warfarin using machine learning models. Four machine learning models suitable for dosage 
prediction were developed, and through internal validation, it was confirmed that the model predictions were more 
accurate than those of actual clinical experts. Additionally, the SHAP (SHapley Additive exPlanations) technique 
was employed to analyze the key variables influencing the model predictions, providing insights into the decision-
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making process similar to that of healthcare professionals. Besides, when the same data was presented to 
individual physicians, significant variations in dosage decisions based on their individual medical experiences 
were observed. Furthermore, model showed that its prediction accuracy was twice as high as that of physicians, 
when used internal validation set. Therefore, the clinical utility of the models was demonstrated in East Asian 
population. Additionally, we have to conduct a further study that make our models consider not only East Asian, 

but also other races.

The second study focused on the integration of EMR and pharmaceutical information databases to construct a 
novel clinical field-based heterogeneous database. FDA-approved anticancer agents and associated target gene 
information from the Open Targets Platform database was used. We standardized drug elements between the EMR 
and Open Targets Platform, the two databases were linked based on drug information. Finally, we extracted the 
correlations between 57 anticancer agents, 60 cancer types, and 91 genetic mutations. Moreover, we contained 
additional information, such as diagnostic information and genetic test results of actual patients receiving 
anticancer drugs. In conclusion, a platform was built that could utilize both clinical and genetic characteristics of 
patients in real-world clinical settings for AI drug development. In further work, we will perform AI drug 

development, such as drug repurposing or drug-target interaction identification using the novel database.

We have concluded that this study can improve patient outcomes, minimize adverse drug reactions, and optimize 
drug therapies, ultimately leading to better overall healthcare delivery and patient care.
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Appendix 

Table 1. Features used for model training and validation

Sex 
Age
(diag)Angina
(diag)Arrhythmia
(diag)Atrial fibrillation
(diag)Cancer
(diag)Chronic ischemic heart disease
(diag)Chronic lung disease
(diag)Diabetes mellitus
(diag)Dyslipidemia
(diag)Heart failure
(diag)Hypertension
(diag)Intracranial bleeding
(diag)Liver disease
(diag)Myocardial infarction
(diag)Peripheral arterial disease
(diag)Pulmonary embolism
(diag)Renal disease
(diag)Stroke / TIA
(diag)Valvular heart disease
(medi)ACE inhibitor
(medi)ADP receptor inhibitor
(medi)ARB
(medi)Aldosterone antagonist
(medi)Allopurinol
(medi)Amiodarone
(medi)Aspirin
(medi)Beta-blocker
(medi)Calcium channel blocker, dihydropyridine
(medi)Calcium channel blocker, non-dihydropyridine
(medi)Diuretic, loop
(medi)Diuretic, thiazide
(medi)Insulin
(medi)Metformin
(medi)Nitrate
(medi)Other lipid lowering
(medi)Statin
(medi)Sulfonylurea
Height
Weight
Heart Rate
Oxygen Respiration
Systolic Blood Pressure
Diastolic Blood Pressure
Body Temperature
Respiration Rate
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Table 2. ICD-10 diagnostic codes used to categorize diseases.

Diagnosis ICD-10 code

Myocardial infarction I21, I22, I23

Hypertension I10, I11, I12, I13, I15

Diabetes mellitus E10, E11, E12, E13, E14

Dyslipidemia E78

Chronic ischemic heart disease I25

Angina I20

Heart failure I42, I43, I50

Valvular heart disease I05, I06, I07, I08, I09, I34, I35, I36, I37, I38, I39

Peripheral arterial disease I70, I73, I74, I77, I79

Stroke / TIA I63, I64, I65, I66, I67, I68, G45, G46, H34

Intracranial bleeding I60, I61, I62

Atrial fibrillation I48

Arrhythmia I44, I45, I47, I49

Liver disease K70, K71, K72, K73, K74, K75, K76, K77

Renal disease N03, N04, N05, N10, N11, N12, N13, N14, N15, N16, N17, 
N18, N19, Z49, Z940, Z992

Chronic lung disease J40, J41, J42, J43, J44, J45, J46, J47, J60, J61, J62, J63, J64, J65, 
J66, J67, J84

Cancer C

Pulmonary embolism I26, I27

Table 1. Information of the four models hyperparameter.

Model Hyper-parameter

XGBoost

Learning rate: 0.4
Max depth: 3
Objective function: regression with squared log loss
Minimum sum of instance weight needed in a child: 10
L1 regularization term on weights: 0.6
Minimum loss reduction required to make a further partition on a 
leaf node of the tree: 0.6

Random Forest

Number of estimators: 250
Max depth: 7
Max leaf nodes: 9
Minimum of leaf: 7
Number of samples to draw from dataset to train each base 
estimator: 0.6
Minimum of impurity decrease to split the nodes: 0.0005
Number of minimum samples to split nodes: 4
Minimum weighted fraction of the sum total of weights (of all 
the input samples) required to be at a leaf node: 0.4

Artificial neural network

Activation function: identity function
Hidden layer: (300, 300, 300, 200, 200)
Learning rate: 0.01
Solver: Minibatch gradient descent
Batch size: 32
Max iteration: 200

Linear Regression Intercept: used
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Appendix Table 4. Comparison with prior works. Our models were compared with previous models that 
developed using both of genetic and clinical data or only clinical data. Performance metric was used MAE. The 
information of study population' race was included. The number of data participants included the number of model 

development and validation cohort. * represents the best performance model. ANN: artificial neural network;

Number of data 
instances

Features Study population algorithm MAE

Choi et al* 3,168 Clinical South Korean XGBoost 0.9

Choi et al 3,168 Clinical South Korean ANN 1.0

Choi et al 3,168 Clinical South Korean Random Forest 1.0

Choi et al 3,168 Clinical South Korean Linear Regression 1.0

Gage et al [5] 1,307
Clinical + 

pharmacogenetic
Caucasian, African 

American
Regression 1.0

Gage et al [5] 1,307
Clinical Caucasian, African 

American
Regression 1.5

Pavani1[6] 240
Clinical + 

pharmacogenetic
Indian ANN 1.97

Roche-Lima et al [7] 190
Clinical + 

pharmacogenetic
Caribbean 
Hispanics

Random forest 4.7

Tong et al [8] 685
Clinical + 

pharmacogenetic
Spanish Multiple linear 

regression
3.5

Tong et al [8] 685
Clinical Spanish Multiple linear 

regression
5.0

Grossi et al [9] 377
Clinical + 

pharmacogenetic
Caucasian ANN 5.72

Saleh et al [10] 4,271

Clinical + 
pharmacogenetic Multi-ethnic ANN 9.0

Hernandez et al [11] 349

Clinical + 
pharmacogenetic African-American

Multivariate 
regression

10.9

Alzubiedi et al [12] 163
Clinical + 

pharmacogenetic
African-American Linear regression 10.8

Alzubiedi et al [12] 163
Clinical + 

pharmacogenetic
African-American ANN 10.9

Appendix Data 1. Comparison with prior works

We identified previous regression models that predict warfarin dosage as numerical target and use MAE as a 
performance metrics, to compare accurately between our models and other models. Gage et al developed a 
multiple regression model that predict warfarin dosage in derivation cohort (N=1,015), included Caucasian and 
African American, Hispanic, and validated the models in validation cohort (N=292). Both of pharmacogenetic 
and clinical model were developed and reached a MAE of 1.0, 1.5, respectively. Pavani et al developed an artificial 
neural network using ten genetic variables as inputs and therapeutic warfarin dosage as the output in Indian 
population (N=240). Roche-Lima et al collected cardiovascular patients of 190 Caribbean Hispanic were >21 
years old and developed seven machine learning algorithms that predict warfarin dosing in Caribbean Hispanics 
using pharmacogenetic data. Among them, random forest regressor (RFR) significantly outperformed all other 
models with a MAE of 4.74. Tong et al recruited 685 patients who diseased atrial fibrillation or thromboembolic 
venous disease in a Spanish population using the data last 3 consecutive months and used multiple linear 
regression. Both of pharmacogenetic and clinical model were developed and internally validated with a MAE of 
3.5, 5.0, respectively in a validation cohort (N=129). Grossi et al collected 377 patients who were over 18 years 
old and treated with warfarin in Caucasian population and developed an artificial neural network to predict a 
optimal warfarin maintenance dose. The final model reached a MAE of 5.72. Saleh recruited 4,271 multi-races 
patients who received warfarin and developed an artificial neural network using both of genotyping and clinical 
data. The artificial neural network model reached a MAE of 9.0. Hernandez et al generated pharmacogenomic 
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warfarin dosing model using clinical and genotyping retrospective data from a derivation cohort of 349 African 
Americans patients were >= 18 years and the model reached with a MAE of 10.9mg/week. Alzubiedi et al 
collected demographic, clinical, and genetic data from 163 African-American patients with a stable warfarin dose. 
They developed both of a multiple linear regression model and artificial neural network model with MAE of 10.8, 
10.9 respectively. Whereas, our XGBoost model achieved 0.9 with MAE and outperformed aforementioned 
algorithms. Additionally, our models provided more appropriate warfarin dosage than those initially prescribed 

by physicians using clinical data within 2 days of hospitalization.
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국문 요약

많은 환자들이 질병치료를 위해 약물치료를 병행한다. 그러나 각 개인이 가지고 있는 고유의

특징이 모두 다르기 때문에 동일한 약물로 치료를 받더라도, 약물 반응이 모두 다르게 나타난다. 

이로 인해, 환자마다 약물의 용법을 달리함으로써, 개인의 특성을 고려하는 맞춤형 약물치료가

필요하다. 맞춤형 약물치료가 잘 이루어지면, 약물 부작용은 최소화하고 치료 효과는 최대화할 수

있다는 장점이 있다. 그러므로, 이미 사용되고 있는 약물 또는 새롭게 개발되어야 하는 약물은

모두 맞춤형 약물로 사용될 수 있어야 한다. 따라서, 본 논문에서는 병원의 전자의무기록 (EMR) 

데이터를 활용하여 맞춤형 약물치료를 실현하기 위해 두 가지 연구를 수행하였다.

첫 번째 연구에서는, 항응고제 warfarin 의 퇴원용량을 조기 예측하는 기계학습 모델을 개발하고

검증하였다. 먼저 약물 용량에 적절한 네 가지 기계학습 모델을 개발하였으며, 내부검증을 통해

모델 예측이 실제 임상의의 예측보다 정확도가 높은 것을 확인하였다. 또한 SHAP (SHapley Additive 

exPlanations)기법을 사용하여 모델 예측에 영향을 주는 주요 변수를 분석함으로써 모델 예측을

설명하였다. 이를 통해, 모델의 용량결정 과정이 실제 의사와 매우 유사하다는 것을 확인하였다. 

마지막으로, 동일한 데이터를 의사에게 제시했을 때 각 의사의 개별적 의료 경험에 따라 용량

결정에 변동성이 큰 것을 확인하였으며, 모델의 예측 정확도가 의사보다 2배 더 높다는 임상적

유용성을 입증하였다.

두 번째 연구에서는, EMR 과 의약정보 데이터베이스를 통합함으로써 새로운 임상현장 기반의

database 를 구축하였다. Open Targets Platform 이라는 데이터베이스에서 FDA 승인을 받은 항암제

및 관련 표적 유전자 정보를 추출하였다. 또한 EMR 과 Open Targets Platform 의 약물 성분 표준화를

통해, 두 데이터베이스를 약물 기준으로 연계하였다. 그 결과, 57 개의 항암제와 관련된 60개의

암 종류 및 91개의 유전자 돌연변이의 연관성을 확인할 수 있었다. 또한 실제 항암제 처방환자들의

또 다른 진단정보 및 유전자검사 결과를 확인함으로써, 실제 임상현장에서 환자들의 임상적, 

유전적 특징을 모두 활용할 수 있는 플랫폼을 구축하였다. 

본 연구를 통해, 전자의무기록 데이터를 활용하여 맞춤형 약물치료를 도울 수 있는 tool 을 두

가지 개발하였다. 최적 warfarin 용량을 예측하는 인공지능 모델은 임상의의사결정보조시스템으로

사용됨으로써, 불필요한 치료기간을 감소시키고 약물부작용을 사전에 방지하는 데 기여할 수 있다. 

또한 전자의무기록 데이터와 의약정보 데이터베이스를 통합하여 새롭게 구축된 heterogeneous 

database 는 인공지능 신약개발에 활용될 수 있을 것으로 기대된다.
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