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Abstract 

Clustering is an effective topology control approach in wireless sensor networks. The 

majority of the classical clustering algorithm in wireless sensor network requires N steps 

to select cluster head in an array of N elements. So, CH selection is generally recognized 

as an NP hard optimization problem which is time consuming and incurs huge 

computational and data processing times. 

In this thesis, we design an optimization strategy that emphasizes adjusting the 

transmission range according to node density and utilizing a quantum search algorithm to 

reduce the time complexity associated with selecting the cluster head. 

For designing the new clustering topology, we proposed a new classical algorithm that 

combines necessary parameters such as number of neighbor node, node to node average 

distance and residual energy with certain weighting factors chosen according to the network 

system. This thesis considers a fully connected network with a minimum node degree of 1 

(i.e., 1-connectivity) to achieve minimum energy consumption and also considered optimum 

number of clusters by controlling the transmission power . For comparison, we investigated 

the existing transmission power control topologies such as EECS and HEED. These 

methods do not address the optimization of transmission power in the whole connected 

network. Both EECS and HEED use residual energy as a rudimentary factor, as well as 

intra-cluster communication cost as a secondary factor. However, EECS and HEED show 
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some drawbacks, increases the network overhead and time complexity. By controlling 

transmission power, the proposed CH selection mechanism is energy efficient compared to 

the classical method such as EECS and HEED. Furthermore, the quantum search algorithm 

used in the method offers a quadratic speedup advantage. It minimizes the time complexity 

to O (√N) compared to classical search algorithm O(N). 

In our work, an energy-efficient cluster head selection approach is illustrated through 

a classical weighted clustering algorithm, and its implementation is also extended through 

a quantum weighted search algorithm which is demonstrated by the IBM Quantum Qiskit 

simulation results. 
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CHAPTER 1 

Introduction 

1.1 Overview 

For decades, wireless sensor networks (WSNs) have attracted a lot of attention, mostly 

because of their diverse applications across a wide range of fields. Many military and civilian 

applications (for example, intelligent transportation systems) integrate tasks such as detection, 

classification, plus the localization and tracking of events or targets in sensor fields [1–4]. 

Typically, wireless sensor nodes in networks are organized into several clusters, as shown in 

Figure 1, and each cluster has a cluster head (CH) that collects information from each member 

node (sensor) in the cluster and transmits data to the BS as shown in Figure 1. 

 

Figure 1. Graphical abstract (3D) of clustering architecture in WSN 

 

In our thesis, we propose a modified CH selection method by assigning an individual weight 

to each sensor node based on its node degree, the average distance between the CH and its 

member nodes, as well as this, we assign residual energy as a function of transmission power 

[5-7]. As mentioned, our work focuses on a homogeneous, randomly connected network, and 

our goal is energy-efficient CH selection by controlling the transmission power. Two nodes can 
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communicate directly if their transmission ranges overlap, which signifies the connectivity 

between them. For multi-hop communications, connectivity is a fundamental property, but 

because we are concerned with finding the optimum transmission range, we must consider a 

fully connected network with a minimum node degree (i.e., 1-connectivity)[9-10]. A network 

with k-connectivity (k≥2) has much better fault tolerance than a network does with only 1-

connectivity, but higher connectivity requires more power consumption [22]. In our thesis, we 

consider, a fully connected network with a minimum node degree (1-connectivity) to minimize 

energy consumption. During intra-cluster communications, each node adjusts its transmission 

power based on the cluster range or radius, instead of transmitting at maximum power. 

Hierarchical clustering algorithms are based on classical algorithms in which several clusters 

are formed [24,25]. If the number of clusters and the total number of elements are represented 

by k and n, respectively, then the time complexity of a hierarchical algorithm is O(kn2). This 

time complexity represents time complexity that is similar to NP-hard (non-deterministic 

polynomial) problems [26]. Hence, CH selection is generally recognized as an NP-hard 

optimization problem [27,28], and its time complexity is equivalent to O(kn2) by a classical 

approach. As a result, the CH selection procedure is also time consuming. Therefore, the main 

challenge is to overcome time complexity, which incurs huge computational and data 

processing times. In this thesis, CH selection was proposed via Grover’s Quantum Weighted 

Search Algorithm (QWSA) where the nodes represented as qubit states, allowing it to cover 

numerous networks with a limited number of qubits. 

1.2 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 describes related works. Chapter 3 

describes the methods of clustering algorithms through classical and Quantum approach 

including the energy models. Then we present the design of the proposed algorithm called 

CWCA and QWSA algorithm based on target weights to select energy efficient cluster head. 

Chapter 4 presents a performance evaluation of the proposed classical and quantum algorithms, 

along with results and a discussion. In Chapter 5, the overall outcomes of this research are 

summarized in this section. Furthermore, some suggestions for the improvement of this model 

were also analyzed and discussed for the future work related to this research. 
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CHAPTER 2 

 Related Work 

2.1 Clustering algorithms in wireless sensor network 

 Clustering in wireless sensor networks has been an active research area in many years. The 

goal of clustering is to improve the energy efficiency and performance of the network by 

reducing the amount of communication overhead required for nodes to communicate with each 

other and with the base station. Cluster heads play a critical role in clustering algorithms as 

they perform crucial tasks such as data aggregation, resource allocation, network management, 

routing, and security[10-12]. So, cluster head selection is important to handle the limited energy 

in the best possible way to uplift the network lifetime. 

   The most commonly used clustering protocol is Low Energy Adaptive Clustering Hierarchy 

(LEACH) [19]. The probability of selecting the CH in LEACH is a totally random process with 

no guarantee of the number of CHs, which adversely affects the overall performance of the 

network. Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [36] is an 

improvement over the LEACH protocol. The fundamental idea behind PEGASIS is for each 

node to communicate with and send data to its immediate neighbors, while they take turns 

acting as the leader, transmitting to the BS. The nodes arrange themselves into a chain by using 

a greedy algorithm. The data transmission is direct between the leader and the BS within a 

fixed transmission range. However, an adjustment of the transmission power level in the whole 

network is not discussed. On the other hand, transmission-power-based protocols such as EECS 

[20] and HEEDS [21] use residual energy as a rudimentary factor, as well as intra-cluster 

communication cost as a secondary factor. Under EECS, a candidate node that is going to 

become a CH needs to ensure that its residual energy is within radio range Rcompete. But this 

radio range is inversely proportional to the square root of kopt , which is the optimal range of 

the CH. The optimal range selection equation is taken from the LEACH protocol, but there is 

no control of optimum transmission power. To resolve this problem, the selection of an optimal 

number of clusterheads is proposed in this thesis work, while managing optimum transmission 

power. On the otherhand, in the EECS cluster formation phase, a complex cost function for 

distance prioritizes only the cluster-head-to-BS distance, which eventually increases the 
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overhead and time complexity in the whole network. The total control of the given overhead 

complexity is O(N), and to overcome this, we propose a quantum algorithm for CH selection 

where the overhead complexity is reduced to O (√𝑁). Author of [8] Hybrid Energy-Efficient 

Distributed (HEED) protocol considers CH selection based on the ratio of the estimated current 

residual energy in a sensor node and its maximum energy. Transmission power level control 

can be optimized by setting one specific cluster power level for intra- and inter-cluster 

communications. The connectivity requirement setting cluster range Rt ~√
𝑙𝑜𝑔𝑛

𝑛
where n is the 

total number of nodes) is for a unit square region in intra-cluster communications. However, 

the probability of connectivity in the whole network does not consider any specific limit on the 

transmission range. To resolve this issue, we studied minimum network connectivity where at 

least one node in the network can connect to achieve the optimum transmission power level 

depending upon node density. Another important point is to consider the time complexity, 

which is O(N) per node under this protocol. The author in [38] proposed, Energy-Efficient 

Cluster Formation (EECF) a distributed clustering protocol that considers the node degree and 

residual energy for cluster head election. There is no mention of re-adjusting the transmission 

power level during each round, but a fixed transmission range for at least one cluster head 

cannot guarantee efficient communications. Like EECS, EECF has a worst-case algorithmic 

complexity of O(N) at each node.  

2.2 Quantum Algorithm in wireless sensor network 

   Quantum computing becomes a commercial reality, it may be used in wireless 

communications systems in order to speed up specific processes due to its inherent 

parallelization capabilities. While a classical bit may adopt either the values 0 or 1, a quantum 

bit, or qubit, may have the values |0⟩,|1⟩ or any superposition of the two [9], where the notation 

|. ⟩ is the ket  representation [23] and it is the column vector of a quantum state. If two qubits 

are used, then the composite quantum state may have the values |00⟩ ,|01⟩, |10⟩ and  |11⟩ 

simultaneously. In general, by employing b bits in a classical register, one out of 2b 

combinations is represented at any time. By contrast, in a quantum register associated with b 

qubits, the composite quantum state may be found in a superposition of all 2b values 

simultaneously. In this thesis, we will focus our attention on the employment of quantum 
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algorithms in classical communication systems. 

The problem of Cluster head selection in classical clustering algorithm is one of the 

interesting topics studied recently. In classical clustering algorithm, CH selection is generally 

recognized.as an NP-hard optimization problem. The number of clusters and the total number 

of elements are represented by k and n, respectively, then the time complexity of a clustering a 

algorithm is O(kn2). This time complexity represents time complexity that is similar to that of 

NP-hard (non-deterministic polynomial) problems [26]. As a result, the CH election procedure 

is also time consuming. 

In order to improve on the time complexity problem, quantum algorithms can play 

significant roles. Recently, CH selection was proposed via the Quantum Approximate 

Optimization Algorithm (QAOA) [29]. The QAOA structure is classified into two parts: 

parameterization and classical optimization. A parameterized quantum circuit consists of 

building a Hamiltonian problem where the proper optimization of the parameters is essential 

[30]. In a parameterized quantum circuit, the components of the circuit are demonstrated by δ 

and the output state |ϕ(δ)>. The Quantum Max Cut problem solved by the QAOA needs to 

optimize the circuit parameters efficiently [31]. The main problem of the QAOA algorithm is 

that it considers each qubit (qi) as an individual node, which unintentionally limits it from 

forming clusters in the whole network. For instance, IBM’s 127-qubit Eagle is the biggest 

quantum computer, yet it has only 127 qubits. Consequently, the highest number of network 

nodes that can be used is only 127. For a larger network (>127), the above-mentioned QAOA 

algorithm is impractical. 

  To overcome this issue, in this thesis, we conduct the CH selection technique based on the 

Quantum Search Algorithm (QSA) using weighted targets [32,33]. The platform of the QSA is 

related to Grover’s search algorithm. According to Panchi et al. [34], the probability of 

obtaining each search target is equal in the traditional quantum search algorithm. In order to 

resolve this problem, they proposed a weighted target-based quantum search algorithm where 

the probability of finding each target resembles the corresponding weight coefficient, and it is 

constituted as a quantum superposition state. If all the sensor nodes are assigned by an 

individual weight, then it is possible to apply the weighted-based QSA algorithm to select the 

appropriate cluster head. In addition, we apply this algorithm to select a CH, which efficiently 
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improves the time complexity compared to that of the classical approach. This weighted 

approach to Grover’s search algorithm has time complexity O (√𝑛), where n is the number of 

search items or, in our case, the total number of sensor nodes in the whole network and it is 

quadratically outperforms the classical counterparts in terms of time. 
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CHAPTER 3 

Cluster head selection through Classical and Quantum Algorithm 

3.1 Connectivity of WSN 

 In wireless sensor network, each node is independently and randomly placed in a two-

dimensional simulation area (A). uniform random distribution is used such that for a large 

network (n) and a large area (A), we can define a constant node density, r =
n

A
  which denotes 

the expected number of nodes per unit area. A radio link model is assumed in which each node 

has a specific transmission range to represent wireless communications between the nodes. If 

two nodes are within range of one another, they can directly communicate through a wireless 

link. To establish connectivity in the whole network, a necessary condition is that each node 

has at least one neighbor node (dmin > 0) [9]. If the node degree is defined by d(n), then the 

minimum node degree of a network is denoted as: 

 

                                                𝑑min(N) = min {d(n)}                                                          (1) 

 

Therefore, a node is considered to be isolated if d = 0. From the definition of a k connected 

network, each node pair has at least k mutually independent path(s) (k = 1,2, 3 ... ) and the 

probability of that network is indicated with P(k-con). In our analysis, we consider k = 1 to 

represent the probability of a 1-connected network, P(1-con), so a network is steadily connected 

if P(1-con) ≥ 0.95 [43]. Because we are interested in finding the optimum transmission power 

for the whole network, it is dependent on the distributed node density (𝜌) and the node degree 

(dmin > 0). If no node is isolated, then he transmission range (r0) can be represented as a 

function of node density and probable node degree, as proposed by Bettstetter [22]. 

 

P(𝑑𝑚𝑖𝑛 > 0 )= Pnon-iso = ∏ 𝑃𝑛𝑜𝑛−𝑖𝑠𝑜
𝑁
𝑢=1 =  (1- 𝑒−𝜌𝜋𝑟2

)𝑁                         (2) 

 

 The transmission range of each node is denoted with rtx . By adding ln to both sides of 

Equation (2), we can determine the transmission range as follows [22]: 
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𝑟𝑡𝑥 =√−ln (1−𝑃𝑛𝑜𝑛−𝑖𝑠𝑜

1
n)

𝜌𝜋
                                              (3) 

    The significance of this equation is demonstrated by the following example. 

Example 1: Consider a network of totally deployed sensor nodes, n = 100, in a square area, 

A = 100 m x 100m, which yields a node density of  𝜌  = 
𝑁

𝐴
=  

100

100 𝑋 100 
= 0.01𝑚−2.   

If the probability of connectivity is P = 0.94, then the transmission range 𝑟𝑡𝑥  can be 

calculated with Equation (3): 

𝑟𝑡𝑥  = √
−ln (1−0.94

1
100)

0.01∗𝜋
 = 15.0 m 

 

 If the transmission range 𝑟𝑡𝑥= 15 m, then Figure 2a depicts two nodes that are isolated. 

In order to connect at least one of those nodes, the transmission range needs to be modified. 

For this reason, the probability of connectivity needs to be p ≥ 0.95 to reconnect the nodes. 

Here, we consider p = 0.99. Therefore, the modified transmission range will be: 

 

𝑟𝑡𝑥  = √
−ln (1−0.99

1
100)

0.01∗𝜋
 = 17.0 m 
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Figure 2. (a) Isolated nodes are found. (b) By increasing transmission range 𝑟𝑡𝑥 , connections are 

established in the whole network, and no isolated nodes are observed. 

After increasing the transmission range to 17.12 m, as shown in Figure 2b, the whole 

network is connected. Therefore, the node degree and the node density are considered in  

designing an adjustment model of the transmission range to establish an energy efficient 

network with full reachability. 

 

 

3.2 Energy Model 

We used a simplified energy model shown in [15] for radio hardware energy dissipation 

transmitting an l-bit message (ETX) with distance d as follows: 

 

𝐸𝑇𝑋(𝑙, 𝑑) =  {
𝑙 ∗  𝐸𝑒𝑙𝑒𝑐  +  𝑙 ∗ ∈𝑓𝑠 ∗  𝑑2 ;   d ≤  𝑑0                                                (4)

 𝑙 ∗  𝐸𝑒𝑙𝑒𝑐  +  𝑙 ∗ ∈𝑚𝑝 ∗  𝑑4 ;  d ≥  𝑑0                                                (5) 
 

 

 

All parameter descriptions are in Table 1. 

 

 

 

Table 1. The energy model’s parameters and their descriptions. 

Parameters Description 

Eelec Energy required to run the transmitter or receiver 

∈fs Amplifier’s power loss for a short distance called free space 

∈mp Amplifier’s power loss for a long distance called multipath fading 

𝑑𝑛𝑜𝑛−𝐶𝐻 𝑡𝑜 𝐶𝐻(𝑑2) Distance from non-CH to CH 

𝑑𝐶𝐻 𝑡𝑜 𝐵𝑆(𝑑4) Distance from CH to BS 

𝑑0 = √
∈𝑓𝑠

∈𝑚𝑝

 Threshold Transmission Distance 

𝐸𝐷𝐴 Data Aggregation 
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When receiving data, the radio expends the following [35]: 

 

𝐸𝑅𝑋(𝑙) = 𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐                                                     (6) 

 

Additionally, the energy dissipated by the cluster head during a single frame is: 

𝐸𝐶𝐻 = 𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐(m-1) +  𝑙𝐸𝐷𝐴 𝑚 + 𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐+ 𝑙 ∗ ∈𝑚𝑝 𝑑4                          (7) 

 

Assuming that there are N nodes which are distributed uniformly, if there are k clusters, then 

on the average number of nodes per cluster, m = 
N

k
 . Each CH dissipates. energy by receiving 

signals from the nodes, collecting the signals, and transmitting the gathered signals to the BS. 

The energy required in each non-cluster-head node can be expressed by [35]: 

 

   𝐸𝑛𝑜𝑛−𝐶𝐻 = 𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐 +  𝑙 ∗ ∈𝑚𝑝 𝑑2𝑡𝑜 𝐶𝐻                                        (8) 

 

3.3 Expected number of clusters 

    Before the selection of the CH, it is necessary to define the expected number of clusters 

in the network. Using the following computation and connectivity model, we analytically 

estimate the expected number of clusters (𝑘𝑜𝑝𝑡). Let us assume there are N nodes which are 

distributed uniformly in area A. The nodes are stationary, and therefore, the density is constant. 

The transmission area of a sensor node can be assumed to be 𝐴𝑠 = 𝜋 𝑟𝑡𝑥
2 , where 𝑟𝑡𝑥 is the 

transmission range of the sensor node (from Equation (3)). As mentioned, before, transmission 

range depends on node connectivity and density, and using these two assumptions, the expected 

number of clusters, 𝐸𝑛 =
𝐴

𝐴𝑠
. 

 An illustrative example is given to clarify the above assumptions: nodes n = 100, and 

area, A = 100 m x100m. Because the nodes are stationary, the node density 𝜌 =
𝑛

𝐴
= 0.01 𝑚−2. 

From Example 1, we already found that our expected transmission range is 17.12 m. The 

transmission area of one sensor node will be 𝐴𝑠 = 𝜋 𝑟𝑡𝑥
2 = [3.1416 x (17.12)2] = 921 𝑚2. 

Now, we must calculate the expected number of clusters by dividing the entire sensing. area 

through the obtained transmission area: 

          Expected number of clusters, 𝐸𝑛 =  
100 𝑥 100

921
 ≈ 10 
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3.4 Classical Weighted Clustering Algorithm 

3.4.1 Objective of clustering  

Based on the preceding assumptions, in this work, an algorithm called the classical weighted 

clustering algorithm (CWCA) is proposed to efficiently combine the necessary parameters, 

such as the node degree, node-to-node average distance, and current residual energy, with 

certain weighting factors being chosen according to the network system. In wireless networks, 

for instance, power regulation is crucial, and hence, the weight of the corresponding parameter 

might be larger. The adaptability from altering the weighted variables enables us to apply this 

proposed method across different networks. A predefined value threshold for node degree 

needs to be set in the clusters to ensure that the cluster heads are not encumbered, and that 

throughput is achieved by optimizing the number of member nodes of each cluster head (the 

node degree). In addition, the battery power of a sensor node needs to be effectively utilized 

within a particular transmission range; for instance, communication between the nodes will use 

less power if they are close to one another. Since a CH is responsible for additional tasks, it 

uses more battery power than an ordinary node does. It can interact more smoothly with the 

neighbors within the transmission range and those located closer to it. Due to signal attenuation, 

communication between the nodes and the CH becomes challenging as the distance increases. 

 

3.4.2 Weighted factors to select cluster head 

 

Considering weighted factors such as node degree, node average distance and energy 

consumption, the CH selection procedure consists of the following steps. 

 

Step 1: Within transmission range, find the neighbors of each node, s, which define their 

node degree, 𝒅𝒔, as follows: 

 

    𝑑𝑠 = |N(s)| =∑ {𝑑𝑖𝑠𝑡(𝑠, 𝑛) < 𝑟𝑡𝑥}𝑛∈𝑆                                           (9) 

 

where 𝒅𝒔, represent the degree of each sensor node s; S = the set of sensor nodes; n = the 

neighbors of sensor node s; 𝑟𝑡𝑥 = the transmission range of sensor node s. 
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Step 2: Evaluate the degree difference, 𝒅𝒇 for every node :  

 

𝑑𝑓 = |𝑑𝑠 −  𝛾|                                                        (10) 

where 𝒅𝒇 =the current node degree of the sensor node, and 𝛾 = the expected or predefined node 

degree. 

Step 3: Compute the sum of the distances of the member nodes within the transmission range, 

and find the average distance, 𝑫𝒂𝒗𝒈  

𝐷𝑠  =∑ {𝑑𝑖𝑠𝑡(𝑠, 𝑛)}𝑛∈𝑆(𝑠)                                                  (11) 

Average distance, 𝑫𝒂𝒗𝒈 =  
∑ 𝑫𝒔

𝒅𝒔
 

Step 4: Compute the residual energy to find the node with the highest energy level: 

𝐸𝑠 =  1 −
𝐸𝑟𝑒(𝑠)

𝐸𝑖(𝑠)
                                                              (12) 

Where 𝐸𝑟𝑒(s) = the residual energy of node s, and 𝐸𝑖(𝑠) = the initial energy of node s. 

Step 5: Calculate combined weight,𝑾𝒔 for each node s which might become a CH. The lowest 

weighted node will be chosen as CH: 

𝑊𝑠 = 𝑤1∆s + 𝑤2𝐷𝑎𝑣𝑔+ 𝑤3𝐸𝑠                                          (13) 

where w1, w2, and w3 are the weight factors for the corresponding system parameters. The 

node with the minimum weight will be selected as the cluster head, so: 

𝑤1 + 𝑤2  + 𝑤3 = 1                                                     (14)                 

The first component, ∆s , or the node degree difference, is the important factor for a CH in 

order to control several nodes in its cluster. This also ensures that the CH is not overloaded, 

and the efficiency of the system is retained at the intended level. The second component 𝑫𝒂𝒗𝒈  

is mainly related to energy consumption because more power is required to communicate over 

a larger distance. It is important to find the node which is located at the center of a cluster. The 

last component, 𝐸𝑠 , contemplates a sensor node’s available battery power. The CH battery 
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drainage will occur quickly compared to that which occurs in other nodes. Within the 

transmission range, each node compares its energy level with the other nodes. The node with 

the highest energy level has an increased probability of becoming the CH. Overall, this term is 

dependent on the node’s starting power along with the power needed over time based on the 

network traffic. 

The flowchart for the proposed cluster head selection is presented in Figure 3. 

 

Figure 3. Flowchart of cluster head selection and cluster formation in the CWCA algorithm. 
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3.4.3 An illustrative example for CWCA Algorithm 

   In our proposed classical weighted algorithm, we assume that 15 nodes are initially deployed 

in an area 50 m x 50m, as shown in Figure 4a. The red arrow shows each node’s transmission 

range (𝑟𝑡𝑥), which is equal for all of the nodes, and the dotted circles represent the transmission 

area (𝐴𝑠). Figure 4b identifies the neighbor(s) of sensor nodes within the transmission range 

𝑟𝑡𝑥. For instance, node 11 has only one neighbor within the transmission range 𝑟𝑡𝑥, whereas 

node 10 and node 2 have five and three neighbor nodes, respectively. Therefore, in Table 2, 

the current node degree 𝑑𝑠 , is calculated according to Figure 4b. The degree difference is 

important and needs to be set, otherwise, some clusters will be heavily loaded, and others will 

be lightly loaded. To quantitatively determine the well-balanced clusters in our algorithm, we 

use the following expression for degree difference: 𝛾 = the expected node degree. 

𝛾 = 
𝑁−𝑘𝑜𝑝𝑡

𝑘𝑜𝑝𝑡
                                                              (15) 
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In this example, the total number of nodes n = 15, the area A = 50 m x 50m, and the 

node density 𝜌 =
𝑛

𝐴
= 

15

2500
= 0.006 𝑚−2. Hence, no node is isolated, based on Figure 4a, and the 

probability of connectivity will be 99%. Now, we can determine that our expected transmission 

range from Equation (3) is 20 m. Therefore, the transmission area of each sensor node (𝐴𝑠 = 

𝜋 𝑟𝑡𝑥
2) will be 1256 𝑚2. The expected number of clusters (𝑘𝑜𝑝𝑡) for area A can be computed 

as 𝐸𝑛 = 
50 𝑥 50

1256
 ≈ 2. From Equation (15), we calculate the expected node degree difference (𝛾) 

as 6.5~7. The sum of the distances, 𝐷𝑠, for each sensor node is shown in Figure 4c, where the 

unit distance was chosen randomly. To ensure that the probable location of the CH is in the 

center, we consider the average distance, 𝑫𝒂𝒗𝒈 , instead of taking the sum of 𝐷𝑠. Because long-

distance communication consumes more energy, 𝑫𝒂𝒗𝒈   minimizes the intra-cluster 

communication energy consumption. In the next step, we calculate residual energy 𝐸𝑟𝑒(s) for 

the candidate cluster heads. Now, in the final step, the minimum weighted node will be selected 

as the CH. 

The weighting factors which are assumed in order to calculate total weights in Table 2 are w1 

= 0.7, w2 = 0.2, and w3 = 0.1 [44]. We note that weighting factors are chosen randomly, such 

Figure 4. (a) Initial deployment of sensor nodes; (b) identification of neighbor nodes, (c) an 

example of the node-to-node distance calculation; (d) identification of the cluster head using 

the CWCA. 
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that w1 + w2 + w3 = 1. This is basically used to normalize the appropriate combination of 

weighting factors, such as the degree difference, the distance from neighboring nodes, and the 

energy usage. By adjusting the weighting factors, the combination of various eligibility 

requirements can be set in a suitable way. In our example, node degree has the highest priority 

as a result, so the weight w1 = 0.7 is chosen to represent the node degree. In this experiment, 

each node begins with only 1 J of energy. Therefore, the energy ratio is one, as depicted in 

Table 2 for all of the nodes. From Table 2, the lowest weighted nodes, which are node no. 10 

and node no. 13, will be selected as the cluster heads. It is worth mentioning that no two cluster 

heads are adjacent neighbors. We found that all member nodes of each cluster are quite close 

to the desired node degree set earlier: 𝛾 = 7. Figure 4 (d) clearly identifies the CHs and the 

member nodes. The member nodes that are outside of the selected cluster head’s transmission 

range (nodes 11, 3, 12, and 7) will send their data to the nearest neighbor node within the 

transmission range. 

Table 2. Calculation of CH selection parameters, and implementation of the CWCA. 

Node ID 

Current 

node degree; 

𝒅𝒔 

 

Current & expected 

node degree 

difference.  

𝒅𝒇 = |ds –𝛾| 

(𝛾= 7) 

Normalized 

value of node 

degree 

difference 

 ∆𝒔 = 
|ds – γ|

γ
 

(Sum of all 

member node 

distance) 

∑ 𝑫𝑺 

 

Average 

distance 

𝑫𝒂𝒗𝒈 =
∑ 𝑫𝒔

𝐝𝐬

 

Energy ratio 

 𝑬𝒔 =
𝑬𝒓𝒆(𝒔)

𝑬𝒊(𝒔)
 

 

Total Weight 

𝑾𝒔 

1 3 4 0.57 11 3.67 1 1.23 

2 3 3 0.43 12 4 1 1.20 

3 2 5 0.71 10 5 1 1.60 

4 2 5 0.71 15 7.5 1 2.10 

5 4 3 0.43 9 2.25 1 0.85 

6 2 5 0.71 3 1.5 1 0.90 

7 4 3 0.43 16 4 1 1.20 

8 3 4 0.57 6 2 1 0.90 

9 2 5 0.71 12 5 1 1.60 

10 5 2 0.29 10 2 1 0.70 

11 1 6 0.86 6 6 1 1.90 

12 2 5 0.71 11 5.5 1 1.70 

13 4 3 0.43 7 1.75 1 0.75 

14 5 2 0.29 12 2.4 1 0.78 

15 3 4 0.57 13 4.33 1 1.37 
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3.5.1 Introduction of Quantum Algorithms 

 Qubit: Before discussing the concept of quantum algorithm, we need to discuss about 

quantum computing and its fundamental element defined as “qubit”. A classical computer takes 

a single unit of information which has a value of either 0 or 1 (off or on, false or true, low or 

high). The device operates by using logical gates (AND, OR, NOT) to manipulate binary digits 

(bits) and perform computations. In quantum computers, data is stored in quantum bits, or 

qubits. Qubits is the fundamental unit in quantum information science. To distinguish between 

a bit and a qubit, Dirac notation is used to represent the states of the qubit that is |0⟩ and |1⟩.  

To get a clear indication of qubit, the state of a qubit is generally represented as an array or a 

vector as follows: 

|0⟩ =  [
1
0

] 

And the second vector is given as follows:  

|1⟩ =  [
0
1

] 

The main difference between qubit and classical bit is that a qubit is always a linear 

combination of basis states. Qubits are always in a superposition of |0⟩ and |1⟩ that can be 

represents by the following equation:  

|𝜓 ⟩  = α|0⟩ + β|1⟩ 

Where α and β are complex number and their sum of the magnitude is equal to 1.  

|𝛼|2 + |𝛽|2 = 1 

The visualization of a qubit and its states can be done by Bloch sphere. The Bloch sphere is 

generally used as a geometrical representation of the qubit, which is a three-dimensional 

ordinary space. For details analysis, we can consider Figure 5., 
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Figure 5 : Representation of  Qubit Bloch Sphere [Ref .52] 

The north pole and the south pole of the Bloch Sphere represents the |0⟩  state |1⟩  state 

respectively. The vector rotation along the Bloch sphere can be represented by below:  

|𝜓 ⟩  = cos (
𝜃

2
) |0⟩ + (cos (𝜑)+ i sin(𝜑)) sin (

𝜃

2
) |1⟩ 

Where, 𝜃 and 𝜑 have the limits 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜑 < 2𝜋;  𝜃 represents the colatitude to the 

z axis and 𝜑 represents the longitude from the x-axis.  

Quantum Logic gates: The basis states of a qubit can be demonstrated as column vector. The 

basis vector |0⟩ and |1⟩ can be represented as follows: 

|0⟩ =  [
1
0

]  ;   |1⟩ =  [
0
1

] 

By applying the concept of the basis vector, other necessary logic gates can be constructed. 

The four basic logic gates for representation of a single qubit are commonly referred to Pauli 

matrix gates. They are defined as 2 × 2 complex matrix and represented by the Greek letter 

sigma (𝜎0, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧). Here we briefly discuss those gates and their truth tables. 

 The I gate or identity gate action on qubit does not change states which is similar with identity 

matrix. The equation can be given as follows:  
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I = 𝜎0= (
1 0
0 1

) 

The truth table of the identity gate is given as below: 

Table 3– Truth table represent I-gate: 

Input Output 

|0⟩ |0⟩ 

|1⟩ |1⟩ 

 

The X gate or NOT gate moves the state vector from one basis state to the other that is 

represented by the Pauli X-gate operator as follows:  

X= 𝜎𝑋= (
0 1
1 0

) 

The following truth table describes the operation rotation around the x axis:  

Table 4– Truth table represent X-gate: 

Input Output 

|0⟩ |1⟩ 

|1⟩ |0⟩ 

The Y gate is a rotation around the y axis by 180 degree which is shown as below:  

Y= 𝜎𝑦= (
0 𝑖
𝑖 0

) 

The following truth table describes the operation rotation around the y axis:  

Table 5– Truth table represent Y-gate 

Input Output 

|0⟩ 𝑖|1⟩ 

|1⟩ −𝑖|0⟩ 
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The Z gate is a rotation around the Z axis by (Phase gate) which is shown as below:  

Z= 𝜎𝑍= (
1 0
0 −1

) 

The following truth table describes the operation rotation around the x axis:  

Table 6– Truth table represent z-gate 

Input Output 

|0⟩ |0⟩ 

|1⟩ −|1⟩ 

 

The Hadamard (H) gate: The H gate is a frequently used quantum gate that is responsible for 

putting the qubit's quantum state into a complex linear superposition of its two basis states. 

This creates the superposition of all qubits used by many quantum algorithms, which is why it 

is highly popular. The symbol used to represent this gate is H. 

H =  
1

√2
 (

1 1
1 −1

) 

The truth table shows that the operation results in a rotation of the qubit's state vector by π/2 

(180 degrees) along both the x and z axes. This rotation causes the state vector to be in a 

complex linear superposition of the |0⟩ and |1⟩ states. 

Table 7 – Truth table represent H-gate 

Input Output 

|0⟩ |0⟩ + |1⟩

√2
 

|1⟩ |0⟩ − |1⟩

√2
 

 

There are other gates (S gates, S dagger gate, T gate, T dagger, RF gate ) also which are 

described in Appendix section. There are also universal gates named U1, U2, U3.  
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Now, we will briefly discuss the multi qubit gate that is called Control-NOT gate that is 

similar to XOR classical gate. The matrix representation of a CNOT gate is 4 × 4 matrix due 

to the tensor product of two qubits:  

 

And the truth table is represented by  

 

Table 8– Truth table represent CNOT-gate: 

Input Output 

|00⟩ |00⟩ 

|01⟩ |01⟩ 

|10⟩ |11⟩ 

|11⟩ |10⟩ 

 

There are other muti-qubit gates such as Toffoli-multi-qubit (CCX) gate, SWAP gate etc.  

3.5.1.1 Description of Quantum Search Algorithm: Grover’s search algorithm is known as 

the quantum search algorithm which solves the problem of unstructured search with high 

probability. Here we consider below example :  
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100 Total options 

Worst case: requires 99 calls to the classical oracle 

 

1 2 3 4 5 ……… 99 100 

 

In order to find a random value between 1 to 100 attempts 99 times worst classically (N) times. 

Using Grovers algorithm takes the advantage of qubit in superposition and phase interference 

to improve unstructured database search from N to √𝑁. From the above example, it takes only  

√𝑁 = √100 = 10 times. This is quadratic speed up for many classical problems. Grover's search 

algorithm has two primary components, or possibly three if you include the initialization of all 

qubits into superposition and measurement at the end. However, these are standard practices in 

most quantum algorithms, so we will focus on the two main components. The first component 

is known as Grover's oracle, while the second is called the Grover diffusion operator. We will 

describe a two-qubit system that placed in superposition by placing a Hadamard gate to each 

qubit, provides states- 00, 01, 10, 11 as follows :  

 

Figure 6: Two qubit in a superposition state 

In this state, the average value is equal to the probability amplitude, which is represented by a 

dotted line at the top of each state and is equal to 0.25 in this particular case. For this example,  

we want to find the state ‘10’. The first component is oracle, Uf  which simply changes the sign 
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of the state from positive to negative.   

 

Figure 7 : Changing the sign of the state to negative. 

The second component is the Grover diffusion operator which will perform a mathematical 

step known as inversion about the mean.   

 

Figure 8 : Inversion about the mean operation 

After performing the inversion about the mean, it is apparent that the amplification of the 

tagged state has increased considerably compared to the other states. If a measurement is taken 

now, the state with the highest probability is the one that we were searching for.  
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3.5.2 Quantum Weighted Search Algorithm 

3.5.2.1 Basic Complex Function for Hamiltonian Construction 

Before conducting CH selection through Quantum Weighted Search Algorithm (QSA), we 

must discuss the basics of the weighted Grover’s search algorithm. Grover’s searching 

algorithm based on weighted targets, each target is endowed with a weight coefficient 

according to its importance. Applying these different weight coefficients, the targets are 

represented as quantum superposition states. Using this algorithm, the probability of getting 

each target can be approximated to the corresponding weight coefficient, which shows the 

flexibility of this algorithm. We want to search for one specific item in a search space that 

consists of N elements. For instance, we assume. N= 2𝑛, which states that the index of the 

search items can be kept to n bits. Additionally, the search problem has exactly M solutions 

within the range of 1≤ 𝑀 ≤ N. The algorithm starts with the state: < 0|⊗𝑛 .This < 0|⊗𝑛  state 

which can be transformed into a superposition state via Walsh–Hadamard transformation [34]: 

|∅⟩ =  
1

√𝑁
(|0⟩ + |1⟩ + |𝑞1⟩ + ⋯ |𝑞𝑀⟩ + ⋯ + |𝑁 − 1⟩)                       (16) 

Where |𝑞1⟩, |𝑞2⟩ … . |𝑞𝑀⟩ are the marked states, and the set is Q = {𝑞1,  𝑞2, …… 𝑞𝑚}.If these 

marked states have weighted coefficients, which are denoted as 𝑤𝑞1,  𝑤𝑞2 … … . 𝑤𝑞𝑚, they must 

satisfy ∑ 𝑤𝑖𝑖∈𝑄 = 1 , 𝑤𝑖 > 0  and the denoted degree of significance of each search items. 

From[26] it can be written as  

|𝑞⟩  = ∑ 𝑐𝑖⟨𝑖|𝑁−1
𝑖=1  = {

∑ √𝑤𝑖|𝑖⟩

0|𝑖⟩
                                                  (17) 

Based on equation 17, Oracle operator can be stated as follows,  

                  O = I – 2 |𝑞⟩ ⟨𝑞|                            (18) 

After assigning the weight coefficients in the equation (16) can be represented in to following 

expression,  

 |Φ⟩ =  𝑥0 |0⟩ + 𝑥1|1⟩ + 𝑥𝑞1
 |𝑞1⟩ + ⋯ + 𝑥𝑞𝑀

|𝑞𝑀⟩ + ⋯ + 𝑥𝑞𝑁−1
|𝑁 − 1⟩) =  ∑ 𝑥𝑖|𝑖⟩𝑁−1

𝑖=1   (19) 
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Using the oracle operator O in the equation (19) gives,  

             O = |Φ⟩*[ I – 2 |𝑞⟩ ⟨𝑞|] 

            = |Φ⟩ - (  2 |𝑞⟩ ⟨𝑞| )|Φ⟩ 

                      = |Φ⟩ -  2 |𝑞⟩ ⟨𝑞|Φ⟩  

          = ∑ 𝑥𝑖|𝑖⟩|𝑁−1
𝑖=1  - 2 ∑ 𝑐𝑖|𝑖⟩|𝑁−1

𝑖=1  ⟨𝑞|Φ⟩                          (20) 

 

[putting the values from equation 17 and 19]  

 The iterative equation can be constructed from [35] , first sub-step of the superposition 

becomes  

                             |Φ⟩(𝑡+
1

2
) =  ∑  𝑥𝑖

(𝑡)|𝑖⟩𝑁−1
𝑖=1  - 2 ∑ 𝑐𝑖|𝑖⟩𝑁−1

𝑖=1  ⟨𝑞|Φ⟩(𝑡)              (21) 

And the 2nd sub step of the equation is  

|Φ⟩(𝑡+1) =  2 ∑  ⟨Φ(𝑡+
1

2
)⟩𝑁−1

𝑖=1 |𝑖⟩ − ∑  𝑥𝑖
(𝑡+

1

2
)|𝑖⟩𝑁−1

𝑖=1                                 (22) 

Now, Inserting the value of |Φ⟩(𝑡+
1

2
)
 in equation 22, we can get,  

 |Φ⟩(𝑡+1) = 2( ∑   ⟨𝑥𝑖
(𝑡) − 2⟨𝑞|Φ⟩(𝑡)⟩ |𝑐𝑖⟩) − 𝑥𝑖

(𝑡) + 2 ∑ 𝑐𝑖|𝑖⟩𝑁−1
𝑖=1  ⟨𝑞|𝛷⟩(𝑡)  𝑁−1

𝑖=1                 (23) 

The above term ⟨𝑞|𝛷⟩(𝑡) expression can be written by following assumptions,  

                                ⟨q|Φ⟩𝑡=V sin(ωt +  𝜑)                (24) 

The parameters of equation 24 obtained as,  

                                                                V=1                                                                         (25) 

ω = 2 arc sin( ⟨𝑞|Φ⟩)     (26) 

𝜑 =  arc sin( ⟨𝑞|Φ⟩)    (27) 
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If |Φ⟩  state is equal to the superposition state |q⟩  after some iterations, then the success 

probability should be equal to 1 that means ( ⟨𝑞|Φ⟩)2 = 1 . The success probability can be 

illustrated after t times of Grover iterations by, 

𝑡 = 𝐶𝐼 (
𝜋

2
−𝜑

𝜔
) = 𝐶𝐼 (

𝑎𝑐𝑟 𝑐𝑜𝑠⟨𝑞|Φ⟩

2 𝑎𝑟𝑐 𝑠𝑖𝑛 ⟨𝑞|Φ⟩
)                      (28) 

Where, CI means integer closest to real number. 

In terms of security perspective, the quantum algorithm is more reliable than the classical 

algorithm is [47,48]. Quantum algorithms are superior to their classical analogues when the 

input exists in a superposition state. In our case, all of the node information is encrypted in the 

superposition state which ensures a high degree of security [49]. 

3.5.2.2 Illustrative example of Quantum Weighted Search Algorithm 

   In our proposed quantum weighted algorithm, as mentioned before, the limitations on the 

number of qubits are the main obstacles in quantum computing systems. Therefore, we only 

used an n = 4 qubit system to simulate the performance of our proposed quantum algorithm. 

Before approaching the quantum part, it is worth mentioning that in some previous research of 

clustering algorithms, such as EECS, all of the nodes need to send a message to the BS, and 

the CH needs to send at least three messages, which heavily increases the overhead complexity. 

Under HEED, a CH probably generates at least N iterations, which is a similar range of time 

complexity: O(N). Our main approach to implementing a quantum algorithm for CH selection 

is to reduce the time and overhead complexity. In a quantum computing system, CH selection 

can be achieved from one to two iterations using Grover’s weighted search algorithm, which 

reduces overhead complexity to O (√𝑁). 

       The above-mentioned nodes, N = 16 = 24, can be formed into a superposition state with 

four qubits. Therefore, the initial state can be written from Equation (16): 

|∅⟩= 
1

√16
(|0000⟩ + |0001⟩ + |0010⟩ … … … … … … + |1111⟩) 

where |0000⟩ , |0001⟩, |0010⟩, … |1111⟩  represent node 1, node 2, node 3, ... node 16, 

respectively. Our probable CHs are node 10 and node 13 which is the marked state. Grover’s 
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algorithm will search for this marked state within one iteration, which can be proven by the 

mathematical formulation and IBM’s QISKIT quantum simulation. 

In the classical CWCA algorithm, the nodes with the lowest weights, node 10 and node 13, 

will be eligible for CH selection. However, in a quantum algorithm, the highest weighted node 

will be selected as the CH. Therefore, to select the CH in the quantum approach, all of the 

nodes’ corresponding weights need to be inverted, which is called inversion about the mean. 

In this process, the nodes’ average weights will be calculated, and then, each node’s 

corresponding weight is subtracted from two times the average value. By this process, we 

obtain new values for the nodes. From Table 9, we can see that the lowest weight nodes become 

the highest weighted ones. The target that needs to be found must be the node that has the 

highest weight under Grover’s search algorithm. Using the traditional search algorithm, the 

complexity is linear, but Grover’s search algorithm will predict comparatively better 

complexity. In terms of function, the above expression becomes: 

 

Table 9. Quantum algorithm based on weighted targets parameters and its implementation. 

Node ID Node State 

Node weights 

(Wi) 

Inversion about  

the mean value 

Winv = 2*Wi + Wavg 

1 |0000⟩ 1.23 1.27 

2 |0001⟩ 1.20 1.30 

3 |0010⟩ 1.60 0.90 

4 |0011⟩ 2.10 0.40 

5 |0100⟩ 0.85 1.65 

6 |0101⟩ 0.90 1.60 

7 |0110⟩ 1.20 1.30 

8 |0111⟩ 0.90 1.60 

9 |1000⟩ 1.60 0.90 

10 |1001⟩ 0.70 1.80 

11 |1010⟩ 1.90 0.60 

12 |1011⟩ 1.70 0.80 

13 |1100⟩ 0.75 1.75 

14 |1101⟩ 0.78 1.72 

15 |1110⟩ 1.37 1.13 

16 |1111⟩ Null Null 

Average weights Wavg = 1.25 Winv_avg = 1.25 
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𝑓(𝑥) = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 ℎ𝑖𝑔ℎ𝑒𝑠𝑡  
0,   𝑖𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑙𝑜𝑤𝑒𝑠𝑡

 

 Since, Grover’s algorithm based on weighted targets requires. 

                                                              ∑ 𝜔𝑖

𝑛

𝑖=1
  = 1                                                                   (30)   

it means the sum of all of the search target node weights should be one. To obtain the sum 

value of one, it is necessary to normalize the corresponding weight values. Normalization can 

be performed via the following formula: 

                                                          𝜔𝑖 =
𝑊𝑖𝑛𝑣

∑ 𝑊𝑖𝑛𝑣
𝑛
𝑖=1

                                                                         (31)  

where n is the number of candidate nodes. From Table 9, we can see that our candidate nodes 

are 10 and 13. The sum of their inverted weights is 3.55. As a result, when the normalized 

weights of node 10 (𝑤10=0.51) and node13 (𝑤13=0.49) are added together, they equals one. As 

mentioned earlier, Equation (16) represents the initial state of the nodes. Our marked state is 

constructed as follows: 

 |𝑞⟩= √0.51|1001⟩ + √0.49|1100⟩                                   (32) 

Now, the iteration steps can be found with Equation (28) by applying the original Grover’s 

algorithm, which comes from [50]: 

      𝑡 = 𝐶𝐼 (
𝜋

2
−𝜑

𝜔
) = 𝐶𝐼 (

𝑎𝑟𝑐cos √
𝑚

𝑁

2 𝑎𝑟𝑐 𝑠𝑖𝑛 √
𝑚

𝑁

)                                               (33) 

where m = number of candidate nodes/CH nodes, and N = total number of maximum nodes. 

Table 10 shows that when comparing both iteration values, Equation (28) depicts a value that 

is closer to two. Therefore, it can be stated that the targets from Grover’s weighted search 

algorithm are more perfect than the original Grover’s search algorithm ones are. 
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Table 10.   Iterations steps for finding the target nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angular Frequency 
𝝎 

Phase Angle 
𝝋 

Iteration Steps by 

equation (28) 
𝒕𝟎 

 

Iteration Steps by 

equation (33) 

 

0.6908 0.3454 1.77 ~ 2 1.60 
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CHAPTER 4 

Performance Evaluation on classical and Quantum Approach 

4.1 Classical Approach 

In this section, we discuss the classical clustering performance evaluation in terms of 

transmission range with fixed node densities and the trade off between the number of cluster 

and transmission range. We then calculate the energy consumption of intra and inter cluster 

communication. 

4.1.1 Transmission Range for fixed network area with different node densities 

   First, we discuss the classical clustering performance evaluation. We are interested in 

optimizing the transmission range, which depends highly on node density. In a WSN, the nodes 

are stationary after deployment, but it is necessary to deploy sensor nodes wisely because, in 

our network model, we introduce the network connectivity equation as a function of the 

transmission range, which is related to node density and the number of sensor nodes in each 

cluster. 

   From Table 11, we can see that the relationship between the expected number of clusters and 

the transmission range is reciprocal. The transmission range 𝑟𝑡𝑥  needs to be higher if the 

expected number of clusters decreases. If we can change the network area, for example A = 

100 m × 100 m in Table 11, and if the number of nodes is 100, the node density will be 0.01 

m−2, which is an increase from the previous node density. According to the calculation, the 

transmission range has decreased from 34 m to 17 m, but the number of clusters remains the 

same. This illustration, along with data from Table 11, demonstrates how the transmission 

range will decrease as node density increases.  
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Table 11.  Transmission range for fixed Network area and different node density. (Probability 

of connectivity considered 0.99)  

 

Network Area 

(A) 𝒎𝟐 
No. of sensor node 

(N) 

Node density 

(𝝆) m-2 

Expected 

number of clusters 

Transmission 

range (𝒓𝒕𝒙) m 

200 x 200 

 

500 0.0125 46 16.59 

450 0.01125 42 17.40 

400 0.01 38 18.36 

350 0.00875 33 19.51 

300 0.0075 29 21 

250 0.00625 25 22.70 

200 0.005 20 25 

150 0.00375 16 29 

100 0.0025 11 34 

50 0.0013 6 47 

 

Figure 9 (a) shows the relationship between the total number of sensor nodes and transmission 

range. When the number of clusters increases, transmission range decreases that is depicted in 

Figure 9 (b). 

 

 
 

 

Figure 9. (a) The relationship between the number of sensor nodes and transmission range. And 

(b) the number of clusters and transmission range. 
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4.1.2 Energy Calculation for intra and Cluster head to BS communications 

In a practical sense, the selection of the optimum number of clusters should be energy 

efficient and consume low levels of power. In order to select energy-efficient cluster heads, it 

is essential to calculate the energy consumption between the CH and its member nodes, which 

is referred to as intra-cluster communications, and between the CH and the BS, which is inter-

cluster communications. In the next step, we must characterize intra- and inter-cluster energy 

consumption, and determine how much energy is saved for different cluster formations through 

the energy model discussed in Section 3.2. It is worth depicting how, in a cluster, the node 

consuming the most energy is the CH because it needs to gather information from its member 

nodes, aggregate their data, and then send them directly to the BS (in our model, we assume 

that there is single-hop communication with the BS). For this reason, we show the energy 

dissipation of each member node and the CH separately. In our energy calculation, the power 

levels of data from the Berkeley CC2420 chip set [51] are used. Before starting the computation, 

some parameters (showed in Table 6) need to be set (𝐸𝑒𝑙𝑒𝑐 = 50 nJ/bit, 𝑒𝑓𝑠= 10 pJ/bit/𝑚2and 

𝑒𝑚𝑝= 0.0013 pJ/bit/𝑚4, 𝐸𝐷𝐴= 5 pJ/bit per signal) from [35] 

Table 12. Computation parameters and values 

Parameters Values 

Sensing Region 200 * 200 m2 

N 50 

𝐸𝑒𝑙𝑒𝑐 50 nJ/bit 

𝑒𝑓𝑠 10 pJ/bit/m2 
𝑒𝑚𝑝 0.0013 pJ/bit/m4 
𝐸𝐷𝐴 5 nJ/bit/signal 

Data packet size (l) 1packet = 800 bits 

 

We consider that one cluster has eight member nodes which need to send one packet of data to 

the corresponding CH. Therefore, each member node’s transmission energy per packet can be 

calculated from Equation (8): 43.2 _J/packet (distance to the CH, dto CH = 20 m). In intra-cluster 

communications, the CH receives a total of eight packets from its member nodes, which 

consumes 3200 _J, as calculated from Equation (6). The total energy consumption of intra-
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cluster communications is shown in Table 13. 

Table 13. Energy calculation of Intra cluster communication 

 

Table 13 clearly shows that as the number of clusters increases, energy consumption decreases, 

just as energy savings increase in the network. The next step for energy consumption is from 

the CH to the BS, (inter-cluster energy consumption). From Equation (7), CH energy 

consumption can be calculated. The total inter-cluster energy consumption is shown in Table 

14. 

Table 14. Energy calculation of CH to BS communication. 

 

   We note that the transmission power level should be at a maximum value for inter-cluster 

communications. From Table 14, we can see that very low inter-cluster transmission energy is 

required if the number of clusters increases. Therefore, in both intra- and inter-cluster 

communications, energy savings is at the highest level when the cluster size increases. 

No. of 

Clusters 

No of member 

node in one 

cluster 

Average 

distance from 

member node 

to CH 

(Assumption) 

Transmission  

energy  

[𝑬𝑻𝒙 (μJ)/packet

]from member 

node 

Transmission 

Energy 

𝑬𝑻𝒙 (μJ) from 

one cluster 

Receiving  

Energy 

𝑬𝑹𝒙 (μJ) 

of CH from 

one cluster 

Total  

Energy in 

cluster 

(Milli 

Joule) 

 

Energy Savings 

(Percentage, %) 

1 50 90 104.8 5240 20000 25.24 1% 

2 25 85 97.84 2445 10000 12.45 51% 

3 16 60 73.8 1181 6400 7.58 70% 

4 112 50 60.6 720 4800 5.52 78% 

5 10 30 47.2 472 4000 4.47 82% 

6 8 20 43.2 346 3200 3.55 86% 

No. of Clusters 

No of member 

node in  

one cluster 

 

Non-CH node 

(m-1) 

Average distance 

from CH to BS  

(meters) 

[Assumptions] 

Transmission  

energy of CH per 

cluster 

(Milli Joule) 

 

Energy Savings 

(Percentage, %) 

1 50 49 20 110.01 1% 

2 25 24 25 27.51 75% 

3 16 15 30 11.28 89% 

4 112 11 35 6.35 94% 

5 10 9 40 4.43 96% 

6 8 7 45 2.85 97% 
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4.1.3 Performance evaluation in terms of optimum number of clusters 

   Here, we need to consider Berkeley CC2420 chipset again for energy calculations between 

intra cluster communication (member to CH) and CH to BS station for 15 nodes for exactly to 

compare the same performance evaluation through quantum algorithm [because for qubit 

limitation we can only consider highest 16 nodes in quantum search algorithm]. The parameters 

are considered same without the sensing area that is depicted in Table 15:  

Table 15. Computation parameters and values for optimum number of clusters 

Parameters Values 

Sensing Region 50 * 50 m2 

N 50 

𝐸𝑒𝑙𝑒𝑐 50 nJ/bit 
𝑒𝑓𝑠 10 pJ/bit/m2 
𝑒𝑚𝑝 0.0013 pJ/bit/m4 
𝐸𝐷𝐴 5 nJ/bit/signal 

Data packet size (l) 1packet = 800 bits 

 

Table 16. Energy calculation of Intra cluster communication in 50 x 50 m2 Area 

No. of 

Clusters 

No of member 

node in each 

cluster 

Average 

distance from 

member node 

to CH 

(Assumption) 

Transmission 

energy 

[𝑬𝑻𝒙 (μJ)/packet

]from member 

node 

𝑬𝑻𝒙 ×number 

of cluster 

energy ( μJ) 

Receiving 

Energy 

𝑬𝑹𝒙 (μJ) 

of CH from 

one cluster 

𝑬𝑹𝒙 ×number 

of cluster 

energy ( μJ) 

 
Total Energy 

Consumption 

=𝑬𝑻𝒙 + 𝑬𝑹𝒙 

( μJ) 

1 15 18 638.88  638.88  1693.5 1693.50  2332.38  

2 7 15 292.60  585.20  790.3 1580.60  2165.80  

3 5 13 206.76  620.28  564.5 1693.50  2313.78  

4 3.75 11 153.63  614.52  423.375 1693.50  2308.02  

5 3 14 124.70  623.52  338.7 1693.50  2317.02  

6 2.5 8 101.28  607.68  282.25 1693.50  2301.18  

7 2.2 17 93.09  651.60  248.38 1738.66  2390.26  

8 1.8 14 74.82  598.58  203.22 1625.76  2224.34  

9 1.6 13 66.16  595.47  180.64 1625.76  2221.23  

10 1.5 8 60.77  607.68  169.35 1693.50  2301.18  

11 1.36 12 55.97  615.63  153.544 1688.98  2304.62  

12 1.25 9 50.81  609.72  141.125 1693.50  2303.22  

13 1.15 10 46.92  609.96  129.835 1687.86  2297.82  

14 1.07 10 43.66  611.18  120.803 1691.24  2302.43  

15 1 12 41.15  617.28  112.9 1693.50  2310.78  
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In Table 16, there are shown calculations of energy of  inter cluster communication for 15 no

des. When the number of clusters is 2, then we have found the lowest energy consumption 2166 

μJ. In Table 17, the energy consumption between cluster head (CH) and Base station are also 

calculated. The total energy consumption found minimum 617 μJ  if the cluster number is 2.  

Therefore, it can be stated that total energy consumption is the lowest when the optimum num

ber of clusters is 2. 

 

Table 17. Energy calculation of Cluster head to Base Station (CH to BS) communication in 50 

x 50 m2 Area. 

 

No. of Clusters 

No of member 

node in  

one cluster 

 

Non-CH node 

(m-1) 

Average distance 

from CH to BS  

(meters) 

[Assumptions] 

Transmission  

energy of CH per 

cluster 

( μJ) 

 

Total Energy 

consumption = 

No. of Cluster × 

per cluster 

energy ( μJ) 

1 15 14 20 660.17  660.17  

2 7 6 22 308.24  616.49  

3 5 4 25 220.41  661.22  

4 3.75 2.75 25 165.41  661.63  

5 3 2 28 132.64  663.20  

6 2.5 1.5 26 110.48  662.85  

7 2.2 1.2 23 97.09  679.64  

8 1.8 0.8 25 79.61  636.85  

9 1.6 0.6 28 71.04  639.35  

10 1.5 0.5 27 66.55  665.53  

11 1.36 0.36 23 60.13  661.44  

12 1.25 0.25 29 55.74  668.83  

13 1.15 0.15 25 51.01  663.08  

14 1.07 0.07 19 47.22  661.02  

15 1 0 20 44.17  662.50  
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Figure 10:  Optimum number of clusters in (a) Intra-Cluster & (b) CH to BS communication. 

In Figure 10, (a) and (b) shows the minimum energy consumption in Intra cluster 

communication and CH to BS communication respectively when the cluster number is 2.  

 

4.2 Quantum Approach 

  The second phase of the performance evaluation shows the results from the CH selection 

formulated using Grover’s weighted search algorithm in IBM’s quantum simulator (QISKIT). 

In the initialization of this algorithm, the quantum states |0⟩⊗𝐧  and |1⟩  are set to an equal 

superposition state, which can be achieved by implementing a Hadamard gate (H) for each 

qubit. 

4.2.1 IBM Quantum Simulator Results and Discussions 

For this simulation, the algorithm needs five qubits, where one qubit (𝑞4 ) represents an 

ancilla/auxiliary qubit that is initialized to state |1⟩ by applying a NOT (X) gate, as shown in 

Figure 11(a). After the implementation of the Hadamard gate (H), the amplitude can be 

represented by 
1

√𝑁
. The next step is to build an Oracle to mark the state. This Oracle can be 

made by a CZ gate which is a combination of a Hadamard gate and a controlled X (CNOT) 

gate for a two-qubit system. Our required target states are |1001⟩ and |1100⟩, which represent 

node 10 and node 13. Therefore, to build an Oracle with four qubits, we need to use a 

quadruple-controlled (cccc-X) gate that can be constructed using a Multi-Controlled Toffoli 

(MCT) gate, as shown in Figure 11(b). Then, we build the circuit by creating a superposition 
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of all of the states, and the final (ancilla) qubit needs to be placed in the | −⟩ state (negative), 

as required.  

 

 

 
Figure 11. (a) Initialization of the quantum circuit; (b, c) represent Oracle marked states  
|1001⟩ and |1100⟩ (Note: the #1100 element is marked as (lsb to msb)); (d) the diffusion 

operator to invert the mean; (e) the complete quantum circuit ready to run on a simulator or 

quantum system to find the target element with high probability 

 

  The next stage in Grover’s algorithm is related to implementing a diffuser, which is also called 

the amplification stage, which inverts the average of the amplitudes. This can be accomplished 

using the formula HRH, in which H is the Hadamard transform, and R is a phase shift transform 
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[41]. The amplitudes of the N possible states associated with the newly decreased mean are 

inverted by a diffuser. The target state’s negative phase is reversed by this inversion, which also 

contributes to differentiating the target from the other states. The last and final step is the 

measurement of the qubits. After conducting this measurement, the qubits are not in the 

superposition state, and they collapse to give the outcome of one of the possible states. 

The execution of the proposed quantum algorithm is performed on IBM’s QasmSimulator, 

with the results being shown in Figure 12. The marked states are found within (𝑡0) = 2 iterations 

with 1024 shots, as shown in Figure 12a. If we increase the number of shots to 8192, then the 

probability of finding the states remains the same at the highest values of the two states. 

The above results indicate that for the two states, |1001⟩ and |1100⟩, the probabilities are 

40% and 37%, respectively, which means if we run the algorithm every time, the two states 

will have the highest probability. Within two iterations, we will reach our probable destination. 

There are negligible discrepancies between the theoretical values of the iterations and the 

simulation results because if we increase the iteration values in the simulator, then the 

probability of success will increase by around 10%, but we can still obtain the same state with 

the same results. Therefore, we can state that with the two single Grover’s operator, the desired 

  

 

Figure 12. (a) QasmSimulator results when the number of shots = 1024, and (b) when the number of 

shots = 8192. 
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results can be found. The maximum number of iterations for this experiment is O (
𝜋

4
√𝑁), where 

N = 16 nodes. However, here, we can see that within two iterations, we can find our target state. 

If we increase the number of iterations (𝑡0 ) of Grover’s operator, the algorithmic success 

probability (ASP) will be high. In the classical algorithm, in order to find the search state, we 

need to check each value (in the worst case) for the required time complexity O(N). For time 

complexity, the quantum algorithm surpasses the classical algorithm in terms of the CH 

selection procedure. In sum, this reduction in time will improve the overall performance of the 

network by decreasing the end-to-end delay and power consumption. 
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CHAPTER 5 

Conclusions 

 

   This paper introduced an optimization approach for a WSN-based hierarchical network with 

the focus on topology control as a function of the transmission range and power. A novel 

approach to cluster head selection (in both classical and quantum computing) attributed to 

transmission power will help to establish an energy-efficient network. The factors (the node 

degree, average distance between nodes, and energy consumption) which are essential for CH 

selection and proposed for the CWCA algorithm are scalable in terms of weight. MATLAB 

simulations of the classical algorithm show that around 86% and 97% of the energy efficiency 

is achievable in the whole network for intra- and inter-cluster communications, respectively. 

On the other hand, by reducing the time complexity and with a faster search for CH selection, 

an improved weighted target-based quantum search algorithm was proposed. By implementing 

the QWSA algorithm, the cluster head can be selected within two iteration steps, which is a 

favourable agreement between the mathematic approach and the QISKIT simulation result. 

 

   A probable limitation of the CWCA technique is that it requires a computationally expensive 

system when considering a large number of cluster heads. It will also be necessary to evaluate 

the end-to-end reliability and the delay in the sensor data. In addition, it is essential to ensure 

security in the cluster head selection process such as identify selfish and duplicate nodes. Future 

research directions will focus on implementing the proposed QWSA algorithm in significant 

networking systems. Now, the performance is bounded because of the limited number of qubits. 

For instances, if we increase the number of qubits by two times, we can easily implement this 

algorithm for about 256 (28) nodes and increasing it by three times the number of qubits in the 

simulation can cover up to 4096 (212) nodes in the whole network. 

We also demonstrated that qubit selection can have a significant impact on how the quantum 

algorithms are implemented, and researchers will need to pay attention to this when they are 

trying to accurately implement algorithms in the future. IBM and other experts in quantum 
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computing are continuously enhancing and introducing new quantum devices. In the future, it 

will be essential to follow the development of these new and advanced devices to gain a sense 

of how rapidly quantum computing technology is progressing. 
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