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Abstract 

This study explores a way of detecting smoke plumes effectively as the early signs 

of forest fire. Convolutional neural networks (CNNs) have been widely used for forest 

fire detection; they were not customized or optimized for smoke characteristics. This 

paper proposes a CNN-based forest smoke detection model featuring a novel backbone 

architecture that can increase detection accuracy and reduce computational load. The 

proposed backbone detects the plume of smoke through different views using different 

sized kernels, it can better detect smoke plumes of different sizes. The conventional 

convolution of square kernels is decomposed into the depth-wise convolution of 

coordinate kernels to not only can better extract the features of smoke plumes spreading 

along the vertical dimension but also reduce the computational load. Attention 

mechanism was applied to allow the model to focus on important information while 

suppressing less relevant information. Experiments show that our model outperforms 

other popular ones by achieving detection accuracy of up to 52.9 average precision (AP) 

and reduces the number of parameters and giga floating-point operations (GFLOPs) 

significantly compared to the popular models.
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Chapter 1. Introduction 

 

1.1 Overview of forest fire detection  

Forest fires often cause enormous damage to human life and the environment. Many 

great forest fire disasters can be found in history like the Camp Fire in California, in 2018, 

that claimed 85 lives and destroyed 153,336 ha of forest. Even worse, global warming has 

led to increased temperature extremes and longer dry periods, which increase the risk of 

forest fires. Thereby, the number of forest fires was increasing. According to the annual 

Wildfires Report from the National Centers for Environmental Information, forest fire in 

United States burned over 7 million acres of wildland in 2021 [1]. 

A major reason for the great damage is that forest fires can spread quickly, making them 

difficult or even impossible to extinguish before being detected. This study considers the 

evolution of the existing vision-based model to effectively detect forest smoke that is the 

early sign of a forest fire. The proposed model is based on convolutional neural networks 

(CNNs) and attention mechanism and focuses on increasing the accuracy and reducing the 

computational complexity of smoke plume detection. 

1.2 Related work 

According to survey papers [2-4], many forest fire detection methods have been 

proposed. Early methods relied on fire lookout towers that often rely on tools like the 

Osborne Fire finder [5]; however, they were not effective due to continuous human 

intervention and potential for human error. Some evolved methods used sensors that can 

detect signs of a fire outbreak, such as rising temperature, smoke, flames and lack of oxygen; 

they had the difficulty of collecting data reliably from the sensors deployed in a vast forest 

area [6]. In addition, they suffered from the problem of a fire alarm that does not work until 
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the parameter values for fire detection exceed their respective preset thresholds.  Recently, 

the direction of research has been shifting toward a vision-based approach that relies on 

artificial intelligence [7]. 

1.3 Evaluation methodology  

This study introduces a forest smoke detection model featuring a new backbone 

architecture that is customized to increase the accuracy of smoke detection and reduce 

computational complexity. The proposed backbone is designed to effectively extract 

smoke features. First, it extracts features of objects through different views using different 

kernel sizes. This allows the model to better detect smoke plumes of different scales. 

Second, it decomposes the conventional convolution of a square kernel into the depth-wise 

convolutions of coordinate kernels to not only better extract the features of smoke plumes 

that spread along vertical dimension, but also reduce the computational load. Finally, it 

employs an attention mechanism that focuses on important features in the image while 

suppressing irrelevant features. As a result, the proposed model could achieve up to 52.9 

average precision (AP), which far exceeds the accuracy of other models such as YOLOv3 

[18], RetinaNet [25], Faster-RCNN [20], and SSD [26], while reducing the number of 

parameters and GFLOPs significantly 

1.4 Thesis Outline 

The thesis consists of six chapters structured as follows: 

Chapter 1 presents the fundamental knowledge about forest fire detection, problems in 

designing a forest fire detection of previous approaches. Then, the evaluation methodology 

and organization of the thesis are given. 

Chapter 2 discusses the background of forest fire detection model and presents our 

motivation in the design of a new forest fire detection model. 



Chapter 1. Introduction 

 

8 

Chapter 3 provides a survey of forest fire detection that includes traditional, and CNN 

based approaches. 

Chapter 4 introduces a detailed description of the proposed forest fire detection model. 

Chapter 5 provides the performance evaluation of the proposed forest fire detection 

model with the experiments setups and results on the collected dataset. 

Finally, Chapter 6 gives conclusions on the thesis and the future research direction. 
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Chapter 2. Background 

 

2.1 Convolution neural networks 

Convolutional Neural Networks (CNNs) are a type of neural network commonly 

used in deep learning for image recognition, classification, and segmentation tasks. They 

are inspired by the structure and function of the visual cortex of the brain, where neurons 

are arranged in a hierarchical manner to extract increasingly complex features from 

sensory input. 

2.1.1 Convolution 

The basic building block of a CNN is a convolutional layer, which applies a set of 

learnable kernels to the input image to extract features. The filters slide over the input 

image, performing a dot product operation at each location to generate a feature map. 

Multiple filters can be applied to the same input to extract different features.  

 

 

 

Figure 2.1. An example of the convolution 
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2.1.2 Pooling 

Pooling is a technique used to reduce the spatial size of the feature maps while 

retaining the most important information. There are several types of pooling layers, 

including max pooling, average pooling, and L2 pooling. In max pooling, the maximum 

value in each pooling window is selected and passed on to the next layer. In average 

pooling, the average value in each window is computed. L2 pooling takes the root of the 

sum of the squared values in each window. 

One of the benefits of pooling is that it helps to make CNN more robust to small 

translations of the input. For example, if a small object is located in a slightly different 

position in two images, pooling can help CNN to recognize that the same object is present 

in both images. Pooling can also help to reduce overfitting by enforcing a form of spatial 

regularization on the feature maps. 

 

  

 

Figure 2.2. An example of the max-pooling 
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2.2 Forest fire detection model 

The considered forest fire detection model consists of three modules: Backbone, 

Neck, and Head, as shown in Figure 2.3. Backbone consists of four stages labeled 

𝑆1, 𝑆2, 𝑆3 and 𝑆4 and each stage generates one stage feature map (i.e., the last generated 

feature map from the in-stage convolutional network) where the stage feature map of 

stage 𝑆𝑖 is constructed by taking the stage feature map of 𝑆𝑖−1 as input and going through 

convolutional layers while the stage feature map of 𝑆1 is constructed  from the input 

image. Early stages tend to capture low-level information like edges, corners, etc., while 

later stages capture high-level or specific information. 

Neck has five levels labeled 𝑃1, 𝑃2, 𝑃3, 𝑃4, and 𝑃5 and each level generates one level 

feature map (i.e., the last generated feature map from the in-level convolutional network) 

where the level feature map of level 𝑃3 is built by applying convolutions to the stage 

feature map of 𝑆4. The level feature map of 𝑃2 is created by up-sampling the level feature 

map of 𝑃3 and adding it to the stage feature map of 𝑆3. Note that the level feature map of 

𝑃3 is also used to generate the level feature map of 𝑃4. The level feature map of 𝑃1  is 

created similarly. Two more level feature maps of 𝑃4 and 𝑃5 are constructed by down-

sampling those of 𝑃3 and 𝑃4, respectively to have more abundant features. In this way, 

having a multi-level pyramidal structure, Neck can not only balance the information of 

different feature maps, but also help the model easily detect objects of different scales. 

Head includes two specific tasks: object classification and bounding box regression. 

Each one is represented as a small convolutional network that consists of five serially 

connected convolution layers. A class feature map and a box feature map are represented 

by AWH (Anchors  Width  Height) and by 4AWH, respectively, where 4 

indicates 4 relative offset values between the anchor and the ground truth box. The former 
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is used to determine the probability of the presence of a specific object at each spatial 

position while the latter is used to regress the 4 offset values from each anchor box to a 

nearby ground truth object. 

In this study, we focus on developing a new Backbone which is suitable for extracting 

features from the images of fire and smoke in the forest. 

 

 

 

 

 

Figure 2.3. The architecture of the forest fire detection model 
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2.3 Motivation 

Backbone plays an important role in improving the accuracy of object detection since 

it generates feature maps of objects. In addition, it can incur significant computational 

load since it deals with a lot of convolutional layers.  

Recent forest fire detection models actually used well known backbones designed 

using the ImageNet [27] data set. However, ImageNet does not have smoke and fire 

classes even though it is a large dataset with over one million images and one thousand 

classes. This means that those backbones are not suitable for forest fire detection models. 

Moreover, researchers have been trying to design backbones with more layers and large 

kernels to extract more information from ImageNet. However, this can demand more 

computational load. The proposed backbone addresses the two problems as follows.  

 

First, a large size kernel can sometimes help the model speed up object detection by 

capturing more pixels in one step, but it produces too many numbers of parameters. 

Therefore, it is replaced by multi smaller size kernels that can capture pixels from the 

 

Figure 2.4. The same receptive field of using of three 33 kernels and one 77 kernel 
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same receptive field (Figure 2.4) while using fewer parameters. Second, it decomposes 

the conventional convolution of nn kernels (Conv nn) into the depth-wise convolution 

of n1 (DWconv n1) and 1n kernel (DWconv 1n) to better extract the features of 

smoke plumes that spread along vertical dimension (Figure 2.5). The decomposition also 

helps the model reduce the number of parameters. Third, it extracts features of objects 

through different views using different kernel sizes (Figure 2.5).  This allows the model 

to better detect smoke plumes of different scales.  

 

Fourth, it employs an attention mechanism that focuses on important features in the 

image while suppressing irrelevant features to increase detection accuracy. Finally, the 

 

 

 

Figure 2.5. Depth-wise convolutions of multi kernel size 
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model was trained and improved using a dataset containing over 4,000 forest smoke 

images. 
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Chapter 3. Survey of Forest Fire Detection 

3.1 Traditional approaches 

Existing vision-based approaches can be divided into two categories: image 

processing approaches and CNN-based ones. The former relied on image processing 

techniques to explore fire and smoke characteristics such as color, shape and motion. The 

authors in [8], [9] and [10] used RGB, YCbCr, and Lab color models, respectively, to 

extract fire and smoke pixels. The authors in [11] used wavelet and fast Fourier transform 

methods to analyze the contours of the fire area in videos. The authors in [12] combined 

the properties of color, shape, and motion using a multi-expert framework to increase 

detection accuracy. One recent approach utilized background subtraction and color 

segmentation to detect regions containing motion [13]. Since these approaches do not use 

high computational power, they can be used for devices with limited computational power, 

such as drones or surveillance cameras. However, to achieve a reasonable level of 

accuracy, they require careful image pre-processing steps and may need the use of 

different feature extraction algorithms for forest fire images in different situations. 

3.2 CNN-based approaches  

In contrast, CNN-based approaches use deep learning techniques to automatically 

extract features from different images. The authors in [14] proposed a lightweight forest 

fire detection model by replacing the backbone network of YOLOv4 [15] with 

MobileNetv3 [16]. This method could reduce the computational load greatly, but with 

reduced detection accuracy. The authors in [17] used YOLOv3 [18] to detect forest fires 

with the utilization of UAV (unmanned aerial vehicle) that can capture high-resolution 

videos and images. However, it did not perform well against small smoke or fire. Another 

approach [19] tried to detect forest smoke using Faster R-CNN [20]; They improved the 
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accuracy to some extent, but the experiments were limited because they did not use 

diverse forest fire data sets. The authors in [21] employed Inceptionv3 [22] to train 

satellite images for forest fire detection. This satellite-based approach can capture large 

fire images only after the fire has spread to a large area. Furthermore, since Inceptionv3 

only returns a fire or non-fire decision without boxing the fires, it requires an extra step 

to determine the regions of the fires, which takes time and effort. One recent approach 

[23] used R-CNN [24] for forest fire detection. The high computational complexity of 

this model hinders its portability to monitoring devices. In summary, the existing 

approaches have limited improvement in detection accuracy because it uses popular 

models such as the YOLO series and Faster R-CNN as they are. Moreover, they require 

a high computational load. 
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Chapter 4. Methodology 

 

4.1 Backbone architecture 

 

The structure of the proposed Backbone is shown in Figure 3.1. The features of input 

data are comprehensively extracted through a 4-stage hierarchical structure, each stage 

consisting of one or more residual block(s). Note that the third stage comprises three 

residual blocks followed by one attention block, while the fourth stage has one residual 

block followed by one attention block. The design aims to enhance the Backbone's ability 

to extract smoke features while minimizing computational requirements. 

 

4.1.1 Stem Block 

The structure of the stem block is illustrated in Figure 3.2. The stem block is utilized to 

quickly reduce the spatial dimension of the input without losing feature information. To 

perform this task, the previous studies have often used a large kernel size, such as 77, thus 

requiring a larger number of parameters. In our design, three 33 kernels with stride size 

 

Figure 4.1. Backbone architecture 
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of 2, 1, and 1 are stacked to replace a single 77 kernel. It can fully extract features from 

input by having the same effective receptive field, but fewer parameters. Batch 

Normalization (BN) and Rectified Linear Unit (ReLU) are additionally applied to the output 

of each convolution layer to speed up and stabilize the training process. At the end of the 

stem block, one 33 max pooling is applied to reduce the size of the feature map. The 

spatial dimension across stages of input data will be reduced sixteen times from 800800 

to 200200 through the stem block. 

  

 

 

Figure 4.2. Stem block 
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4.1.2 Residual block 

The structure of the residual block is illustrated in Figure 3.3. The residual block plays 

the main roles in the smoke feature extraction of forest fire model. This block is constructed 

by using the residual structure to avoid the vanishing gradient problem and stabilize the 

optimization. The feature map from the previous layer is split into four sub-features, and 

then the sub-features are fed into different operators that can capture a wide range of 

receptive fields to improve detection of objects of different sizes. Two upper branches are 

constructed by decomposing the conventional convolution of a square kernel into depth-

wise convolutions of coordinate kernels. This way can relax the computational complexity 

while enhancing the capability of detecting the vertical spread smoke plumes. The 

remaining branch is used to mix information along spatial and channel dimensions.  

Specifically, depending on the number of channels in the input, The feature map from 

the previous layer is split into four small feature maps along the channel dimension and 

each map is processed along different convolution layers. One of the two upper branches 

uses two depth-wise convolutions, as DWconv 15 and DWconv 51, and another as 

DWconv 13 and DWconv 31. Note that each branch uses the coordinate kernels of 

different sizes instead of one large square kernel. This way of decomposed processing 

allows the backbone module to better extract the features of the smoke plumes spreading 

vertically. It allows for reducing the number of parameters and GFLOPS. The third branch 

can enhance feature extraction from small smoke plumes by using DWconv 1x1 with a 

small-sized kernel. The last branch sequentially applies one max pooling 33 and one 

DWconv 11. By taking the maximum value within each pooling region, max pooling 

retains the most important features while discarding less important or noisy features. One 

DWconv 11 is applied on the output of the max pooling layer that can help to perform 
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channel mixing, which can improve the accuracy of the model. The outputs of all branches 

are concatenated along the channel dimension to produce a fine-grained feature map. Then, 

two point-wise convolution (PWconv) 11s are added serially to mix the information 

along channel dimension. ReLU activation function in between them is utilized to 

reinforce the feature non-linearing on large space via expand ratio of 4. Finally, the output 

through the above layers is element-wise added to the residual branch to produce the 

feature map for the next layer. This addition allows residual block to keep the previous 

layer features that help the model avoid the vanishing gradient problem [28] and stabilize 

the optimization. 

  

 

 

Figure 4.3. Residual block 
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4.1.3 Transition block 

 

The structure of transition block is illustrated in Figure 3.4. The transition block is 

used to shrink the size of feature map between two adjacent stages. The conv 11 is 

utilized to double the number of channels and then, followed by 33 max pooling to 

reduce the spatial dimension by half. This way helps to shrink the size of the feature map 

without losing information while saving the number of required parameters. 

 

Figure 4.4. Transition block 
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4.1.4 Attention block 

 

The attention block is added to the outputs of residual blocks of stage 3 and stage 4 in 

Fig. 3a. The structure of the attention block is illustrated in Figure 3.5(a). The attention 

mechanism helps the model to focus on important features of the image while suppressing 

  

 

Figure 4.5. CBAM architecture 
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irrelevant ones. In this paper, the Convolution Block Attention Module (CBAM) [28] is 

employed, where CBAM consists of two main components: Channel Attention Module 

(CAM) as shown in Figure 3.5(b), and the Spatial Attention Module (SAM) as shown in 

Figure 3.5(c). CAM is designed to help the model focus on the most relevant channels in 

feature maps. SAM, on the other hand, is designed to capture spatial dependencies in feature 

maps. These two attention modules compensate for each other's weaknesses, making the 

model focus on the important features of the feature map.  

Let F and ℝ𝑪×𝑯×𝑾 represent the input feature map and a set of all possible feature maps 

of the target object, respectively such that 𝑭 ∈ ℝ𝑪×𝑯×𝑾. Input feature map F is processed 

by CAM to produce channel attention weight 𝑴𝒄(𝑭) as detailed in Figure 3.5(b). Then, the 

refined feature map 𝑭′ is obtained by performing the element-wise matrix multiplication 

between 𝑴𝒄(𝑭) and 𝑭 to redistribute the information in the input feature map F along the 

channel dimension as follows: 

 

𝑭′ =  𝑴𝒄(𝑭)⨂𝑭  (4.1) 

 

Referring to Figure 3.5(b), CAM uses average-pooling and max-pooling along spatial 

dimension to aggregate the spatial information, which generate the average-pooled features 

𝑭𝒂𝒗𝒈
𝒄  and the max-pooled features 𝑭𝒎𝒂𝒙

𝒄 , respectively. These two features are then passed 

to the Multilayer Perceptron (MLP) to generate two channel attention maps, 𝑴𝑳𝑷(𝑭𝒂𝒗𝒈
𝒄 ) 

and 𝑴𝑳𝑷(𝑭𝒎𝒂𝒙
𝒄 ), which are merged using element-wise addition. Finally, the sigmoid 

function, denoted by  𝜎 , is applied to produce the channel attention weight 𝑴𝒄(𝑭) as 

follows:    
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𝑴𝒄(𝑭) = 𝝈(𝑴𝑳𝑷(𝑭𝒂𝒗𝒈
𝒄 )  ⨁ 𝑴𝑳𝑷(𝑭𝒎𝒂𝒙

𝒄 )). (4.2) 

The refined feature map 𝑭′ is then fed into SAM module to generate spatial attention 

weight 𝑴𝒔(𝑭′) as detailed in Figure 3.5(c). Then, 𝑴𝒔(𝑭′) is multiplied with feature map 

𝑭′ to refine the feature map 𝑭′ in the spatial dimension, thereby producing the feature 𝑭′′as 

follows: 

 

𝑭′′ =  𝑴𝒔(𝑭′) ⨂  𝑭′, (4.3) 

 

referring to Figure 3.5(c), SAM also uses both max-pooling and average-pooling along 

channel dimension to generate two features 𝑭𝒂𝒗𝒈
𝒔  and 𝑭𝒎𝒂𝒙

𝒔  that represent the aggregated 

channel information. Then, they are concatenated and mixed using 7x7 convolution, 𝓕𝟕×𝟕, 

to produce a spatial attention map. Finally, the sigmoid function 𝝈 is applied to produce the 

spatial attention weight 𝑴𝒔(𝑭) as follows:  

 

𝑴𝒔(𝑭) = 𝝈(𝓕𝟕×𝟕(𝑭𝒂𝒗𝒈
𝒄  ; 𝑭𝒎𝒂𝒙

𝒄 )), (4.4) 

 

In conclusion, our model focuses on the important features and suppress the irrelevant 

ones along both channel dimension and spatial dimension, by applying channel attention 

weight (via CAM) and spatial attention weight (via SAM), respectively, to refine input 

feature.  
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4.2 Neck architecture 

As illustrated in Figure 3.6, the Neck model based on Feature Pyramid Network [28] 

consists of multiple levels so that the model can easily detect objects of different scales as 

well as balance the information via multiple stages. Specifically, the Neck consists of five 

levels labeled 𝑃1, … , 𝑃5. Initially, the feature maps from 𝑆2 to 𝑆4 in Backbone is reduced by 

shrinking the number of channels to 256 based on 11 convolution. The feature map at 𝑃3 

level is produced by directly applying 33 convolution to the feature map of 𝑆4. Meanwhile, 

the feature map at 𝑃2 are created by up-sampling the feature map at 𝑃3 through nearest 

algorithm and then adding it to the corresponding feature map (𝑆3) in Backbone. The same 

principle is applied for 𝑃1. Note that stage 𝑆1 is not used because it is computationally 

expensive. The 𝑃4 and 𝑃5 levels are added as in [25] by down-sampling the feature map at 

 

Figure 4.6. Neck architecture 
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𝑃3 by 1/2 and 1/4, respectively, using 33 conv with stride 2. This addition allows Neck to 

create more levels of pyramids and helps the model better detect larger objects.  

 

4.3 Head architecture 

 

The Head of our model is borrowed from [25]. Specifically, it requires multi-task 

learning using two task branches: object classification branch and bounding box regression 

branch. The classification branch predicts the probability of object presence at each spatial 

position for each of the A anchors and K object classes. It is a series of 33 convolutional 

networks connected to each FPN level where the output is a class feature map denoted by 

AWH (Anchors  Width  Height), parameters of this branch are shared across all 

pyramid levels. We use K = 1 and A = 9 in most experiments. 

The bounding box regression also consists of a series of 33 convolutional networks 

connected to each FPN level where the output is a bounding box feature map denoted by 

4AWH (Anchors  Width  Height), where 4 represent the four relative offset values 

 

Figure 4.7. Head architecture 
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between the anchor and the ground truth box. For details on the Head, refer to the paper 

[25]. 

 

4.4 Loss function 

The focal loss (FL) function [25] is used in the model since it is suitable for smoke 

detection scenario where foreground and background classes are extremely imbalanced 

during training. FL(𝑝𝑡) as the focal loss function for classification score 𝑝𝑡, is expressed as 

follows: 

 

𝑭𝑳(𝒑𝒕) =  −(𝟏 − 𝒑𝒕)𝛄 𝐥𝐨𝐠(𝒑𝒕), (4.5) 

 

where −(1 − 𝑝𝑡)γis the modulating factor, with tunable focusing parameter γ = 2, and   

 

𝒑𝒕 = {
𝒑           𝒊𝒇 𝒚 = 𝟏    
𝟏 − 𝒑  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

  (4.6) 

 

where 𝑦 ∈ {±1} specifies the ground-truth class and 𝑝 ∈ [0,1] is the model’s estimated 

probability for the class with label 𝑦 = 1. As suggested in the paper [20], we measure the 

difference between the offsets and the ground truth boxes using the bounding box 

regression loss function denoted by 𝐿1. 

Then, the total loss, 𝐿𝑡𝑜𝑡𝑎𝑙, is expressed as a linear combination of 𝐹𝐿(𝑝𝑡) and 𝐿1: 

 

𝑳𝒕𝒐𝒕𝒂𝒍 = 𝜶𝑭𝑳(𝒑𝒕) + 𝜷𝑳𝟏, (4.7) 
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where 𝛼  and  𝛽  are balancing terms. According to experiments [25] and [20], the 

optimal values of both 𝛼 and 𝛽 are given as 1.
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Chapter 5. Experiments 

 

5.1 Dataset 

Large datasets are available for researchers in the field of object detection to perform 

benchmarking by training their models and comparing them to other methods. 

Unfortunately, the forest fire datasets are not available. In this study, a forest fire dataset 

was created by collecting data from several sources. The collected data set contains 4,350 

forest fire images, of which 2,190 images are collected from the HPWREN Public Database 

[29] and the remaining images are manually collected from other sources on the Internet. 

These images are labeled and boxed using the tool in [30], and are then divided into a 

training set of 3,915 images and an evaluation set of 435 images. The dataset adequately 

accounted for a variety of forest fire scenarios by including forest fire images varying in 

fire intensity, time of day, smoke shape, etc. 

 

5.2 Experimental setup 

The model was implemented using the Python programming language and Pytorch 

framework. Then, it was trained and evaluated using a computer with a GeForce RTX 3060 

GPU card. The training process took 60 epochs with a batch size of 6. The learning rate 

was initialized as 2.5 × 10−3 and then decreased by 10 times and 100 times after 40 epochs 

and 55 epochs, respectively. 

Our model was compared with various existing models, including RetinaNet [25], 

YOLOv3 [18], Faster-RCNN [20], SSD [26] with the same implementation settings in 

number of epochs and learning rate for fair comparison. We also compared our backbone 
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with other backbones like VGG16 [33], Convnext [34], EfficientNet [35], InceptionV1 [36], 

and InceptionV4 [37], using the same Head and Neck. 

 

5.3 Evaluation metrics 

In this paper, we use the average precision (AP) metric of MS-COCO [36], which is one 

of the evaluation criteria widely used in target detection tasks, to evaluate the accuracy of 

the model. Precision and Recall are used to calculate AP and are expressed as: 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 (5.1) 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (5.2) 

𝑨𝑷 = ∫ 𝑷(𝒓)𝒅𝒓
𝟏

𝟎
 , (5.3) 

 

where True Positive (TP) indicates that the model predicted the presence of smoke 

(Positive) and the prediction was correct (True), False Positive (FP) indicates that the model 

predicted the presence of a smoke (Positive), but the prediction was incorrect (False), True 

Negative (TN) indicates that the model predicted the absence of smoke (Negative), but the 

prediction was correct (True), and False Negative (FN) indicates that the model predicted 

the absence of smoke (Negative), but the prediction was incorrect (False). Precision 

indicates the ratio of the correct predictions to all predictions, while Recall indicates the 

ratio of the correct predictions to all labeled smokes. In addition to AP, some other metrics 

are used to evaluate the performance of the model.  
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AP50 and AP75 indicate the AP values at 50% and 75% IoU (Intersection over Union) 

thresholds, respectively, and APS, APM, and APL are AP values for small, medium, and 

large objects, respectively. GFLOPs (giga floating-point operations) and #Params (the 

number of parameters) are used to evaluate the computational complexity of the model, and 

FPS (frames per second) is used to evaluate detection speed. 

 

5.4 Experimental results 

 

Table 5.1. Performance Comparison of our model and the other models 

Model AP AP50 AP75 APS APM APL #Parameters(M) GFLOPS FPS 

Our model 52.9 85.7 53.3 27.8 50.2 85.8 18.61 120.63 21.5 

RetinaNet [24] 50.8 82.1 49.3 24.3 46.6 85.6 36.10 127.82 20.4 

Faster-RCNN [20] 48.3 79.5 46.7 27.5 45.3 78.3 41.12 134.38 17.7 

YOLOv3 [18] 45.5 81.0 44.0 21.0 46.5 73.3 61.52 121.15 22.0 

SSD [25] 43.0 77.8 42.4 21.6 47.1 70.8 24.39 214.18 17.4 

 

 

The performance comparison is shown in Table 4.1. Overall, our model achieved the 

best values for AP and its sub-metrics while keeping the low number of parameters and 

GFLOPS. RetinaNet, which has neck and head similar to our model, achieved competitive 

accuracy, especially in terms of APL, with nearly identical values. However, RetinaNet 

required a higher computational cost because it uses Resnet as its backbone. In particular, 

it shows more than twice the number of parameters and 6% higher GFLOPS compared to 

our model. As a two-stage object detection model, Faster R-CNN typically achieves high 
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accuracy by using more stages in its architecture. However, while this model requires many 

parameters and GFLOPS, it achieved 8.7% lower AP compared to our model. Note that 

YOLOv3 showed slightly higher FPS than our model but achieved significantly lower 

accuracy. This demonstrates the importance of customizing and optimizing the model to 

suit detection of fire and smoke objects.  

 

 

Table 5.2. Performance Comparison of proposed backbone and other backbones 

Backbone AP AP50 AP75 APS APM APL #Parameters (M) GFLOPS FPS 

Proposed 52.9 85.7 53.3 27.8 50.2 85.8 18.61 120.63 21.5 

VGG16 [33] 49.7 83.7 48.8 25.6 45.5 82.6 142.93 331.82 12.2 

Convnext [34] 48.0 81.0 46.3 19.7 45.6 78.9 19.61 90.11 22.0 

EfficientNet [35] 44.0 70.9 42.0 17.2 40.7 73.1 14.58 25.75 26.1 

Inceptionv1 [36] 41.2 69.4 40.4 9.6 33.8 82.1 16.13 52.25 23.8 

Inceptionv4 [37] 41.0 66.4 40.3 7.5 39.2 82.0 52.92 120.43 21.0 

 

 

Table 4.2 compares the performance of the proposed backbone with other popular 

backbones using the same Neck, Head and other settings. Overall, the proposed backbone 

achieves the best AP values while keeping fairly favorable values in #Parameters and 

GFLOPS. VGG16 also achieved good AP values, but with significantly higher #Parameters 

and GFLOPS values. On the other hand, EfficientNet and InceptionV1 generated 

significantly fewer parameters but with significantly lower AP values of 44.0 and 41.2, 

respectively. It can be concluded that the proposed backbone achieves both efficiency and 
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effectiveness for forest fire detection surpassing recent methods by a clear gain in AP and 

latency criterion. 

The qualitative test results for forest fires are shown in Figure 4.1 that includes 15 test 

images. The proposed model was able to detect various shapes of smokes and/or fires 

correctly regardless of daytime or nighttime. Moreover, the model could detect small 

smokes in images such as 11, 12, 13, and 14, blurred smokes such as 8, 9 and 12, and far-

away smokes such as 11, 12, 13, and 14, that are difficult for humans to discern. The 

detection of smoke implies that the model can detect a forest fire at an early stage.  

To show how well the attention mechanism works, heat maps of images using the Grad-

CAM technique with different models applied are compared in Fig. 4.2. The first column 

of the table shows four different smoke images and each of the next five columns shows 

the heat map of the corresponding image when each model is applied. Looking at the heap 

map, hot colors such as red and yellow indicate high attention, while cool colors such as 

blue and green indicate low attention.  

It is clearly seen that the attention area of the heat map generated by our proposed model 

depicts the shape of the original smoke image much better` compared to other heat maps. 

It is also seen that our model is better able to suppress the less relevant regions. For example, 

in our model's heat map to the last smoke image, the attention area has a shape very similar 

to that of smoke. 
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Figure 5.1. The qualitative results for forest fire detection on our dataset. 
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Figure 5.2. Grad-CAM visualization 
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5.5 Ablation study 

 

Table 5.3. Ablation study on backbone modules with different techniques 

Basic Splitting DW-coordinate CBAM AP #Parameters(M) GFLOPS 

√    49.9 28.21 140.49 

√ √   50.7 20.93 125.55 

√ √ √  52.6 18.52 120.62 

√ √ √ √ 52.9 18.61 120.63 

 

 

Finally, we conducted an ablation study by examining the effect of using techniques 

such as splitting (Splitting), depth-wise convolution of coordinate kernels (DW-coordinate), 

and attention mechanism (CBAM) on the basic backbone of our model (Basic). According 

to the results in Table 4.3 when each of those techniques is added, the proposed model can 

not only improve the accuracy, but also reduce the number of parameters. Especially, when 

our model employs all above techniques together, it could achieve 6% higher AP while 

reducing #Parameters and GFLOPS by 34% and 14%, respectively, compared to the basic 

model. It is also worth noting that the techniques, depth-wise convolution of coordinate 

kernels, contribute the most to the model's accuracy. 
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Chapter 6. Contribution Summary and 

Further Work 

 

6.1 Contribution summary 

This study introduced a variant of a vision-based fire detection model that relies on CNN 

for early and efficient detection of forest fires. The model focuses on developing a new 

Backbone which is suitable for extracting features from the images of smoke in the forest. 

Specifically, we applied a splitting technique as well as the use of depth-wise and 

coordinate convolutions to efficiently detect different types of smoke from forest fires. The 

attention mechanism is also integrated into the backbone architecture to improve detection 

accuracy. Our model was evaluated using a dataset that contains 4350 images of forest fires. 

According to the experiment results, our forest fire detection model performed better than 

the existing models in terms of accuracy and computational cost reduction. 

6.2 Future work 

Future work may consider a variety of mechanisms to further improve CNN's 

performance for forest fire detection, particularly in distinguishing smoke from other 

objects with similar characteristics such as clouds, fog, etc. Besides, we also consider the 

lightweight structures in our design to make the model easily employing on the low 

computational devices.  
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